
24 File System24 File System
Directories, Links, FS Implementation

February 4 2009
Winter Term 2008/09

Gerd Liefländer

Recommended Reading
 Bacon, J.: Operating Systems (5)

 Silberschatz, A.: Operating System Concepts (10,11)

 Stallings, W.: Operating Systems (12)

 Tanenbaum, A.: Modern Operating Systems (6)

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Nehmer, J.: Systemsoftware (9)

 Solomon, D.A.: Inside Windows NT, 1998

 … Distributed File-Systems related Papers

Summary on some commodity OSes
http://www.wsfprojekt.de/index.html

2

Overview

Roadmap for Today
 Directories

 Pathname
 Link, Shortcut, Alias
 File Sharing
 Access Rights

 Implementation of a FS
 Files

we focus on Unix/Linux

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Directories
 Shared Files
 Protected Files

 Storage Management
 Disk Space Management
 Block Size

 FS Reliability

 FS Performance
not in this course

Study of your own and apply
concepts of RAM-Management

3

DirectoriesDirectories

Disk Structure
 Disk can be subdivided into partitions

 Disks, partitions1 can be RAID protected against failure

 Disk or partition can be used raw – without a file
system, or formatted with a file system (FS)

 Entity containing a FS known as a volume

 Each volume containing a FS also tracks that FS’s info in
device directory or volume table of contents

 As well as general-purpose FSs there are many special-
purpose FSs, frequently all within the same operating
system or computer

1Partitions also known as minidisks, slices
© 2009 Universität Karlsruhe (TH) System Architecture Group

5

A Typical File-system Organization

Volume

© 2009 Universität Karlsruhe (TH) System Architecture Group
6

Operations Performed on Directory

 Search for a file

 Create a file

 Delete a file

 List a directory

 Rename a file

 Traverse the file system

© 2009 Universität Karlsruhe (TH), System Architecture Group 7

Organization of Directories

 Efficiency: locating a file quickly

 Naming: convenient to users
 Two users can have same name for different files

Th fil h l diff t The same file can have several different names

 Grouping: logical grouping of files by properties
 all Java programs
 all games
 all programs of a project
 …

© 2009 Universität Karlsruhe (TH), System Architecture Group 8

Directory (Folder)
 Directory is a node in a FS owned by an (authorized)

subject (e.g. root) containing information about
(some or all) files of the FS

Directories

Directory

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Both directories and files reside on disk or …
 Backups of these both objects are kept on tapes etc.

F 1 F 2 F 3
F 4

F n
Files

9

Directory (Folder)

 The collection of directories and files establish a
(hierarchical) FS structure

 In LINUX there are some special directories e.g.
 root

Directories

© 2009 Universität Karlsruhe (TH), System Architecture Group

 home
 working

 Principle structure of a modern FS is a rooted tree
 Pathnames help to unambiguously identify files

 Provides mapping between file names → files

 Process of file retrieval = navigation

10

Single-Level Directory

 A single directory for all users

Naming problem

Grouping problem

© 2009 Universität Karlsruhe (TH), System Architecture Group 11

Two-Level Directory
 Separate directory for each user

• Path name
• Can have the same file name for different user
• Efficient searching
• No grouping capability

© 2009 Universität Karlsruhe (TH), System Architecture Group 12

Tree-Structured Directories

Efficient Searching & Grouping Capability
Current directory (working directory)

cd /spell/mail/prog
type list

© 2009 Universität Karlsruhe (TH), System Architecture Group 13

Role of Working Directory

 Absolute pathnames can be tedious, especially when
FS-tree is deep

 Idea of a (current or) working directory cwd
 File is referenced via a (hopefully shorter) relative pathname

d b l (’) k’

Directories

© 2009 Universität Karlsruhe (TH), System Architecture Group

 cwd belongs to a (process’) task’s execution environment

 The initial wd is often called home

 Example:
cwd = /home/lief/secret/examinations/SA
lpr ./solution_exam

14

Relative ver. Absolute Pathnames

 Absolute pathname
 Path from root of FS to file, e.g.

