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Schedule of Today

Transactions in Local systems

Characteristic of Transactions

Serializability How to support 
distributed applications
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Two Phase locking Protocol

Distributed Transactions

The above topics will not be examined in this course

distributed applications
on Data Bases



The Transaction Model (1)

 Updating a master tape is fault tolerant.
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The Transaction Model (2)

Primitive Description

BEGIN_TRANSACTION Make the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit
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 Examples of primitives for transactions.

ABORT_TRANSACTION Kill transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise



The Transaction Model (3)

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi;

END_TRANSACTION
(a)

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION
(b)
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a) Transaction to reserve three flights commits

b) Transaction aborts when third flight is unavailable

( )



Distributed Transactions
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a) A nested transaction   b) A distributed transaction



Private Workspace

© 2009 Universität Karlsruhe, System Architecture Group 7

a) The file index and disk blocks for a three-block file
b) Situation after a transaction has modified block 0 and appended block 3
c) After committing



Writeahead Log
x = 0;
y = 0;
BEGIN_TRANSACTION;
x = x + 1;
y = y + 2
x = y * y;

END TRANSACTION;

Log

[x = 0 / 1]

Log

[x = 0 / 1]
[y = 0/2]

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]
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a) A transaction

b) – d) The log before each statement is executed

END_TRANSACTION;
(a) (b) (c)   (d)



Concurrency Control (1)
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 General organization of managers for handling transactions.



Concurrency Control (2)
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 General organization of managers for handling 
distributed transactions.



Serializability
BEGIN_TRANSACTION
x = 0;
x = x + 1;

END_TRANSACTION

(a)

BEGIN_TRANSACTION
x = 0;
x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION
x = 0;
x = x + 3;

END_TRANSACTION

(c)

Schedule 1 x = 0;  x = x + 1;  x = 0;  x = x + 2;  x = 0;  x = x + 3 Legal
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a) – c) Three transactions T1, T2, and T3

d) Possible schedules

Schedule 2 x = 0;   x = 0;  x = x + 1;  x = x + 2;  x = 0;  x = x + 3; Legal

Schedule 3 x = 0;  x = 0;  x = x + 1;  x = 0;  x = x + 2;  x = x + 3; Illegal

(d)



Two-Phase Locking (1)
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 Two-phase locking.



Two-Phase Locking (2)
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 Strict two-phase locking.



Pessimistic Timestamp Ordering
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 Concurrency control using timestamps.



Transactions

Transactions

Notion: A transaction is a sequence of operations 
performing a single “logically composite” 
function on a shared data base.

Remark:
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Remark:

Transaction derives from traditional business deals:

 You can negotiate changes until you sign on the 
bottom line

 Then you are stuck

 And your peer is also stuck



Some Examples

 Reserve a seat for a flight from Frankfurt to JFK in NY

 Transfer money from your account to mine

 Withdraw money from an automatic teller machine

Transactions
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 Buy a book from amazon.com

 Apply a change to a name server



Control of Concurrency

 Critical sections
 Basic mechanism to enhance data consistency

 Application programmer has to place locks or 
semaphores for himself

Transactions
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ap o o

 Higher Concept
 Automatically enforcing consistency

 Support for multiple critical sections

 Consistency even with failures and crashes



Early „Transaction Model“

computer

Previous inventory

New inventory

Transactions
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p

Current updates

y

Updating a master tape is fault tolerant.
If a failure occurs, just rewind the tapes and restart. 



{Transfers money from ACC1 to ACC2}         
T1: Transfer(ACC1, ACC2, Amount)

{Part1: Take money from ACC1}
balance1 := Read(ACC1)
balance1 := balance1 - Amount
Write(ACC1, balance1) {debit ACC1}
{Part2: Put money to ACC2}

Example (1)

Transactions
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balance2 := Read(ACC2)
balance2 := balance2 + Amount
Write(ACC2,balance1) 

Problems due to concurrent transactions?

