
System ArchitectureSystem Architecture

2 System Overview2 System Overview

1© 2008 Universität Karlsruhe (TH), System Architecture Group

Design, Structure, Interfaces

October 27 2008
Winter Term 2008/09

Gerd Liefländer

Agenda

System Overview

 System Design
 Criteria and Objectives
 System Abstractions
 Basic Concepts

S S

© 2008 Universität Karlsruhe (TH), System Architecture Group 2

http://www.osdata.com/kind/history.htm
http://www.armory.com/~spectre/tech.html
http://courses.cs.vt.edu/~cs1104/VirtualMachines/OS.1.html

 System Structure
 Library
 Kernel
 System Call
 Interfaces and “Virtual Machines”

System DesignSystem Design

3© 2008 Universität Karlsruhe (TH), System Architecture Group

Criteria and Basic Terms
Abstractions
Concepts

Interesting paper: Jan-Peter Richter et al.:
“Serviceorientierte Architektur (SOA)”,
Informatik Spektrum, Oktober 2005

System Design

Design Parameters of an OS
 Size (Handheld, NC, NB, PC, WS, Super Computer)

 Price (low-, medium-, high-budget systems)

 Performance (slow, …, ultra fast)

 Power consumption (low, …, high)

© 2008 Universität Karlsruhe (TH), System Architecture Group 4

 Scalability (non, slightly, ..., highly scalable)

 Versatility (dedicated ~, …, general purpose systems)

 Security (open systems, ..., closed systems)

 Homogeneity (homogeneous, heterogeneous)

 Mobility (stationary, …, fully mobile systems)

Terms: Policy & Mechanism

 Scheduling  Dispatching

 Paging  Replacement



System Design

© 2008 Universität Karlsruhe (TH), System Architecture Group 5

 …

Concept & Implementation

 Interaction  IPC
 Cooperation  Shared memory

 Communication  Pipe, socket, message

© 2008 Universität Karlsruhe (TH), System Architecture Group 6

Process & Thread

Process:
 Application or system program inside the system

waiting to be executed or executing

 Instance of a program active on a computer

System Design

© 2008 Universität Karlsruhe (TH), System Architecture Group 7

p g p

 Standard system entity of resource ownership

Thread:
 Activity entity1 assigned to or executed on a CPU

1Smallest entity in a system?

Address Space
Process & Address Space

 Often three segments
 Text (= code)
 Data (global variables)
 Stack

Stack

Gap???

System Design

© 2008 Universität Karlsruhe (TH), System Architecture Group 8

 Local variables
 Frame of procedure

 Note:
 Data can dynamically grow up
 Stack can dynamically grow down

Code

Data

Question: How to guarantee a non-zero gap?

Concurrency

 Processes execute in parallel or concurrently on a
single- or on a multi-processor system

 Threads of a multithreaded task can be executed in
parallel or concurrently

System Design

© 2008 Universität Karlsruhe (TH), System Architecture Group 9

 Dependent on thread model

 Dependent on underlying HW

 “Race conditions” can happen if you be lazy with your
concurrency 
 Synchronize threads/processes

 Never rely on timing conditions during the tests

Memory Management

 Main (physical) memory (RAM) is limited

 Memory needs of all active tasks/processes can be
larger than RAM

 Already a Java applet might need some MBs

System Design

© 2008 Universität Karlsruhe (TH), System Architecture Group 10

 Already a Java applet might need some MBs

 Application programs do not want to know where
they are located in RAM

 Modern program code is relocatable, i.e., it can run
anywhere in RAM

Virtual Memory
 Allows programmers to address memory in a reasonable

fashion

 Gives applications the illusion of having the total RAM for
themselves

 Address spaces (AS) are independent of each other, i.e. the
l i l dd i t diff t AS i d t

System Design

© 2008 Universität Karlsruhe (TH), System Architecture Group 11

same logical address in two different ASes is mapped to
different locations in main memory

 Automatic mapping of logical address space regions to
appropriate physical memory portions

 Efficient virtual memory needs HW support

Virtual Memory

System Design

 Applications think they have a flat address space
 Physical memory is split into page frames
 AS regions do not have to be mapped to contiguous page frames
 However,  specific regions that are mapped contiguously. Why?

