
Distributed Systems Distributed Systems

2 Characteristics 2 Characteristics

1© 2009 Universität Karlsruhe (TH), Systemarchitektur

Goals & Challenges, Types of DS

April-22-2009

Summer Term 2009

System Architecture Group

Schedule of Today

 Fundamentals

 Inherent Characteristics of a DS

 DS Goals & Challenges

© 2009 Universität Karlsruhe (TH), Systemarchitektur 2

g

 Types of DS

FundamentalsFundamentals

3© 2009 Universität Karlsruhe (TH), Systemarchitektur

Review: Terminology
 Program is the code you type in

 Process is what you get when you run it as a single activity
 Task is what you get when you run it as multiple activities

 Message is used to do IPC between processes/tasks. Arbitrary size.
 Packet is a fragment of a message that might travel on the wire.

Variable size but limited, usually to 1400 bytes or less.
P t l i l ith b hi h t t d thi Protocol is an algorithm by which processes cooperate to do something
using message exchanges.

 Network is the infrastructure that links the computers, workstations,
terminals, servers, etc.
 It consists of routers
 They are connected by communication links

 Network application is one that fetches needed data from servers over
the network

 Distributed system is a more complex application designed to run on a
network. Such a system has multiple processes/tasks that cooperate
to do something.

© 2009 Universität Karlsruhe (TH), Systemarchitektur 4

Network~“mostly reliable” Post Office

Why isn’t it totally reliable?

 Links can corrupt messages
 Rare in high quality ones on the Internet

“backbone”
 More common with wireless connections, cable

modems ADSLmodems, ADSL

 Routers can get overloaded
 When this happens they drop messages
 As we’ll see, this is very common

 But protocols that retransmit lost packets can
increase reliability

How do DSs differ from Network Appl.?

 DSs may have many components but are
often designed to mimic a single, non-
distributed process running at a single place.

 “State” is spread around in a DS State is spread around in a DS
 Networked application is free-standing and

centered around the user or computer where it
runs, e.g. your “web browser”

 A DS is spread out, decentralized, e.g. the “air
traffic control system”

What about the Web?

 Your web browser is independent: it fetches the data
you have requested when you have asked for it.

 Web servers don’t keep track of who is using them.
Each request is self-contained and treated
independently of all othersindependently of all others.
 Cookies don’t count: they sit on your machine

 And the database of account info doesn’t count either… this is
“ancient” history, nothing recent

 Web has 2 network applications that talk to each other
1. The browser on your machine

2. The web server it happens to connect with… which has a
database “behind” it

What about the Web?

Cookie identifies this
user, encodes past

preferences

Database
Web browser with

stashed cookies

preferences

HTTP request

Web servers are kept current by the
database but usually don’t talk to it

when your request comes in

What about the Web?

Web servers immediately
forget the interaction

Reply updates cookie

What about the Web?

Web servers have no
memory of the interaction

Purchase is a “transaction”
on the database

What about the Web?

 But… the data center that serves your
request may be a complex DS
 Many servers and perhaps multiple physical sites

 Opinions about which clients should talk to which
servers

 Data replicated for load balancing and high
availability

 Complex security and administration policies

 So: we have a “networked application” talking
to a DS

Other Examples of DSs

 Air traffic control system with workstations
for the controllers

 Banking/brokerage trading system that
coordinates trading (risk management) atcoordinates trading (risk management) at
multiple locations

 Factory floor control system that monitors
devices and reschedules work as they go
on/offline

Is the Web “reliable”?

 We want to build DSs that can be relied upon to do
the correct thing and to provide services according to
the user’s expectations

 Not all systems need reliability
If a web site doesn’t respond you just try again later If a web site doesn t respond, you just try again later

 If you end up with two wheels of brie, well, throw a party!