{Sum up the balance of both accounts ACC1 and ACC2} 
T2: SumUp(ACC1, ACC2, sum)

sum1 := Read(ACC1)
sum2 := Read(ACC2)
sum := sum1 + sum2



{Transfers Amount money from ACC1 to ACC2}            
T1: Transfer(ACC1, ACC2, Amount)

{Part1: Take money from ACC1}
balance1 := Read(ACC1)
balance1 := balance1 - Amount
Write(ACC1, balance1) {debit ACC1}

{S th b l f b th ACC1 d ACC2}

Example (1’)

Transactions
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{Sumup the balance of both ACC1 and ACC2}  
T2: SumUp(Acc1, ACC2, sum)

sum1 := Read(ACC1)
sum2 := Read(ACC2)
sum := sum1 + sum2 

{Part2 of T1: Put money to ACC2}                    
balance2 := Read(ACC2)
balance2 := balance2 + Amount
Write(ACC2,balance1)



{Transfers Amount money from ACC1 to ACC2}                        
T1: Transfer(ACC1,ACC2,Amount)

{Part1: Take money from ACC1}
balance1 := Read(ACC1)
balance1 := balance1 - Amount
Write(ACC1, balance1)
{Part2: Put money to ACC2}
balance2 := Read(ACC2) {old value of ACC2}
{Transfers Amount money from ACC3 to ACC2}

Example (2) “Lost Update Problem”

Transactions
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{Transfers Amount money from ACC3 to ACC2}
T2: Transfer(ACC3,ACC2,Amount)

{Part1: Take money from ACC3}
balance3 := Read(ACC3)
balance3 := balance3 - Amount
Write(ACC1,balance1)
{Part2: Put money to ACC2}
balance2 := Read(ACC1)
balance2 := balance2 + Amount
Write(ACC2,balance1)

balance2 := balance2 + Amount {ommit the red transaction}
Write(ACC2, balance2)



{Transfers Amount money from ACC1 to ACC2}       
T1: transfer(ACC1,ACC2,Amount)

{Part1: Take money from ACC1}
balance1 := READ(ACC1)
balance1 := balance1 - Amount
WRITE(ACC1, balance1)

Example (3) (System Failure)

Transactions
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balance2 := READ(ACC1)
balance2 := balance2 + Amount
WRITE(ACC2, balance2) 

Systemcrash

Results in an inconsistent state of data-base.



T1 T2 T3

Critical 
section

Motivation

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 23

Remark: A hard programmer’s job in complex systems with 
o > 1 shared objects and n >> 1 concurrent threads.

Waiting in 
front 
of critical 
section



Example:  Book a flight to a conference at San Diego. However,
you have to stop for two days in NY where you give a talk.      

As a client of a travel office you want to know -after some “minutes”-
if you’ll get an seat to JFK, a car from JFK to the workshop hall,         
a nearby hotel, a flight to San Diego etc.
And if they give you an OK, you want to be sure that no other client 

Motivation

Transactions
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 Need for a new higher level concept with the 
“all or nothing property”:

Either your request can be fulfilled or your fruitless attempt 
does not affect the underlying database at all.                                      

Remark: Let’s first have a look at the controlling problem!

y g y , y
-at some other place round the globe- has booked the same seat in one 
of your planes or even worse has booked the same room in the hotel!



Composite
operation
on related 
data objects

T1 T2 T3

Complex 
composite 
operations

Approach 1: Strictly Serial Scheduling

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 25

operations
will increase
these delays 

Up to now it’s assumed that all simple operations 
within a composite operation conflict with each other.

However, if some of these simple operations don’t conflict 
We can improve performance significantly

by interleaving their execution

Remark: Works, but with poor performance! 