Emacs

© 2008 Universität Karlsruhe (TH), System Architecture Group 12

Code Data Stack

Code Data Stack

EMail

Emacs

VM Manager

Main Memory

Swap Device

No longer needed parts of
memory are swapped out

Addressing Virtual Memory

System Design

/logical

© 2008 Universität Karlsruhe (TH), System Architecture Group 13

 Location and function of MMU

(= physische ≠ physikalische)

MMU

Scheduling

 Fairness
 Give equal and fair access to all applications

 Differential responsiveness
Distinguish between different classes of jobs

System Design

© 2008 Universität Karlsruhe (TH), System Architecture Group 14

 Distinguish between different classes of jobs
 Real-time processes versus interactive tasks

 Efficiency
 Maximize throughput
 Minimize response time
 Accommodate as many users as possible

Communication (IPC)

System Design

© 2008 Universität Karlsruhe (TH), System Architecture Group 15

A common example for IPC:
2 communicating UNIX processes A and B
connected via a pipe

Semantics:
Process A stops writing to pipe when pipe is full
Process B stops reading from pipe when pipe is empty

I/O Device

System Design

 3 major classes of I/O devices
 Character devices

 Serial port, keyboard, mouse

 Block devices

© 2008 Universität Karlsruhe (TH), System Architecture Group 16

 Disks (IDE, SCSI)

 CD-ROMs

 Tape drives

 Application specific devices
 …

File & Directory

 Implements long-term (persistent) storage

 Persistently stored data units, e.g.
 files
 directories

System Design

© 2008 Universität Karlsruhe (TH), System Architecture Group 17

 …

 Traditional files
 Accessed via specific system calls, e.g. read()

 Memory mapped files
 Accessed like any other part of RAM

Only for files

Protection and Security

 Access control
 Regulate user access to the system as a whole or

to individual system components (e.g. file system)

f fl l

System Design

© 2008 Universität Karlsruhe (TH), System Architecture Group 18

 Information flow control
 Regulate flow of information (data) within the

system and its delivery to users

 Certification
 Proving that access control & flow control perform

according to the specifications of the system

Supporting Functions

 OS kernel executes “system calls”, i.e. basic
software functions such as IPC

 Other high end supporting system code is
not part of an OS e g

System Design

© 2008 Universität Karlsruhe (TH), System Architecture Group 19

not part of an OS, e.g.

 Editor

 Compiler

 Assembler

 Linker

 Command interpreter (shell)

System StructureSystem Structure

20© 2008 Universität Karlsruhe (TH), System Architecture Group

Library
Kernel
System Call
Interfaces and “Virtual Machines”

Software System := set of components*

System Structure

System Structure (1)

© 2008 Universität Karlsruhe (TH), System Architecture Group 21

*Component based system = another buzzword in systems
(meanwhile a bit outdated)

Potential System Components

 Applications
 Simulating the traffic
 Forecasting the weather
 Editing a textbook, etc.

OS b tem (omponent) ith pe ifi t k

System Structure

© 2008 Universität Karlsruhe (TH), System Architecture Group 22

 OS subsystems (components) with a specific task
 Initiating (e.g. bootstrap loader)
 Controlling (e.g. shell)
 Protecting (e.g. firewall)
 Accounting (e.g. monitor)
 Servicing (e.g. file server)

 Basic Functions (e.g. synchronization)

Component Objects Example Operation
GUI/shell button, window execute shell script, …

Application a.out quit, kill, …

File System directories, files open, close, read,

Devices printer, display open, write, ...