 /home/lief/secret/examinations/SA
 Relative pathname

P h f ki di fil

Directories

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Path from current working directory to file

Note:

 ‘.’ refers to current directory
 ‘..’ refers to parent directory

15

Benefit of Relative Pathname

 Improved portability
Example: A program system

Directories

/

toolsX toolsY

© 2009 Universität Karlsruhe (TH), System Architecture Group

data programs

dat1.a liba libb prog

If you move the complete program system you must change all
absolute pathnames whereas relative pathnames can survive

16

Hierarchical FS (à la Unix)

Directories

passwd

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Unambiguous file names via pathnames, e.g.

/bin/passwd ≠ /etc/passwd

passwd

17

UNIX Directory Operations

 Create  Readdir

Directories

Example: Unix directory operations

© 2009 Universität Karlsruhe (TH) System Architecture Group

 Delete
 Opendir
 Closedir

 Rename
 Link
 Unlink

18

Unix/Linux Link

Links

 Direct access to a file without navigation

 Unix hard link: ln filename linkname
(another name to the same file = same
inode file is only deleted if last hardlink has

© 2009 Universität Karlsruhe (TH), System Architecture Group

inode, file is only deleted if last hardlink has
been deleted, i.e. if refcount in inode = 0);
invalid links are not possible

 Symbolic link: ln –s filename linkname
(a new file linkname with a link to a file
with name filename, whose file might be
currently not mounted or not even exist.)

19

Acyclic-Graph FS Structure

© 2009 Universität Karlsruhe (TH), System Architecture Group

Shared subdirectory

Local
copy

Local
copy

20

File Sharing

 In multi-user systems, files can be shared
among multiple users

 Three issues

File Sharing

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Efficiently access to the same file?

 How to determine access rights?

 Management of concurrent accesses?

21

Access Rights (1)

 None
 User might not know of existence of file
 User is not allowed to read directory

containing the file

Access Rights

© 2009 Universität Karlsruhe (TH), System Architecture Group

g

 Knowledge
 User can only determine the

 file existence
 file ownership

22

Access Rights (2)

 Execution
 User can load and execute a program, but

cannot copy it

Reading

Access Rights

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Reading
 User can read the file for any purpose,

including copying and execution

 Appending
 User can only add data to a file, but cannot

modify or delete any data in the file

23

Access Rights (3)

 Updating
 User can modify, delete, and add to file’s

data, including creating the file, rewriting
it, removing all or some data from the file

Access Rights

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Changing protection
 User can change access rights granted to

other users

 Deletion
 User can delete the file

24

Access Rights (4)

 Owner

 Has all rights previously listed

 May grant rights to other users using the

Access Rights

© 2009 Universität Karlsruhe (TH), System Architecture Group

y g g g
following classes of users
 Specific user
 User groups
 All (for public files)

25

Classical Unix Access Rights (1)

total 1704
drwxr-x--- 3 lief 4096 oct 14 08:13 .
drwxr-x--- 3 lief 4096 oct 14 08:13 ..
-rw-r----- 1 lief 123000 feb 01 22:30 exam

f

Access Rights

© 2009 Universität Karlsruhe (TH), System Architecture Group

 First letter: file type
 d for directories
 - for regular files
 b for block files
 …

 Three user categories:
 user, group, and others

What else?