Composite
operation
on related 
data objects

T1 T2 T3

Approach 2: Interleaved Scheduling

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 26

We need more concurrency 
without violating data consistency



Motivation

Requirements for a higher concept:

 It should automatically enforce data consistency

 It should support different critical sections

Transactions
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pp

 It should preserve data consistency
even if system errors occur



Transactions

Remark:

The need for transactions is typical for data bases like:

 ticket reservation system

 banking, taxation and assurance systems etc.

ll i l t d h t ithi di t ib t d t

Transactions
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normally implemented on hosts within a distributed system.

Assumption (for ease of understanding):

 The data base is located completely in main memory!

 Thus we focus on concurrency aspects and postpone 
all problems concerning volatile and non volatile memory.



Operations of a Transaction

 An operation within a transaction is any action 
that reads from or writes to the shared data base

 A transaction begins with an explicit operation:
 Start (mostly implicitly)

Transactions
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 Start (mostly implicitly)

 A transaction is terminated with 
 either a COMMIT (if successful)

 or an ABORT (otherwise, with implicit rollback)



 COMMIT requests that the effects of the    
transaction be “signed off on”

 ABORT demands that the effects of the transaction 
be eliminated thus an aborted transaction is like a

Terminating Transactions

Transactions
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be eliminated, thus an aborted transaction is like a 
transaction that has never occurred

 COMMIT is mandatory, ABORT is optional.



{transfer(ACC1, ACC2, Amount)}
begin transaction T account_transfer;
if check_balance(ACC1, Amount)= true 
{ACC1 > Amount?}
then begin debit(ACC1,Amount);

credit(ACC2 Amount);

Example for Commit and Abort

Transactions
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credit(ACC2,Amount);
Commit;

end
else begin print(“not enough money on ACC1”);

Abort;
end

fi
end transaction T;



Importance of Transactions

 Basis of all computer-based funds management (1998)
 about 50 000 000 000 $ per year

 Because COMMIT/ABORT are visible at the application level they 
provide a good foundation for customized distributed-processing 
control.

Transactions
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 Operations on the shared data base are “independent” of the 
implementation of this shared data base.



Reliability of some logical function can only be expressed 
at the level of that logical function

disk disk
FTP client FTP server

Transaction: “End to End” Mechanism

Transactions
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TCPTCP

Routing Routing

Link Link

Where do the reliability checks go?



Meaning of an “End to End” Mechanism

 Intermediate checks can not improve correctness

 The only reason to check in lower levels 
i i f

Transactions
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is to  improve performance

 common case failures need not be dealt with at higher levels

 significantly simplifies programming of distributed applications



Open File Locally
Begin Transaction

Create Remote File
Send Local Contents to Remote
Close File Remotely

End Transaction
Close File Locally

Simple FTP Example

Transactions

This section is critical.
It either happens completely 

or it doesn’t.
Entirely and permanently
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disk disk
FTP client FTP server

TCPTCP

Routing Routing

Link Link



Assume a replicated name server:

We want to be able to apply changes to the name server and know
that changes either took place on both replicas, or at none of them.

BeginTransaction

Transactions for distributed applicat.

Transactions
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BeginTransaction
nameserver.write(“espen-pc”, xxx.yy.z.007)
nameserver.write(“gerd-tp”,xxx.yy.z.815)

EndTransaction(committed)
if(committed)
then io.put(“transaction complete\n”)
else io.put(“update transaction failed\”)



Client

Server1 replicated data

Implementation

update

Transactions
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Server2 replicated data

With transactions the above updates will take place on both servers,
or they will take place on none of them, 
otherwise the idea of a replicated server must fail.