Potential System Components

System Structure

© 2008 Universität Karlsruhe (TH), System Architecture Group 23

p p y p

Communication ports, channels send, receive, …

Virtual Memory segments, pages write, fetch

Secondary Storage chunks, blocks allocate, free,

Task task queue exit, create, …

Process/Thread ready queue, PCB/TCB wakeup, execute, …

Interrupts interrupt handler invoke, mask, ...

Unix System Software
ar build & maintain archives
cat concatenate files  standard out
cc compile C program
chmod change protection mode
cp copy file
echo print argument
grep file search including a pattern

System Structure

© 2008 Universität Karlsruhe (TH), System Architecture Group 24

grep file search including a pattern
kill send a signal to a process
ln link a file
lp print a file
ls list files and directories
mv move a file
sh start a user shell
tee copy standard in to standard out and to a file
wc word count

Software System := set of components &
their interconnections with
various interdependencies

Varying in functionality

System Structure (2)

System Structure

© 2008 Universität Karlsruhe (TH), System Architecture Group 25

Varying in functionality
and performance

requirements

Design & Implementation Problems

System Structure

© 2008 Universität Karlsruhe (TH), System Architecture Group 26

Disk
Driver

Major Interfaces of a System

Applicationi-1 Applicationi Applicationi+1

System Structure

CLI GUI

UI

© 2008 Universität Karlsruhe (TH), System Architecture Group 27

Operating System Kernel

Hardware

Runtime Library

HW/SW
Interface

Kernel
Interface

API

User Interface (UI)

CLI allows direct command input
 Sometimes implemented in kernel, sometimes by

system processes outside the kernel

S ti lti l fl i l t d i U i

System Structure

CLI GUI

© 2008 Universität Karlsruhe (TH), System Architecture Group 28

 Sometimes multiple flavors implemented, e.g. in Unix
 different shells (sh, bsh, csh, ksh, …)

 Shell fetches a command from user, interprets, and
executes it
 Sometimes commands are built-ins

 Sometimes just names of executable files
 In the latter case adding new features does not require a

complete modification of the shell
 You only have to add another case to the central switch

statement

User Interface (UI)

 User-friendly desktop metaphor interface
 Usually mouse, keyboard, and monitor
 Icons represent files, programs, actions, etc.
 Various mouse buttons over objects in the interface cause

System Structure

CLI GUI

© 2008 Universität Karlsruhe (TH), System Architecture Group 29

j
various actions (provide information, options, execute
function, open directory (known as a folder)

 Invented at Xerox PARC

 Today’s systems include both CLI & GUI interfaces
 Microsoft Windows is GUI with CLI “command” shell
 Apple Mac OS X is “Aqua” GUI interface with UNIX kernel

underneath and shells available
 Solaris offers a CLI with optional GUI interfaces (Java

Desktop, KDE)

Applic. Program Interface (API)

System Structure

  two programming interfaces to the services
provided by the OS kernel
 Kernel interface, i.e., a list of system calls

 API, typically written in C or C++

© 2008 Universität Karlsruhe (TH), System Architecture Group 30

API, typically written in C or C

 Three common APIs are:
 Win32 API for Windows

 POSIX API (offered by virtually all versions of
UNIX, Linux, and Mac OS X)

 Java API for the Java virtual machine (JVM)

Example1: Win32 Standard API

 Consider the ReadFile() function in the Win32 API

© 2008 Universität Karlsruhe (TH), System Architecture Group 31

 A description of the parameters passed to ReadFile()
 HANDLE file—the file to be read
 LPVOID buffer—a buffer where the data will be stored
 DWORD bytesToRead—the number of bytes to be read into the buffer
 LPDWORD bytesRead—the number of bytes read during the last read
 LPOVERLAPPED ovl—indicates if overlapped I/O is being used

Example2: Standard C Library
 C program invoking printf() library call, which

performs write() system call

© 2008 Universität Karlsruhe (TH), System Architecture Group 32

Protection

 Challenge: OS must support multiple
protection domains

 OS acts as “law enforcement” (~ role of police)

© 2008 Universität Karlsruhe (TH), System Architecture Group 33

 Goals

 Buggy applications cannot crash the system

 Malicious applications cannot take control

 User data is protected from “non trusted” users
or programs

Interaction of System Components

System Structure

Application

System Library

© 2008 Universität Karlsruhe (TH), System Architecture Group 34

OS Kernel

Hardware

Interacts with CPU and I/O Registers via
privileged instructions, however also

using non-privileged instructions.

