
Defining a Class
(The Implementor View)

• An example
– A GUI Button

• Attributes:
– State (up or down)
– Caption
– Position and Size
– Visibility
– etc.

Press Me

The Button Class

• Class diagram

Button

state
caption
x, y
w, h
visible

The Button Class (cont.)
• The Java code:
public class Button

{ public final static int UP = 0;
public final static int DOWN = 1;
public int state;
public String caption;
public int x, y, // Position

w, h; // Size
public boolean visible;

} // class Button

Using the Button Class
(The Client View)

• Need to create Button objects:
Button b1 = new Button(),

b2 = new Button();

• Using the Button objects:
b1.caption = ”Press Me”;
...
if (b2.visible)

{ ...
}

Types Are More Than Just Data!

• We want to be able to operate on the data

• Could write functions and procedures
– Separates data and operations

• Rather want to deal with the data and the
operations together (encapsulation)
– Objects, with methods

Adding Methods to a Class
• Methods for a GUI button:

– Press and Release
– Display a bitmap (image)

Button

state, caption
x, y, w, h
visible,
upMap, downmap
displayBitmap
press, release

Press Me

Java Code
public class Button

{ public final static int UP = 0;
public final static int DOWN = 1;
public int state;
public String caption;
public int x, y, w, h;
public boolean visible;
public Bitmap upMap, downMap;
public void displayBitmap ()

{...}
public void press ()

{...}
public void release ()

{...}
} // class Button

The
methods

Bitmaps

Using the Methods

b1.press();
...
b1.release();

Abstract Data Types
via Access Control

• Some of the details of the button objects are
only of internal interest
– The client should not be concerned with them

• E.g.
– The bitmaps
– The displayBitmap method

ADTs via Access Control

• Separating the interface (external) and the
implementation (internal) is very powerful
– Allows separate development
– Breaks up complex problems into simple

subproblems

• Called an Abstract Data Type

Access Control in Java

• Members of a class can be either public
or private

• Public members can be accessed by client
code

• Private members can only be accessed from
within the class
– i.e. by the methods of the class

Access Control: Class Diagrams
• Private members in grey

Button

caption
x, y, w, h
visible

press, release

state, upMap, downMap

displayBitmap

Access Control: Java Code
public class Button

{ public final static int UP = 0;
public final static int DOWN = 1;
private int state;
public String caption;
public int x, y, w, h;
public boolean visible;
private Bitmap upMap, downMap;
private void displayBitmap ()

{...}
public void press ()

{...}
public void release ()

{...}
} // class Button

Private
Members

Access Control: Client View

• The client cannot use the private members
– They might as well not even exist

• The implementor is free to change the
private parts
– The client is unaffected

Constructors

• Methods called when the object is created

• Useful for initialisation

• Syntax
– Name is the same as the class
– No return type

Constructors (cont.)
public class Button

{ ...
public Button ()

{ release();
} // constructor

private void displayBitmap ()
{...}

public void press ()
{...}

public void release ()
{...}

} // class Button

