
System ArchitectureSystem Architecture

4 Activities4 Activities

1© 2008 Universität Karlsruhe(TH), System Architecture Group

Process, Task, Thread

November 3 2008
Winter Term 2008/09

Gerd Liefländer

Agenda
 Review

 Motivation & Introduction

 Basic Terms

P M d l

Overview

© 2008 Universität Karlsruhe(TH), System Architecture Group 2

 Process Model

 Task Model

 Thread Model

Nice paper: “Microsoft schrumpft Windows-Kernel”

http://www.golem.de/0710/55519.html

What happens during Execution?

Fetch
Exec

R0
…

R31
F0
…

F30
IP(PC)

…
Data1
Data0

Inst237
Inst236

Addr 232-1

HW Review

© 2008 Universität Karlsruhe(TH), System Architecture Group 3

…
Inst5
Inst4
Inst3
Inst2
Inst1
Inst0

Addr 0

 Execution sequence:
 Fetch Instruction at IP
 Decode
 Execute (possibly using registers)
 Write results to registers/mem
 IP = Next Instruction(IP)

 Repeat
IP
IP
IP
IP

Illusion of an SMP on a Uniprocessor?

 How to provide the illusion of multiple processors?

CPU3CPU2CPU1

Shared Memory
CPU1 CPU2 CPU3 CPU1 CPU2

Time

HW Review

© 2008 Universität Karlsruhe(TH), System Architecture Group 4

 Multiplex the CPU in time, i.e. virtualize the CPU

 Each virtual CPU needs a structure to hold:
 Instruction Pointer (IP), Stack Pointer (SP)
 r>1 Registers (Integer, Floating point, others…?)

 How to switch from one virtual CPU to the next?
 Save IP(PC), SP, and r’ registers in current context block
 Load IP(PC), SP, and r’ registers from new context block

 What is triggering a virtual CPU switch?

Motivation & IntroductionMotivation & Introduction

5© 2008 Universität Karlsruhe(TH), System Architecture Group

Why Activities?

 HW offers concurrent execution of programs, e.g.
 CPU(s) & I/O-devices can run in parallel

 Suppose a chess program can be parallelized, a>1
activities search in different chess data bases,
another activity calculates the next moves etc 

Motivation

© 2008 Universität Karlsruhe(TH), System Architecture Group 6

another activity calculates the next moves etc. 

Better response time of the chess program

 OS has to offer appropriate concepts to enable
concurrent activities:
 Process
 Task
 Thread

1. How to provide „information processing“,
i.e. “when“ to execute “what” code?

 thread (process*)

2 Main Abstractions of Systems

Introduction

© 2008 Universität Karlsruhe(TH), System Architecture Group 7

 address space (AS)

*Note: “Process”  “lat. procedere” = “voranschreiten”
Notion “thread” ~ “Faden” abwickeln

2. How to provide „protected depositories“, i.e.
”where“ to store ”what” information entity?

Design Parameters: Activity

 Number of activities
 Static systems, i.e. at run-time no new activities
 Dynamic

 Grade of interactivity
 Foreground, i.e. many interactions between user and activity

Introduction

© 2008 Universität Karlsruhe(TH), System Architecture Group 8

 Background activity, e.g.
 Daemons (Unix/Linux background services)
 Applications controlled by background shell

 Urgency
 Real time

 Hard real time
 Soft real time

 Interactive
 Batch processing

Design Parameters: Address Spaces
 Number and placement of regions

 1 versus n>1 regions
 Contiguous address space
 Non-contiguous address space
 With(out) boundary checks

 Types of regions

Introduction

© 2008 Universität Karlsruhe(TH), System Architecture Group 9

 Types of regions
 Stack
 Heap
 Code
 …

 Duration of data entity
 Temporary
 Persistent

 …

Basic TermsBasic Terms

10© 2008 Universität Karlsruhe(TH), System Architecture Group

Process
Program

Process
 Process ~ abstraction for a single sequential

activity within a protected environment
 It represents the “execution” of

 an application program
 a system program (outside the kernel)

Basic Terms

© 2008 Universität Karlsruhe(TH), System Architecture Group 11

 a system program (outside the kernel)

 It consists of an AS, context, state, and resources

 Process* has only one single thread of execution

 The system entity consisting of multiple
activities within one AS is a task*

*Note: This terminology is KIT specific

Program versus Process
 Same program can be executed concurrently by

multiple processes, e.g. the gcc program

 Program is something static
 It has i>1 instructions
 These i instructions are placed somewhere in RAM(or disk)

