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http://www.cee.hw.ac.uk/~rjp/Coursewww/

© 2008 Universität Karlsruhe (TH), System Architecture Group 3

http://newtech.maconstate.edu/academics/
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Agenda
 Introduction, Motivation
 HW Overview and Classification
 Computer Organization

 Hardware/Software Hierarchy
 Semantic Gap

Introduction
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Note: See related HW courses on the web

p

 Computer Components 
 Processor (CPU)
 Memory Hierarchy
 Caching and Locality
 Exception/Interrupt
 Physical-I/O



MotivationMotivation
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Why Hardware Review?

 Parts of OS control the hardware (HW), e.g.
 Parts of OS kernel are HW dependent

 HW helps to control the OS and its applications

 Modern HW supports parallelism

Motivation
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 Modern HW supports parallelism

 OS must deal with

 Real-time applications  
 Need for additional HW support

 Control of special HW



HW Abstraction versus HW Ignorance

 Designing and implementing an OS without 
knowing your HW

 inefficient system
insecure system

Motivation
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 insecure system

 Designing an OS without abstraction

 inflexible system
 non portable system



Overview and ClassificationOverview and Classification
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Classification
Architectures
Trends



Hardware Overview

 

 SINGLE INSTRUCTION 
STREAM

MULTIPLE INSTRUCTION  
STREAM

 
Single 
Data 

Stream 
 

 
SISD 

(Single Processor,  
e.g.most PCs)

 
MISD1 

Flynn’s System Classification
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g )

 
Multiple 

Data 
Stream 

 
SIMD2 

(Super-/Array-Computer, 
e.g. Cray, ICL DAP) 

 

 
MIMD 

(SMPs (e.g. WSs), DS, 
Networks, …) 

 

 

1Only few real HW-architectures of this type
2Not in this course 



Uniprocessor*

1 CPU + special
Front-/Backend-

Processors

Dataflow-/
Functional Language

Machines
LAN

HW Base for Concurrent Systems
*More concurrency inside 

CPU (multi threading)

Hardware Overview

Increasing 
concurrency
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Processors

Vector-/Array-
Processors MAN

WANMulticomputer-
Multiprocessors

Loosely coupled

Homo-/Hetero-
geneous SMPs

Tightly coupled



Classification of Parallel Computers
 Homogeneity of

 HW/ OS/ application

 Synchrony
 Bulk synchronized, loosely synchronized

 Interaction mechanisms

Hardware Overview
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 Interaction mechanisms
 Shared variables, message passing

 Address space
 Shard memory, distributed memory, uniform-, non uniform 

access

 Memory model
 EREW, CREW, CRCW / consistency

EREW = exclusive read and exclusive write
CREW = concurrent read and exclusive write



Classification of Parallel Computers

Pragmatic:
 Shared memory multiprocessors

 Hyper Threaded

 SMP

NUMA CC NUMA

Hardware Overview

~ 2 – 8 threads

~ 2 – 64 CPUs
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no

 NUMA, CC-NUMA

 MPP (Massively parallel)
 NUMA, CC-NUMA

 Message passing MP, NORMA

 Cluster

NORMA = No Remote Memory Access, i.e. 
interaction with other processors via messages

~ 8 K CPUs



Computer ArchitectureComputer Architecture
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Computer Architectures

 Single Processor System

 Multi Processor System (SMP)

Hardware Overview
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 Distributed Systems (LANs …)



Processor 1

......

L1 cache disk printer

Peripherals
Single Processor System

Hardware Overview
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system bus

controller controller

main memory

L2 cache



Processor p

L1 cache

2

Processor 1

......

L1 cache disk printer

Hardware Overview

Multi Processor System
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L2 cache

system bus

controller controller

main memory

L2 cache

Up to p ≥ 1
system busses*

*trend to high-speed interconnection media



Hardware Overview

SMP Implementations

 Multicore SMP

L 1 L 1 L 1 L 1

CPU 0 CPU 1 CPU 2 CPU 3
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bus or
crossbar

shared main memory

L 2 L 2



Hardware Overview

SMP Implementations

L 1
CPU 0

 Hyperthreaded SMP

L 1
CPU 1

Thread 0 Thread 1 Thread 2 Thread 3
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bus or
crossbar

shared main memory

L 2 L 2

L 1 L 1
CPU local caches



Caches

 Cache Architecture
 Cache Coherence

 Write Through
 Write Back
 Snooping Protocols

 MESI
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 MOESI
 …

 Memory Pinning

 Don’t miss it!!! 
 Why?

