
25 Example File Systems25 Example File Systems

1© 2009 Universität Karlsruhe (TH), System Architecture Group

Special Features of Files
Example File Systems

February 9 2009
Winter Term 2008/09

Gerd Liefländer

Recommended Reading

 Bacon, J.: Concurrent Systems (5)
 Nehmer, J.: Systemsoftware: Grlg. mod. BS, (9)
 Silberschatz, A.: Operating System Concepts (10,11)
 Stallings, W.: Operating Systems (12)

Introduction

© 2009 Universität Karlsruhe (TH), System Architecture Group 2

 Tanenbaum, A.: Modern Operating Systems (5, 6)

Introduction

Roadmap for Today

 Special Features of Files & File Systems
 File Control Structures

 Memory Mapped Files

 Log Structured FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 3

 Example File Systems
 Unix

 BSD FFS

 EXT2

 Linux VFS

 Reiser FS

File Control StructuresFile Control Structures

4© 2009 Universität Karlsruhe (TH), System Architecture Group

File Control Block

 Per application there is a list of opened files

 Per opened file there is a file control block (FCB)
 Position pointer

 Current block address

File Control Structure

© 2009 Universität Karlsruhe (TH), System Architecture Group 5

 Links to buffers in main memory

 Filling grade of buffer

 Lock information

 Access dates (e.g. time when file was opened)

 Access rights

Unix FCBs per Task/Process

 Per default each task has a couple of standard files
 stdin FID = 0
 stdout FID = 1
 stderr FID = 2

File Control Structure

© 2009 Universität Karlsruhe (TH), System Architecture Group 6

 FIDs with higher value are used for other files

 Once a file is closed, its FID is never used again

 With FIDs it is easy to redirect output to different
files and to establish piped applications

Unix FCBs

 Besides collecting info on opened files per task, in
most system there is also a table/list of all opened
files

File Control Structure

FCBs per Task FCBs’ per system

© 2009 Universität Karlsruhe (TH), System Architecture Group 7

Task 1

Task 2

Memory Mapped FilesMemory Mapped Files

8© 2009 Universität Karlsruhe (TH), System Architecture Group

Memory Mapped Files

Memory-Mapped Files

 Map a file into a region of an AS of a task

 Idea: Access a mapped file as any other AS region

Implementation:

R i t i ithi AS d th ?

© 2009 Universität Karlsruhe (TH), System Architecture Group 9

 Reserve appropriate region within AS and then?
 PTEs point to file disk blocks instead of …?

 Via page fault you load the corresponding “file page”

 Upon unmap, write back all modified pages

Memory Mapped Files

Memory-Mapped Files

code code

© 2009 Universität Karlsruhe (TH), System Architecture Group 10

(a) Segmented process before mapping files
into its address space

(b) Process after mapping
 existing file abc into one segment

 reserving a new segment for a new file xyz

Memory Mapped Files

 Avoids translating from disk format to RAM format
(and vice versa)
 Supports complex structures

 No read/write system calls!!!

 Unmap the file implicitly when task/process exits

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 11

 Unmap the file implicitly when task/process exits

 Problems:
 Determining actual size after several modifications

 Care must be taken if file f is shared, e.g.

 process P1 uses f as a memory-mapped file

 process P2 uses f via conventional file operations (read/write)

Memory Mapped Files

Memory-Mapped Files

 Appended slides are by Vivek Pai et al.

 Another set of good slides concerning memory-
mapped files in Linux

 see: Linux Proseminar 2004/04 + 2004/05

© 2009 Universität Karlsruhe (TH), System Architecture Group 12

 Fabian Keller
 Sebastian Möller

 Bad news: Study of your own!!!!

 Good news: Not in the focus of this year’s exams

Allocating Memory

 Old days:
 manual tuning of sizes

 Benefits?
VM

FS Cache
Network

OS
OS

Network
OS
OS

FS Cache
Network

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 13

 Drawbacks?

