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Introduction

Roadmap for Today

 Special Features of Files & File Systems
 File Control Structures

 Memory Mapped Files

 Log Structured FS
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 Example File Systems
 Unix

 BSD FFS

 EXT2

 Linux VFS

 Reiser FS



File Control StructuresFile Control Structures

4© 2009 Universität Karlsruhe (TH), System Architecture Group 



File Control Block

 Per application there is a list of opened files

 Per opened file there is a file control block (FCB)
 Position pointer 

 Current block address

File Control Structure
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 Links to buffers in main memory 

 Filling grade of buffer

 Lock information

 Access dates (e.g. time when file was opened)

 Access rights



Unix FCBs per Task/Process

 Per default each task has a couple of standard files
 stdin FID = 0
 stdout FID = 1
 stderr FID = 2

File Control Structure
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 FIDs with higher value are used for other files

 Once a file is closed, its FID is never used again

 With FIDs it is easy to redirect output to different 
files and to establish piped applications



Unix FCBs

 Besides collecting info on opened files per task, in 
most system there is also a table/list of all opened 
files

File Control Structure

FCBs per Task FCBs’ per system
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Task 1

Task 2



Memory Mapped FilesMemory Mapped Files
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Memory Mapped Files 

Memory-Mapped Files

 Map a file into a region of an AS of a task

 Idea: Access a mapped file as any other AS region

Implementation:

R i t i ithi AS d th ?
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 Reserve appropriate region within AS and then?
 PTEs point to file disk blocks instead of …? 

 Via page fault you load the corresponding “file page”

 Upon unmap, write back all modified pages 



Memory Mapped Files 

Memory-Mapped Files

code code
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(a) Segmented process before mapping files   
into its address space

(b) Process after mapping
 existing file abc into one segment 

 reserving a new segment for a new file xyz



Memory Mapped Files 

 Avoids translating from disk format to RAM format 
(and vice versa)
 Supports complex structures

 No read/write system calls!!!

 Unmap the file implicitly when task/process exits

Memory-Mapped Files
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 Unmap the file implicitly when task/process exits

 Problems:
 Determining actual size after several modifications

 Care must be taken if file f is shared, e.g.

 process P1 uses f as a memory-mapped file

 process P2 uses f via conventional file operations (read/write)



Memory Mapped Files

Memory-Mapped Files

 Appended slides are by Vivek Pai et al.

 Another set of good slides concerning memory-
mapped files in Linux 

 see: Linux Proseminar 2004/04 + 2004/05
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 Fabian Keller
 Sebastian Möller

 Bad news: Study of your own!!!! 

 Good news: Not in the focus of this year’s exams



Allocating Memory

 Old days: 
 manual tuning of sizes

 Benefits?
VM

FS Cache
Network

OS
OS

Network
OS
OS

FS Cache
Network

Memory-Mapped Files
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 Drawbacks?

VM
VM
VM
VM
VM
VM
VM

Desktop

VM
VM

Server

FS Cache
FS Cache
FS Cache
FS Cache
FS Cache



Manual Memory Tuning

 Fixed-size allocations for VM, FS cache

 Done right, protects programs from each other

 Backing up file system trashes FS cache

Memory-Mapped Files
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 Large-memory programs don’t compete with disk-
bound programs

 However, done poorly  memory underutilized



What Is Main Memory?

 At some level, a cache for the disk
 Permanent data written back to fs
 Temporary data in main memory or swap

Memory-Mapped Files
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 Main memory is much faster than disk

 Consider one program that accesses lots of 
files and uses lots of memory
 How do you optimize this program?
 Could you view all accesses as page faults?



Consider Ages With Pages

 What happens if 5 FS pages are 
really active?

 What happens if relative 
demands change over time? VM 100

FS, 5
FS, 3
FS, 1
FS, 1

Memory-Mapped Files
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g

VM, 1
VM, 1
VM, 3
VM, 5
VM, 10
VM, 20
VM, 50
VM, 100



Unified VM Systems

 Now what happens when a 
page is needed?

 What happens on disk 
backup?
Did h th FS 5

VM, 10
VM, 20
VM, 50
VM, 100

Memory-Mapped Files
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 Did we have the same 
problem before?

VM, 1
VM, 1
FS, 1
FS, 1
FS, 3
VM, 3
VM, 5
FS, 5



Why Mmap?

 File pages are a lot like VM pages

 We don’t load all of a process at once 

 Why load all of a file at once?