 It’s very interesting
 You’ll need it in the examination
 Liedtke et al: OS controlled cache predictability for real-time systems
 Liedtke: Caches versus object allocation
 …



mm

L 2

P/L1
net-
card

lpr

mm

L 2

P/L1
net-
card

lpr

Print 
Server

Diskless
Client

LAN 
(different topologies see

Hardware Overview

Preview: Local Area Networks
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mm

L 2

P/L1
disk net-

card

Client

mm

L 2

P/L1
disknet-

card L 2

P/L1disk

File
Server

disk

(different topologies see 
course distributed systems)



Computer Architecture

Instruction Set

Compiler

Operating

System
(Windows XX)

Application (Netscape)

Software Assembler

Hardware Overview

© 2008 Universität Karlsruhe (TH), System Architecture Group 21

Instruction Set
Architecture

I/O systemProcessor

Digital Design

Circuit Design

Datapath & Control 

Transistors

MemoryHardware



Levels of Representation

Assembly  Language 
Program (e.g. MIPS)

Compiler

High Level Language 
Program (e.g., C)

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw$t0,0($2)
lw$t1,4($2)
$ $

Hardware Overview
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g ( g )

Control Signal 
Specification

Machine Interpretation

sw$t1,0($2)
sw$t0,4($2)

Machine  Language   
Program (MIPS)

Assembler

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110 
1100 0110 1010 1111 0101 1000 0000 1001 
0101 1000 0000 1001 1100 0110 1010 1111 



Architecture of a Pentium System

Hardware Overview
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Trend in CPU Design?

Hardware Overview

 CISC → RISC → VLIW* → ?
 Concurrent execution on CPU

 Pipelining
 Superscalar Execution
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*Very Long Instruction Word, 1986 at IBM Watson Research Center,
Idea: Expressing a program as a sequence of tree-instructions

 Superscalar Execution
 Explicit parallel instruction set computer (EPIC)
 Simultaneous multi-threading (SMT)
 Speculative Execution



What do Computers do?
Hardware Overview
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 Computers manipulate representations of things,
i.e. they interpret information!

 What can you represent with N bits?
 2N things
 Numbers!  Characters!  Pixels!  Dollars!  Positions! Instructions!  
 Depends on what operations you do with them



HW ComponentsHW Components
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CPU
Memory
Interconnection
I/O Controller
I/O Devices



Components of a Computer

Processor
(active)

Computer

Memory
(passive)

Devices

Keyboard, 
Mouse

Disk

Computer Components
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Control
(“brain”)

Datapath
(“brawn”)

(where 
programs, 
data 
live when
running)

Input

Output

Display, 
Printer

(where programs (data) 
live when not running)



Monitor

Example: PC-Architecture

Computer Components
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Bus



Basic Components

 Processors (CPUs)

 Memory hierarchy: (e.g. disk, RAM, caches)

 Interconnection (e.g. buses, cross bars)
 Control and/or data lines

Hardware Overview
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 I/O: controllers, channels, I/O-processors
 hardware controlling devices and transporting data between 

devices, consisting of an extra CPU +  memory, e.g. IDE 
controller,  keyboard controller, network card, DMA, Timer / 
real-time clock, UART (RS232C, V.24, modem…)

 Peripheral Devices
 disk, printer, keyboard, mouse, monitor, speaker, 

microphone, ...



ProcessorProcessor
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Registers
Instructions
Modes



Processor Overview

Simplified Processor

 Fetching instruction
 Executing instruction
 Moving data 

Manipulating data
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 Manipulating data
Sophisticated processors may include

 Hyper Threading
 Instruction Pipelining
 Out-Of-Order Execution
 Explicit Parallel Instruction Set 

Not in this 
course



Simplified API of a CPU

 Instruction Set

 General and Special Registers

≥2 E ti P M d

Processor Overview
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 n ≥2 Execution or Processor Modes



Instruction Set

 Privileged Instructions
 If executed in user mode

 HW raises an exception

Non Privileged Instructions

Processor Overview
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 Non-Privileged Instructions
 Executable in user- as well as in kernel-mode

Give some examples

Why do we need privileged instructions?