Characteristics of Transactions

 Clients can crash before/during/after a transaction

 Servers may crash before/during/after a transaction

 Messages can get lost

Transactions
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 Client requests can come in any order to any server

 Servers can reboot

 Performance is an important goal, otherwise useless



Requirements: ACID-Principle

Atomicity = All or nothing concept

Consistency  = state(ti)  → state(ti+1)

Isolation = Intermediate results of a

Transactions
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Isolation  Intermediate results of a 
transactions are hidden 
to other transactions

Durability = Result of a committed 
transaction is persistent



Properties of Transactions

 Consistency:
 transactions retain internal consistency of the data base

 many kinds of integrity                                                            

 unique keys

f ti l i t it

Transactions
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 referential integrity

 fixed relationships hold

 responsibility belongs to the programmer, not to the data 
base

 if each transaction is consistent, then all sequences of 
transactions are as well  



Properties of Transactions

 Isolation:

 result of running multiple concurrent transactions 
is the same as running them in complete isolation

Transactions
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 often called “serializability” 



Properties of Transactions

 Durability:

 once committed, “un-undoable”

 can be “compensated” for though 

Transactions
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• ATOMICITY   Undo

• CONSISTENCY Be a good programmer

How to achieve ACID-Principle?

Transactions
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• ISOLATION Serializability and locking

• Durability Stable storage, logging



BeginTransaction BeginTransaction
old_balance := if bank.read(“espen”) -

bank.read(“gerd”);        bank.read(“gerd”) != $1M
new_balance := then CallTheSEC();
old_balance + $1M; EndTransaction(&commit)
bank.write(“espen”,

new_balance);
EndTransaction(&commit)

Consistency Predicate 

Transactions
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EndTransaction(&commit)

The above  consistency predicate is quite simple: 
“Espen always has 1 M$ more than Gerd”.

SEC = Security and Exchange Commission

As long as one transaction’s operations happens entirely 
before(after) the other, consistency is still valid.

However, interleaving of these operations might violate consistency!

1Espens’s favorite bank



Transaction Types

 Flat Transactions
 No commit of partly successful transaction operations is 

possible

 Nested Transactions

Transactions
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 Nested Transactions
 Sub- and sub-sub-transactions
 ACID-Principle valid only for top-level transaction

 Distributed Transactions



Nested/Distributed Transaction 

Nested Transaction Distributed Transaction

subtransaction subtransaction subtransaction subtransaction

Transactions
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Airline DB Hotel DB

2 different (independent)
data bases

2 physically separated
parts of the same data base



Serializability

 Remember sequential consistency:
 Execution order is consistent with some sequential 

interleaving of loads and stores in program order

 Serializability is the same, but at transaction level

Transactions
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 Transactions appear to execute in serial (one at a time) order

 preserves any consistency property of the data base

 system does not need to know consistency properties

 untyped transactions

 can introduce new transactions without worrying about interactions



Serializability: A Powerful Abstraction

 Important abstraction for constructing parallel programs

 Designing a transaction can be done in “splendid isolation”              
 an important software-engineering argument

 You can compose transactions                                                      

Transactions
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p

 a modularity argument

 You can verify using pre- and post-conditions                                 

 thanks to isolation and consistency



Main Modules of Transaction Systems

We have to offer mechanisms supporting

 Concurrency Control of Transactions

Transactions
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Remark: Both concurrency and recovery may be 
implemented as isolated modules

 Recovery of faulty Transactions 



Transaction Manager

Scheduler

start abort commit read write

Transaction Transaction

Transactions
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Data Base
read write

Recovery Manager

Buffer Manager

abort commit read write



Terminated Committed

start

commit

tm_commit

Transaction States 

Transactions
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Undefined Active

Failed Aborted

Undefined

abort

tm_rollback

tm_abort



Definition: Transaction Ti is a sequence of reads ri and/or 
writes wi, opened via start si and closed either 
via commit ci or abort ai

Transaction 

Transactions
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Remarks: A single transaction T is per se serial, i.e. 
all its operations are totally ordered. 

However, concurrent transactions may lead to conflicts,  
as we have seen in the previous examples. 

Result of a single transaction is unambiguous.