Basic Terms

© 2008 Universität Karlsruhe(TH), System Architecture Group 12

 Process is something dynamic (sometimes a process
has to wait for an event, i.e. it does no real progress)

 An executable program (e.g. file xyz.exe) has to
be loaded1 before becoming a process

 In order to control a process the OS needs a process
descriptor, i.e. a process control block (PCB)

1  different ways of loading a program

Process

 An executing instance of an executable program
  only one executable file gcc

 During a C course, simultaneously multiple gcc-
processes can be active on one computer (e.g. at
your computer center)

Basic Terms

© 2008 Universität Karlsruhe(TH), System Architecture Group 13

your computer center)

 Each process is separated from another
executing gcc process
 If one gcc-process fails it should not bother another

concurrent gcc-process or any other concurrent
application process

 Processes can start (launch) other processes

gcc Example

 Via a command you can launch a gcc process

 It first launches cpp, cc1, as

Finally it launches ld

Basic Terms

© 2008 Universität Karlsruhe(TH), System Architecture Group 14

 Finally it launches ld

 Each instance is a process, and each of the
above programs actually exists separately

Process ModelProcess Model

15© 2008 Universität Karlsruhe(TH), System Architecture Group

Process State
Process Control Block
Abstract Process Switch

“Processing” Model
 Heavyweight processing (e.g. Unix process)

 Activity instance and address space form a system unit
 Each “process switch” involves 2 AS switches:

ARx OSkernel ARy

 Lightweight processing (Kernel Level Threads, KLTs))
A ti it i t d dd d l d

Process Model

according to weight classes of boxers

© 2008 Universität Karlsruhe(TH), System Architecture Group 16

 Activity instances and address space are decoupled
 A “KLT switch” can involve 1.5 or 2 AS switches:

ARx OSkernel  ARy or x

 Featherweight processing (Pure User Level Threads, PULTs)
 Activity instances and AS form a single system unit
 A “PULT switch” at user level involves no AS switch, i.e.

ARx  Arx

 Whenever a thread switch is done without the kernel, then it
must be a switch between two PULTs of the same AS

Process Model

Process Model

4 Logical Instruction Pointers

1 HW-Instruction Pointer

© 2008 Universität Karlsruhe(TH), System Architecture Group 17

 Multiprogramming of four applications: each application
is implemented as a process, i.e. in an isolated AS

 Conceptually:  four independent, sequential processes

 Only one process can run at any instant of time on a
conventional single-processor system

Example: AS of a Linux Process

 Logical address regions, that
a process can access:
 Code
 Data

 static variables

User Stack

0xFFFFFFFF

(Reserved for OS)

SP

Process Model

task_size
KAS

Only one KAS,
independent of

#UASes

© 2008 Universität Karlsruhe(TH), System Architecture Group 18

 static variables
 heap

 User stack
 Local variables, parameters etc.

(to be installed for each call)

Code
(text segment) IP

Initialized Data
(data segment)

Uninitialized Data
(BSS segment)

Heap

0x00000000user address space = UAS
private

Multiple User Address Spaces

User Stack

0xFFFFFFFF

Process Model

KAS

User Stack

User Stack

Only one KAS, independent of #UASes

© 2008 Universität Karlsruhe(TH), System Architecture Group 19

Code
(text segment)

Initialized Data
(data segment)

Uninitialized Data
(BSS segment)

Heap

0x00000000 Code

Initialized Data Code
(text segment)

Initialized Data
(data segment)

Uninitialized Data
(BSS segment)

Heap

Process Creation

Principal events causing a creation of a process:

1. System initialization (e.g. sysinit)

2. System call by another process (e.g. fork)

Process Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 20

3. User creates a new process via a

1. Command (e.g. sh forks and then loads a new
program image via system call exec(ve))

2. Click on icon representing an executable

4. Initiation of a batch job

Process Termination

Conditions that can terminate a process:

1. Normal exit (voluntary)

2. Error exit (voluntary)

Process Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 21

2. Error exit (voluntary)
 Programmer has provided an exception handler

3. Fatal error (involuntarry)
 System handles exception

4. Aborted by another process (involuntary)
 Scenarios leading to a process abortion?

Process Hierarchy

 Parent process creates a child process, a child
process can create further children
 From the perspective of the parent these new kids

are grand-children

Process Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 22

 …

 Forms a rooted-tree-like process hierarchy
 UNIX calls it a "process group"

 Windows: no concept of a process hierarchy
 All processes are created at the same level

What else can describe a Process?