VM
VM
VM
VM
VM
VM
VM

Desktop

VM
VM

Server

FS Cache
FS Cache
FS Cache
FS Cache
FS Cache

Manual Memory Tuning

 Fixed-size allocations for VM, FS cache

 Done right, protects programs from each other

 Backing up file system trashes FS cache

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 14

 Large-memory programs don’t compete with disk-
bound programs

 However, done poorly  memory underutilized

What Is Main Memory?

 At some level, a cache for the disk
 Permanent data written back to fs
 Temporary data in main memory or swap

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 15

 Main memory is much faster than disk

 Consider one program that accesses lots of
files and uses lots of memory
 How do you optimize this program?
 Could you view all accesses as page faults?

Consider Ages With Pages

 What happens if 5 FS pages are
really active?

 What happens if relative
demands change over time? VM 100

FS, 5
FS, 3
FS, 1
FS, 1

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 16

g

VM, 1
VM, 1
VM, 3
VM, 5
VM, 10
VM, 20
VM, 50
VM, 100

Unified VM Systems

 Now what happens when a
page is needed?

 What happens on disk
backup?
Did h th FS 5

VM, 10
VM, 20
VM, 50
VM, 100

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 17

 Did we have the same
problem before?

VM, 1
VM, 1
FS, 1
FS, 1
FS, 3
VM, 3
VM, 5
FS, 5

Why Mmap?

 File pages are a lot like VM pages

 We don’t load all of a process at once

 Why load all of a file at once?

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 18

 Why copy a file to access it?
 There’s one good reason

Mmap Definition

void *mmap(void *addr, size_t len,
int prot, int flags,
int fildes, off_t off);

 addr: where we want to map it (into our AS)

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 19

p ()

 len: how much we want mapped

 prot: allow reading, writing, exec

 flags: is mapped shared/private/anonymous,
fixed/variable location, swap space reserved?

 fildes: what file is being mapped

 off: start offset in file

Mmap Diagram

Stack
Stack

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 20

Code
Code
Data
Heap

File A Process File B

Mmap Implications

 # of VM regions increases
 Was never really just code/text/heap/stack
 Access/protection info on all regions

 File system no longer sole way to access file

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 21

 File system no longer sole way to access file
 Previously, access info via read() and write()
 Same file via file system and mmap?

Mmap Versus Read

 When read() completes
 All pages in range were loaded at some point
 A copy of the data in user’s buffers
 If underlying file changes, no change to data in

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 22

y g g , g
user’s buffer

 When mmap() completes
 Mapping of the file is complete
 Virtual address space modified
 No guarantee file is in memory

Cost Comparison

 Read:
 All work done (incl disk) before call returns
 No extra VM trickery needed
 Contrast with write()

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 23

 Mmap:
 Inode in memory from open()
 Mapping is relatively cheap
 Pages needed only on access

Lazy Versus Eager

 Eager:
 Do it right now
 Benefit: low latency if you need it
 Drawback: wasted work if you don’t

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 24

 Lazy:
 Do it at the last minute
 Benefit: “pay as you go”
 Drawback: extra work if you need it all

Double Buffering

Stack
Stack

FS

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 25

Code
Code
Data

FS Copy
Heap

File Read Process File Mmap

Sharing Memory

 Two processes map same file shared

 Both map it with “shared” flag
 Same physical page accessed by two processes at

t i t l dd

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 26

two virtual addresses

 What happens when that page victimized
(PTE mechanics)?
 Have we seen this somewhere else?

Reloading State

 Map a file at a fixed location

 Build data structures inside it

 Re-map at program startup

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 27

 Re map at program startup

 Benefits versus other approaches?

What Is a “Private” Mapping?

 Process specifies changes not to be visible to
other processes

 Modified pages look like VM pages

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 28

 Written to swap if pressure
 Disposed when process dies

Log Structured FSLog Structured FS

29© 2009 Universität Karlsruhe (TH), System Architecture Group

Log-Structured File Systems*

 With CPUs faster & memory larger 

 disk caches can also be larger 

 many read requests can come from cache

 most disk accesses will be writes

Special Cases

© 2009 Universität Karlsruhe (TH), System Architecture Group 30

 most disk accesses will be writes
 If writes, will cover only a few bytes

 If writes, to Unix-like new files
 Inode of directory, directory

 Inode of file, meta blocks and data blocks of file

*Rosenblum and Ousterhout

Log-Structured File Systems

 Log-structured FS: use disk as a circular buffer:

