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Roadmap
 Motivation

 Repetition: I/O-Devices
 Device Categories
 I/O-Functionality
 Data Transfer

 I/O-Subsystem
D i P t
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 Design Parameters
 I/O Layering
 I/O-Buffering

 Disk I/O Management 
 Disk, CD-Rom, …
 Disk Layouts and Formats
 Disk Scheduling
 RAID
 Disk Caching

 Clocks and Timer



Problems of I/O Management

 There are many various types of I/O devices
 Applications don‘t want to care about device specifics
 Device independent I/O subsystems, e.g. 

 the file system or
 the network stack
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 the network stack
do not want to care about device specifics

 Most device management software will not be developed by OS 
suppliers, but by device vendors

 I/O speed can’t keep up with CPU speed

 On most computers, there is parallelism between I/O & CPU



Motivation

Linux 2.0 Kernel SLOCs, I/O Portion
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Motivation

Linux 2.4 Kernel SLOCs, I/O Portion 
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Device Management Objectives

 Abstraction from details of physical devices

 Serialization of I/O-operations by concurrent 
applications

 Protection of standard-devices against unauthorized 

Motivation
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g
accesses

 Handling of sporadic device errors

 Virtualizing physical devices via memory and time 
multiplexing (e.g., pty, RAM disk)



I/O System Organization

Application

API

© 2009 Universität Karlsruhe, System Architecture Group 8

Command DataStatus

Device Driver

Device Independent I/O Subsystem
(e.g. File System)

Hardware Interface



Repetition: I/O-Devices

Categories of I/O Devices (Stallings: Operating Systems 11.1):

 “Noticeable” directly by humans

Device TypesDevice Types
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 Machine readable

 Communication devices



“Noticeable” by Humans

 Used to “communicate” with user
 Video display terminals
 Keyboard
 Mouse

Device TypesDevice Types

visual
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 Printer

 Headphone
 Microphone

 Force-feedback joystick
 Data-glove

 …??

audio

tactile

??



Machine Readable

 Used to communicate with local devices

 Disk drives
 Tape drives

Device Types
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 Controllers (SCSI, CardBus, FC)
 Actuators
 Sensors
 ...



Communication Devices

 Used to communicate with remote 
devices
 Network adapters

Device Types
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 Modems
 ...



Device Parameters

Characteristics of I/O Devices
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next slide



Data Rates

Device Parameters
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Device Controller

 I/O devices have two types of components:
 the mechanical component(s) 

 often the major reason for high latency, i.e. low 
performance

 the electronic component(s)

Device Controller
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 Electronic component = device controller
 Controller's tasks:

 process device commands
 convert between device specific data representation 

(e.g., bit serial, byte parallel) and  block of bytes
 perform error correction and handshake as necessary
 make data available to main memory

 may be able to handle multiple devices



Memory-Mapped I/O (1)



Device Addresses
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 Separate I/O-address space and memory address space
 MOV R0, 4 // <4> → R0
 IN R0, 4  // <port 4> →R0

 Memory-mapped I/O // 1 common physical AS (PDP 11)
 Hybrid (Pentium) // part of I/O space in memory

// part in an extra address space
Hint: Discuss pros and cons



Memory-Mapped I/O (2)

Device Addresses
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 (a) Single-bus architecture
 (b) Dual-bus memory architecture



Repetition: Interrupts

Device Interrupts

PIC/APIC
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Connections between devices and the interrupt controller
use interrupt lines on the bus rather than dedicated wires

Bus



Goals of I/O-Software (1) 

 Device independence
 programs can access any I/O device without 

specifying device in advance 
 (floppy, hard drive, or CD-ROM)

 Uniform naming

Basic of I/O Software
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 Uniform naming
 name of a file or device either a string or an 

integer
 not depending on machine- or device-type

 Error handling
 handle as close to the hardware as possible 

if hardware can handle the error, that’s fine, e.g. 
just retry a “broken read from disk”



Goals of I/O-Software (2) 

 Synchronous vs. asynchronous transfers
 blocked transfers vs. interrupt-driven

 Buffering
 data coming off a device cannot be stored in the 

Basic of I/O Software
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g
final destination

 avoid superfluous copying (see I/O-Lite*)

