
Distributed SystemsDistributed Systems

9 Naming9 Naming

1© 2009 Universität Karlsruhe (TH), System Architecture Group

June-08-2009

Gerd Liefländer

System Architecture Group

Overview

Schedule of the Week

 Motivation & Introduction
 Basic Terms
 Naming System

 Flat Naming
 Hierarchical Location Service

© 2009 Universität Karlsruhe (TH), System Architecture Group 2

 Hierarchical Location Service
 Structured Naming

 Implementation of a Name Service
 Name Space Distribution
 Name Resolution

 Examples
 Domain Name Service
 GNS

 Attribute Naming

Motivation Motivation

3© 2009 Universität Karlsruhe (TH), System Architecture Group

“Any problem in computer science can be
solved with another layer of indirection”

David Wheeler

Naming is a Layer of Indirection

 What problems does it solve?

 Makes objects human readable

 Hides complexity and dynamics
M lti l l l bj t h Multiple lower-layer objects can have one name

 Changes in lower-layer objects

 Allows an object to be found in different
ways
 One object, e.g. a file can have multiple names
 You can navigate to the target object via

absolute or relative pathnames

Motivation
 People prefer names

 do not like to remember the Inode number of their files

 Programs (machines) use
 identifiers, e.g. PIDs 0815 or
 addresses, e.g. 0xffffffff

 Needed a mapping of

Motivation

© 2009 Universität Karlsruhe (TH), System Architecture Group 5

 Needed a mapping of
names  identifiers or addresses

http://i30www.ira.uka.de/teaching/courses/
URL

Name resolution in DNS

xyz…….
IP Address

80
Port. No. Pathname

/teaching/courses/

MAC address

p:qq:rr:s:tt:uu TCP-Ethernet packets 4711
Inode

file access

Basic Terms of NamingBasic Terms of Naming

6© 2009 Universität Karlsruhe (TH), System Architecture Group

Names

Identifiers

Addresses

Attributes

Names
 Names are helpful to …

 explain
 “talking” using names helps understanding
 e.g. mail server

 identify
 A name should reference an entity unambiguously

Basic Terms

© 2009 Universität Karlsruhe (TH), System Architecture Group 7

y g y
 e.g. lief@ira.uka.de

 address, i.e. locate
 A name hides the actual location of an entity or of an

access point of a server
 e.g. i30www.ira.uka.de hides the IP address of our

web server

 A name is valid only in its context, e.g. identical
names can reference different entities, e.g.
 “4711” may reference an Inode, a UID, a PID, a phone

number, a product name

Names

 Name: string of characters used to refer to an entity
 Pure names with no additional info of the entity, e.g. 4711
 Impure names with additional info of the entity, e.g.
i30www.ira.uka.de

E tit / bj t i DS (th)

Basic Terms

© 2009 Universität Karlsruhe (TH), System Architecture Group 8

 Entity: any resource/object in a DS (another name)

 To work with an entity, you need its access point(s),
i.e. you must use its address(es)

 If an entity moves to another location it needs a new
access point (e.g. IP address of host + port number)

 Alias: One of several names for the same entity

Naming Terms

 Name service: Service that maps a name to its entity.
It can be centralized or distributed

 Name resolution: Act of resolving a name to its entity

 Location independent: refers to same entity

Basic Terms

regardless of the location at which it is resolved

 Location transparent: does not indicate the location
of the entity it refers to
 Precondition for object migration

 Human-friendly: A possible character string that
helps to identify the content of the named object

© 2009 Universität Karlsruhe (TH), System Architecture Group 9

Names  Objects …

 Names map to objects through a resolution
service

Distributed Name
Resolution Service

Naming in Networks

DNS Names map into Addresses

Domain Name
System (DNS)

Domain Name
(www.cnn.com)

Many-to-many

 Hierarchical
 User-friendly
 Location independent
 But not org independent

Addresses map into Routes

IP address
(128.94.2.17) Routing algorithm

(BGP, OSPF, RIP)