 Reliability is a growing requirement in “critical”
settings but these remain a small percentage of the
overall market for networked computers

 And as we’ve mentioned, it entails satisfying multiple
properties…

Reliability is a Broad Term (1)

 Fault-Tolerance: remains correct despite failures

 High or continuous availability: resumes service after
failures, doesn’t wait for repairs

 Performance: provides desired responsivenessp p

 Recoverability: can restart failed components

 Consistency: coordinates actions by multiple
components, so they mimic a single one

 Security: authenticates access to data, services

 Privacy: protects identity, locations of users

Reliability (2)

 Correct specification: the assurance that the system solves the
intended problem

 Correct implementation: the assurance that the system correctly
implements its specification

 Predictable performance: the guarantee that a DS achieves
desired levels of performance, e.g. data throughput from source
to destination, latencies measured for critical paths, requests
processed per second, etc.

 Timeliness: in systems subject to real-time constraints, the
assurance that actions are taken within the specified time
bounds, or are performed with a desired degree of temporal
synchronization between components

© 2009 Universität Karlsruhe (TH), Systemarchitektur 16

“Failure” also has Many Meanings

 Halting failures: component simply stops

 Fail-stop: halting failures with notifications

 Omission failures: failure with send/receive
messagemessage

 Network failures: network link breaks

 Network partition: network fragments into two or
more disjoint sub-networks

 Timing failures: action early/late; clock fails, etc.

 Byzantine failures: arbitrary malicious behavior

Examples of Failures

 My PC suddenly freezes up while running a text
processing program. No severe damage is done.
This is a halting failure

 A network file server tells its clients that it is A network file server tells its clients that it is
about to shut down, then goes offline. This is a
fail-stop failure. (The notification can be trusted)

 An intruder hacks the network and replaces some
parts with fakes. This is a Byzantine failure.

Technology Trends

400
500
600
700

CPU MIPS
Memory MB

Did the sudden growth in
in LAN speed give us the

Web?

Source: Scientific American, Sept. 1995

0
100
200
300
400

1985-
1990

1990-
1995

1995-
2000

2000-
2005

LAN Mbits
WAN Mbits
O/S overhead

Typical Latencies (milliseconds)

10

100

1000 Disk I/O

Ethernet
RPC

WAN, disk latencies are fairly
constant due to physical limitations

0,01

0,1

1

19
85

-19
90

19
90

-19
95

19
95

-20
00

20
00

-20
05

RPC
ATM
roundtrip
WAN
roundtrip

Note dramatic drop in LAN latencies over ATM:
This is the HW used in telephone systems

OS Latency: Expensive overhead on LAN

Reliability versus Performance

 Some think that more reliable means “slower”
 Indeed, it usually costs time to overcome failure
 For example, if a packet is lost, you probably need to resend

it, and may need to solicit the retransmission

B t f li ti f i bi t But for many applications, performance is a big part
of the application itself: too slow means “not reliable”

 Reliable systems thus must look for highest possible
performance

 ... but unlike unreliable systems, they can’t cut
corners in ways that make them flakey but faster

Discovery

 Consider the problem of discovering the right
server to connect with
 Your computer needs current map data for some

place, perhaps an amusement park
 Can think of it in terms of layers – the basic park layout,

overlaid with extra data from various services, such as
“length of the line for the Cyclone Coaster” or “options
for vegetarian dining near here”

Why is Discovery hard?

 Client has opinions
 You happen to like vegetarian food, but not spicy

food. So your search is partly controlled by client
goals

B i i i h h l i l But a given service might have multiple servers
(e.g. Amazon might have data centers in Europe
and in the US…) and may want your request to go
to a particular one

 Once we find the server name we need to map it
to an IP address

 And the Internet itself has routing “opinions” too

Other Things we might need

 Standard ways to handle
 Reliability, in all the senses we listed

 Life cycle management
 Automated startup of services, if someone asks for one

d it i ’t i b k tand it isn’t running; backup; etc…

 Automated migration and load-balancing, monitoring,
parameter adaptation, self-diagnosis and repair…

 Tools for integrating legacy applications with new,
modern ones

Concept of a Middleware Platform

 These are big software systems that automate many
aspects of application management and development

 In this course we will not discuss in detail
 CORBA: a stable and slightly outmoded platform focused on g y p

“objects”
 Web Services: the hot new “service oriented architecture”

 However, we want to find conceptual solutions,
useful for applications as well as middleware
applications

Layers: Modern Perspective
End-user applications

Built over and with…

Middleware platform

Internet and Web Standards (TCP, XML, etc)

Built over and with…

For Example

 Imagine a banking system with many programs,
one at each branch

 And suppose that only some can talk to others
d t fi ll d th t i tidue to firewalls and other restrictions, e.g.
 A can talk to B, B can talk to C, but A can’t talk to C

How to handle this?