 Sharable vs. exclusive devices
 disks are sharable
 tape drives would not be

*V. Pai, P. Druschel, W. Zwaenepoel: I/O-Lite: ”A Unified I/O-Buffering 
and Caching System”, 3rd OSDI, New Orleans, 1999



Asynchronous or 
synchronous I/O

Techniques for I/O-Management

 Programmed I/O
 thread is busy-waiting for the I/O-operation to complete, 

processor cannot be used else where

 Interrupt-driven I/O
 I/O-command is issued

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 21

/
 processor continues executing instructions (of same or other 

thread)
 I/O-device sends an interrupt when I/O-command is done

 Direct Memory Access (DMA)
 DMA module controls exchange of data between main 

memory and I/O device
 processor interrupted after entire block has been transferred



Programmed I/O (1)

Basic of I/O Software
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Steps in printing a string



Programmed I/O (2)

copy_from_user(buffer, p, count) // p = kernel buf 
for (i=0; i<count; i++{ // loop on each character
while(*printer_status_reg!=READY); // loop until ready

// busy waiting

Basic of I/O Software
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// busy waiting
*printer_data_reg =p[i]; // output 1 character

}
return_to_user();

Printing string using programmed I/O



Interrupt Driven I/0

copy_from_user(buffer, p, count);
enable_interrupts();
while(*printer_status_reg!=READY);
*printer_data_reg=p[0];
schedule();

if(count==0) {
unblock_user();

}else{
*printer_data_reg=p[i];
count = count – 1;
i i+1

Basic of I/O Software
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Printing string using interrupt-driven I/O
 Code executed when print system call is made
 Interrupt service procedure

i=i+1;
}
acknowledge_interrupt();
return_from_iterrupt();



I/O Using DMA

copy_from_user(buffer, p, count);
set_up_DMA_controller();
schedule();

acknowledge_interrupt();
unblock_user();
return_from_interrupt();

Basic of I/O Software
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Printing string using DMA
 code executed when the print system call is made
 interrupt service procedure



Data
Count

Data
Register

Address
R i t

Data Lines

Address Lines

# words to be transfered

device address

Basic of I/O Software

Typical DMA Block Diagram
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Register

Control
Logic

Address Lines

DMA Request
DMA Acknowledge

Interrupt
Read
Write

main memory address



Direct Memory Access

 Takes control of system from the CPU to transfer a 
block of data to and from memory over system bus

 Cycle stealing: used to transfer data on the system 
bus, data is transferred “word” by “word*”

Basic of I/O Software
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* also multiple of words depending of system bus protocol

 Instruction cycle of CPU is suspended for a while so 
that a word can be transferred

 CPU pauses 1 bus cycle



Time

Instruction Cycle

Processor
Cycle

Processor
Cycle

Processor
Cycle

Processor
Cycle

Processor
Cycle

Processor
Cycle

DMA and Interrupt Breakpoints

Basic of I/O Software
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CycleCycle Cycle Cycle Cycle Cycle
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Direct Memory Access

 Cycle stealing causes CPU to slow down

 Number of required busy cycles can be 
reduced by integrating DMA and I/O 

Basic of I/O Software
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functions

 Path between DMA module and I/O 
module that does not include the 
system bus



P DMA I/O I/O M

. . .

Single-bus, Detached DMA

Basic of I/O Software
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Processor DMA I/O I/O Memory

Analysis:
All modules share same system-bus   danger of system bus contention

(another example of low scalability)

DMA uses programmed I/O to transfer data between memory and device
 each word being transferred requires 2 bus-cycles!



DMA Transfer with Fly-By Mode

Device Addresses
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 Word Mode ( → cycle stealing)
 Burst Mode



Processor DMA MemoryDMA

Integrated DMA Extra DMA

Single-bus, Integrated DMA-I/O

Basic of I/O Software
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I/O I/O

I/O

Analysis: Additional “data-lines” between DMA and I/O-devices 
 fewer contention problems

DMA competes for system bus only when it transfers a word from/to memory.
Due to extra data lines, one bus cycle is saved per word to be transferred



Processor DMA Memory

System Bus

I/O Bus

DMA and Separate I/O Bus

Basic of I/O Software
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I/OI/OI/O

Analysis:
Additional peripheral-bus between DMA and I/O-devices  
 fewer contention problems on system bus and reducing

the number of connections to 1 between DMA and I/O-Bus

Configuration is easily to expand (i.e. use hierarchical  I/O-buses),  scalability