One-to-many

 Hierarchical
 Location Dependent
 Non-unique
 Can change often
 Refers to an interface,

not a host

Routes get Packets to Interfaces

 A path
 Source dependent
 Can change often

Identifiers and Locators

 A name is always an identifier to a greater or
lesser extent

 Can be persistent or non-persistent

Can be globally unique locally unique or even Can be globally unique, locally unique, or even
non-unique

 If a name has structure that helps the
resolution service, then the name is also a
locator

Name  Identifier
 Names can be easily interpreted by humans, e.g.

 file name index.html
 Internet domain www.peterandthewolves.de
 URL http://www.jimmy-world.de

 Identifiers are easily interpreted by programs

Basic Terms

© 2009 Universität Karlsruhe (TH), System Architecture Group 16

Identifiers are easily interpreted by programs
 Communication endpoint of an IPC
 File descriptor in NFS
 Reference within an RPC

 Every process accessing a resource must either know
its name or its identifier, e.g. typically, an application
opens a file via its filename and further works with
that file using its file identifier (handle)

Identifier & Address

 True identifier: A “name” that
1. refers to at most one entity (unique in space)

2. always refers to the same entity (unique in time)

3. each entity is referred to by at most one identifier

Basic Terms

© 2009 Universität Karlsruhe (TH), System Architecture Group 17

y y

 identifiers with all three properties are sometimes called
GUIDs (globally unique identifier)

 Address: A “special name” that refers to a special
entity called an access point
 provides access to another entity, e.g. Jimmy’s office

desktop, Jimmy’s cellular phone

Uniform Resource Identifier

 URL (Uniform Resource Locator) = address of a web-
resource
 Efficient and scalable for an unlimited set of web-resources

 If resource migrates  problem of dangling reference

Basic Terms

© 2009 Universität Karlsruhe (TH), System Architecture Group 18

 URN (Uniform Resource Name) solves the problem of
dangling references
 Migration transparent persistent name of the web resource

 Saved together with current URL in a URN-Lookup service

 Example: urn:ISBN:0-13-183369-3

Uniform Resource Identifier

 URC (Uniform Resource Characteristic) is completely
based on attributes of a web-resource

 The (abstract) notation may serve as a search key:

“author =Jochen Liedtke”

Basic Terms

© 2009 Universität Karlsruhe (TH), System Architecture Group 19

author =Jochen Liedtke

“title =Towards Real Micro Kernels”

“keywords =micro kernels, ….”

 Is a URN-subset
 Is saved with (URL and URN) in a URC-look up service

Attribute

 Attribute
 Additional information of an entity

 Bind a name to its attributes

 Example attributes of a machine
IP dd

Basic Terms

© 2009 Universität Karlsruhe (TH), System Architecture Group 20

 IP address

 HW architecture …

 Example attributes of a user
 UID

 User’s family name, Christian name, …

 Encrypted password

Naming SystemsNaming Systems
Flat Naming
• Given an identifier how to locate the entity?
Structured Naming
• How to map human friendly names to addresses of entities?
Descriptive Naming
• How to locate an entity given some of its attributes?

21© 2009 Universität Karlsruhe (TH), System Architecture Group

Flat NamingFlat Naming

22© 2009 Universität Karlsruhe (TH), System Architecture Group

Mapping: Identifiers to Addresses
Assumption:
Identifiers are jus a bit string with no additional
information on how to locate the desired entity
Goal: Find an/the appropriate access point of the
desired entity

Application of Flat Naming

 Simple Solutions
 Broadcast or Multicast

 Forwarding Pointers

 Home Based Approach

Only in LANs with few nodes

Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 23

 Home Based Approach
 P2P Application
 Flooding
 Distributed Hash Tables
 Hierarchical Approaches

 Example: Globe

Scalable

Requirement for Simple Solutions

 Local area network (LAN)
 (Fast) Ethernet

 IBM Token Ring

 ...