 In the distant past, people cooked up all sorts
of weird hacks

 Today, a standard approach is to build a
ti lrouting layer

 Inside the application, it would automatically
forward messages towards their destinations

 Thus A can talk to C (via B)

Once we have this…

 Now we can split our brains, in a good way:
 Above this routing layer, we write code as if

routing from anyone to anyone was automatic

 Inside the routing layer, we implement this Inside the routing layer, we implement this
functionality

 Below the routing layer we just do point-to-point
messaging where the bank permits it and we
never end up trying to send messages over links
not available to us

This Layering looks elegant!

 It lets us focus attention on issues in one
place and simplifies code as a result

 Also helpful when debugging…

 Platform architectures simply take the same
approach further

Inherent Characteristics of DSInherent Characteristics of DS

32© 2009 Universität Karlsruhe (TH), Systemarchitektur

Physical Distribution
Logical Distribution
Sharing of Resources
Heterogeneity
Real Parallelism
Failure Tolerance
Layered Software

Physical Distribution

 HW distribution (devices, computers)
 “Network” of autonomous computers

 Geographic distribution matches physical world

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 33

 Interconnected via
 physical communication links, e.g.

 Fiber optic

 (fast) Ethernet

 wireless interconnection, e.g. WLAN

Physical Distribution

 SW distribution:
 Tasks or processes with specific services enabling

 Decentralized computing
 Can reduce turnaround times

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 34

 Shared “expensive” resources

 Improved availability of whole DS

 Information/Data
 Distributed data base

 Replication enabling worldwide collaboration

Sharing Resources

 Sharing often done without clients’ knowledge
 sharing printer hidden by a spooler
 sharing files and/or directories hidden by the FS

 Why sharing?
 To reduce cost for HW resources

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 35

 To reduce cost for HW resources
 High quality printer
 High quality scanner
 …

 How to design sharing?
 Dependent on

 Range of validity
 Intensity of collaboration
 … others?

Sharing Services

 Service := software component that manages a
set of related resources and offers a set of
hopefully comfortable functions

 File service: store and retrieve persistently stored,
named data containers

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 36

named data containers

 Print service: print documents, photos etc.

 E-Commerce: sell or buy products via Internet
 amazon

 ebay

 …

Clients & Servers

 Client := user/process/task requesting a service
 Server := process/task on one or multiple machines

offering a specific service, e.g. file service

How do clients and servers typically interact?

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 37

 Clients synchronously request something via a
 Remote procedure call (RPC) or
 Remote method invocation (RMI) or
 “Internode”-IPC

 Typical client/server application
 Web browser
 Web server

Heterogeneity

 Heterogeneous HW & SW
 Networks

 Type of connection
 Technology
 Topography

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 38

 Processors
 Data representation
 32-bit, 64-bit
 Instruction Set

 OS
 API & execution environment
 Linux, Vista, …

Real Parallelism

 Concurrency occurs on different levels
 Multiple clients use a file server concurrently

 A file-server can be multi-threaded

 Increased synchronization requirement

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 39

 To solve concurrency problems in DS we need
 either a single instance with a

 centralized algorithm

 global state

 or distributed instances with a
 distributed algorithm

 set of local states

bottleneck
single point of failure

consistency problem

Failures & Failure Handling

  failures in (almost) all technical systems

 In DS we have to face different failure types, e.g.
 Partial failures

 some nodes still work whilst others are down

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 40

 Transient failures

 Handling of failures:

 detect, mask, tolerate

 recover after failures

 avoid, by providing enough redundancy

Detection of Failure

 Some failures are detectable, e.g.
 via checksums (integrity of data)
 sequence numbers (missing messages)

 Others are not (e.g. server-breakdown)

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 41

(g)
 How long do you wait until you assume that your

favorite server is down?

 Can you improve your client-server protocol a little bit?