26

Classical Unix Access Rights (2)

total 1704
drwxr-x--- 3 lief 4096 oct 14 08:13 .
drwxr-x--- 3 lief 4096 oct 14 08:13 ..
-rw-r----- 1 lief 123000 feb 01 22:30 exam

Access Rights

hardlink count

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Three access rights per category
 read, write, and execute

 Execute permission for a directory = permission to
access files in the directory

 You must have the read permission to a directory if you
want to list its content

27

Classical Unix Access Rights (3)

 Shortcomings

 Three user(subject) categories is not enough

 In Windows you have finer granularity concerning
access rights per folder and per file e g you can

Access Rights

© 2009 Universität Karlsruhe (TH), System Architecture Group

access rights per folder and per file, e.g. you can
explicitly deny/allow access for a specific user

 Unix has introduced the concept of ACLs

 An ACL is a list -bound to a file f- containing
all individual subjects & their individual
permissions how to access this file f

28

Unix ACLs
If I want to view the content of the ACL of the file exam in my
current directory, I can use the following command:

getacl exam  the possible result will be
file: exam
owner: lief
group: users

© 2009 Universität Karlsruhe (TH), System Architecture Group

g p
#
user::rwx
group::
other::
In this particular case, the getacl command shows that lief
(= owner of account) is the only one who has read, write, and
execute permissions for the file exam

29

Unix ACLs

If I wish to allow another person with an account on the same
system to access file exam, I use the setacl command, e.g.

setacl -u user:name:permissions file
name is loginID of the person to which you want to assign access,
permissions can be one or more of the following: r,w,x

© 2009 Universität Karlsruhe (TH), System Architecture Group

p g , ,
file is the name of the file.

Example:
I want to enable Raphael with an assumed loginID rneider to
read & modify, but not to execute my file exam: I would use:

setacl -u user:rneider:rw- exam

Note: you always have to use the complete permission triple
30

Unic ACL

Now when I type again getacl exam, the following
information is displayed:

file: exam
owner: lief

© 2009 Universität Karlsruhe (TH), System Architecture Group

owner: lief
group: users

user::rwx
user:rneider:rw-
group::
other::

31

Concurrent Access to Files

 Some OSes provide mechanisms for users to manage
concurrent access to files
 Examples: lock() , flock() system calls

 Typically user can lock
 entire file for updating file or

Concurrent Access

© 2009 Universität Karlsruhe (TH), System Architecture Group

 entire file for updating file or
 individual records for updating

 Mutual exclusion & deadlock are issues for concurrent
access to shared files

 See: solutions to the reader/writer problem

 However: Be careful, some published solutions might
contain errors (see the latest 2 SA examinations)

32

Summary: File Management

 Identifying and locating a selected file
 Using a directory to describe the location of all its files plus

their attributes

 Owner of a file might want to
 Determine user access

Summary

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Find an appropriate file organization for his application
 Easily move data between different files
 Backup and recover her/his files

 Concurrent accesses to files have to be supported

 Users must be controlled when accessing others’ files
 Often the default access mask is too weak

33

Implementing FilesImplementing Files

Implementing Files

Motivation

8
7
6
5

3 4 36 7

© 2009 Universität Karlsruhe (TH), System Architecture Group

4
3
2
1
0

File with a set of
logical file blocks (records)

0

1

2
5

8

Disk with allocated and free
physical disk blocks

???

35

Implementing a FS on Disk

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

 Possible FS layout per partition
 Sector 0 = MBR

 Boot info (if PC is booting, BIOS reads in and executes MBR)
 Disk partition info

36

Implementing Files

 FS must keep track of some meta data
 Which logical block belongs to which file?
 In what order do the blocks form the file?
 Which blocks are free for the next allocation?

Gi l i l i f fil th FS t id tif

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Given a logical region of a file, the FS must identify
the corresponding block(s) on disk
 Needed meta data stored in

 FAT
 Directory
 Inode

 Creating (and updating) files might imply allocating
new blocks (and moving old blocks) on the disk
 How to do?

37

Allocation Policies

 Preallocation (reservation ~prepaging):
 Need to know maximum size of a file at creation time

(in some cases no problem, e.g. file copy etc.)