Interact with
user mode CPU

via non-privileged
instructions

Interaction of System Components

Application

System Library

Interaction via function call to library procedures

System Structure

© 2008 Universität Karlsruhe (TH), System Architecture Group 35

OS Kernel

Hardware

Interaction via system calls

System Libraries

 In most OSes  different system libraries supporting

 programming languages (e.g., C library)

 graphics

 mathematics

System Structure

© 2008 Universität Karlsruhe (TH), System Architecture Group 36

 Not every library function implies a system call
 strcmp(), memcpy() are pure user-level functions

 Mathematical functions are often pure user-level functions

 fopen(), fscanf() et al. imply system calls

Traditional Kernel

 All kernel programs run in privileged mode

 Often the complete kernel is resident in RAM

 Kernel contains basic functions

System Structure

© 2008 Universität Karlsruhe (TH), System Architecture Group 37

 whatever is required to offer services

 whatever is required to provide security

 …

 Also called Nucleus, Monitor*, Supervisor, …

* Computer scientists like this term

Triggering the Kernel

 Before a kernel program can run on a CPU, it
must be triggered by some event, e.g. by

 a system call

System Structure

© 2008 Universität Karlsruhe (TH), System Architecture Group 38

 an exception

 an interrupt

User/Kernel Boundary

 Implemented in HW

 Allows the OS to execute
privileged instructions

App. App. App.User
mode

© 2008 Universität Karlsruhe (TH), System Architecture Group 39

 Applications enter kernel
by executing a system call

OS Kernel

mode

Kernel
mode

User Mode versus Kernel Mode

 Only the kernel can execute privileged instructions, i.e. if an
application tries to execute a privileged instruction, CPU raises
an exception

 Examples of privileged instructions

 access to I/O registers

System Structure

© 2008 Universität Karlsruhe (TH), System Architecture Group 40

 poll for I/O, perform DMA, catch HW interrupt

 manipulate MMU and memory states
 set up page tables, load/flush TLB, etc.

 configure various “mode bits”
 interrupt priority level, software trap vector, etc.

 call HALT instruction
 put CPU into low-power/idle state until next HW interrupt

 A system call is one way to enter the kernel

System Call Overview

 Application invokes a helper procedure (e.g. a library
function)
 read, write, gettimeofday, …

 Helper passes control to the OS
I di t th t ll b

© 2008 Universität Karlsruhe (TH), System Architecture Group 41

 Indicates the system call number

 Loads arguments into “registers”

 Issues a trap (software interrupt)

 OS saves user state (registers)

 OS invokes appropriate system call handler

 OS returns control to the user application

Trigger Example 1: System Call

System Calls

count = read(fd, buffer, nbytes)

© 2008 Universität Karlsruhe (TH), System Architecture Group 42

System Call at Instruction i

System Calls

program
instruction i-1

program
instruction i+2

time

© 2008 Universität Karlsruhe (TH), System Architecture Group 43

Trap
{PC+1, PS=user mode} → stack return from interrupt

BS→ PC, kernel mode→PS

stack→{PC, PS=usermode}

system service
(in the kernel)

Load register

System Calls: Traps & Interrupts
 Synchronous indirect method invocation (Trap)
...
Move A,R1 interrupt vector table
Trap 7 RAM-Address

Move R1, A

System Calls

0017 PS für ISR 8

© 2008 Universität Karlsruhe (TH), System Architecture Group 44

0016 Address of ISR 8

0015 PS für ISR 7

0014 Address of ISR 7

0013 PS für ISR 6

0012 Address of ISR 6

 Asynchronous HW-
Interrupt-Signal 7

ISR = Interrupt Service Routine ~ driver
PS = Processor Status Word (prio, mode,..)

