
21 I/O Management (1)21 I/O Management (1)

1© 2009 Universität Karlsruhe, System Architecture Group

I/O Design, I/O Subsystem, I/O-Handler
Device Driver, Buffering, Disks, RAID

January 26 2009
WT 2008/09

 Tanenbaum, A.: Modern Operating Systems 2nd (5)
 Stallings, W.: Operating Systems 5th (11)
 Silberschatz, A.: Operating System Concepts 7th (13)
 Nutt, G.: Operating Systems 2nd (5)

Recommended Reading

© 2009 Universität Karlsruhe, System Architecture Group 2

 Bacon, J.: Operating Systems (3)
 Nehmer, J.: Systemsoftware: Grundlagen

moderner Betriebssysteme, (10)

Roadmap
 Motivation

 Repetition: I/O-Devices
 Device Categories
 I/O-Functionality
 Data Transfer

 I/O-Subsystem
D i P t

© 2009 Universität Karlsruhe, System Architecture Group 3

 Design Parameters
 I/O Layering
 I/O-Buffering

 Disk I/O Management
 Disk, CD-Rom, …
 Disk Layouts and Formats
 Disk Scheduling
 RAID
 Disk Caching

 Clocks and Timer

Problems of I/O Management

 There are many various types of I/O devices
 Applications don‘t want to care about device specifics
 Device independent I/O subsystems, e.g.

 the file system or
 the network stack

© 2009 Universität Karlsruhe, System Architecture Group 4

 the network stack
do not want to care about device specifics

 Most device management software will not be developed by OS
suppliers, but by device vendors

 I/O speed can’t keep up with CPU speed

 On most computers, there is parallelism between I/O & CPU

Motivation

Linux 2.0 Kernel SLOCs, I/O Portion

© 2009 Universität Karlsruhe, System Architecture Group 5

Motivation

Linux 2.4 Kernel SLOCs, I/O Portion

© 2009 Universität Karlsruhe, System Architecture Group 6

Device Management Objectives

 Abstraction from details of physical devices

 Serialization of I/O-operations by concurrent
applications

 Protection of standard-devices against unauthorized

Motivation

© 2009 Universität Karlsruhe, System Architecture Group 7

g
accesses

 Handling of sporadic device errors

 Virtualizing physical devices via memory and time
multiplexing (e.g., pty, RAM disk)

I/O System Organization

Application

API

© 2009 Universität Karlsruhe, System Architecture Group 8

Command DataStatus

Device Driver

Device Independent I/O Subsystem
(e.g. File System)

Hardware Interface

Repetition: I/O-Devices

Categories of I/O Devices (Stallings: Operating Systems 11.1):

 “Noticeable” directly by humans

Device TypesDevice Types

© 2009 Universität Karlsruhe, System Architecture Group 9

 Machine readable

 Communication devices

“Noticeable” by Humans

 Used to “communicate” with user
 Video display terminals
 Keyboard
 Mouse

Device TypesDevice Types

visual

© 2009 Universität Karlsruhe, System Architecture Group 10

 Printer

 Headphone
 Microphone

 Force-feedback joystick
 Data-glove

 …??

audio

tactile

??

Machine Readable

 Used to communicate with local devices

 Disk drives
 Tape drives

Device Types

© 2009 Universität Karlsruhe, System Architecture Group 11

 Controllers (SCSI, CardBus, FC)
 Actuators
 Sensors
 ...

Communication Devices

 Used to communicate with remote
devices
 Network adapters

Device Types

© 2009 Universität Karlsruhe, System Architecture Group 12

 Modems
 ...

Device Parameters

Characteristics of I/O Devices

© 2009 Universität Karlsruhe, System Architecture Group 13

next slide

Data Rates

Device Parameters

© 2009 Universität Karlsruhe, System Architecture Group 14

Device Controller

 I/O devices have two types of components:
 the mechanical component(s)

 often the major reason for high latency, i.e. low
performance

 the electronic component(s)

Device Controller

© 2009 Universität Karlsruhe, System Architecture Group 15

 Electronic component = device controller
 Controller's tasks:

 process device commands
 convert between device specific data representation

(e.g., bit serial, byte parallel) and block of bytes
 perform error correction and handshake as necessary
 make data available to main memory

 may be able to handle multiple devices

Memory-Mapped I/O (1)



Device Addresses

© 2009 Universität Karlsruhe, System Architecture Group 16

 Separate I/O-address space and memory address space
 MOV R0, 4 // <4> → R0
 IN R0, 4 // <port 4> →R0

 Memory-mapped I/O // 1 common physical AS (PDP 11)
 Hybrid (Pentium) // part of I/O space in memory

// part in an extra address space
Hint: Discuss pros and cons

Memory-Mapped I/O (2)

Device Addresses

© 2009 Universität Karlsruhe, System Architecture Group 17

 (a) Single-bus architecture
 (b) Dual-bus memory architecture

Repetition: Interrupts

Device Interrupts

PIC/APIC

© 2009 Universität Karlsruhe, System Architecture Group 18

Connections between devices and the interrupt controller
use interrupt lines on the bus rather than dedicated wires

Bus

Goals of I/O-Software (1)