 Write all updates, including inodes, meta data
to end of log
 have all writes initially buffered in memory

Special Cases

© 2009 Universität Karlsruhe (TH), System Architecture Group 31

 have all writes initially buffered in memory
 periodically write these within 1 segment (1 MB)
 when file opened, locate i-node, then find blocks

 From the other end, clear all data, no longer
used

Introduction

Example File SystemsExample File Systems

32© 2009 Universität Karlsruhe (TH), System Architecture Group

CD-ROM
Classic FS

CP/M
MS-DOS
Unix
BSD FFS
EXT2
Linux VFS

Journaling (log strutured) FS
EXT3
XFS
JFS
Reiser
NTFS
Veritas

Special slides File_Appendix1

FS Cache “writes-behind”
in case of RAM pressure or
periodically or due to
system calls or commands

UNIX File System Structure

Unix FS

Application

© 2009 Universität Karlsruhe (TH), System Architecture Group 33

?
Character Block

Device Drivers (e.g. disk driver)

Buffer

File Subsystem

Cache

file block f0

Speedup due
to FS cache

File and FS
consistency problems

Using a Unix File

 Opening a file creates a file descriptor fid
 Used as an index into a process-specific table of open files
 The corresponding table entry points to a system-wide file table
 Via buffered inode table, you finally get the data blocks

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 34

fid =open(...)

user address space

read(fid,…)

open files
per process

file table
(system wide)

inode table
(in a buffer)

kernel address space

Original Unix File System
 Simple disk layout

 Block size = sector size (512 bytes)
 Inodes on outermost cylinders1

 Data blocks on the inner cylinders
 Freelist as a linked list

 Issues

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 35

 Index is large
 Fixed number of files
 Inodes far away from data blocks
 Inodes for directory not close

together
 Consecutive file blocks can be

anywhere
 Poor bandwidth (20 KB/sec) for

sequential access

1in very early Unix FSs inode table in the midst of the cylinders

Unix File Names

 Historically only 14 characters

 Version V up to 255 ASCII characters

<filename> . <extension>

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 36

 program.c ~ a C-source code

 program.h ~ header file for type definition etc.

 program.o ~ an object file

Important Unix Directories

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 37

Unix V Directory Entry V71

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 38

1Historical version

BSD FFS

 Use a larger block size: 4 KB or 8 KB

 Allow large blocks to be chopped into fragments

 Used for little files and pieces at the ends of files

BSD FFS

© 2009 Universität Karlsruhe (TH), System Architecture Group 39

 Use bitmap instead of a free list

 Try to allocate more contiguously

 10% reserved disk space

BSD FFS Directory

 Directory entry needs three elements:
 length of dir-entry (variable length of file names)

 file name (up to 255 characters)

inode number (index to a table of inodes)

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 40

 inode number (index to a table of inodes)

 Each directory contains at least two entries:
 .. = link to the parent directory (forming the directory tree)

 . = link to itself

 FFS offers a “tree-like structure” (like Multics),
supporting human preference, ordering hierarchically

Unix BSD FFS Directory (2)

Unix FS

voluminous = colossal

19 19

© 2009 Universität Karlsruhe (TH), System Architecture Group 41

 BSD directory three entries (voluminous = hardlink to colossal)

 Same directory after file voluminous has been removed

Unix Directories

 Multiple directory entries may point to same inode (hard link)

 Pathnames are used to identify files
/etc/passwd an absolute pathname
../home/lief/examination a relative pathname

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 42

 Pathnames are resolved from left to right

 As long as it’s not the last component of the pathname,
the component name must be a directory

 With symbolic links you can address files and directories with
different names. You can even define a symbolic link to a file
currently not mounted (or even that never existed); i.e. a
symbolic link is a file containing a pathname