 Difficult to reliably estimate maximum size of a file

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Users tend to overestimate file size, just to avoid
running out of space

 Dynamic allocation (~demand paging):
 Allocate in pieces as needed

 Analyze pros and cons of both policies

38

Fragment Size *
 Extremes:

 Fragment size = length of file
 Fragment size = smallest disk block size (sector size)

 Tradeoffs:
 Contiguity  speedup for sequential accesses

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

*see page size

 Many small fragments  larger tables needed to
manage free storage management as well as to
support access to files

 Larger fragments help to improve data transfer

 Fixed-size fragments simplify reallocation of space

 Variable-size fragments minimize internal ~, but can
lead to external fragmentation

39

Implementing Files

 3 ways of allocating space for files:
 contiguous
 chained

indexed

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 indexed
 fixed block fragments
 variable block fragments

40

Contiguous Allocation

 Array of N contiguous logical blocks reserved per file (to be
created)

 Minimum meta data per entry in FAT/directory
 Starting block address
 N

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 What is a good default value for N?

 What to do with an application that needs more than N blocks?

 Discussion similar to ideal page size
 Internal fragmentation
 External fragmentation

 scattered disk

41

Scattered Disk

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

(a) Contiguous allocation of disk space for 7 files
(b) State of the disk after files D and F have been removed

42

File Allocation Table

File Name Start Block Length
FileA
FileB
FileC
FileD

2 3
9 5

18 8
27 2

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

FileA

FileB

Contiguous File Allocation

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

FileD
FileE

27 2
30 310 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

FileC

FileD

FileE

Remark: To overcome
external fragmentation

 periodic compaction

43

File Allocation Table

File Name Start Block Length
FileA
FileB
FileC
FileD

0 3
3 5
8 8
16 2

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

FileA FileB

FileC

Contiguous File Allocation
(After Compaction)

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

FileD
FileE

16 2
18 3

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

FileD FileE

44

Chained Allocation (Linked List)

Implementing Files

 Per file a linked list of logical file blocks, i.e.
 Each file block contains a pointer to next file block, i.e. the

amount of data space per block is no longer a power of two,
 Consequences?

 Last block contains a NIL-pointer (e.g. -1)

 FAT or directory contains address of first file block

© 2009 Universität Karlsruhe (TH), System Architecture Group

 FAT or directory contains address of first file block

 No external fragmentation
 Any free block can be added to the chain

 Only suitable for sequential files

 No accommodation of the principle of disk locality
 File blocks will end up scattered across the disk
 Run a defragmentation utility to improve situation

45

Chained Allocation (2)

Implementing Files

Logical/

Nil

© 2009 Universität Karlsruhe (TH) System Architecture Group

Storing a file as a linked list of disk blocks

Logical/

Nil

46

File Allocation Table

File Name Start BlockLength
...

......
FileB 5

...
1

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

FileB

Chained Allocation (3)

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

Remark:
If you only access sequentially
this implementation is quite suited.

However requesting an individual record
requires tracing through the chained block,
i.e. far too many disk accesses in general.

47

Linked List Allocation within RAM

Implementing Files

 Each file block only used for
storing file data

 Linked list allocation
with FAT in RAM
 Avoids disk accesses when

hi f bl k

© 2009 Universität Karlsruhe (TH) System Architecture Group

searching for a block
 Entire block is available for

data
 Table gets far too large for

modern disks, 
 Can cache only, but still

consumes significant RAM
 Used in MS-DOS, OS/2

Similar to an inverted page table, one entry per disk block

48

Indexed Allocation (1)

 Indexed allocation
 FAT (or special inode table) contains a one-level

index table per file

 Generalization n-level-index table

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Generalization n-level-index table
 Index has one entry for allocated file block

 FAT contains block number for the index

49

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

File Allocation Table

File Name Index Block

...
...
...

...FileB 24

FileB

Indexed Allocation (2)

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

1
8
3
14
28

50

0 1 2 3 4

5 6 7 8 9

File Allocation Table

File Name Index Block

...

...

...