Flat Naming

 Wireless local network

 Simple solution? How?
 Just broadcast/multicast a message with object identifier

 Machine hosting the identified entity will answer with its
access point, e.g. with its Ethernet address

© 2009 Universität Karlsruhe (TH), System Architecture Group 24

Analysis of Broadcast/Multicast

 Broadcast identifier to every node of the DS

 Solution does not scale with number of nodes

 Superfluous message overhead at unrelated sites &
interruption of current work

Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 25

p

 Instead of a broadcast you can use a multicast to a
subset of the nodes
 With HW support (e.g. Ethernets support data-link

multicasting) network overhead can be reduced

 Multicasting is also used to get the access point of
the nearest/best replica in case of replicated entities
 Simply take the one who’s reply arrives first

 Better policies? See later

Multicast Group/Address

 Internet supports network-level multicasting by
allowing hosts to join a specific multi-cast group

 Such groups are identified by a multi-cast address

 If a host uses such a multi-cast address the

Flat Naming

 If a host uses such a multi cast address, the
network-layer provides a best-effort service to deliver
the message to all group members

 Use of a multicast address can also be to locate a
nearby server of a set of replicated servers

© 2009 Universität Karlsruhe (TH), System Architecture Group 26

Forwarding Pointers1

 When an entity moves from site A to site B, it leaves
behind in A a reference to its new location at site B

 Whenever a name has been resolved it will reference
to the first location, from where a pointer chain can
b l d f d h l f

Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 27

be traveled to find the current location of an entity

 Simple, however, chain must not be broken

 In case of a highly mobile entity the chain might
become too long

1Marc Shapiro et al.: SSP Chains: Robust, Distributed References
Supporting Acyclic Garbage Collection, 1992 see:
http://www-sor.inria.fr/projects/sspc/

Forwarding Pointers (1)
Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 28

 Principle of forwarding pointers using
(client stub, server stub) pairs

Remote

Forwarding Pointers (2)
Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 29

 Redirecting a forwarding pointer by storing a
shortcut in a client stub.

Forwarding Pointers (3)
Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 30

 Redirecting a forwarding pointer by storing a shortcut
in the client stub.

Home-Based Approaches
Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 31

 The principle of Mobile IP

Peer to Peer SystemsPeer to Peer Systems

32© 2009 Universität Karlsruhe (TH), System Architecture Group

P2P Application
Flat Naming

 Alice wants to find a specific music video (e.g. John
Lennon's Imagine) via a key (identifier)

© 2009 Universität Karlsruhe (TH), System Architecture Group 33

Lookup via Flooding

 Forward the query to all immediate neighbors (except
the one that has sent the query)

 Duplicates to the same target can be skipped,
however this requires that each query gets an

b b

Flat Naming

unambiguous sequence number

 Analysis:
 Very simple approach
 Used in early Gnutella
 Entities are found only if they are within the search horizon
 Lookups are fast
 Huge message overhead in the network

© 2009 Universität Karlsruhe (TH), System Architecture Group 34

Flooding

 You get the n.th neighbor within the n.th step

 How are the nodes distributed concerning the
distance from the initiator of the query?
 Tree: number of neighbors increases exponentially with the

Flat Naming

g p y
distance L, i.e. kL, if k ist the node degree

 Mesh: number of neighbors increases with Ld-1, if d is the
dimension of the mesh

© 2009 Universität Karlsruhe (TH), System Architecture Group 35

Random Walk

 Principle of depth first search

 The query is only forwarded to one single neighbor

 A query is forwarded to a node at most once

h d k hb f f d d

Flat Naming

 Each node knows its neighbors of first and second
degree

 Analysis:
 Few message overhead, but long searching

 Complicated implementation

 Complete lookup not always possible

© 2009 Universität Karlsruhe (TH), System Architecture Group 36

Distributed Hash-Tables (DHT)
Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 37

Hash key space, i.e. [0,2128)

How to locate entities according to their hash keys?

Tradeoff with DHT
Required

state
information
per node

Fully meshed

?

Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 38

Required
number of steps

per request

Ring?