Instruction Pointer
Instruction Register
Status Register or

General and Special Registers

 control / status registers

Processor Overview
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Processor Status Word
...

 user-visible registers
data registers
address registers
Index register
segment registers
stack pointer
condition codes / flags



OS Basics

 OS kernel = bunch of code sitting around in RAM, waiting to be 
executed
 Triggered by system calls, exceptions, or interrupts

 “Kernel” gets control when system is booting
 Depends a lot on the underlying hardware

Roughly most PC have a BIOS (basic in/output system) that can

Processor Overview

© 2008 Universität Karlsruhe (TH), System Architecture Group 35

 Roughly, most PC have a BIOS (basic in/output system) that can 
access primitive hardware devices
 Disk, keyboard, display

 When powered on, BIOS has a small program that knows how to 
load a program from some I/O device(s), e.g. first try
 Floppy, then CD ROM, then disk

 The program loaded by the BIOS is the kernel
 Sometimes it’s actually a somehow simpler, prototype kernel
 This prototype kernel knows how to load the ultimate kernel



Booting or Computer Startup

 Bootstrap program is loaded at power-up or 
reboot

 Typically stored in ROM or EEPROM, generally 
known as firmware

Processor Overview
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known as firmware

 Initializes all aspects of the system

 Loads OS-kernel and starts its execution



Two1 Execution Modes

 Kernel Mode

 User Mode

 Why?

Processor Overview
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 Why?

 What mode switches are typical?

1  architectures with more than 2 execution modes



User versus Kernel Mode

 What makes a kernel different from user programs?
 Only kernel programs can execute privileged instructions

 Examples of privileged instructions:
 Access I/O devices

 Poll for I/O perform DMA catch hardware interrupt

Processor Overview
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 Poll for I/O, perform DMA, catch hardware interrupt
 Manipulate the MMU and memory state

 Set up page tables, load/flush TLB
 Configure various mode bits

 Interrupt priority level, software trap vectors
 Call HALT instruction

 Put CPU into low-power or idle state until next interrupt

 Enforced by CPU
 CPU checks current protection level on each instruction



Boundary Crossing1

 User-to-kernel: How does the kernel get control?
 At boot time: kernel loaded as the first OS program 
 System call: explicit call by an application into the OS
 Exception, e.g. “division by Zero”
 Hardware interrupt

Processor Overview
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 Software interrupt

 Kernel-to-user: How does an application gets control?
 OS sets up registers, protection domains, and MMU for the 

application to run the very first time
 OS returns from a kernel activity and jumps to the next 

instruction of an application

1crossing user-kernel-boundary costs some/many cycles



Protection Rings

  multiple levels of protection domains, e.g.

 x86 has 4 protection rings

 Code in a less privileged ring can not directly call 
code in a more privileged ring

Processor Overview
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code in a more privileged ring

 Ring 0 = OS kernel (~ kernel mode)

 Ring 3 = application code (~ user mode)

 Rings 1+2 can be used for less-privileged OS code

 Third party device drivers



Basic Instruction Cycle

Processor Overview
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CPU fetches the next instruction (with operands) from memory.
CPU executes the instruction
Instruction Pointer (IP) holds address of the instruction to be 
fetched next, automatically incremented after each fetch



Execution Steps

memory

1. Instruction fetch

Processor Overview
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CPU 
control
logic

registers
2. Instruction 
decode

3. Control signals
5. Execution

4. Data 
fetch

6. Result store

ALU



Simple Model of Computation

 Fetch-execute cycle
 Load memory contents from

address in instruction pointer (IP)

 Store contents in instruction (IR)
IP: 0x0100

Processor Overview
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 Store contents in instruction (IR)

 Execute IR (update SR)

 Increment IP

 Repeat

IR: 0xa3f2

SP: 0xcbf4

Status Register

Register R1

…

Register Rr
Not visible on all 
CPU architectures



Simple Model of Computation

 Stack Pointer
 Status Register

 Condition Code
 Positive result
 Negative result IP: 0x0100

Processor Overview
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 Zero
 Mode bit(s)

 General Purpose Register
 Operands of most instructions
 Enables to minimize 

memory references

IR: 0xa3f2

SP: 0xcbf4

Status Register

Register R1

…

Register Rr
Not visible on all 
CPU architectures



Privileged Mode Operation

 To protect OS execution
m ≥ 2 modes are available
 Kernel (system) mode

 All instructions are executable
IP: 0x0100

MMU Registers

…

Exception type

Interrupt Mask

Processor Overview
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 All registers are accessible

 User mode
 Only “safe” subset of instructions 

are executable, e.g. not allowed:

disable interrupts
 Only “safe” registers are accessible

IR: 0xa3f2

SP: 0xcbf4

Status Register

Register R1

…

Register Rr



Safe Instructions and Registers

 Instructions and registers are safe if

 Only affect application itself

 Cannot be used to interfere with 
OS

Processor Overview
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 OS 
 Other applications

 Cannot be used to violate OS policy



Privileged Mode Operation

 Accessibility of addresses
in an address space changes
according to execution mode

Only accessible 
in kernel mode

Processor Overview
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 To protect kernel code 
and kernel data

 Result: In principle, 
no application can
harm the kernel

Accessible in user
and in kernel mode



Atomicity

What does it mean?
  atomic instructions, used to implement locks, e.g.