 Information about process hierarchy
 Who has launched the process
 What processes have been launched by it

Process Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 23

 Information about resources
 Where does it store its data
 What other resources does it use

 Various kinds of mappings
 What address regions belong to which process

Creating a Unix Process

child

if (PID==0)
/* PID == 0 */

parent

PID = fork()
/* PID  0 */

if (PID==0)

Process Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 24

()
{exec(„program“)

...
};

if (PID 0)
{ ...

...
};
wait(PID) . . .

exit () };. . .

Hint:  good introduction how to create Unix, Linux and XP processes
http://www-106.ibm.com/developerworks/linux/library/l-rt7/?Open&t=grl,l=252,p=mgth

Fork Example

int value = 5; /* a global variable */
int main() {
pid_t pid;
value = 7; /* parent */

pid = fork();

© 2008 Universität Karlsruhe(TH), System Architecture Group 25

if (pid ==0) { /* child */
value = 15;

}
else { /* parent */

wait(NULL) /* wait for child to terminate */
printf(“PARENT: value = %d\n”, value);

}
}

Exec versus Fork

 So how do we start a new program, instead of just
forking the old program?
 The systemcall exec()

 int exec(char *prog, char ** argv)

© 2008 Universität Karlsruhe(TH), System Architecture Group 26

 exec()

 Stops the current process

 Loads the executable program prog into AS of the caller

 Initializes HW context, args for the new program

 Note: exec()does not create a new process

Example: Unix SHELL

int main(int argc, char **argv) {
while (1){
char *cmd = get_next_command();
int child_pid = fork();
if (child pid ==0) {

© 2008 Universität Karlsruhe(TH), System Architecture Group 27

(_p) {
exec(cmd);
panic(“exec failed!”);

} else {
waitpid(child_pid);
}
}
}

Process Creation in Unix/Linux

Process Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 28

Potential problems that have to be solved in a robust OS

1. What happens when parent dies before child exits?

2. What happens when parent does not wait?

3. What happens when child does not exit?

Unix Processes

 Process executes last statement and asks OS to finish
it via system call exit()
 Output data from child to parent process waiting for the

result via wait()

 Resources of child can be released if no longer used

Process Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 29

 Resources of child can be released if no longer used
otherwise

 Parent or OS can terminate execution of child process
(abort) in case of
 Child has exceeded allocated resources

 Job assigned to the child is no longer required

 Child misbehaves (looping forever)

init

sh

Unix Process Hierarchy

Process Model

Can accept another command

© 2008 Universität Karlsruhe(TH), System Architecture Group 30

sh

ls -R wc
$ ls –R | wc&

Background shell

Overhead to create a Process

 Must construct a new PCB
 Quite cheap (as long as there is enough space for it)

 Must set up new page tables or related data
structures representing the new AS
 More expensive

© 2008 Universität Karlsruhe(TH), System Architecture Group 31

 More expensive

 Copy data from parent process? (Unix fork())
 Semantics of Unix fork(): the child process gets a

complete copy of the parent’s memory and I/O state
 In early Unix versions very expensive
 Today less expensive due to concept of “copy on write”