Challenge:
 Learn to handle or live with undetectable, but

assumed failures

Masking & Tolerance of Failures

 Some detectable failures can be masked, i.e.
the application has not to deal with

 Lost message  just resend it at a lower layer
 How to decide that a message has been lost?

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 42

 How to decide that a message has been lost?

 Lost file  take the file object from a replicated
file server

 Failures, that cannot be masked should be
reported to the application  distributed
applications must be aware of error reports

Recovery

 Node break downs or losses of components often
show typical error symptoms:
 Computations are incomplete
 Permanent data stay inconsistent
 No periodic alive messages

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 43

 Two types or failures
 Transient failures

 Reinstall a consistent system state, e.g. via checkpoints,
forward/backward recovery, transaction models

 Permanent failures
 Replace or repair the incorrect component

 Recovery has to be taken into account already in the
design phase of a DS

Uncertainty Principle

 At the same instance of time two processes in a DS do
not always have the same view of the system’s state

 Typically a process in a DS has either
 an incomplete system state or it has

Characteristics

© 2009 Universität Karlsruhe (TH), Systemarchitektur 44

 an incomplete system state or it has
 a complete, but potentially outdated system state

 Due to the lack of a global physical time, it is hard to
determine, if two events occur at the same time, thus
we need algorithms that deliver a consistent snapshot
of the DS

DS Goals & ChallengesDS Goals & Challenges

Goals

45© 2009 Universität Karlsruhe (TH), Systemarchitektur

Transparency
Openness
Flexibility
Scalability
Security
Reliability
Performance

Transparency Description: … hides …

Access differences in data representation & resource access

Location where a resource is located

Migration that a resource (object) moves to another location

Distribution Transparency

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 46

Different forms of transparency in a DS

Migration that a resource (object) moves to another location

Relocation that a resource is moved to another location

Replication that a resource is located at multiple nodes

Concurrency that a resource is shared by several competing users

Failure that failure and recovery of a resource might occur

Scaling the reconfiguration of the system with growing load

Degree of Transparency

 High degree of transparency is often preferable

 However, sometimes  drawbacks:
 In a WAN you cannot hide latency completely due to

many intermediate routers & switches

f

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 47

 You want to decide how often a Web browser tries to
contact a broken Web server before switching to another
replicated web server

 In a DS that requires a high degree of consistent replicas,
updates on replicated data will take some time

 An employee of Siemens (Munich) that wants to print a
document prefers an overloaded printer nearby to a lazy
printer at Siemens (Nuremberg)

Openness

 In standard networks, specific rules are formalized
as network protocols

 Standardized interfaces and mechanisms
 Message types

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 48

g yp

 Interface definition language (IDL)

 Proper and complete specification
 Interoperability

 Portability

 Maintenance

Flexibility & Adaptability

 To achieve flexibility in an open DS  use a
component based system architecture
 Add new system components (on the fly!)

 Update or replace old ones

 Install different versions of a system component to be

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 49

sta d e e t e s o s o a syste co po e t to be
adaptable

 Clean interfaces not restricted to top-most layer
enabling better adaptability, e.g.
 Clients of a web browser want to determine their private

caching policy
 How long should data be cached depending on

 Data type

 Session time …

Scalability
 Performance does not decrease significantly with more

and/or newer nodes in the DS
 consequence for a system architect:

 AvoidAvoid any form of a centralized approach unless you
cannot provide efficient distributed substitutes

C l i h b b l k

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 50

 Central resources might become a bottleneck:
 Components (single server)
 Tables (directories in DFS)
 Algorithms (deadlock detection)

Jochen Liedtke’s remarks:
 Symmetric systems tend to be scalable
 Simple, yet elegant systems tend to be efficient

Design Rules improving Scalability

1. Do not require any node within the DS to hold the
complete system state

2. Allow nodes to make decisions based only upon
local information

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 51

local information

3. Design algorithms that can survive failures of
individual nodes

4. Make no assumptions about a global clock

Additional Scalability Problems

 DS designed for LANs often use synchronous IPC
 Delays due to message transfer ~ 100 µsec
 LAN is reliable & with efficient broadcast