Memory-Mapped Files
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 Why copy a file to access it?
 There’s one good reason



Mmap Definition

void *mmap(void *addr, size_t len, 
int prot, int flags, 
int fildes, off_t off);

 addr: where we want to map it (into our AS)

Memory-Mapped Files
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p ( )

 len: how much we want mapped

 prot: allow reading, writing, exec

 flags: is mapped shared/private/anonymous, 
fixed/variable location, swap space reserved?

 fildes: what file is being mapped

 off: start offset in file



Mmap Diagram

Stack
Stack

Memory-Mapped Files
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Code
Code
Data
Heap

File A Process File B



Mmap Implications

 # of VM regions increases
 Was never really just code/text/heap/stack
 Access/protection info on all regions

 File system no longer sole way to access file

Memory-Mapped Files
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 File system no longer sole way to access file
 Previously, access info via read( ) and write( )
 Same file via file system and mmap?



Mmap Versus Read

 When read( ) completes
 All pages in range were loaded at some point
 A copy of the data in user’s buffers
 If underlying file changes, no change to data in 

Memory-Mapped Files
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y g g , g
user’s buffer

 When mmap( ) completes
 Mapping of the file is complete
 Virtual address space modified
 No guarantee file is in memory



Cost Comparison

 Read:
 All work done (incl disk) before call returns
 No extra VM trickery needed
 Contrast with write( )

Memory-Mapped Files
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 Mmap:
 Inode in memory from open( )
 Mapping is relatively cheap
 Pages needed only on access



Lazy Versus Eager

 Eager:
 Do it right now
 Benefit: low latency if you need it
 Drawback: wasted work if you don’t

Memory-Mapped Files
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 Lazy:
 Do it at the last minute
 Benefit: “pay as you go”
 Drawback: extra work if you need it all



Double Buffering

Stack
Stack

FS

Memory-Mapped Files
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Code
Code
Data

FS Copy
Heap

File Read Process File Mmap



Sharing Memory

 Two processes map same file shared

 Both map it with “shared” flag
 Same physical page accessed by two processes at 

t i t l dd

Memory-Mapped Files
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two virtual addresses

 What happens when that page victimized 
(PTE mechanics)?
 Have we seen this somewhere else?



Reloading State

 Map a file at a fixed location

 Build data structures inside it

 Re-map at program startup

Memory-Mapped Files
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 Re map at program startup

 Benefits versus other approaches?



What Is a “Private” Mapping?

 Process specifies changes not to be visible to 
other processes

 Modified pages look like VM pages

Memory-Mapped Files
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 Written to swap if pressure
 Disposed when process dies



Log Structured FSLog Structured FS
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Log-Structured File Systems*

 With CPUs faster & memory larger 

 disk caches can also be larger 

 many read requests can come from cache

 most disk accesses will be writes

Special Cases
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 most disk accesses will be writes
 If writes, will cover only a few bytes

 If writes, to Unix-like new files
 Inode of directory, directory

 Inode of file, meta blocks and data blocks of file

*Rosenblum and Ousterhout



Log-Structured File Systems

 Log-structured FS: use disk as a circular buffer:

 Write all updates, including inodes, meta data 
to end of log
 have all writes initially buffered in memory

Special Cases
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 have all writes initially buffered in memory
 periodically write these within 1 segment (1 MB) 
 when file opened, locate i-node, then find blocks

 From the other end, clear all data, no longer 
used



Introduction

Example File SystemsExample File Systems
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CD-ROM
Classic FS

CP/M 
MS-DOS
Unix
BSD FFS
EXT2
Linux VFS

Journaling (log strutured) FS
EXT3
XFS
JFS
Reiser
NTFS
Veritas

Special slides File_Appendix1



FS Cache “writes-behind”
in case of RAM pressure or
periodically or due to 
system calls or commands

UNIX File System Structure

Unix FS

Application
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?
Character Block

Device Drivers (e.g. disk driver)

Buffer

File Subsystem

Cache

file block f0

Speedup due 
to FS cache

File and FS 
consistency problems



Using a Unix File

 Opening a file creates a file descriptor fid
 Used as an index into a process-specific table of open files
 The corresponding table entry points to a system-wide file table
 Via buffered inode table, you finally get the data blocks

Unix FS
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fid =open(...)