 Test-And-Set (TAS), if word contains a given value, set to new 
value

 Compare_And-Swap (CAS), if word equals value, swap old 

Processor Overview
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p _ p ( ), q , p
value with new value

 …

  atomic operations
 …

  atomic program sections
 see critical section

Hint: Read http://www-128.ibm.com/developerworks/library/pa-atom/



MemoryMemory
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Memory Hierarchy
Caching
Locality
Protection



Why Memory Hierarchy?

  huge performance gap between modern 
CPUs and main memory (RAM)

  a principle to overcome this gap
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 Locality

 Temporal locality

 Spatial locality



Register
L1 Cache
L2 Cache

cheaper,
slower,
bigger,

less frequently accessed

per processor

shared or

Memory Hierarchy

Memory Overview
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Main Memory

Disk Memory

Archive Memory (e.g. Tape)

L3 Cache
shared or

per processor

Note: Parts of main memory may be used as a disk cache



Memory Overview

Some Newer Numbers1

 Movement between levels of storage hierarchy 
can be explicit or implicit
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1Silberschatz et al: OS Concepts, 7th Edition



Unix Original Machine (1969)

Memory Overview

 PDP-7 = an 18 bit machine with a cycle time 
of 1.75 µs

24 KB ~ practical limit of core memory at that 
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p y
time. PDP-7 first DEC computer designed for 
automated wire wrapping.

 Prize: ~ 72.000 $



Ritchie & Thompson + PDP 11

Unix needed 16 KB*

U ld l t 8 KB

Example
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Users could only get 8 KB
for their applications

*at that time a really tiny OS



Registers*

 Registers
 General purpose 
 Floating point 
 Multimedia 
 Special (instruction pointer, status)

 Typical for RISC architectures:

Memory Overview
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 Typical for RISC architectures:
 32 general purpose (32 bit or 64 bit)
 32 floating point (64 bit IEEE)
 Multimedia (64, 128, or 256 bit)

 Intel
 IA 32 Pentium

 8 general purpose, 8 floating point (or 8 multi media)
 IA 64 Itanium

 128 general purpose, 128 floating point

*Register windows



Observation

Principle of Location

 To support the execution of programs, 
faster -but limited caches- are useful to 
keep up with modern CPUs
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 “Natura non saltat” ~ evolution takes time
~ program execution has some locality
i.e. what’s in the caches will be reused



Principle of Locality

Observation:

10 % of code does 90% of work*

Principle of Location

© 2008 Universität Karlsruhe (TH), System Architecture Group 57

*Principle a “law of nature” ?



Types of Locality

 Spatial Locality
 near addresses are accessed next

 instructions ahead

 local variables of a procedure

Principle of Location
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 next elements of an array / a structure

 Temporal locality
 Frequently used addresses (bursts)

 instructions inside a loop

 frequently called procedures

 “important” variables

 top of the stack 



M1 (fast, small, expensive)

Solution: map only needed parts 

Principle of Location

Locality and Memory Hierarchy?
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AS of Currently “executing” program

M2 (slow, large, cheap)



Tavr = (1-MissRate)*Tcache + MissRate * Tram

(write-through cache)

Analysis of a 2-Level Memory

Principle of Location
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Tcache =     1 ns Example

Tram    = 400 ns

MissRate:   5% Tavr ~  21 
ns

2% Tavr ~     9
ns



Tavr = TL1 + MissL1* TL2 +  MissL2* Tram

(write-through caches, inclusion property assumed)

Simplified Analysis of 3-Level 
Memory

Principle of Location
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TL1       =     1 ns MissL1 :    5% 3%

Example

TL2       =   20 ns MissL2 :    0.5% 0.3%

Tram    = 400 ns

Tavr = ?



