System Architecture

History of Operating Systems

Some slides from A. D. Joseph, University of Berkeley

See also:

www.osdata.com/kind/history.htm
www.armory.com/~spectre/tech.html
courses.cs.vt.edu/~cs1104/VirtualMachines/OS.1.html
en.wikipedia.org/wiki/History_of_operating_systems
Moore's Law Drives OS Change

<table>
<thead>
<tr>
<th></th>
<th>1981</th>
<th>2006</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU MHz, Cycles/inst</td>
<td>10 3–10</td>
<td>3200x4 0.25–0.5</td>
<td>1,280 6–40</td>
</tr>
<tr>
<td>DRAM capacity</td>
<td>128KB</td>
<td>4GB</td>
<td>32,768</td>
</tr>
<tr>
<td>Disk capacity</td>
<td>10MB</td>
<td>1TB</td>
<td>100,000</td>
</tr>
<tr>
<td>Net bandwidth</td>
<td>9600 b/s</td>
<td>1 Gb/s</td>
<td>110,000</td>
</tr>
<tr>
<td># addr bits</td>
<td>16</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>#users/machine</td>
<td>10 <= 1</td>
<td><= 0.1</td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td>$25,000</td>
<td>$4,000</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Typical academic computer 1981 vs 2006
Moore’s Law Effects

- Nothing like this in any other area of business
- Transportation in over 200 years:
 - Only 2 orders of magnitude from horseback @10mph to Concorde @1000mph
 - Computers do this every decade
- What does this mean for us?
 - Techniques have to vary over time to adapt to changing tradeoffs
- Let’s place a lot more emphasis on principles
 - The key concepts underlying computer systems
 - Less emphasis on facts that are likely to change over the next few years…
- Let’s examine the way changes in $/MIP has radically changed how OS’s work
“The machine designed by Eckert and Mauchly was a monstrosity. When it was finished, the ENIAC filled an entire room, weighed 30 tons, and consumed 200 kilowatts of power.”

http://ei.cs.vt.edu/~history/ENIAC.Richey.HTML
Simple OS: One program, one user, one machine:
- examples: early computers, early PCs,
- embedded controllers such as Nintendo, cars, elevators
- OS just a library of standard services, e.g. standard device drivers, interrupt handlers, I/O

Non-problems: No malicious people. No bad programs
⇒ A minimum of complex interactions

Problem: poor utilization, expensive
History of Systems

- **Early batch system**
 - bring cards to 1401
 - read cards to tape
 - put tape on 7094 which does computing
 - put tape on 1401 which prints output
History Phase 1

- When computers cost millions of $’s, optimize for more efficient use of the hardware
 - Lack of interaction between user and computer

- User at console: one user at a time

- Batch monitor: load program, run, print

- Optimize to better use hardware
 - When user thinking at console, computer idle ⇒ very bad
 - Feed computer batches and make users wait

- No protection: what if batch program was buggy?
Core Memories (1950s & 60s)

The first magnetic core memory, from the IBM 405 Alphabetical Accounting Machine.

- Core Memory stored data as magnetization in iron rings
 - Iron “cores” woven into a 2-dimensional mesh of wires
 - Origin of the term “Dump Core”
 - Rumor that IBM consulted Life Saver company
- http://www.columbia.edu/acis/history/core.html
Late 60s - Early 70s

- **Data channels, Interrupts**: overlap I/O and compute
 - DMA – Direct Memory Access for I/O devices
 - I/O can be completed asynchronously

- **Multiprogramming**: n>1 programs run simultaneously
 - Small jobs not delayed by large jobs
 - More overlap between I/O and CPU
 - Need memory protection between programs and/or OS
Late 60s - Early 70s

- Complexity starts to get out of hand:
 - Multics: announced in 1963, ran in 1969
 - 1777 people “contributed to MIT’s Multics” (30-40 core dev)
 - Turing award lecture from Fernando Corbató (key researcher): “On building systems that will fail”
 - OS 360: released with 1000 known bugs
 - “Anomalous Program Activity Report”