 Copy I/O state (file handles, etc)
 More expensive

Preview: Process Switching
 Action of releasing one process from the CPU and

assigning another process to the CPU is named a
voluntary process switch

Process Model

PID 0815
State: ready

PID 4000
State: ready

PID 4711
State: running

© 2008 Universität Karlsruhe(TH), System Architecture Group 32

IP

Registers

y

IP

Registers

IP

Registers

g

IP

Registers

Currently running process Save current processor status

Process Switching

 Intermediate state

Process Model

PID 0815
State: ready

PID 4000
State: ready

PID 4711
State: ready

© 2008 Universität Karlsruhe(TH), System Architecture Group 33

IP

Registers

IP

Registers

IP

Registers

Previously running process

IP

Registers

Now you have to
select a new process

to run, e.g. 0815

Process Switching

 Loading context of the new process

Process Model

PID 0815
State: ready

PID 4000
State: ready

PID 4711
State: ready

© 2008 Universität Karlsruhe(TH), System Architecture Group 34

IP

Registers

IP

Registers

IP

Registers

Previously running process

IP

Registers

Load context of 0815

Process Switching

 Running the new process

Process Model

PID 0815
State: running

PID 4000
State: ready

PID 4711
State: ready

© 2008 Universität Karlsruhe(TH), System Architecture Group 35

IP

Registers

IP

Registers

IP

Registers

Previously running process

IP

Registers

Currently running process

Cost of Process Switching
 In some systems, a process switch is expensive

 Entering and exiting the kernel

 CPU context has to be saved & restored

 Storing & loading AS information

 (Flushing TLB and) restoring TLB content

Process Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 36

 Scheduling next ready process to run can be expensive,
especially when the OS designer is too lazy

 Process switch overhead in Linux 2.4.21
 ~ 5.4 µsec on a 2.4 GHz Pentium 4
 Equivalent to ~ 13 200 CPU cycles !!!
 Not quite that many instructions since CPI* >1

*CPI = cycles per instruction

(External) Process States

Process Model

1. Process blocks for I/O
2. Process leaves CPU voluntarily

or scheduler forces process
to leave the CPU

3. Scheduler picks another process
4. I/O has occurred, process no

© 2008 Universität Karlsruhe(TH), System Architecture Group 37

Possible process states
- Blocked (waiting, sleeping)

- Ready
- Running

Colors should remind you of
the semantics of traffic lights

/ , p
longer has to wait

Process States

 During its life a process can change its external
process state several times

 new: Process has being created

 running: Its instructions are executed

Process Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 38

 waiting: It is waiting for some internal or external
event to occur

 ready: It is ready to run, however it is still waiting
to be assigned to a processor

 terminated: It has finished

Unix “Process State Model”
Why is preempted

a distinct state? Lazy versus
eager loading

?

Process Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 39

Potential Attributes of a PCB

ContextContext

SchedulingScheduling

Process Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 40

FamilyFamily

Time &Time &
EventsEvents

Shortcomings of Process Model

 Sufficient for all sequential applications
 e.g. only one activity per process

 However, what to do if your application can profit
from internal concurrency?

Process Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 41

 Multiple application processes
 Protection is guaranteed by different AS, but

solution can be expensive
 Collaboration takes time

 Better use a multi-threaded task
  different thread models

Example Parallel Applications

 Web browser:
 Download web pages, read cache files, accept user

input,…

W b

Process Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 42

 Web server:
 Handle incoming connections from multiple clients

 Scientific programs:
 Process different parts of a data set on different

CPUs, e.g. calculate a numerical difference equation

Parallel Applications

 Share memory across multiple activities
 Web browser: share buffer for HTML pages

 Web server: share memory cache of recently
accessed pages

Process Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 43

p g

 Scientific programs: share memory of global data
set being processed

 Can we do this with multiple processes?
 Yes, as long as OS offers shared memory

 If not, we must use IPC which might be inefficient

Task ModelTask Model

44© 2008 Universität Karlsruhe(TH), System Architecture Group

Example: Linux T(ask)CB

Linux Task Descriptor TaskCB

Process Model

 Located in a 8 KB kernel
memory block

 esp register points to
kernel stack if task has
switched to kernel mode ?

Example TaskCB

kernel
stack

© 2008 Universität Karlsruhe(TH), System Architecture Group 45

switched to kernel mode

 The macros current &
esp deliver the task-
descriptor address

Task
Descriptor

?

Content of Task Desciptor (1)

Task Model

State:

 current task state

Macros for changing the task-state by the
kernel:

 set task state(TID) = set the state of

© 2008 Universität Karlsruhe(TH), System Architecture Group 46

_ _ ()
a certain task with TID

 set_current_state = set the state of
a the running task

Flags:

 part of PSW or Statusregister

Content of Task Descriptor (2)
counter:
 Time in ticks (10 ms) till next scheduling

 Used to select next running task (thread)

 Dynamic priority

Task Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 47

nice(priority):
 Static priority

 Scheduler uses priority to set counter

need_resched:
 Indicates that scheduling has to be done
(sooner or later)

Content of Task Descriptor (3)

Next_task: next task
Prev_task: previous task
Run_list: list of ready tasks

Task Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 48

Content of Task Descriptor (4)

p_opptr, p_pptr, p_cptr,

Task Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 49

p_ysptr; p_osptr::
 e.g. old or current parent etc.