Principle of Location

Cache Design Parameters1

 Size 8K - 265K (L1), 
64K - 8M (L2),
1 M – 16 M (L3)

 Block Size (32 … 128 B)
Access Time (1 10 ns)
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 Access Time (1 … 10 ns)
 Mapping (full associative, 

n-way-associative, 
 direct-mapped)
 Replacement (LRU, FIFO,...)
 Write Policy (write through, write back)
 Additionals (victim cache, exclusive ~)

1Adjust to current values



Slot
Number Tag Block

0

2
1

Memory
Address

1

3

0

2 Block
(k words)

Cache Memory Architecture

k-1

Principle of Location
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C - 1
Block Length
(k words)

(b) Cache

(a) Main Memory

2n - 1

Block

Word
Length

Ignoring the underlying 
cache architecture results 

in bad performance



Direct Mapped Cache
Tag Index Word-

address

Record-/Block-
decoder Tag

Valid
bits Block

Address of memory word
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Record-/Block-
selection

...

= ok
Y

Y

Memory word

Word-
selectionl

Selected 
Cache-Block

Tag-
comparison



N-Way Set Associative Cache

...

...

Associativity

Record[0]

Record[1]

Block-
address

Block-
Offset

Address of memory word

f

Record-
decoder Block[0] Block[n-1]

x
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...

...

Record[s-1]

Word-
selector

Memory word

Record-
selection

Memory word -
selection

Block-
auswahl

Target Block



Cache Addressing Schemes

TLB CPU

virtual
Address

Data

TLB CPU

virtual
Address

Data
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(a) Virtual Cache (b) Physical Cache

Cache

Memory

physical
Address

Data

Cache

Memory

physical
Address

Data

Read www.ee.umd.edu/~blj/papers/micro18-4.pdf



Cache Memory Design

 Cache Size
 Even mall caches have an impact on performance

 Cache Line Size (Block size)
 Unit of data exchanged between cache and main memory

Principle of Location
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 Unit of data exchanged between cache and main memory

 Hit means the information was found in the cache

 Larger block size  better hit rate, until probability of using 
newly fetched data becomes less than the probability of 
reusing data that has been moved out of cache

 Miss means data is not present in a cache line



Cache Memory Design

 Mapping function
 determines cache location, a new block will 

occupy

 Replacement algorithm

Principle of Location
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p a a go
 determines the block, which has to be replaced

 2 commonly used methods
 Least-Recently-Used (LRU) algorithm

 FCFS (in victim caches)



Cache Memory Design

 Write policy determines

 when a block of cache is written to main memory

 can occur every time a cache line is updated
(write through policy)

Principle of Location
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(write-through policy)

 can occur only when the cache line has to be 
replaced (write-back policy )
 Minimizes main memory operation

 Leaves main memory in an obsolete state



Assumption: Original of data item within Memory Level n

Level 1 (n-1)th Copy

Principle of Location

Buffering/copying within a “write-
back” memory hierarchy
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Level n

Original

Level n-1 1. Copy

Observation: Before accessing the first time, this data item 
has to be copied several times



?

Level 1 Modification on this copy

Assumption: Original of data item within Memory Level n

Principle of Location

Buffering/copying within a “write-
back” memory hierarchy

© 2008 Universität Karlsruhe (TH), System Architecture Group 71

Level n ?

?

Old Original

Level n-1 Old 1. Copy

Observation: Modifying a data item on the uppermost memory level
affects data consistency.



?Level n-1

Level 1 Write back “dirty” cache line,
If cache line has to be replaced

New 1. Copy

Has to be mapped now to level 1

Principle of Location

Buffering/copying within a “write-
back” memory hierarchy
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Level n ?
Old Original

Level n 1 e Copy

Observation: Propagation of modified data to lower levels can be 
done at once or stepwise, but has to be done only, 
if the upper dirty cache line has to replaced



Level 1 Load another data item.

Assumption: Original of data item within Memory Level n

Principle of Location

Buffering/copying within a “write-
back” memory hierarchy
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Level n

Old Original

Level n-1 New 1.Copy



Cache 1

Main Memory

Cache 2

Branching Memory Hierarchy

Principle of Location
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Disk Memory

Archive Memory Archive Memory

Questions: Why 2 archive memories? Additional levels with similar branches? 
Additional consistency problems?