- OS finally becomes an important science:
 - *How to deal with complexity?*
 - Result: UNIX based on Multics, but vastly simplified
The Multics System (~ 1976)

- The 6180 at MIT IPC, skin doors open, circa 1976:
 - “We usually ran the machine with doors open so the operators could see the AQ register display, which gave you an idea of the machine load, and for convenient access to the EXECUTE button, which the operator would push to enter BOS if the machine crashed.”
Ritchie & Thompson at PDP 11

Unix needed 16 KB*

users could only get 8 KB for their application

*at that time a mini-OS
History OS: Evolution Step 1

- Simple OS is inefficient:
 - a waiting process blocks everything else on the machine

- (Seemingly) Simple hack:
 - run more than one process at once
 - when one process blocks, switch to another

- A couple of problems: what if a program
 - does infinite loops or
 - starts randomly scribbling on memory?

- OS adds protection
 - Interposition
 - Preemption
 - Privilege

```
 gcc          emacs
-------------
 OS
-------------
 Hardware
```
History OS: Evolution Step 2

- Simple OS is too expensive:
 - one user = one computer ⇒

- (Seemingly) simple hack:
 - Allow more than one user at once
 - *Does machine now run n times slower?* Usually not
 - Key observation: users are active in bursts
 - If idle, give resources to others

- Problems: *what if*
 - *users are greedy*
 - *evil*
 - *or just too numerous?*

- OS adds protection
 - (notice: as we try to utilize resources, complexity grows)
Early Disk History

1973:
1. 7 Mbit/sq. in
140 MBytes

1979:
7. 7 Mbit/sq. in
2300 MBytes

“Makers of disk drives crowd even more data into even smaller spaces”
History Phase 2: 70 - 85

Cheaper HW

More Expensive Humans
History Phase 2

- Computers available for tens of thousands of dollars instead of millions
- OS Technology maturing/stabilizing
- Interactive timesharing:
 - Use cheap terminals (~$1000) to let multiple users interact with the system at the same time
 - Sacrifice CPU time to get better response time
 - Users do debugging, editing, and email online
- Problem: Thrashing
 - Performance very non-linear response with load
 - Thrashing caused by many factors including
 - Swapping
 - Inefficient queuing
History Phase 3: 81 - 89

Very Cheap HW

Very Expensive Humans
History Phase 3 (1981—)

- Computer costs $1K, Programmer costs $100K/year
 - If you can make someone 1% more efficient by giving them a computer, it’s worth it
 - Use computers to make people more efficient

- Personal computing:
 - Computers cheap, so give everyone a PC

- Limited Hardware Resources Initially:
 - OS becomes a subroutine library
 - One application at a time (MSDOS, CP/M, ...)

- Eventually PCs become powerful:
 - OS regains all the complexity of a “big” OS
 - multiprogramming, memory protection, etc (NT,OS/2)

- Question: As HW gets cheaper, does the need for OS research go away?
Graphical User Interfaces

- CS160 ⇒ All about GUIs
- Xerox Star: 1981
 - Originally a research project (Alto)
 - First “mice”, “windows”
- Apple Lisa/Macintosh: 1984
 - “Look and Feel” suit 1988
- Microsoft Windows:
 - Win 1.0 (1985)
 - Win 3.1 (1990)
 - Win 95 (1995)
 - Win NT (1993)
 - Win XP (2001)

© 2008 Universität Karlsruhe (TH), System Architecture Group
History Phase 4: 89 - 95

Distributed Systems

Not in this course
History Phase 4

- Networking (Local Area Networking)
 - Different machines share resources
 - Printers, File Servers, Web Servers
 - Client - Server Model

- Services
 - Computing
 - File Storage
History Phase 5: 95 - …

Mobile Systems

Not in this course
History Phase 5:

- Ubiquitous Mobile Devices
 - Laptops, PDAs, phones
 - Small, portable, and inexpensive
 - Recently twice as many smart phones as PDAs
 - Many computers/person
 - Limited capabilities (memory, CPU, power, etc...)