user address space

read(fid,…)

open files
per process

file table
(system wide)

inode table
(in a buffer)

kernel address space



Original Unix File System
 Simple disk layout

 Block size = sector size (512 bytes)
 Inodes on outermost cylinders1

 Data blocks on the inner cylinders
 Freelist as a linked list

 Issues

Unix FS
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 Index is large
 Fixed number of files
 Inodes far away from data blocks
 Inodes for directory not close 

together
 Consecutive file blocks can be 

anywhere
 Poor bandwidth (20 KB/sec) for 

sequential access

1in very early Unix FSs inode table in the midst of the cylinders



Unix File Names

 Historically only 14 characters

 Version V up to 255 ASCII characters

<filename> . <extension>

Unix FS
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 program.c ~ a C-source code

 program.h  ~ header file for type definition etc.

 program.o ~ an object file



Important Unix Directories

Unix FS
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Unix V Directory Entry V71

Unix FS
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1Historical version



BSD FFS

 Use a larger block size: 4 KB or 8 KB

 Allow large blocks to be chopped into fragments

 Used for little files and pieces at the ends of files

BSD FFS
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 Use bitmap instead of a free list

 Try to allocate more contiguously

 10% reserved disk space



BSD FFS Directory

 Directory entry needs three elements:
 length of dir-entry (variable length of file names)    

 file name (up to 255 characters)

inode number (index to a table of inodes)

Unix FS
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 inode number (index to a table of inodes)

 Each directory contains at least two entries:
 .. = link to the parent directory (forming the directory tree)

 .  = link to itself

 FFS offers a “tree-like structure” (like Multics), 
supporting human preference, ordering hierarchically



Unix BSD FFS Directory (2)

Unix FS

voluminous = colossal

19 19
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 BSD directory three entries (voluminous = hardlink to colossal)

 Same directory after file voluminous has been removed



Unix Directories

 Multiple directory entries may point to same inode (hard link)

 Pathnames are used to identify files
/etc/passwd an absolute pathname 
../home/lief/examination a relative pathname

Unix FS
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 Pathnames are resolved from left to right

 As long as it’s not the last component of the pathname, 
the component name must be a  directory

 With symbolic links you can address files and directories with 
different names.  You can even define a symbolic link to a file 
currently not mounted (or even that never existed); i.e. a 
symbolic link is a file containing a pathname



/

bin etc usr

cc sh passwdgetty

mount-point

root file system

Logical and Physical File System

Unix FS
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cc sh passwdgetty

/

bin include src

awk yacc stdio.h uts

mountable file system



Mounting a File System

Unix FS
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(a) Before mounting (b) After mounting



Logical and Physical File System

 A logical file system can consist of different physical file 
systems

 A file system can be mounted at any place within another 
file system

Unix FS
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 When accessing the “local root” of a mounted file system, a 
bit in its inode identifies this directory as a so-called mount 
point

 Using mount respectively umount the OS manages a so 
called mount table supporting the resolution of path names 
crossing file systems 

 The only file system that has to be resident is the root file 
system (in general on a partition of a hard disk)



Layout of a Logical Disk

 Each physical file system is placed within a logical disk partition.  
A physical disk may contain several logical partitions (or logical 
disks)

 Each partition contains space for the boot block, a super block, 
the inode table, and the data blocks
O l th t titi t i l b t bl k

Unix FS
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b s inode table

. . .

file data blocks

. . .

border

 Only the root partition contains a real boot block
 Border between inodes and data blocks region can be set, thus 

supporting better usage of the file system 
 with either few large files or 
 with many small files 



Linking of Files

Unix FS
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(a) Before linking (b) After linking



Hard Links  Symbolic Links

Hard link is another file name, i.e.  another directory entry
pointing to a specific file; its inode-field is the same in all hard 
links. Hard links are bound to the logical device (partition).

Each new hard link increases the link counter in file’s i-node. 
As long as link counter  0, file remains existing after a rm. 

Unix FS
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In all cases, a remove decreases link counter.

Symbolic link is a new file containing a pathname pointing to 
a file or to a directory. Symbolic links are evaluated per access. 
If file or directory is removed the symbolic link points to 
nirwana.

You may even specify a symbolic link to a file or to a directory
currently not present or even currently not existent.



sys realfile.h

/

usr

src include

inode.h

uts

sys

testfile.h

Symbolic Links

Unix FS
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With: symlink(“/usr/src/uts/sys”, “/usr/include/sys/”) you add a symbolic link to a directory,
i.e. you create the file /usr/include/sys pointing to the directory /usr/src/uts/sys

With: symlink(“/usr/include/realfile.h”, “/usr/src/uts/sys/testfile”) you add a file link to 
realfile.h 

The following 3 pathnames access the same file: /usr/include/realfile.h
/usr/include/sys/sys/testfile.h
/usr/src/uts/sys/testfile.h

Using relative path names you may benefit from hard and soft links



How to use a Symbolic Link?