Potential key:
• File name or title or composer etc. of some song
• hashed via an appropriate hash-function to a hash-key of length m
m ~ 128, i.e. no unambiguousness, but collisions might be rare

• Nodes store the entities, whose hash keys fall into a given interval
• Nodes tend to be equally distributed over the hash-key space

Distributed Hash Table

 Generic application interface:

void publish (key_t, value_t)
value_t lookup(key_t)

d d f l ld b

Flat Naming

 An extended functionality would be nice, e.g.

void withdraw(key_t)
 Key:

 Can be a file name, a song title,

 Are mapped via a hash-function to a 128 bit number, i.e.
unambiguousness is not guaranteed, but collisions are rare

© 2009 Universität Karlsruhe (TH), System Architecture Group 39

Chord

 All the hash-keys (the identifiers) and the node-ids
are mapped to a logical ring

 Each node stores the entities with hash-keys
between its ID and the ID of its predecessor

Flat Naming

 When a new node enters Chord, the new node and
his successor divide their responsibility for storing
entities according to the ID of the new node

 When a node leaves Chord it gives all its stored
entities to its successor

© 2009 Universität Karlsruhe (TH), System Architecture Group 40

Consistent Hashing

 Consistent hash function assigns each node and key
an m-bit identifier.

 SHA-1 is used as a base hash function.

 A node’s identifier is defined by hashing the node’s IP
ddaddress.

 A key identifier is produced by hashing the key
(chord doesn’t define this. Depends on the
application).

 ID(node) = hash(IP, Port)

 ID(key) = hash(key)

© 2009 Universität Karlsruhe (TH), System Architecture Group 41

Chord

 m-bit identifier (m usually 128 or 160)

 Example m=5, i.e. set of nodes with
 NIDs  {0, 1, …, 31}

 An entity with key k is managed by that node with
th ll t id tifi NID  k

Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 42

the smallest identifier NID  k

 This responsible node NID is called succ(k)

 Each node p maintains a finger table FT of m entries

 To lookup key k at node p, node p will forward
request to node q with index j in FTp:
 q = FTp[j] < k  FTp[j+1]

Example Chord (m=5)

Address of node 28 is
t d t d 1 d

Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 43

 Resolving key 26 at node 1 in Chord
 Resolving key 12 at node 28 dashed lines

returned to node 1 and
the key k(=26) is resolved

The assumed logical ring
is an overlay, i.e. often
large hops can take place

Finger Tables

 Each node n’ maintains a routing table with up to
m entries (which is in fact the number of bits in
identifiers), called finger table.

 The ith entry in the table at node n contains the
d f h f d h d bidentity of the first node s that succeeds n by at
least 2i-1 on the identifier circle.

 s = successor(n+2i-1).

 s is called the ith finger of node n, denoted by
n.finger(i)

© 2009 Universität Karlsruhe (TH), System Architecture Group 44

Finger Tables

 A finger table entry includes both the Chord identifier
and the IP address (+ port number) of the relevant
node

 The first finger in each finger table is always the
d h Ch dcurrent immediate successor in the Chord ring

 As long as the Chord misses many „ring nodes“ some
finger table entries point to the same successor, see
the entries of the previous example

© 2009 Universität Karlsruhe (TH), System Architecture Group 45

Scalable Key Location

 Since each node has finger entries at power
of two intervals around the identifier circle,
each node can forward a query at least
halfway along the remaining distance
between the node and the target identifier.
From this intuition follows a theorem:

Theorem: With high probability, the number of
nodes that must be contacted to find a successor
in an N-node network is O(logN).

© 2009 Universität Karlsruhe (TH), System Architecture Group 46

Analysis Chord

 Disadvantage: If a node storing a couple of entities
crashes, it is hard to repair the routing structure

 However, the nodes are physically not neighbored,
i.e. successors and predecessors in Chord are

d l d b d h h b d bl

Flat Naming

randomly distributed, there might be avoidable
latencies if hops are long distance hops

 In proximity routing each node has multiple
successors per finger table entry, e.g. containing the
r most neighbored nodes

© 2009 Universität Karlsruhe (TH), System Architecture Group 47

Node Joins & Stabilization

 The most important thing is the successor pointer.

 If the successor pointer is ensured to be up to date,
which is sufficient to guarantee correctness of
lookups, then finger table can always be verified.

 Each node runs a “stabilization” protocol periodically
in the background to update successor pointer and
finger table.