/

bin etc usr

cc sh passwdgetty

mount-point

root file system

Logical and Physical File System

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 43

cc sh passwdgetty

/

bin include src

awk yacc stdio.h uts

mountable file system

Mounting a File System

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 44

(a) Before mounting (b) After mounting

Logical and Physical File System

 A logical file system can consist of different physical file
systems

 A file system can be mounted at any place within another
file system

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 45

 When accessing the “local root” of a mounted file system, a
bit in its inode identifies this directory as a so-called mount
point

 Using mount respectively umount the OS manages a so
called mount table supporting the resolution of path names
crossing file systems

 The only file system that has to be resident is the root file
system (in general on a partition of a hard disk)

Layout of a Logical Disk

 Each physical file system is placed within a logical disk partition.
A physical disk may contain several logical partitions (or logical
disks)

 Each partition contains space for the boot block, a super block,
the inode table, and the data blocks
O l th t titi t i l b t bl k

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 46

b s inode table

. . .

file data blocks

. . .

border

 Only the root partition contains a real boot block
 Border between inodes and data blocks region can be set, thus

supporting better usage of the file system
 with either few large files or
 with many small files

Linking of Files

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 47

(a) Before linking (b) After linking

Hard Links  Symbolic Links

Hard link is another file name, i.e.  another directory entry
pointing to a specific file; its inode-field is the same in all hard
links. Hard links are bound to the logical device (partition).

Each new hard link increases the link counter in file’s i-node.
As long as link counter  0, file remains existing after a rm.

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 48

In all cases, a remove decreases link counter.

Symbolic link is a new file containing a pathname pointing to
a file or to a directory. Symbolic links are evaluated per access.
If file or directory is removed the symbolic link points to
nirwana.

You may even specify a symbolic link to a file or to a directory
currently not present or even currently not existent.

sys realfile.h

/

usr

src include

inode.h

uts

sys

testfile.h

Symbolic Links

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 49

With: symlink(“/usr/src/uts/sys”, “/usr/include/sys/”) you add a symbolic link to a directory,
i.e. you create the file /usr/include/sys pointing to the directory /usr/src/uts/sys

With: symlink(“/usr/include/realfile.h”, “/usr/src/uts/sys/testfile”) you add a file link to
realfile.h

The following 3 pathnames access the same file: /usr/include/realfile.h
/usr/include/sys/sys/testfile.h
/usr/src/uts/sys/testfile.h

Using relative path names you may benefit from hard and soft links

How to use a Symbolic Link?

What does Unix do, when accessing a symbolic link?

Example of the previous slide:

fopen(/usr/src/uts/sys/testfile.h, …);

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 50

cp(/usr/src/uts/sys/testfile.h, newfile)

Unix File Management

 Ordinary files = array of bytes, no record structures
at system level

 Types of files
 ordinary: contents entered by user or program

di t t i li t f fil

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 51

 directory: contains a list of file names
 (including length field and inode-numbers
 special: used to access peripheral devices
 named: for named pipes

 Inode = file descriptor (file header) containing file attributes
 file mode
 link count
 owner and group id
 … etc.

Unix Inode

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 52

single indirect

.

.
.
.

.

double indirect

.

.

.

triple indirect

Access Structure

Unix FS

direct

© 2009 Universität Karlsruhe (TH), System Architecture Group 53

. .

.

.

.

.

Remark:
Depending on the block size (e.g. 512 Bytes, ...)
and on the pointer length (e.g. 4 Bytes)
maximum file size is greater than 2 MB.
“Small” files are favored concerning access speed.

Buffering

 Disk blocks are buffered in main memory. Access to
buffers is done via a hash table.

 Blocks with the same hash value are chained together
 Buffer replacement policy = LRU
 Free buffer management is done via a double-linked list.

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 54

hash table

head of free list

g

block status flags
pointer to cached block

device number

Data block in memory

Used for

Dirty block,
Locked block etc.