Specific Literature

 J. Liedtke „Caches Versus Object Allocation“,
In 5th IEEE International Workshop on 
Object-Orientation in Operating Systems 
(IWOOOS), Seattle, WA, October 1996.
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 J. Liedtke „Potential Interdependencies between 
caches, TLBs, and memory management 
schemes“, Arbeitspapiere der GMD, 
No. 962, 1995



Memory Protection

 OS must protect programs from each other and 
protect itself from buggy or malicious applications

 Solution: Concept of Address Space

 Simple scheme: HW offers base and limit register

Memory Protection
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 Base register indicates begin of application’s memory space

 Limit register indicates end of application’s memory space

 Limitations:
 Memory must be allocated as a contiguous block

 Might waste memory when program finishes

 Does not allow applications to share memory directly
 Example: n copies of Mozilla share its program code in RAM



Address Space & Virtual Memory

 OS creates a separate address space AS per 
application task or per system task 

 Assumption: almost each (part of an) AS is 
relocatible within the physical RAM

S ti ifi AS t f it h t b l t d

Virtual Memory
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 Sometimes a specific AS or parts of it have to be located 
at specific physical addresses

 System needs a HW address transformation unit 
(MMU) to translate efficiently logical “task” 
addresses into physical RAM addresses



Address Translation

Virtual Address
Virtual page address Offset-Address

Note:

Virtual Memory
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Physical Address

Physical frame address Offset-Address

Translation table
In most VM systems
you need at least one 
translation table per AS 



Translation Table(s)

 Translation often done using more than 1 
translation table per AS, e.g.

 Segment- and page table (Intel)

Virtual Memory

© 2008 Universität Karlsruhe (TH), System Architecture Group 79

 Multi-level page tables



Address Translation (Intel 80486)
Logical address

Virtual address

Physical
addressSegment

base

Virtual Memory
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Descriptor
table

Segment
table
base Page

table
directory

Page
directory

base

Page
table

Page

Main memoryProgram Segmentation Paging



Address Translation IA 32

MOV EAX,DS:[0x007+EBX+2*EDI]
effective/logical
Address: 0x0815

Segment-Base: 0x01000EFC + 01001 711 = virtual Address

Virtual Memory
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Page-
Directory

Page-
Table

00004 711 = physical Address



Translation Look-Aside Buffer (TLB)

 Parsing translation tables by software is slow

 HW offers a quicker solution, e.g. TLB
 TLB contain the most recently used pairs of:

Virtual Memory
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 Virtual page address, physical frame address,

 TLB implementation via a associative cache

 TLB sizes contain 32, 64 or even 128 entries

 MMU contains TLB + some other control bit 
to enable quick access control



Interacting HW ComponentsInteracting HW Components
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How do CPU & Peripherals interact?

 Special (privileged) instructions

 Interrupts

I/O-Peripherals
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I/O Control

 How does OS initiate an I/O operation?
 Special instructions

 in and out on x86 machines

 Memory-mapped I/O
 Access hardware state as memory addresses

l dd /O b
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 Requires MMU to translate certain addresses to I/O bus access
 Usually start I/O by writing a command to a HW register

 Read block from disk at sector xyz into memory address 0815

 How does OS realize that I/O has finished?
 Polling: read value from the result or status register of the 

device
 Interrupt: Hardware signal that causes OS to get control and 

run the corresponding interrupt handler



A WRITE system call transfers 
control to the printer driver 
(I/O program).

Printer driver prepares I/O 

CPU waits for I/O to complete

I/O-Peripherals
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module for printing (4).

CPU has to WAIT for the print-
operation to complete.

Printer driver finishes in (5)  
reporting status of I/O operation.



Exceptions and Interrupts

 2 major classes of special situations
 Synchronous exception (e.g. trap)
 Asynchronous interrupt (e.g. end of DMA action)

  additional differences concerning

Exception/Interrupt
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g
 Source
 Predictability
 Reproducibility

 Handling exceptions or interrupts 
 must be done in time and 
 is processor specific



I/O-Peripherals

Exception Interrupts

Synchronous CPU event

 origin: current instruction

 erroneous exceptions:
 invalid pointer

Asynchronous event

 origin: I/O device, timer…

 unrelated to instruction 
stream
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a d po
 division by 0

=> typically program is  aborted

 non-erroneous exceptions:
 page fault
 breakpoint

 typically handled by OS,  
transparent to user program

stream

 Most interrupts are caused 
by I/O-completion, etc. 
(discussed later)

 Failures on devices cause a 
few interrupts (paper jam, 
device malfunction, ...)