 Besides the finger table each node in Chord also
maintains a successor-list of its r nearest successors
on the ring to support recovers from node crashes

© 2009 Universität Karlsruhe (TH), System Architecture Group 48

Pastry

 Keys and node-IDs are interpreted as a number
sequence of the 2k-number-system and mapped to a
hypercube

 Each position of the number sequence corresponds
d f d f h h b

Flat Naming

to a coordinate of a dimension of the hyper cube

 Each node is responsible for the numbers with the
same initial number-sequence

 Lookup queries are forwarded to those nodes with
better fitting initial number-sequences

© 2009 Universität Karlsruhe (TH), System Architecture Group 49

Pastry Example

100 101

110 111

Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 50

000 001

010 011

lookup(100)

 Evaluate the major advantages and disadvantages of Chord versus Pastry

HierarchicalHierarchical LocationLocation ServiceService

51© 2009 Universität Karlsruhe (TH), System Architecture Group

Hierarchical Approaches (1)
Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 52

 Hierarchical organization of a location service into
domains, each having an associated directory node

 Each domain D has a directory node dir(d) keeping track
of all entities in that domain

 Lowest level domain (leaf) corresponds to a LAN domain

Location Record

 In a leaf domain directory service the location
record contains

<entity identifier, address of entity>

Flat Naming

 In the higher directory services the location
record contains:

<entity identifier, pointer to next lower directory
service containing entity or sub-domain with entity>

© 2009 Universität Karlsruhe (TH), System Architecture Group 53

Hierarchical Approaches (2)
Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 54

 Each entity, currently located in a domain is represented
by a location record in its directory node

 An example of storing information of a replicated entity
having two addresses in different leaf domains

Hierarchical Approaches (3)
Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 55

 Looking up a location in a hierarchically organized
location service.

Hierarchical Approaches (4)
Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 56

 A client has created a replica of E in domain D
 Client wants to insert address of D
 An insert request is forwarded to the first node M that knows

about entity E

Hierarchical Approaches (5)
Flat Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 57

 (b) A chain of forwarding pointers to the leaf node is
created.

Structured NamingStructured Naming

58© 2009 Universität Karlsruhe (TH), System Architecture Group

Mapping: structured names to addresses

Human friendly names, i.e. readable

Examples. File names, host names

Name Space
Notions

 Name space of structured names can be represented
as a labeled, directed root-tree1 with two types of
nodes:
 Leaf node represents a named entity (no outgoing edge)
 Directory nodes have some outgoing edges, each labeled

h

© 2009 Universität Karlsruhe (TH), System Architecture Group 59

with a name
 Directory node stores a (catalogue) table containing pairs of

<edge label, node identifier>

 Root of graph is the starting point of name resolution
 A global name denotes the same entity no matter where this

name in the distributed system is used
 A local name depends on the location where it is used

1As long as there are no aliases

node 1 node 2

files users files users

Hierarchical Name Space
Name Types

Hold On: 33344
How do you sleep: 81111

© 2009 Universität Karlsruhe (TH), System Architecture Group 60

john paul

imagine yesterday

Example path name:

/node1/files/john/imagine

How do you sleep: 81111
Imagine: 4711

Jealous Guy: 888888
Mother: 88899
Woman: 10555

Working Class Hero: 1999

Name Resolution

 Given a pathname:

N:<label1, label2, …,labeln>

 Name resolution starts at node N of the naming
graph looking up if label is part of its directory table

© 2009 Universität Karlsruhe (TH), System Architecture Group 61

graph, looking up if label1 is part of its directory table

 If so, it returns the identifier of the directory
containing label2, …

 Resolution stops at the last node returning the
content of that node (e.g. the inode of a file)

Name Spaces (2)

© 2009 Universität Karlsruhe (TH), System Architecture Group 62

 General organization of the UNIX FS implementation
on a logical disk of contiguous disk blocks

 Inode 0 reserved for root directory

Name Spaces (1)

Name Spaces

Hardlink
Aliases

© 2009 Universität Karlsruhe (TH), System Architecture Group 63

 A general naming graph1 with a single root node n0

 Path PN := <label1, label2, …. , labeln>
1See Unix or Linux file system

Linking and Mounting

 Linking: creating aliases. Two approaches:
 Allow multiple namespace paths to reference the same leaf