Definition: p(x) Ti and q(y)  Tj are conflicting
operations p  q, if 

(1)   they access the same data item, i.e. x = y and    
(2)   they belong to different transactions, i.e. i  j and

Conflicting Operations

Transactions
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Objective: Find a schedule, i.e. find a way of controlling 
c concurrent transactions Ti, such that the result 
is equivalent to one of the c! serial schedules.

(3)   at least one of them is a write,                              
i.e.  p = w or q = w



Definition: Two operations p() and q() are commutative, 
if in any state, executing them in any 
order p S q or q S p, you

- get the same result
l h h

Commutative Operations

Transactions
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- leave the system in the same state

Examples of commutative operations:
- operations on distinct data items
- reads from the same data item

Conclusion:
Commutative operations can be executed in any order 



Definition: A schedule S of concurrent {T1, T2, … Tn} is a
partial ordered set of all transaction operations 
(i.e. reads ri,k and/or writes wj,k) with 
following properties:

Schedule

Transactions
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1. Suppose p, q  Ti and p i q, 
i.e. p precedes q in Ti, then: p S q
(sequence of operation within a transaction is preserved)

2.  p, q S: p  q 
either p s q   or    q s p,
(for all conflicting operations we have to find a sequence) 



T1 w(x) r(x) c1

T2 w(y) r(y) c2

S’

Inconsistent Schedule

Not valid 
!!

Transactions
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S’: w(y) r(y) c2 r(x) w(x) c1

S‘ violates condition 1



Execution of a Schedule

T1 T2 T3
read(x)

write(x)

read(x)

write(x)

T2:               r2(x) → w2(y) → a2

T3:  r3(x) → w3(x) → w3(y) → c3

Transactions
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( )

read(x)

write(y)

commit

write(y)

abort

commit

T1:  r1(x) → w1(x) → c1

Remark: The execution of as schedule
determines the schedule but
not vice versa!



T1 T2

write(x)
read(x)
commit

time abort

Recoverability

Transactions
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Remark: The above schedule is not recoverable, 
because T2 already has been committed,
even though it had read data x which is not valid any longer.

time abort

Definition: A transaction T reads from another transaction T’, 
if T reads data items that have been written by T’ before.



Recoverability

Definition: A schedule S is recoverable (S RC)
if each transaction T in S is committed 
only if all transactions T’, from which T 
had read before are either committed

Transactions
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had read before, are either committed 
or aborted.

In the last case you have to undo transaction T.



T1 T2

write(x)
read(x)

time

T3

read(y)
abort

write(y)

Dirty Read

Transactions
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time

Remark: This schedule is recoverable, 
however transactions T2 and T3 have to be rolled back.

Definition: A schedule S avoids cascading aborts (S  ACA), 
if no transaction ever reads 
not-yet-committed data.

abort
commit

commit



T1 T2

write(x,2)
write(x,3)

Initially x = 1

commit

Dirty Write (1)

Transactions
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Remark: You have to ensure that the committed value x=2 
will be reinstalled,
you need a before-image (rolling back transaction T2).

time
commit

abort



T1 T2

write(x,2)

write(x,3)

Initially x = 1

Dirty Write (2)

Transactions
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Remark: You do not have to reinstall x=1 in this case, 
because before T1 is aborted the data object x 
already got a new consistent value x=3.

( , )

time
abort

commit



T1 T2

write(x,2)

Initially x = 1

abort
write(x,2)

Dirty Write (3)

Transactions
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Remark: In this case you have to reinstall x=1, 
because both transactions abort 
and both have to be rolled back.

Result:   Overwriting uncommitted data may lead to recovery problems ! 

time
abort

Definition: Schedule S is strict (S  ST) if no transaction 
reads and overwrites non-committed data



First Idea: Serial Schedule

Run all transactions completely serially =>

 transactions ordered according to some serial    order

 the simplest order is the order in which the transactions 
arrive to the system

Transactions
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Potential implementation:
Use one central lock for all transactions, 
each transaction is a critical section.

arrive to the system

 drawback: “no performance” at all



Definition: A schedule S is serial if the following holds 
for each pair of transactions <T, T’>  S:
either all transactions operations of T precede
all transaction operations of T’ or vice versa.