 In global DS no efficient synchronous IPC

Scaling Problems

© 2009 Universität Karlsruhe (TH), Systemarchitektur 52

 Delays due to message transfer ~ 100 msec
 WAN is unreliable & point-to-point

 Example: Locate a server in a network
 LAN: broadcast a server lookup, collect all positive replies,

take the best fitting one
 WAN: broadcasting is too inefficient (see Internet with its

billion users)

Techniques for Scalability (1)

FIRST NAME
LAST NAME
E-MAIL

GERD
LIEFLAENDER
LIEF@IRA.UKA.DE

G
E

R
D

Check form Process form

client server

client server

Scaling Techniques

© 2009 Universität Karlsruhe (TH), Systemarchitektur 53

FIRST NAME
LAST NAME
E-MAIL

GERD
LIEFLAENDER
LIEF@IRA.UKA.DE

GERD
LIEFLAENDER
LIEF@IRA.UKA.DE

Check form Process form

 Difference between having the server or the client check
whether the form has been filled completely …

 Security check done on the server side

Techniques for Scalability (2)

Scaling Techniques

© 2009 Universität Karlsruhe (TH), Systemarchitektur 54

 Dividing the DNS name space into disjoint zones,
domains in order to achieve improved performance

Further Techniques for Scalability

 Replication
 Web servers are replicated

 URLs contain the name of the corresponding replicated
server

 Replication is planned by server administration

© 2009 Universität Karlsruhe (TH), Systemarchitektur 55

 Replication is planned by server administration

 Caching
 Local copy of a webpage at the client’s site

 Caching happens on demand & client can specify when
content is outdated

 Both techniques can lead to consistency problems

Security

Challenge: face intelligent, malicious attackers
all around the world

What has to be done?

 Maintain integrity of state

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 56

 Maintain integrity of state

 Maintain privacy of data

 Prevent unauthorized use of services

 Maintain availability of services, i.e.
implement robust systems

see other courses

Security (2)

Guiding principles:
 Design for security from the very first start

 Separate security policies from mechanisms

U t th ti ti d ti

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 57

 Use strong authentication and encryption

 Provide tight resource management

 Install a small trusted computing base (TCB)

 Rely on diversity

Ann N. Sovarel et al.: “Where’s the FEEB? The Effectiveness of Instruction Set
Randomization”

Reliability

 DS should improve availability (= fraction of
time during which the system is usable)
 Ideally: Boolean OR of component availabilities
 Worst case: Boolean AND

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 58

 Main techniques:
 Avoid simultaneous failure of critical components
 HW/SW-redundancy  complicates consistency
 Avoid single points of failure whenever

possible

Whenever we present a solution, check its reliability

Reliability (2)

Fault tolerance: recover properly from failures
 Minimize loss of data and state
 Minimize impact on running applications
 Retain the system’s consistency

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 59

y y

In DS, fault tolerance is more complex due to
 Partial failure (distributed state)
 Both network and node failure
 Complex failure modes (Byzantine)

Performance

 High performance in a DS is not that easy

 Other requirements can conflict with, e.g.

 Transparency
Extra overhead needed

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 60

 Extra overhead needed

 Self Management & Migration
 Additional delay can occur (not occurred yesterday)

 Reliability
 Send additional messages to replicated server

 Install alive messages

User’s Performance Requirements

 Response time:
Users need fast, predictable responses, 
 as few components as possible
 whenever possible, local IPC
 exchange only necessary information

h h

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 61

 Throughput:
Number of completed applications/time-unit 
 the weakest system component dominates throughput
 prepare DS for future extensions

 Load balancing:
Automatically migrate load to nodes that
 are currently free or
 do less important work

Quality of Service

 If the functionality of a service is provided 
how to guarantee its quality of service?

 Tackle the following problems:

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 62

 Performance

 Reliability

 Security
 e.g. no DOS (Denial Of Service) attacks

 Latency … and other real-time requirements

Replication and Caching

When replication or caching is used:

How to guarantee that users get the new(est) version
in case of proxy or client caching?