UNIX Block Header

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 55

block number on device
I/O error status

bytes left to transfer

pair of pointers in case
of hash collisions

pair of pointers
for the free list

Between other
block headers

Used for
hashing

Used by
disk I/O driver

Device#,Block#

“Block Headers”Device List
(hash table)

UNIX Buffer Cache (1)

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 56

X

Y

Z

Remark:
X,Y, and Z are block headers of blocks mapped into the same hash table entry

Free List Header

Device List
(hash table)

Device#,Block#

Top of the LRU-stack =
most recently accessed block

The other
“green” pointers

establishing the free list
are omitted

UNIX Buffer Cache (2)

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 57

“Free List Header”

forward

Remark: The free list contains all block headers, establishing a LRU order
Least recently
accessed block

X

Y

Z

UNIX Buffer Cache (3)

Advantages:
 reduces disk traffic

 “well-tuned” buffer has hit rates up to 90%
(di t O t h t 10 th SOSP 1985)

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 58

(according to Ousterhout 10.th SOSP 1985)

 ~ 10% of main memory for the buffer cache
(recommendation for old configurations)

UNIX Buffer Cache (4)

Disadvantages:
 Write-behind policy might lead to

 data losses in case of system crash and/or

 inconsistent state of the FS

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 59

 rebooting system might take some time due to fsck,
i.e. checking all directories and files of FS

 Always two copies involved
 from disk to buffer cache (in kernel space)

 from buffer to user address space

 FS Cache wiping if sequentially reading a very large
file from end to end and not accessing it again

Linux File System(s)

 Virtual File System VFS
 Used to host different file systems, e.g.

 EXT2

 EXT3

Linux FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 60

 Reiser FS

 …

 A generic interface

See: Various Linux Proseminar talks
Extract the pros & cons of the VFS approach

Reiser FSReiser FS

61© 2009 Universität Karlsruhe (TH), System Architecture Group

Slides cover Reiser3
Reiser4 see:

http://www.namesys.com/v4/v4.html#repacker

Outline

??

??

Reiser FS

1. What is ReiserFS?

© 2009 Universität Karlsruhe (TH), System Architecture Group 62

??

??

2. How is it implemented?

3. Why did they do it like they did?

References

 Namesys’s Homepage www.namesys.com,

 ReiserFS Architectural Overview
(www.namesys.com/v4/v4.html)

Where?Where?

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 63

 “Future Visions” Whitepaper
(www.namesys.com/whitepaper.html)

 The Source Code
http://homes.cerias.purdue.edu/~florian/reiser/reiserfs.php

 And many more papers on Reiser FS

Introduction
What?What?

Reiser FS

 FS developed by Hans Reiser’s company Namesys

 First version released in mid-90s

 Part of Linux since 2.4.1 (ReiserFS V3.5)

© 2009 Universität Karlsruhe (TH), System Architecture Group 64

This slides are about Reiser V3 (4)

 ReiserFS V3.6 is default FS for
 SuSE

 Lindows

 Gentoo

Reiser FS Features

Good design
and clever

implementation

What?What?

Reiser FS

 fast, but space efficient

  scalable
 about 10 times faster than ext2fs

 no penalty for small files

© 2009 Universität Karlsruhe (TH), System Architecture Group 65

implementation

 reliable
 journaling support

 atomic file operations (i.e. transaction alike)

 compatible, but extensible
 full support for UNIX semantics

 sophisticated plugin system

Reiser FS and Disk Partitions

 Each ReiserFS partition might contain 232 blocks
 Partition capacity depends on size of block

 First 64 K reserved for

 partition labels and booting info

© 2009 Universität Karlsruhe (TH), System Architecture Group 66

 Next, one superblock (for complete partition)

 Next, bitmap (for partition management)

 Each file object→ (at least) one unambiguous key
 Directory id

 Object id

 Offset

 Type

Reiser FS Features
How?How?

Reiser FS

 fast, but space efficient

 about 10 times faster than ext2fs

 no penalty for small files

© 2009 Universität Karlsruhe (TH), System Architecture Group 67

p y

 reliable

 compatible, but extensible

Semantic vs. Storage Layer

 Theoretical point of view:
Filesystem: Name  Object

 Two software layers:

 Semantic Layer: convert name

How?How?
~/home/reiser.txt

2342

VFS

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 68

Semantic Layer: convert name
to key (mostly VFS)

 Storage Layer: find object
with given key

 B+ tree based in RSF3 and
dancing tree1 in RSF4

2342

1Try to collect neighboring data before writing to disk

Recap: B+Trees (1)
How?How?

distance between
leaf and root

same  leaves

nodes have  [n/2, n] children

items sorted
according to keys

Reiser FS

 Balanced n-way search tree

© 2009 Universität Karlsruhe (TH), System Architecture Group 69

German: “Verzweigungsfaktor”

 Tree grows only at root  stays balanced

 High fanout  flat tree: good for slow media!