...
FileC 24

FileB

Indexed Allocation (3)

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

Start Block Length
1
28
14

3
4
1

Variable sized file portion in # blocks

51

Analysis of Indexed Allocation

Implementing Files

 Supports sequential and random access to a file

 Fragments
 Block sized

 Eliminates external fragmentation

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Eliminates external fragmentation

 Variable sized
 Improves contiguity
 Reduces index size

 Most popular form of all three allocation schemes

52

Indexed Allocation (5)

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

An example i-node
53

characteristic contiguous chained indexed
preallocation? necessary possible possible
fixed or variable
size fragment?

variable fixed fixed variable

Summary: File Allocation Methods

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

fragment size large small small medium
allocation
frequency

once low to
high

high low

time to allocate medium long short medium
file allocation
table size

one entry one entry large medium

54

Implementing DirectoriesImplementing Directories

Implementing Directories

Implementing Directories

© 2009 Universität Karlsruhe (TH) System Architecture Group

 (a) A simple directory (MS-DOS)
 fixed size entries
 disk addresses and attributes in directory entry

 (b) Directory in which each entry just refers to an i-node (Unix)

56

Implementing Directories

 How to implement a Unix-like directory?

Implementing Directories

© 2009 Universität Karlsruhe (TH), System Architecture Group

filename

inode

 What to do when some entries are deleted?
 Never reuse

 Bridge over the directory holes
 Compaction, but when?

 eager or
 lazy

57

Directory Entries & Long Filenames

Implementing Directories

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Two ways of handling long file names in directory
 (a) In-line
 (b) In a heap

58

Analysis: Linear Directory Lookup

 Linear search  for big directories not efficient

 Space efficient as long as we do compaction
 Either eagerly after entry deletion or

 Lazily (but when???)

Implementing Directories

© 2009 Universität Karlsruhe (TH), System Architecture Group

 With variable file names  deal with fragmentation

 Alternatives?
 Remember our various file organizations (including special

file access methods)

 Hashing

 Tree-Index-sequential

59

Tree Structure for a Directory

 Method
 Sort files by name
 Store directory entries in a B-tree like

structure
 Create/delete/search in that B-tree

Implementing Directories

© 2009 Universität Karlsruhe (TH), System Architecture Group

/ /

 Advantages:
 Efficient for a large number of files per

directory

 Disadvantages:
 Complex
 Not that efficient for a small number of files
 More space

…

60

Hashing a Directory Lookup

 Method:
 Hashing a file name to an inode
 Space for filename and meta data is variable sized
 Create/delete will trigger space allocation and free

 Advantages:

Implementing Directories

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Advantages:
 Fast lookup and relatively simple

 Disadvantages:
 Not as efficient as trees for very large directories (due to Kai

Li, Princeton)

61

Implement Shared FilesImplement Shared Files

Shared Files
Shared Access

Implementing Shared Files

Shared Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 File system containing a shared file

63

Shared Files via Hardlinks

Shared Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

(a) Situation prior to linking

(b) After the link is created

(c) After the original owner removes the file

64

Problems with Links

Shared Files

 Hardlinks
 Owner wants to delete her/his file  problems??

 Symbolic links (softlinks)
 Overhead to lookup shared file

© 2009 Universität Karlsruhe (TH), System Architecture Group

p
 Name resolution for the symbolic link name
 Name resolution for the pathname stored in the symbolic link

 How to avoid copying the same shared file multiple
times during backup?
 Do you have a clever idea?

65

Shared Access

 User locks entire file when it is to be updated

 User locks individual records during an update

 Mutual exclusion and danger of deadlock are

Shared Access

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Mutual exclusion and danger of deadlock are
issues for shared files (especially for files with
more than one entry point, e.g. a B*-file)

 Remember: Read-/write-locks have been
invented just for this purpose

66

Implement Protected FilesImplement Protected Files

Protected Files
How to provide security and protection?