(hard link)

 take care not to create cycles

© 2009 Universität Karlsruhe (TH), System Architecture Group 64

 Special leaf nodes that contain a path name (soft link)

 name resolution continues after appending the new
name to the original name

 Mounting: Allows a leaf node to refer to a directory in
a different name space (a mount point)
 name resolution continues in new name space

Name Space (2)

© 2009 Universität Karlsruhe (TH), System Architecture Group 65

 Concept of a symbolic link explained in a naming graph

Name Resolution

 Where to start?

 Needed a closure mechanism

 Examples:

© 2009 Universität Karlsruhe (TH), System Architecture Group 66

 Inode 0 in a Unix FS at a specific byte offset on
the root partition

 Environment variables in Unix
 The closure mechanism of all environments variables

enables where to start with the look up

 Each PCB contains a table of all current valid
environment variable

Closure Mechanism

Name Resolution

Name resolution can only take place if you know
how and where to start

Examples:
1. Name resolution in a Unix FS is easy, because the root

© 2009 Universität Karlsruhe (TH), System Architecture Group 67

directory is first inode on logical disk, i.e. inode 0
representing that FS.

2. 497216083837 -a commonly used string- but without knowing
that the above string represents a phone-number, you can not
use it  convention for submitting a phone number
(+49)-721-608-3837 is Gerd’s phone number in his office

Combined Name Space

 Name space may be totally or partly be incorporated
within another name space
 e.g. mounting of Unix file systems

 Name can be root directory of another name space

Name Types

© 2009 Universität Karlsruhe (TH), System Architecture Group 68

 Name can be root directory of another name space

 With potential different separators (i.e. / instead of .)
 Implemented via a problem oriented lookup service

Linking of Name Spaces (Mounting)

/

bin etc usr

cc sh passwdgetty

mount-point

root file system

mounting-point

Name Resolution

© 2009 Universität Karlsruhe (TH), System Architecture Group 69

/

bin include src

awk yacc stdio.h uts

mountable file system

• Name resolution can be used to combine
different name spaces transparently

Linking of Distr. Name Spaces

Given n>1 name spaces on different machines,
i.e. each name space may belong to a different server:

Goal:
To mount a foreign name space NS2 into the name
space NS1, the mount point in NS1 must contain:

Name Resolution

© 2009 Universität Karlsruhe (TH), System Architecture Group 70

p 1, p 1

1. Name of an access protocol for server S2

2. Name of the server S2

3. Name of the mounting point in the foreign name
space N2

Each of the names must to be resolved, e.g. using URLs

Linking and Mounting
Client‘s
laptop

© 2009 Universität Karlsruhe (TH), System Architecture Group 71

 Mounting remote name spaces via a specific access protocol (NFS),
i.e. on both machines NFS is configured

 Client wants to access his mailbox located on machine B

 Client offers pathname /remote/vu/mbox at machine A

 Name resolution starts at root of machine A

Linking and Mounting (2)

Name Resolution

Directory
for remote

mount points
Mount point for all
user home directories
of Vrije university

An authorized user on
Machine A uses:
/remote/vu/mbox

What happens?
1. On A /remote/vu is resolved
2. Reply with the result:

nfs://flits cs vu nl/home/steen

© 2009 Universität Karlsruhe (TH), System Architecture Group 72

 Both machines contain Sun’s NFS
 Client specifies “nfs://flits.cs.vs.vl/home/steen” in the

directory /remote/vu to be used as an NFS URL

 Server name flits.cs.vs.nl is resolved using DNS

 /home/steen is resolved using the remote server on machine B

nfs://flits.cs.vu.nl/home/steen
3. Client contacts via B, i.e.

flits.cs.vu.nl
4. B resolves /home/steen/mbox

Linking & Mounting (3)

 Linking remote name server via mount points
is one way

 Alternative:

© 2009 Universität Karlsruhe (TH), System Architecture Group 73

 Insert a new root-node above the two roots of the
current name spaces (file systems)

 Done by GNS of DEC