 1. approach:

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 63

 1. approach:
Whenever the server is updated, invalidate all caches,
e.g. you have to know them, i.e. some kind of a
statefull server

 2. approach:
Estimate, when cached information might be outdated
 you cannot always expect “up to date” data

Dependability1

Dependability includes:

 Correctness:
 DS should act as specified

S it

Goals

© 2009 Universität Karlsruhe (TH), Systemarchitektur 64

 Security:
 what location inside DS is the best protected one

 Failure tolerance:
 describe how system still runs in case of failures

1 Dependability = Verlässlichkeit

Typical DS Design Pitfalls1

False assumptions made by novice DS developers:

 Network is reliable

 Network is secure

 Network is homogeneous

 Topology does not change

Pitfalls

© 2009 Universität Karlsruhe (TH), Systemarchitektur 65

 Topology does not change

 Latency is zero

 Bandwidth is infinite

 Transport cost is zero

 Only one administrator

1 According to L. Peter Deutsch

Read: http://devlinux.org/deutsch-interview.html

Types of DSTypes of DS

66© 2009 Universität Karlsruhe (TH), Systemarchitektur

Distributed Computing Systems

Distributed Information Systems

Distributed Pervasive Systems

Cluster Computing Systems

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 67

 Example of a cluster computing system

 Clusters tend to be homogeneous (HW & SW)

Grid Computing Systems

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 68

 Layered architecture for grid computing systems
(see: Foster et al: The Anatomy of the Grid, enabling
Scalable Virtual Organizations)

Grid Middleware

Transaction Processing Systems (1)

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 69

 Example primitives for transactions

Transaction Processing Systems (2)

Characteristic properties of transactions:

 Atomic: To the outside world, the transaction
happens indivisibly

Consistent: The transaction does not violate

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 70

 Consistent: The transaction does not violate
system invariants.

 Isolated: Concurrent transactions do not
interfere with each other.

 Durable: Once a transaction commits, the
changes are permanent.

Transaction Processing Systems (3)

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 71

 Simple example of a nested transaction

Transaction Processing Systems (4)

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 72

 Role of a TP monitor in DSs

Enterprise Application Integration

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 73

 Middleware as a communication facilitator in enterprise
application integration

Distributed Pervasive Systems

Additional requirements for pervasive DS

 Embrace contextual changes
 Mobile & embedded small computing devices

B tt d l i l ti

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 74

 Battery powered, only wireless connection

 Need to discover their environment

 Encourage ad hoc composition

 Recognize sharing as the default

Home Systems

 Home networks with
 PCs, TV, video, game boys, …

 Smart phones, PDAs

 Kitchen ~ or cleaning robots, …

 Surveillance camera

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 75

Surveillance camera

 Control units for lights, sun protection, …

 Need for self configuration & management
 See Universal Plug and Play standard (UPnP)

 How to update without manual intervention

 Personal space supported by recommenders

Electronic Health Care Systems (1)

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 76

 Monitoring a person in a pervasive electronic health care system,
using
 (a) a local hub collecting data that are offloaded from time to time to

a larger storage device (hub can also manage the BAN)

 (b) a continuous wireless connection, BAN is hooked up to an external
network

(BAN)

Electronic Health Care Systems (2)

Prevent people from being hospitalized, yet still monitored

Personal HCS are often body-area network (BAN)

Problems of health care systems:

 Where and how should monitored data be stored?

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 77

 How can we prevent loss of crucial data?

 What infrastructure is needed to generate & propagate alerts?

 How can physicians provide online feedback?

 How can you install robustness of the monitoring system?

 What are security issues & how can proper policies be enforced?

Sensor Networks (1)

Questions concerning sensor networks:

 How do we (dynamically) set up an efficient tree
in a sensor network?

 How does aggregation of results take place? Can

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 78

 How does aggregation of results take place? Can
it be controlled?

 What happens when network links fail?

 How can we increase the lifetime of the sensors
whilst deceasing their energy amount?

Sensor Networks (2)

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 79

 Organizing a sensor network database, while storing and
processing data (a) only at the operator’s site or …

Sensor Networks (3)

Types of DS

© 2009 Universität Karlsruhe (TH), Systemarchitektur 80

 Organizing a sensor network database, while storing
and processing data … or (b) only at the sensors.