 Security policy vs. protection mechanism

 Protection is a mechanism to enforce a security policy
 Roughly the same set of choices, no matter what policy

Secure Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 A security policy delineates what is acceptable and
unacceptable behavior
 Example security policies:

1. Each user can only allocate 40 MB of disk
2. No one but root can write to password file
3. No one can read other’s emails

68

Protection

 Authentication
 Make sure we know whom we are talking to

 Unix: login + password
 Credit card companies: social security no + mom’s name
 Bars: driver’s license

Secure Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

Mechanism

Policy

 Authorization
 Determine if user x is allowed to do action y
 Need a simple database

 Access enforcement
 Enforce authorization decision
 Ensure there are no loopholes

69

Good Security via Passwords?

Secure Files

 If properly used yes

 In reality no, no, no
 Good passwords are written down &

placed under the keyboard

© 2009 Universität Karlsruhe (TH), System Architecture Group

 placed under the keyboard

 pinned to the monitor etc.

 Bad passwords can be
 guessed easily or

 detected via a dictionary attack

 Find better ways to do authentication

70

Protection Domain
 Once the identity of user Bob is known, what is Bob

allowed to do in the FS?

 Can be represented as an access control matrix ACM
with row per subject & column per resource (object)

h h d h f h h

Secure Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 What are the pros and the cons of this approach?

File A File B File C

Domain 1 r w rw

Domain 2 rw rw …

Domain 3 r … r

71

Access Control List ACL

 With each file, indicate which users are
allowed to perform which operations
 Each object has a list of pairs <user, operation>

l d d

Secure Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 ACLs are simple, and used in many FS

 Implementation
 Store ACL with each file
 Use login authentication to identify user
 Kernel implements ACL check

72

Capabilities
 With each user1, indicate which files are allowed to

be accessed and in what ways
 Store list of pairs <file, operations> per user

 Capabilities frequently do both naming and protection
 User can only see a file if he has a capability for it

Default is no access

Secure Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Default is no access

 Capabilities used in systems with high security level

 Issues with capabilities?2

1However, you can also establish a finer granularity for the subjects

2EROS is a system with a complete capability protection scheme

73

Access Enforcement

 Use a trusted party to
 Enforce proper access control
 Protect your authorization information

Kernel is typically the trusted party

Secure Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Kernel is typically the trusted party
 Kernel can do what it wants
 If it has a security bug  entire system can crash
 Want to be as small & simple as possible

 Tautology: Security is as strong as the
weakest link in its protection system

74

Some Easy Attacks

 Abuse of privilege
 On Unix, super-user can do anything, e.g.

 Read your mail, send mail in your name, etc.
 More prosaic: you delete the code for OS/161 assignment 3,

your partner might not be that happy

Spoiler/Denial of service (DoS)

Secure Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Spoiler/Denial of service (DoS)
 Use up all resources and make a system crash
 Run a shell script: while(1){mkdir foo; cd foo;}
 Run C program:
while(1){fork(); malloc(1000)[40]=1;}

 Listener
 Passively watch network traffic. Will see anyone’s passwd as

they type it to telnet. Or just watch for file traffic: Often it will be
transmitted in plaintext

75

No Perfect Protection System

 Most abuse done by annoyed employees

 Protection can only increase the effort needed to
intrude the system
 It cannot prevent bad things happening

Secure Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Even assuming a technically perfect system, there
are always ways to defeat
 Burglary, bribery, blackmail, etc.

 Every system has security holes
 It’s just what they look like

76

Storage ManagementStorage Management

Study of your own
(see disk management)

Find out which of these

Storage Media

 Magnetic Media
 Disk
 Floppy
 Streamer

Disk Space Management

© 2009 Universität Karlsruhe (TH), System Architecture Group

Find out which of these
media is more suitable
for specific applications

 Optical Media
 CD-ROM
 CD-R or CD-RW
 DVD
 ...

 Magneto-optical Media

78

Tradeoff in Block Size

 Sequential access
 With a large bloc size, fewer slow I/Os are needed

 Random Access
With a large block size more unrelated data are

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 With a large block size more unrelated data are
loaded, wasting main memory and I/O bandwidth

 Consequence
 Choosing the right block size is a compromise

 Modern solution: Offer multiple block sizes

79

Influence of Block Size Why?