Trap

 Synchronous, predictable, reproducible

 An isolated program executing on the same CPU with 
the same input data will “always” trap at the same 
instruction, e.g.
 Unknown instruction

Exception/Interrupt
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 Unknown instruction
 Buggy instruction (e.g. division by 0)
 Wrong addressing mode
 Address (space) violation
 System call
 Page fault (in case of local paging policies)

 You can not avoid a trap without having handled the 
cause of the exception

?discuss



Interrupt

 Asynchronous, not predictable, not reproducible

 A peripheral device signals an interrupt to the CPU 
independently of the state of the currently running 
program on the CPU, e.g.

Exception/Interrupt
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p g , g
 Signaling external events (e.g. a sensor)

 End of a DMA operation

 End of an I/O operation (e.g. disk transfer)



Example: Trap or Interrupt?

#include <stdlib.h>
float frandom () {
return random()/random();

}

Exception/Interrupt
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 chance that the executing process does a division by 0,  this 
happens synchronously if it happens, however

it is not predictable when it will happen, but 
it is predictable where it will happen

 It is an exception



Exception or Interrupt Handling

 Potentially raising events:
 Signal from peripheral devices, e.g.

 End of disk input

 Timer signal from a watch dog

 Switching the protection domain (in case of a system call)

Exception/Interrupt
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 Switching the protection domain (in case of a system call)

 Programming errors (invalid address)

 Memory overflow (e.g. stack overflow in case of an endless 
recursion)

 Paging on demand (in case of a page fault)

 Alarm signals from your HW (e.g. shortage of energy)

 The corresponding event handling has to be done 
during execution of the currently running program



Typical Interrupt Timeline
Delay of interrupt handling
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Models of Event Handling

 Resumption model
 Having handled the event, the interrupted program can resume its 

execution at the same instruction pointer

 Termination (aborting) model
 If the cause of a event cannot be handled  severe error, i.e. the 

interrupted program has to be terminated

Exception/Interrupt

© 2008 Universität Karlsruhe (TH), System Architecture Group 94

interrupted program has to be terminated

 Raising an exception or an interrupt involves a context switch
 Currently running program  exception handler or 

 Currently running program  interrupt handler

 We have to save the “context” of the interrupted program, 
otherwise no resumption

 Goal: reduce overhead of saving and restoring contexts



Timing Effects

 Handling of each exception and of each interrupt 
slows down the execution of the interrupted program

 However, the result of a correct program is not 
endangered, but

Exception/Interrupt

© 2008 Universität Karlsruhe (TH), System Architecture Group 95

 Real-time applications can fail

Hint:
In any case, each programmer should not rely on any
timing conditions



Interrupt Control
 Interrupts happen at any time  cause problems in the kernel

 User code is in the middle of modifying state shared with other 
programs

 OS is been in the middle of performing a time-sensitive operation
 E.g. zeroing out a newly allocated buffer of memory to pass to an 

application
 OS and hardware must support synchronization of concurrent 

activities

© 2008 Universität Karlsruhe (TH), System Architecture Group 96

 Atomic operations: short sequences of instructions that can not be 
interrupted

 e.g. READ-MODIFY-WRITE changes a variable in one atomic step
 One approach: disable interrupts during atomic operations

 What are the problems with this approach?

 Another approach: complex atomic instructions
 Test-and-set

 Read value into register and store 1 into
 Load linked (LL) and store conditional (SC):

 LL: load memory value into register
 SC: only perform store if the value at the address had not changed 

since LL



Interrupts

 Many computers permit I/O modules to interrupt an 
activity on the CPU

 For this an I/O module just asserts an interrupt 
request line on the “control bus”

I/O-Peripherals
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 Then CPU transfers control to an “Interrupt Handler” 
(normally part of the OS-kernel)

 CPU can prevent to be interrupted, by masking out or 
disabling interrupts



Interrupt Handler

 A (peripheral) interrupt interrupts the currently 
executing program invoking the corresponding 
interrupt handler

 The interrupt handler might return* to the 
interrupted program 

I/O-Peripherals
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interrupted program 

 Point of interruption can occur anywhere, so 
either HW or interrupt handler must save the 
state of the interrupted program (IP, PSW, 
registers ...) and restore it upon return

*What program may run instead of?