© 2008 Universität Karlsruhe (TH), System Architecture Group
History Phase 5:

- **Wireless/Wide Area Networking**
 - Leveraging the infrastructure
 - Huge distributed pool of resources extend devices
 - Traditional computers split into pieces. Wireless keyboards/mice, CPU distributed, storage remote

- **Peer-to-Peer systems (P2P)**
 - Many devices with equal responsibilities work together
 - Components of “OS” spread across globe
CITRIS’s Model: A Societal Scale Information System

- Center for Information Technology Research in the Interest of Society
- The Network is the OS
 - Functionality spread throughout network

Scalable, Reliable, Secure Services

MEMS for Sensor Nets

Mobile, Ubiquitous Systems
Moore’s Law (2): Modern Laptop

<table>
<thead>
<tr>
<th></th>
<th>1981</th>
<th>2005</th>
<th>2006 Ultralight Laptop</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU MHz, Cycles/inst</td>
<td>10</td>
<td>3200x4</td>
<td>1830</td>
</tr>
<tr>
<td></td>
<td>3–10</td>
<td>0.25–0.5</td>
<td>0.25–0.5</td>
</tr>
<tr>
<td>DRAM capacity</td>
<td>128KB</td>
<td>4GB</td>
<td>2GB</td>
</tr>
<tr>
<td>Disk capacity</td>
<td>10MB</td>
<td>1TB</td>
<td>100GB</td>
</tr>
<tr>
<td>Net bandwidth</td>
<td>9600 b/s</td>
<td>1 Gb/s</td>
<td>1 Gb/s (wired)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>54 Mb/s (wireless)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 Mb/s (wide-area)</td>
</tr>
<tr>
<td># addr bits</td>
<td>16</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>#users/machine</td>
<td>10s</td>
<td>≤ 1</td>
<td>≤ ¼</td>
</tr>
<tr>
<td>Price</td>
<td>$25,000</td>
<td>$4,000</td>
<td>$2500</td>
</tr>
</tbody>
</table>
Migration of OS Concepts/Features
Compare: Performance Trends

Log of Performance

Year

Supercomputers
Mainframes
Minicomputers
Microprocessors
Timeline of OS

See wikipedia
See also List of OS in wikipedia
OS Timeline (50s & early 60s)

1956
- GM-NAA I/O

1959
- SHARE Operating System

1960
- IBSYS

1961
- CTSS
- MCP

1962
- GCOS

1964
- EXEC 8
- OS/360 (announced)
- TOPS-10

1965
- Multics (announced)
- OS/360 (shipped)
- Tape Operating System (TOS)
OS Timeline (60s & 70s)

1966
- DOS/360 (IBM)
- MS/8

1967
- ACP (IBM)
- CP/CMS
- ITS
- WAITS

1969
- TENEX
- Unix

1970s

1970
- DOS/BATCH 11 (PDP-11)

1971
- OS/8

1972
- MFT (Operating System)
- MVT
- RDOS
- SVS
- VM/CMS
OS Timeline (late 70s)

1973
- Alto OS
- RSX-11D
- RT-11
- VME

1974
- MVS (MVS/XA)

1975
- BS2000

1976
- CP/M
- TOPS-20

1978
- Apple DOS 3.1 (first Apple OS)
- TripOS
- VMS
- Lisp Machine (CADR)

1979
- POS
- NLTSS
OS Timeline (1980 …

1980
- OS-9
- QDOS
- SOS
- XDE (Tajo) (Xerox Development Environment)
- Xenix

1981
- MS-DOS

1982
- Commodore DOS
- SunOS (1.0)
- Ultrix

1983
- Lisa OS
- Coherent
- Novell Netware
- ProDOS

1984
- Macintosh OS (System 1.0)
- MSX-DOS
- QNX
- UniCOS
OS Timeline (Late 80s)

1985
- AmigaOS
- Atari TOS
- MIPS OS
- Microsoft Windows 1.0 (First Windows)

1986
- AIX
- GS-OS
- HP-UX

1987
- Arthur
- IRIX (3.0 is first SGI version)
- Minix
- OS/2 (1.0)
- Microsoft Windows 2.0