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Red line (left hand scale) gives data rate of a disk
 Dotted line (right hand scale) gives disk space efficiency
 Assumption: all files have size 2KB

Block size

80

Fixed blocking (widely used)

Gaps due to hardware design

Record Blocking Methods

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

R5 Track 2R6 R7 R8

Size of physical block
Waste due to block size

constraint from fixed record size

Analysis:
1. Simplifies I/O and buffer allocation in main memory
2. Simplifies memory management on secondary storage (e.g. disk)

81

Variable Blocking: Spanned

Track 1R1 R2 R3 R4 R4 R5 R6

Record Blocking Method (2)

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

Track 2R6 R7 R8 R9 R9 R10 R11 R12 R13

Analysis:
1. No wasted space on disk (except at the end of the file)
2. Additional linking between parts of a record is necessary

 random access may require up to 2 disk I/Os
3. No limit on the size of a record

82

Variable Blocking: Unspanned

Track 1R1 R2 R3 R4 R5

Record Blocking Method

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

Track 2R6 R7 R8 R9 R10

Analysis:
1. Most physical blocks have wasted space

(unless next record fits exactly into the reminder of the block)
2. Limits size of a record size to the size of a physical block

83

Disk Space Management

Disk Space Management

© 2009 Universität Karlsruhe (TH) System Architecture Group

(a) Storing the free disk block list via a linked list (early Unix)

(b) A bit map (in RAM)

84

List of Free Portions

 Free portions may be chained together; you need
only one pointer in main memory as an entry point.

 Can be applied to “all” file allocation methods.

 If allocation is by variable-length pieces, use first-fit

Disk Space Management

© 2009 Universität Karlsruhe (TH), System Architecture Group

l1 l2 l3 lxlx-1l4
...

85

Caching Free List in RAM

Disk Space Management

© 2009 Universität Karlsruhe (TH), System Architecture Group

(a) Almost-full block of pointers to free disk blocks in RAM
 three blocks of pointers on disk

(b) Result of freeing a 3-block file
(c) Alternative strategy for handling 3 free blocks

 shaded entries are pointers to free disk blocks

86

Disk Quotas

Disk Space Management

© 2009 Universität Karlsruhe (TH), System Architecture Group

Quotas for keeping track of each user’s disk use
87

Block number = logical address of a block

0 1 2 3 4 5 6 7 8 9 10 11 2b-3 2b-2 2b-1...

Disk D

Block Number

Disk Space Management

© 2009 Universität Karlsruhe (TH) System Architecture Group

0 1 2 3 4 5 6 7 8 9 10 11 2 2 2...

b = # bits for a blocknumber

Capacity(D) = ?

Reasons for disk partitioning?

88

FS ReliabilityFS Reliability

File System Reliability

FS Reliability

 No FS can offer protection against physical destruction
of its storage medium, but it can help to restore its
data contents

 FS destruction can have severe implications
ll li i / h i S h

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Install policies/mechanism to overcome FS crashes

 Automatic safeguarding against bad blocks well known

 Clever backup is necessary
 Back up to some tape medium
 Incremental back up within the same storage medium (huge

RAID)

90

File System Reliability

Restoration Problems

 Recover from disaster
 Hopefully not that often ~ fire insurance on houses

 Recover from “stupidity”

© 2009 Universität Karlsruhe (TH), System Architecture Group

 User accidentally removes a file, but still needs it
 Windows avoids this, instead of deleting a file, it

moves the file to “recycle bin”, from where it can
be moved back to be used again

91

File System Reliability

Backup Policies

 Complete Backup (Initial Backup!!)
 Physical dump
 Logical dump

Incremental Backup

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Incremental Backup
 Logical dump

 Non-technical considerations
 Where to store backup tape, e.g. better far away

from the computer, at least not in the same room

92

File System Reliability

Physical Dump

 Dump disk blocks by blocks to backup system

 You can also only backup changed disk blocks
(since the last backup. i.e. incremental
backup)