Recap: B+Trees (2)
How?How?

Reiser FS

 B Trees:

 Subtrees “hang” between two data items

 These items’ keys delimit possible keys in subtree

© 2009 Universität Karlsruhe (TH), System Architecture Group 70

 B+Trees:

 Actual data items only in leaves (at lowest level)
 helps caching because of increased locality

 Roots of subtrees store delimiting keys (not actual
items)

A Sample B+Tree

1 23

1 4 23 57

How?How?

delimiting key

pointer to subtree

node

height: 3
fanout: 2

root

Reiser FS

© 2009 Universität Karlsruhe (TH) System Architecture Group
71

1 4 23 57

X X X X X X X X1 3 4 17 23 57 63

no subtree 
no delimiter

data item with key 57

node

leaves

Storage Layer How?How?

Reiser FS

 File objects stored in B+Tree (2 ≤ height ≤ 5)

 Node size fixed (4K)  no external fragmentation

 Object size variable: split into items that fit into nodes

M ll bj t b t d i t d

© 2009 Universität Karlsruhe (TH), System Architecture Group 72

Additionally: some maintenance structures
(superblock, allocation bitmaps ~ like ext2fs)

 Many small objects can be aggregated into one node
(avoids internal fragmentation)

 One large object can be distributed over multiple nodes

 Very large objects (>16K) are stored in super-size nodes
(called extents)

The Storage Layer in Action
How?How?

root node

branch node

super block

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 73

twig node

leaf nodes formatted leaf

unfleaf
(unformatted leaf)

extent
item

extent pointernode pointer

...

Node Layout

block
h d

item body
0

item body
1

item
h d 1

item
h d 0

...

How?How?

Reiser FS

 unfleaf: unformatted, just raw data

 formatted leaf:

© 2009 Universität Karlsruhe (TH), System Architecture Group 74

head 0 1 head 1head 0

 twig node: similar structure; no actual data, only
pointers

 branch node: like twig node, no extent pointers

Item Layout

 item = body + head (see above)
 head layout:

key offset flags type

How?How?

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 75

key offset flags type

object this item
belongs to

address of item
body

(seems to be
unused so far)

type of this
item

Item Types How?How?

Reiser FS

 Node Pointer: points to a node (holds delimiting keys)

 Extent Pointer: points to an extent (holds extent’s size
and key)

 File Body: raw data

© 2009 Universität Karlsruhe (TH), System Architecture Group 76

 Stat Data: file metadata ( ext2fs inode)

 Directory item: hash table of file names and keys

Plugins enable to create your own item types.

Keys

 Object

How?How?

composed of items (storage layer)

composed of units (semantic layer)

keys actually
designate
units, not
objects!

 Key structure:

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 77

major
locality object id offsetminor

locality
un-
used

parent directory’s
object id

“data or
metadata?”

file this unit
belongs to

position of unit
within file

How?How?

<key1>
0x001C
0x0000

<key2>
0x0025
0x0000

block header item body 1 item headers

u e s t i o n s ? I n a

item body 2

key
offs
flag

0000 0002 0F9B 0029
52344653 091F88A5
0000000000000000

0000 0100

Reiser FS

A Real-Life Leaf Node

© 2009 Universität Karlsruhe (TH), System Architecture Group 78

0x00060x0006

28 37 41

<key2> = 0x00000000000000000000000000371D350000000000047114
<key1> = 0x000000000001DFF70000000001B129C10000000000047114

offset major loc.object id

/home/reiser.txt /home/hobbit.txt

minor loc.

g
type0000 0100

0 4096

Journaling
How?How?