 Device independence
 programs can access any I/O device without

specifying device in advance
 (floppy, hard drive, or CD-ROM)

 Uniform naming

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 19

 Uniform naming
 name of a file or device either a string or an

integer
 not depending on machine- or device-type

 Error handling
 handle as close to the hardware as possible 

if hardware can handle the error, that’s fine, e.g.
just retry a “broken read from disk”

Goals of I/O-Software (2)

 Synchronous vs. asynchronous transfers
 blocked transfers vs. interrupt-driven

 Buffering
 data coming off a device cannot be stored in the

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 20

g
final destination

 avoid superfluous copying (see I/O-Lite*)

 Sharable vs. exclusive devices
 disks are sharable
 tape drives would not be

*V. Pai, P. Druschel, W. Zwaenepoel: I/O-Lite: ”A Unified I/O-Buffering
and Caching System”, 3rd OSDI, New Orleans, 1999

Asynchronous or
synchronous I/O

Techniques for I/O-Management

 Programmed I/O
 thread is busy-waiting for the I/O-operation to complete,

processor cannot be used else where

 Interrupt-driven I/O
 I/O-command is issued

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 21

/
 processor continues executing instructions (of same or other

thread)
 I/O-device sends an interrupt when I/O-command is done

 Direct Memory Access (DMA)
 DMA module controls exchange of data between main

memory and I/O device
 processor interrupted after entire block has been transferred

Programmed I/O (1)

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 22

Steps in printing a string

Programmed I/O (2)

copy_from_user(buffer, p, count) // p = kernel buf
for (i=0; i<count; i++{ // loop on each character
while(*printer_status_reg!=READY); // loop until ready

// busy waiting

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 23

// busy waiting
*printer_data_reg =p[i]; // output 1 character

}
return_to_user();

Printing string using programmed I/O

Interrupt Driven I/0

copy_from_user(buffer, p, count);
enable_interrupts();
while(*printer_status_reg!=READY);
*printer_data_reg=p[0];
schedule();

if(count==0) {
unblock_user();

}else{
*printer_data_reg=p[i];
count = count – 1;
i i+1

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 24

Printing string using interrupt-driven I/O
 Code executed when print system call is made
 Interrupt service procedure

i=i+1;
}
acknowledge_interrupt();
return_from_iterrupt();

I/O Using DMA

copy_from_user(buffer, p, count);
set_up_DMA_controller();
schedule();

acknowledge_interrupt();
unblock_user();
return_from_interrupt();

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 25

Printing string using DMA
 code executed when the print system call is made
 interrupt service procedure

Data
Count

Data
Register

Address
R i t

Data Lines

Address Lines

words to be transfered

device address

Basic of I/O Software

Typical DMA Block Diagram

© 2009 Universität Karlsruhe, System Architecture Group 26

Register

Control
Logic

Address Lines

DMA Request
DMA Acknowledge

Interrupt
Read
Write

main memory address

Direct Memory Access

 Takes control of system from the CPU to transfer a
block of data to and from memory over system bus

 Cycle stealing: used to transfer data on the system
bus, data is transferred “word” by “word*”

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 27

* also multiple of words depending of system bus protocol

 Instruction cycle of CPU is suspended for a while so
that a word can be transferred

 CPU pauses 1 bus cycle

Time

Instruction Cycle

Processor
Cycle

Processor
Cycle

Processor
Cycle

Processor
Cycle

Processor
Cycle

Processor
Cycle

DMA and Interrupt Breakpoints

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 28

CycleCycle Cycle Cycle Cycle Cycle

Fetch
Instruction

Decode
Instruction

Fetch
Operand

Execute
Instruction

Store
Result

Process
Interrupt

DMA
Breakpoints

Interrupt
Breakpoint

Direct Memory Access

 Cycle stealing causes CPU to slow down

 Number of required busy cycles can be
reduced by integrating DMA and I/O

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 29

functions

 Path between DMA module and I/O
module that does not include the
system bus

P DMA I/O I/O M

. . .

Single-bus, Detached DMA

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 30

Processor DMA I/O I/O Memory

Analysis:
All modules share same system-bus   danger of system bus contention

(another example of low scalability)

DMA uses programmed I/O to transfer data between memory and device
 each word being transferred requires 2 bus-cycles!

DMA Transfer with Fly-By Mode

Device Addresses

© 2009 Universität Karlsruhe, System Architecture Group 31

 Word Mode (→ cycle stealing)
 Burst Mode

Processor DMA MemoryDMA

Integrated DMA Extra DMA

Single-bus, Integrated DMA-I/O

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 32

I/O I/O

I/O

Analysis: Additional “data-lines” between DMA and I/O-devices
 fewer contention problems

DMA competes for system bus only when it transfers a word from/to memory.
Due to extra data lines, one bus cycle is saved per word to be transferred

Processor DMA Memory

System Bus

I/O Bus

DMA and Separate I/O Bus

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 33

I/OI/OI/O

Analysis:
Additional peripheral-bus between DMA and I/O-devices
 fewer contention problems on system bus and reducing

the number of connections to 1 between DMA and I/O-Bus

Configuration is easily to expand (i.e. use hierarchical I/O-buses),  scalability