Long instructions 
can be interrupted

Interrupt Processing

I/O-Peripherals
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can be interrupted

Some CPUs save context 
into shadow registers



I/O program prepares I/O module, 
issues I/O command (to a printer)
I/O program branches back to the 
user program, user code gets 
executed during I/O operation 

Interrupts improving CPU usage

I/O-Peripherals
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(e.g. printing)  no waiting

User program gets interrupted (x) 
when I/O operation is done and 
branches to interrupt handler to 
examine status of I/O module
Execution of user code resumes



I/O-Peripherals

N>1 Interrupts: Sequential Order
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Analysis:
Disable all interrupts during interrupt processing. Interrupts remain 
pending until CPU enables interrupts again. After interrupt handler 
completed, CPU checks for further pending interrupts



Low priority
interrupt

High priority
interrupt

I/O-Peripherals

N>1 Interrupts: Nested Interrupts
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 Low-priority interrupt handling no longer delays high-priority 
interrupt processing. High-priority interrupt cause a low-priority 
interrupt handler to be interrupted.

 When input-data arrive from the network, it needs to be 
consumed quickly to make room for further incoming data.



I/O Module Structure

I/O-Peripherals

© 2008 Universität Karlsruhe (TH), System Architecture Group 103



Two Principal I/O Methods

I/O-Peripherals

Synchronous Asynchronous
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I/O-Interface Techniques

I/O-Peripherals

 Programmed I/O (polling)

 Interrupt Driven I/O
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Discuss these techniques in detail in the tutorials!

 Direct Memory Access (DMA)



I/O module performs action, 
on behalf of CPU

I/O module does not have to 
i t t CPU h I/O i d

Programmed I/O

I/O-Peripherals
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interrupt CPU when I/O is done

CPU is kept busy checking 
status of I/O module



CPU is interrupted when 
I/O module is ready to transfer data, 
e.g. if requested operation finished.

CPU is free to do other work in 
the meantime  no busy waiting

Interrupt-Driven I/O

I/O-Peripherals
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the meantime  no busy waiting.
Well-suited for medium-grained event.

Bad for frequent fine-grain events:
 high CPU costs per interrupt.

- Interrupt per incoming network packet  
might work

- Interrupt per byte is far too expensive.



CPU issues request to a DMA module (separate 
module or incorporated into I/O module)
DMA module transfer a block of data 
directly to/from memory, not through CPU)
Interrupt is sent when DMA is complete.

Direct Memory Access

I/O-Peripherals
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CPU is only involved at the beginning and 
at the end of the transfer, it is free to 
perform other jobs during data transfer.

However note:
DMA may put heavy load on memory bus
 problem of cycle stealing



Main Memory
Buffer of

To access (either read or write) the desired buffer 
a device controller (e.g. a DMA) often only knows 
and needs physical addresses. 

I/O-Peripherals

Physical Addressing of RAM
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4096

Controller

move (0815), 40960815

Example: Controller has to transfer 
a block to main memory

What may happen?



4096

Controller

Buffer of

move (0815), 40960815

Main MemoryMain Memory

I/O-Peripherals

Physical Addressing of RAM
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Controller

Due to I/O problems there is a transfer 
delay, => meanwhile frame 4096 has 
been used for some other activity 
because of paging or segmentation requirements.

How to solve this problem?



4096

Buffer of

move (0815), 40960815

Main Memory

I/O-Peripherals

Physical Addressing of RAM
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Controller

“Pinning this frame”, i.e. as long as 
DMA transfer is not yet completed, 
this frame cannot be used otherwise!

Pinning and unpinning are the required mechanism.

What policy can you establish upon it?



Application of Pinning

 To support DMA

 To support real-time tasks (see*)
 Can that method be abused?

I/O-Peripherals
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 Think about a solution

*J. Liedtke, V. Uhlig, K. Elphinstone, T. Jaeger, and Y. Park:

“How to Schedule Unlimited Memory Pinning of Untrusted Processes
or Provisional Ideas About Service-Neutrality”

7th Workshop on Hot Topics in Operating Systems (HotOS), 
Rio Rico, MA, March 1999 



I/O DevicesI/O Devices
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I/O-Peripherals

HW Review (Disk)
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Structure of a disk drive



Summary I/O Management

 Early computers had a static hardware configuration
 All I/O devices known at boot time
 Kernel was configured statically by the system administrator for the 

particular machine

 Today things are more complicated
 There are hotplug devices
 USB, Compact Flash, Firewire, etc.
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 Even the PCI bus is configured on each boot cycle
 Assign I/O addresses, interrupt lines to each device at boot time
 Allows users to plug in new boards without reconfiguring the kernel

 OS must discover available devices (even on the fly)
 USB controller interrupts OS when a device is added or removed
 Device identifies itself with a special identifier

 Vendor/device ID, device type, etc.
 Kernel loads appropriate driver

 Loadable kernel modules (Linux)
 User’s access to the device is enabled

 Remap /dev/mouse to the new USB mouse device