What does Unix do, when accessing a symbolic link?

Example of the previous slide:

fopen(/usr/src/uts/sys/testfile.h, …);

Unix FS
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cp(/usr/src/uts/sys/testfile.h, newfile)



Unix File Management

 Ordinary files = array of bytes, no record structures 
at system level

 Types of files
 ordinary:  contents entered by user or program

di t t i li t f fil

Unix FS
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 directory: contains a list of file names 
 (including length field and inode-numbers
 special:    used to access peripheral devices
 named:    for named pipes

 Inode = file descriptor (file header) containing file attributes
 file mode
 link count
 owner and group id 
 … etc. 



Unix Inode

Unix FS
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single indirect

.

.
.
.

.

double indirect

.

.

.

triple indirect

Access Structure

Unix FS

direct

© 2009 Universität Karlsruhe (TH), System Architecture Group 53

. .

.

.

.

.

Remark:
Depending on the block size (e.g. 512 Bytes, ...)  
and on the pointer length (e.g. 4 Bytes) 
maximum file size is greater than 2 MB.
“Small” files are favored concerning access speed. 



Buffering

 Disk blocks are buffered in main memory. Access to 
buffers is done via a hash table.

 Blocks with the same hash value are chained together
 Buffer replacement policy = LRU
 Free buffer management is done via a double-linked list.

Unix FS
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hash table

head of free list

g



block status flags
pointer to cached block

device number

Data block in memory

Used for

Dirty block,
Locked block etc.

UNIX Block Header

Unix FS
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block number on device
I/O error status

# bytes left to transfer

pair of pointers in case 
of hash collisions

pair of pointers  
for the free list

Between other
block headers

Used for
hashing

Used by 
disk I/O driver



Device#,Block#

“Block Headers”Device List
(hash table)

UNIX Buffer Cache (1)

Unix FS
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X

Y

Z

Remark:
X,Y, and Z are block headers of blocks mapped into the same hash table entry

Free List Header



Device List
(hash table)

Device#,Block#

Top of the LRU-stack =
most recently accessed block

The other 
“green” pointers 

establishing the free list
are omitted

UNIX Buffer Cache (2)

Unix FS
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“Free List Header”

forward

Remark: The free list contains all block headers, establishing a LRU order
Least recently 
accessed block

X

Y

Z



UNIX Buffer Cache (3)

Advantages:
 reduces disk traffic 

 “well-tuned” buffer has hit rates up to 90%      
( di t O t h t 10 th SOSP 1985)

Unix FS
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(according to Ousterhout 10.th SOSP 1985)

 ~ 10% of main memory for the buffer cache    
(recommendation for old configurations)



UNIX Buffer Cache (4)

Disadvantages:
 Write-behind policy might lead to 

 data losses in case of system crash and/or

 inconsistent state of the FS

Unix FS
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 rebooting system might take some time due to fsck, 
i.e. checking all directories and files of FS

 Always two copies involved
 from disk to buffer cache (in kernel space)

 from buffer to user address space

 FS Cache wiping if sequentially reading a very large 
file from end to end and not accessing it again



Linux File System(s)

 Virtual File System VFS
 Used to host different file systems, e.g.

 EXT2

 EXT3

Linux FS
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 Reiser FS

 …

 A generic interface 

See: Various Linux Proseminar talks
Extract the pros & cons of the VFS approach



Reiser FSReiser FS
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Slides cover Reiser3
Reiser4 see:

http://www.namesys.com/v4/v4.html#repacker



Outline

??

??

Reiser FS

1. What is ReiserFS?
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??

??

2. How is it implemented?

3. Why did they do it like they did?



References

 Namesys’s Homepage www.namesys.com, 

 ReiserFS Architectural Overview 
(www.namesys.com/v4/v4.html)

Where?Where?

Reiser FS
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 “Future Visions” Whitepaper 
(www.namesys.com/whitepaper.html)

 The Source Code
http://homes.cerias.purdue.edu/~florian/reiser/reiserfs.php

 And many more papers on Reiser FS 



Introduction
What?What?

Reiser FS

 FS developed by Hans Reiser’s company Namesys

 First version released in mid-90s

 Part of Linux since 2.4.1 (ReiserFS V3.5)
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This slides are about Reiser V3 (4)

 ReiserFS V3.6 is default FS for 
 SuSE

 Lindows

 Gentoo



Reiser FS Features

Good design 
and clever

implementation

What?What?