Reiser FS

 All FS modifications done as atomic transactions

 An atomic transaction...
 either completes or does nothing

 never leaves metadata in inconsistent state

© 2009 Universität Karlsruhe (TH), System Architecture Group 79

 never leaves metadata in inconsistent state

 Intermediate state stored in a journal/log

 Transaction procedure:
1. log start of transaction

2. do transaction

3. log completion of transaction

Fixed Logs How?How?

Reiser FS

 partition disk into logging area and commit area
 copy data to logging area first, then to destination
 log structured as circular buffer  fast insertion
 but: need two copies!

© 2009 Universität Karlsruhe (TH), System Architecture Group 80

log area commit area

Wandering Logs

 Idea: don’t move block to commit area, instead
move commit area to block

How?How?

log

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 81

... ...

but: move a node
 have to move its parent node
...
have to move root of tree

still points to old node!still points to old node!
ReiserFS decides at runtime which method to use.

commit

Log Implementation How?How?

Reiser FS

 ReiserFS partitions changed blocks into two sets
 Relocate Set: blocks that can stay where they are

(i.e., blocks with Wandering Log policy)
 Overwrite Set: blocks that have to be copied

somewhere else (i.e., blocks with Write Twice

© 2009 Universität Karlsruhe (TH), System Architecture Group 82

somewhere else (i.e., blocks with Write Twice
policy)

 Transaction represented by its Wander List: records
destinations of blocks from Overwrite Set

 Wander Lists of incomplete transactions recorded at
fixed disk location

 If system crashes: Wander List “replayed” on next
boot

Plugins

 ReiserFS can be customized through plugins:
 object plugins: provide object semantics (standard: regular

file, symlink, directory)

 security plugins: control access to object data (used by
object plugins)

How?How?

semantic

layer

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 83

 hash plugins: implement hash functions to order directory
entries

 tail policy plugins: decide whether an object should be
split into items or put into an extent

 item plugins: define new kinds of items

 node plugins: define new kinds of nodes

 plus some more esoteric ones...

 Reiser4: plugins static, dynamic ones to come

storage

layer

Reiser FS and VFS

 VFS requests: handed to object plugins
 plugin: knows how to handle them (e.g., standard file

plugin supports traditional UNIX semantics)
 system call reiser4: access to more advanced

R i FS f t (f l i)

How?How?

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 84

ReiserFS features (e.g., fancy plugins)
 but: using a separate system call just for ReiserFS is

tricky and overall just

DROP DEAD UGLYDROP DEAD UGLY
(Reiser promises it is only a temporary solution ...)

 fast, but space efficient
 about 10 times faster than ext2fs
 no penalty for small files

How?How?

Reiser FS

Reiser FS Features

© 2009 Universität Karlsruhe (TH), System Architecture Group 85

 reliable
 journaling support

 compatible, but extensible
 full support for UNIX semantics
 sophisticated plugin system

The Big Picture Why?Why?

Reiser FS

 Speed and reliability: hardly need justification

 Efficient small file handling
 more important than you might realize: Max’s home

installation has more than 80% files <16K!
 Allows nice generalization: file attributes can be stored as

© 2009 Universität Karlsruhe (TH), System Architecture Group 86

 Allows nice generalization: file attributes can be stored as
separate, small files

 Whole databases could be integrated into the file system

 Future versions:
 Reiser5: distributed FS
 Reiser6: non-hierarchical file lookup (DB queries)

Ultimate Goal:
Unifying FS, database and search engine.

Evaluation

 Pro:
+ speed
+ reliability
+ extensibility

So?So?

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 87

 Con:
 difficult setup (no easy conversion from ext2fs)
 Linux only
 complex code:

ext2fs: 4659 LOC
ext3fs: 7840 LOC
Reiser3: 20780 LOC
Reiser4: 92061 LOC but: relatively clean code; no foos

cf. fs/ext2fs/super.c:174:
static void init_once(void * foo, ...)

Summary

 Reiser FS is a modern file system supporting

 fast and efficient file handling through tree
structured storage layer

 transaction safety and easy crash recovery

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 88

 transaction safety and easy crash recovery
through journaling

 extensibility and scalability through plugins

 Its more advanced semantics, however, cannot
adequately be supported by commodity OSes like
Linux.