Parameter Passing

 Often, more information than just the system call
number is needed
 type & amount of info vary according to system call and OS

 3 general methods used to pass multiple parameters
 Pass the parameters in registers

© 2008 Universität Karlsruhe (TH), System Architecture Group 45

 Pass the parameters in registers
 Often you have more parameters than you have registers

 Parameters stored in a block in memory, and the address of
the block is passed as a parameter in a register

 Parameters are pushed to the stack by the calling program
and popped by the kernel

 Both, block and stack methods do not limit the
number or the length of the parameters

Insecure System Call

 Consider a hypothetical system call zeroFill(),
which fills a user buffer with zeroes
zeroFill(char* buffer, int bufferSize)

 The following kernel implementation of zeroFill
fl h h l b l

© 2008 Universität Karlsruhe (TH), System Architecture Group 46

contains a security flaw. What is the vulnerability,
and how would you fix it?

void zeroFill(char* buffer, int bufferSize){
for (int i=0; i < bufferSize; i++){

buffer[i] = 0;
}}

Summary: System Call

 Kernel must verify the parameters

 How does application pass data to the kernel?
 Example: write() passes in a pointer to a

System Calls

© 2008 Universität Karlsruhe (TH), System Architecture Group 47

buffer to be written to a file

 How does the kernel return kernel state to
the application?
 Example: read() returns an int indicating the

number of bytes actually read

How to read from a file?

Compare read() and fread()

 read(int d, void *buf, size_t nbytes)

read() attempts to read nbytes of data from the
object referenced by descriptor d into the buffer buf

System Calls

© 2008 Universität Karlsruhe (TH), System Architecture Group 48

object referenced by descriptor d into the buffer buf.

 fread(void *ptr, size_t size,
size_t nmemb, FILE *stream)

fread() reads nmemb objects, each size bytes
long, from the stream pointed to by stream, storing
them at the location given by ptr.

First Insight into OS Concepts (1)

Process

Array of
File Pointers

A t l Fil

System Concepts

© 2008 Universität Karlsruhe (TH), System Architecture Group 49

Actual File
Info

What do we gain from this?

First Insight into OS Concepts (2)

Process

Array of
File Pointers

Sh d Fil

System Concepts

© 2008 Universität Karlsruhe (TH), System Architecture Group 50

Shared File
Info

Process

Each process can have a different file pointer to a shared file.

Process Management
Call Description

pid = fork() Create child process

waitpid(pid, &statloc, options) Wait for a child to terminate

System Calls

System Calls for Processes

© 2008 Universität Karlsruhe (TH), System Architecture Group 51

s = execve(name, argv, environp) Replace a process’ core image

exit(status) Terminate execution + return status

Hint: We expect that you will be familiar with the POSIX System Calls
at the end of this course.