Reiser FS

 fast, but space efficient

  scalable
 about 10 times faster than ext2fs

 no penalty for small files
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implementation

 reliable
 journaling support

 atomic file operations (i.e. transaction alike)

 compatible, but extensible
 full support for UNIX semantics

 sophisticated plugin system



Reiser FS and Disk Partitions

 Each ReiserFS partition might contain 232 blocks
 Partition capacity depends on size of block

 First 64 K reserved for 

 partition labels and booting info
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 Next, one superblock (for complete partition)

 Next, bitmap (for partition management)

 Each file object→ (at least) one unambiguous key
 Directory id

 Object id

 Offset

 Type



Reiser FS Features
How?How?

Reiser FS

 fast, but space efficient

 about 10 times faster than ext2fs

 no penalty for small files
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p y

 reliable

 compatible, but extensible



Semantic vs. Storage Layer

 Theoretical point of view:
Filesystem: Name  Object

 Two software layers:

 Semantic Layer: convert name

How?How?
~/home/reiser.txt

2342

VFS

Reiser FS
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Semantic Layer: convert name 
to key (mostly VFS)

 Storage Layer: find object 
with given key 

 B+ tree based in RSF3 and
dancing tree1 in RSF4

2342

1Try to collect neighboring data before writing to disk



Recap: B+Trees (1)
How?How?

distance between 
leaf and root 

same  leaves

nodes have  [n/2, n] children

items sorted 
according to keys

Reiser FS

 Balanced n-way search tree
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German: “Verzweigungsfaktor”

 Tree grows only at root  stays balanced

 High fanout  flat tree: good for slow media!



Recap: B+Trees (2)
How?How?

Reiser FS

 B Trees:

 Subtrees “hang” between two data items

 These items’ keys delimit possible keys in subtree
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 B+Trees:

 Actual data items only in leaves (at lowest level) 
 helps caching because of increased locality

 Roots of subtrees store delimiting keys (not actual 
items)



A Sample B+Tree

1 23

1 4 23 57

How?How?

delimiting key

pointer to subtree

node

height: 3
fanout: 2

root

Reiser FS
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1 4 23 57

X X X X X X X X1 3 4 17 23 57 63

no subtree 
no delimiter

data item with key 57

node

leaves



Storage Layer How?How?

Reiser FS

 File objects stored in B+Tree (2 ≤ height ≤ 5)

 Node size fixed (4K)  no external fragmentation

 Object size variable: split into items that fit into nodes

M ll bj t b t d i t d

© 2009 Universität Karlsruhe (TH), System Architecture Group 72

Additionally: some maintenance structures 
(superblock, allocation bitmaps ~ like ext2fs)

 Many small objects can be aggregated into one node 
(avoids internal fragmentation)

 One large object can be distributed over multiple nodes

 Very large objects (>16K) are stored in super-size nodes 
(called extents)



The Storage Layer in Action
How?How?

root node

branch node

super block

Reiser FS
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twig node

leaf nodes formatted leaf

unfleaf
(unformatted leaf)

extent
item

extent pointernode pointer

... ... ... ... ... ...



Node Layout

block
h d

item body
0

item body
1

item
h d 1

item
h d 0

...

How?How?

Reiser FS

 unfleaf: unformatted, just raw data

 formatted leaf: 
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head 0 1 head 1head 0

 twig node: similar structure; no actual data, only 
pointers

 branch node: like twig node, no extent pointers



Item Layout

 item = body + head (see above)
 head layout:

key offset flags type

How?How?

Reiser FS
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key offset flags type

object this item 
belongs to

address of item 
body

(seems to be 
unused so far)

type of this 
item



Item Types How?How?

Reiser FS

 Node Pointer: points to a node (holds delimiting keys)

 Extent Pointer: points to an extent (holds extent’s size 
and key)

 File Body: raw data
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 Stat Data: file metadata ( ext2fs inode)

 Directory item: hash table of file names and keys

Plugins enable to create your own item types.



Keys

 Object

How?How?

composed of items (storage layer)

composed of units (semantic layer)

keys actually 
designate
units, not 
objects!

 Key structure:

Reiser FS
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major 
locality object id offsetminor

locality
un-
used

parent directory’s
object id

“data or 
metadata?”

file this unit
belongs to

position of unit
within file



How?How?