© 2009 Universität Karlsruhe (TH), System Architecture Group

backup)

 Recovery tool will move the blocks from the
backup storage to the disk when required

93

File System Reliability

Logical Dump

 Traverse the logical FS structure from the root

 You can also dump what you want selectively

 Verify logical structures during backup

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Recovery tool can selectively move files back to FS

 Starts at some specified directory (or directories)

 Don’t dump directories that remained constant

 Recursively dumps all files and subdirectories that
have been changed since previous dump

94

File System Reliability

Recovery from Disk Block Failures

 Boot block
 Create a utility to replace the boot block
 Use a floppy to boot the hard disk image
 Install multiple boot blocks per hard disk (one per

© 2009 Universität Karlsruhe (TH), System Architecture Group

p p (p
partition)

 Super block
 If you have a duplicate, remake the FS
 Otherwise, what to do???

95

File System Reliability

Recovery from Disk Block Failures

 A chained free block or a bitmap block
 Search all reachable files from the root (fsck)
 Figure out what is free and reestablish freelist

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Inode block
 Search reachable files from the root, and then?

 Indirect or data blocks
 Search all reachable files from the root, and then?

96

File System Reliability

Reliability

© 2009 Universität Karlsruhe (TH) System Architecture Group

 A file system to be dumped “logically”
 squares are directories, circles are files
 shaded items, modified since last dump
 each directory & file labeled by i-node number

97

Restoring a FS

 Starting with an empty FS

 Restoring the newest full dump
 First the directories

Then the files

File System Reliability

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Then the files
 Restore free list

 Incremental updating according to
incremental dump files

 Take care with holes in a file

98

File System Reliability

File System Consistency Checks

© 2009 Universität Karlsruhe (TH) System Architecture Group

 File system states
(a) consistent
(b) missing block
(c) duplicate block in free list
(d) duplicate data block

99

FS PerformanceFS Performance

Use a FS Cache (see Disk Cache)

FS Performance (1)

File System Performance

© 2009 Universität Karlsruhe (TH), System Architecture Group

FS cache data structures:
 Hash table for quick look up if file block is already in RAM
 Collision detection linking
 LRU double linking for an exact LRU stack

101

FS Performance (2)

Exact LRU Replacement a good idea?

No, to avoid FS crashes, distinct two
classes of cached blocks:

File System Performance

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Critical blocks
 Inode, meta blocks

 Directory etc.

 “Non critical” file blocks, e.g. data blocks

102

Buffer Management (1)

 Often, data are accessed more than once (e.g. index
blocks etc.)  useful to buffer frequently used data
blocks in main memory

 Some OSes use entire free RAM as disk cache

File System Performance

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Before accessing any file data on disk, buffer
management looks to see if desired block is already
in one of its file buffers

103

Buffer Management (2)

 In case of buffer shortage a buffer replacement
(LRU, or LFU) is used

 If you delay updating a modified buffer until it has to
be replaced, you may lose its content in case of a
system crash

File System Performance

© 2009 Universität Karlsruhe (TH), System Architecture Group

system crash

 Important blocks for file system consistency, i.e.
directory blocks or index blocks, should be updated
more frequently.

104

File System Performance

And Don’t Forget:

sync

© 2009 Universität Karlsruhe (TH), System Architecture Group

sync
You are the system architect; it’s your turn to
decide when and how often sync should be
done. Don’t rely on clever users

105

File System Performance (3)

 Improving file system performance
 Readahead of sequential files
 Speculative reading of more than 1 block

File System Performance

© 2009 Universität Karlsruhe (TH), System Architecture Group 106

File System Performance (4)

File System Performance

© 2009 Universität Karlsruhe (TH), System Architecture Group

 I-nodes placed at the start of the disk
 Disk divided into cylinder groups

 each with its own blocks and i-nodes

107