Content of Task Descriptor (5)

TTY:
Information concerning the current console

Task Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 50

Content of Task Descriptor (6)

Task Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 51

Thread:
 Information about CPU state for last

mode switch

 Save all CPU registers

Content of Task Descriptor (7)
File System
 contains file specific information:

 current directory

 root directory

Task Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 52

Content of Task Descriptor (8)

Files: file-descriptor
 referencing an open file

 fd contains file pointer

i l # f fd

Task Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 53

 maximal # of fd

Content of Task Descr. (7,8 a)

files
fs

inode

inode

inode

task_struct fs_struct

count

umask

*root

*pwd

Task Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 54

f_mode
f_pos
f_flags
f_count
f_owner
f_inode
f_op
f_version

file

inode

File operation
routines

count
close_on_exec
open_fs
fd[0]

fd[255]

fd[1]

. . .

file_struct

Content of Task Descriptor (9)

Task Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 55

mm: memory management
 contains pointers to memory areas

Content of Task Descriptor (9a)
Task

Virtual Address Space

mm

task_struct

data

vm_area_struct
vm_end
vm_start
vm_flags
vm_inode
vm_ops

count
pgd

mmap

. . .

mm_struct

Task Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 56

vm_end
vm_start
vm_flags
vm_inode
vm_ops

vm_next

vm_area_struct
code

vm_next

p
mmap_avl
mmap_sem

Content of Task Descriptor (10)

Task Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 57

sig: signals
 pointers to start-addresses of signal
handlers of the task

Thread ModelThread Model

58© 2008 Universität Karlsruhe(TH), System Architecture Group

Thread Model

Thread
 Thread = abstraction for a pure activity

 Thread includes code and private data (stack)

 Each thread needs an execution environment
 Address space

© 2008 Universität Karlsruhe(TH), System Architecture Group 59

p

 Files, I/O-devices and other resources

 In many cases, a thread shares its complete
environment with all other threads of the same AS

Example: File server consists of t identical threads,
each thread serves one client’s request

Thread

 Entity in which activity takes place

 Object of dispatching (scheduling)

Thread Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 60

time

On a single processor system, threads are executed on
the same CPU, thus we need to control all threads in
order to prevent that a single thread is hogging the CPU

…

Process

 Single threaded

 Address space (Unix terminology)

Thread Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 61

Address space
+ resources

 Additional resources

Task

 Entity of an “application” consisting of
 t ≥ 1 thread(s)
 Address space

R

Thread Model

© 2008 Universität Karlsruhe(TH), System Architecture Group 62

1 or
more threads
+ AS
+ resources

 Resources

Address Space of a Task

 All threads share the same AS

 Bugs in one thread can crash the
complete task

 Danger of mutual stack overflow

Thread Model

Stack1

0xFFFFFFFF
(Reserved for OS)

SP1

Stack2
SP2

© 2008 Universität Karlsruhe(TH), System Architecture Group 63

 Danger of mutual stack overflow

 Robust systems should offer
additional protection between
threads of the same task, e.g.

 Private global data

 Protected thread stacks Code
(text segment)

IP1

Initialized Data
(data segment)

Uninitialized Data
(BSS segment)

Heap

0x00000000

IP2

Process versus Task

© 2008 Universität Karlsruhe(TH), System Architecture Group 64

 Threads encapsulate concurrency: “active” component

 Address spaces encapsulate protection: “passive” part
 Keeps buggy process from trashing other processes or the

system

task

Example Multithreaded Programs

 Embedded systems
 Elevators, Planes, Medical systems, Wristwatches

 Single Program, concurrent operations

 Modern OS kernels
C t i k l th d (k l l l th d)

© 2008 Universität Karlsruhe(TH), System Architecture Group 65

 Contains kernel threads (no kernel level threads)
 Kernel threads are completely executed in kernel mode
 Kernel level threads are executed in user mode most of the time

 Often, no/few additional protection offered inside the kernel

 Database Servers
 Access to shared data by many concurrent users

 Also background utility processing must be done

Literature

Bacon, J.: Operating Systems (4)

Stallings, W.: Operating Systems (3, 4)

Silberschatz, A.: OS Concepts (2)

Overview

© 2008 Universität Karlsruhe(TH), System Architecture Group 66

Silberschatz, A.: OS Concepts (2)

Tanenbaum, A.: MOS (2)