See: http://www.opengroup.org/onlinepubs/7908799/xshix.html

File Management
Call Description

fd = open(file, how, …) Open file for reading, writing, …

l (fd) Cl fil

System Calls

System Calls for Files

© 2008 Universität Karlsruhe (TH), System Architecture Group 52

s = close(fd) Close an open file

n = read(fd, buffer, nbytes) Read data from a file into a buffer

n = write(fd, buffer, nbytes) Write data from a buffer into a file

position= lseek(fd, offset, whence) Move the file pointer

s = stat(name, &buf) Get the file’s status information

Directory Management
Call Description

s = mkdir(name, mode) Create a new directory

di () R t di t

System Calls

System Calls for Directories

© 2008 Universität Karlsruhe (TH), System Architecture Group 53

s = rmdir(name) Remove an empty directory

s = link(name1, name2) Create new entry name2 → name1

s = unlink(name) Remove a directory entry

s = mount(special, name, flag) Mount a file system

s = umount(special) Unmount a file system

Miscellaneous Management
Call Description

s = chdir(dirname) Change the working directory

System Calls

System Calls for Miscellaneous

© 2008 Universität Karlsruhe (TH), System Architecture Group 54

s = chmod(name, mode) Change a file’s protection bits

s = kill(pid, signal) Send a signal to a process

seconds = time(&seconds) Get elapsed time since Jan. 1, 1970

Unix versus Win32 System Calls

System Calls

© 2008 Universität Karlsruhe (TH), System Architecture Group 55

Trigger Example 2: Time Slice IR

System Calls

 Timer to interrupt infinite loops (avoids
that a process can hog the CPU)

 Set timer interrupt after specific period of time

© 2008 Universität Karlsruhe (TH), System Architecture Group 56

 When counter = zero, the timer unit generates
a timer interrupt

Interface: An Example

Interfaces

Draw a rectangle of length dx and width dy.
DrawRectangle(float dx, float dy)
Method: DrawRectangle
Data: float dx, float dy

© 2008 Universität Karlsruhe (TH), System Architecture Group 57

Protocol:
 initialize module „graphics“
 set scales
 set origin
 draw rectangle

uses method drawLine with data x0, y0, x1, y1

Interfaces: A Generalization

Interfaces

An interface consists of

 provided data and functions or methods (in OOD)

 protocols for usage of functions and data, with which
the object has to do some service (export interface)

© 2008 Universität Karlsruhe (TH), System Architecture Group 58

the object has to do some service (export interface)

 required data, functions, and protocols for use by the
module to deliver its services (import interface)

→ Virtual Machines

Virtual Machines: An Example

Interfaces

Draw a rectangle
DrawRectangle(x0,y0,x1,y1)

(x0,y0)

(x1,y1)

D R t l (0 0 1 1) D R t l (0 0 1 1) V1

© 2008 Universität Karlsruhe (TH), System Architecture Group 59

DrawRectangle(x0,y0,x1,y1) DrawRectangle(x0,y0,x1,y1)

Graphic Processor Unit
(GPU)

DrawLine(x0,y0,x1,y0)
DrawLine(x1,y0,x1,y1)
DrawLine(x1,y1,x0,y1)
DrawLine(x0,y1,x0,y0)

V2

 SetPoint(x0,y0,black)
SetPoint(x0+dx,y0,black)

…

V3

Display(RAM) Display(RAM) V4

Virtual Machines: Idea

Interfaces

Layer 3

Zeit

© 2008 Universität Karlsruhe (TH), System Architecture Group 60

Layer 2

Layer 1

Virtual Processor: An Example

Interfaces

 Software-Hardware-Migration
 Via virtual CPU

© 2008 Universität Karlsruhe (TH), System Architecture Group 61

Program in Java-Code Program in Java-Code
Java-Code / Native Code Microcode-

CPU- Hardware and CPU-Hardware

Virtual, Logical, Physical Devices

Interfaces

Example: Virtual Disk Storage

 Logical Device (block[0...b-1])

h i l d i &

control Data

d i f l d i

© 2008 Universität Karlsruhe (TH), System Architecture Group 62

= physical device &
hardware driver

Virtual Device

driver for log. devices

log. Dev. 1 log. Dev. 2

phys.
Device 1

Driver 1

phys.
Device 2

Driver 2 Virtual device

= logical device &
logical driver
(storage management)

Virtual Mass Storage: An Example

Interfaces

Storage Area Network SAN asymmetric pooling
LAN

location
info

© 2008 Universität Karlsruhe (TH), System Architecture Group 63

file server
metadata
server

Lun 2

NAS
Network
Attached
Storage