1988
- A/UX (Apple Computer)
- LynxOS
- MVS/ESA
- OS/400

1989
- NeXTSTEP (1.0)
- RISC OS
- SCO Unix (release 3)
OS Timeline (90s)

1990
- Amiga OS 2.0
- BeOS (v1)
- OSF/1
- Windows 3.0

1991
- Linux

1992
- 386BSD 0.1
- Amiga OS 3.0
- Solaris (2.0 is first not called SunOS)
- Windows 3.1

1993
- Plan 9 (First Edition)
- FreeBSD
- NetBSD
- Windows NT 3.1 (First version of NT)

1995
- Digital UNIX (aka Tru64)
- OpenBSD
- OS/390
- Windows 95
OS Timeline

1996
- Windows NT 4.0

1997
- Inferno
- Mac OS 7.6 (*first officially-named Mac OS*)
- SkyOS

1998
- Windows 98

1999
- AROS (Boot for the first time in Stand Alone version)
- Mac OS 8

2000
- AtheOS
- Mac OS 9
- MorphOS
- Windows 2000
- Windows Me
OS Timeline

2001
- Amiga OS 4.0 (May 2001)
- Mac OS X 10.1
- Windows XP
- z/OS

2002
- Syllable
- Mac OS X 10.2

2003
- Windows Server 2003
- Mac OS X 10.3

2005
- Mac OS X 10.4

Complete for yourselves
Classification of OS

See categorization in wikipedia
Categorization of OS

1 Early, and historically important
2 Proprietary
3 Nonproprietary Unix-like
4 Nonproprietary Non-Unix-like
5 Disk Operating System
6 Network Operating Systems
7 Generic/commodity, Non-Unix, and other
8 Operating Systems for Soviet Personal Computer
9 Hobby OS
10 Embedded
11 Interpreted
12 Fictional Operating Systems
13 LEGO Mindstorms
3 Non Proprietary OS

3 Nonproprietary Unix-like

3.1 Research Unix-like and other POSIX-compliant systems

3.2 Open source Unix-like

4 Nonproprietary non-Unix-like

4.1 Research non-Unix-like

4.2 Open source non-Unix-like
1 + 2 Early & Proprietary OS

1 Early, and historically important
 - 1.1 Early, proprietary microcomputer OS

2 Proprietary
 - 2.1 Acorn
 - 2.2 Amiga
 - 2.3 Apple/Macintosh
 - 2.4 Array Networks
 - 2.5 Atari ST
 - 2.6 Burroughs (later Unisys)
 - 2.7 Convergent Technologies
 - 2.8 Be Incorporated
 - 2.9 Digital/Tandem Computers/Compaq/HP
 - 2.10 Honeywell
 - 2.11 IBM
 - 2.12 Microsoft
 - 2.13 Non-Standard Language
 - 2.14 Other
 - 2.14.1 Other proprietary Unix-like and POSIX-compliant systems
 - 2.15 UNIVAC (later Unisys)
10 Embedded Systems

10.1 Personal digital assistants (PDAs)
10.2 Smartphones
10.3 Router
10.4 Microcontroller, Real-time OS
History of OS: Summary

- Change is continuous and OSs should adapt
 - Not: look how stupid batch processing was
 - But: Made sense at the time

- Situation today is much like the late 60s
 - Small OS: 100K lines
 - Large OS: 10M lines (5M for the browser!)
 - 100-1000 people-years

- Complexity still reigns
 - NT under development from early 90’s to late 90’s
 - Never worked very well
 - Jury still out on Windows 2000/XP
 - Windows Vista (aka “Longhorn”) delayed many times
 - Promised by removing some of the intended technology
Further Links to History of OS

http://www.armory.com/~spectre/tech.html

www.computinghistorymuseum.org/teaching/papers/research/history_of_operating_system_Moumina.pdf

http://www.math-cs.gordon.edu/courses/cs322/lectures/history.html

http://www.personal.kent.edu/~rmuhamma/OpSystems/Myos/osHistory.htm