<key1>
0x001C
0x0000

<key2>
0x0025
0x0000

block header item body 1 item headers

u e s t i o n s ? I n a

item body 2

key
offs
flag

0000 0002 0F9B 0029
52344653 091F88A5
0000000000000000

0000 0100

Reiser FS

A Real-Life Leaf Node
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0x00060x0006

28 37 41

<key2> = 0x00000000000000000000000000371D350000000000047114
<key1> = 0x000000000001DFF70000000001B129C10000000000047114

offset major loc.object id

/home/reiser.txt /home/hobbit.txt

minor loc.

g
type0000 0100

0 4096



Journaling
How?How?

Reiser FS

 All FS modifications done as atomic transactions

 An atomic transaction...
 either completes or does nothing

 never leaves metadata in inconsistent state
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 never leaves metadata in inconsistent state

 Intermediate state stored in a journal/log

 Transaction procedure:
1. log start of transaction

2. do transaction

3. log completion of transaction



Fixed Logs How?How?

Reiser FS

 partition disk into logging area and commit area
 copy data to logging area first, then to destination
 log structured as circular buffer  fast insertion
 but: need two copies!
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log area commit area



Wandering Logs

 Idea: don’t move block to commit area, instead 
move commit area to block

How?How?

log

Reiser FS
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...   ...

but: move a node 
 have to move its parent node 
... 
have to move root of tree

still points to old node!still points to old node!
ReiserFS decides at runtime which method to use.

commit



Log Implementation How?How?

Reiser FS

 ReiserFS partitions changed blocks into two sets
 Relocate Set: blocks that can stay where they are 

(i.e., blocks with Wandering Log policy)
 Overwrite Set: blocks that have to be copied 

somewhere else (i.e., blocks with Write Twice
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somewhere else (i.e., blocks with Write Twice 
policy)

 Transaction represented by its Wander List: records 
destinations of blocks from Overwrite Set

 Wander Lists of incomplete transactions recorded at 
fixed disk location

 If system crashes: Wander List “replayed” on next 
boot



Plugins

 ReiserFS can be customized through plugins:
 object plugins: provide object semantics (standard: regular 

file, symlink, directory)

 security plugins: control access to object data (used by 
object plugins)

How?How?

semantic

layer

Reiser FS
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 hash plugins: implement hash functions to order directory 
entries

 tail policy plugins: decide whether an object should be 
split into items or put into an extent

 item plugins: define new kinds of items

 node plugins: define new kinds of nodes

 plus some more esoteric ones...

 Reiser4: plugins static, dynamic ones to come

storage

layer



Reiser FS and VFS

 VFS requests: handed to object plugins
 plugin: knows how to handle them (e.g., standard file 

plugin supports traditional UNIX semantics)
 system call reiser4: access to more advanced 

R i FS f t ( f l i )

How?How?

Reiser FS
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ReiserFS features (e.g., fancy plugins)
 but: using a separate system call just for ReiserFS is 

tricky and overall just

DROP DEAD UGLYDROP DEAD UGLY
(Reiser promises it is only a temporary solution ...)



 fast, but space efficient
 about 10 times faster than ext2fs
 no penalty for small files

How?How?

Reiser FS

Reiser FS Features
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 reliable
 journaling support

 compatible, but extensible
 full support for UNIX semantics
 sophisticated plugin system



The Big Picture Why?Why?

Reiser FS

 Speed and reliability: hardly need justification

 Efficient small file handling
 more important than you might realize: Max’s home 

installation has more than 80% files <16K!
 Allows nice generalization: file attributes can be stored as
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 Allows nice generalization: file attributes can be stored as 
separate, small files

 Whole databases could be integrated into the file system

 Future versions:
 Reiser5: distributed FS
 Reiser6: non-hierarchical file lookup (DB queries)

Ultimate Goal: 
Unifying FS, database and search engine.



Evaluation

 Pro:
+ speed
+ reliability
+ extensibility

So?So?

Reiser FS
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 Con:
 difficult setup (no easy conversion from ext2fs)
 Linux only
 complex code:

ext2fs:   4659 LOC
ext3fs:   7840 LOC
Reiser3: 20780 LOC
Reiser4: 92061 LOC but: relatively clean code; no foos

cf. fs/ext2fs/super.c:174:
static void init_once(void * foo, ...)



Summary

 Reiser FS is a modern file system supporting

 fast and efficient file handling through tree 
structured storage layer

 transaction safety and easy crash recovery

Reiser FS
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 transaction safety and easy crash recovery 
through journaling

 extensibility and scalability through plugins

 Its more advanced semantics, however, cannot 
adequately be supported by commodity OSes like 
Linux.