Serial Schedule

Transactions
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Conclusion: Suppose each transaction T to be scheduled 
is correct, i.e. after its execution the data base
is consistent, then each serial schedule S
is correct.



Problem:
Suppose there are 2 transactions T and T’. 
Are the results of both serial schedules identical?

Not at all!

Properties: Serial Schedule

Transactions
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Not at all!
Simple example: 3 accounts: acc1, acc2, acc3



T: sumup(acc1, acc2, sum) and 

T’: transfer (acc1, acc3, 1 000 €)



Construct a schedule being equivalent to a serial schedule

Definition: 2 Schedules S and S’ are equivalent,          
if their output results are identical and 
if th d t b t i th d t

How to get a Correct Schedule?

Transactions
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if the data base contains the same data.          

Definition: A schedule S is serializable (S  SR), 
if its committed projection C(S) is 
equivalent to a serial schedule..          

C(S)  S: skip all transaction operations 
belonging to not committed transactions in S



T1

read1(x)

write1(x) write2(x)

T2
read2(x)

T3

read3(x)

Schedule S

Commited Projection

Transactions
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write1(x)

commit1

write2(x)

write2(y)

commit2

read3(x)

write3(y)

abort

Committed
projection 
of Schedule S



Assumptions: Serializable Transactions

 Date base consistency requirements are application specific       
 e.g. Espens’s additional 1 M $

 Semantics of per-item operations are understood by system
 Read bank account

Write bank account

Transactions
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How to find an easy way 
to construct serializable schedules?

 Write bank account

 Each operation onto a data item of the data base is atomic         
 Reading a bank account is a single operation that either

 occurs or it does not. It can not partially occur.



Towards Serializable Schedules

In order to decide during the execution of transactions,
whether they contribute to a serializable schedule, 
we need a definition for equivalent schedules:

Definition: Two schedules S and S’ are said to be conflict-
equivalent, if they contain the same transaction

Transactions
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operations and if they resolve their conflicts 
in the same way, i.e. the following holds:
 conflicting transaction operations, i.e. p  q:

p S q    p S’ q

 2 conflict-equivalent schedules produce the same result.

Remark: 2 schedules S and S’ may produce same results,
even if they are not conflict-equivalent.



Definition: A schedule S is said to be conflict-serializable
(i.e. S CSR), if its committed projection C(S) 
is conflict-equivalent to a serial schedule.

Towards Serializable Schedules

Transactions
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 Serializability is independent of strictness or recoverability, 
i.e. in general a serializable schedule can be incorrect! 

Definition: A schedule S is correct, if it is serializable
and recoverable



read1(x)

read1(y)

write1(y)

T1

write2(x)

T2 S0 is not yet determined,
due to write conflicts on x and y

Examples of Schedules

Transactions
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write1(x)

commit1

( )

read2(z)

write2(y)

commit2



read1(x)

read1(y)

write1(y)

T1

write2(x)

T2

S1 not yet determined (write conflicts on x)

S0 is not yet determined,
due to write conflicts on x and y

Examples of Schedules

Transactions
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write1(x)

commit1

( )

read2(z)

write2(y)

commit2



read1(x)

read1(y)

write2(x)

T1 T2

S1 not yet determined (write conflict on x) 

S0 is not yet determined,
due to write conflicts on x and y

Examples of Schedules

Transactions
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read1(y)

write1(y)

write1(x)

commit1

read2(z)

write2(y)

commit2

S2 completely determined, not serializable 
(the order of writes on x and y is reverse)



read1(x)

d1( )

write2(x)

T1 T2

S1 not yet determined (write conflict on x) 

S0 is not yet determined,
due to write conflicts on x and y

Examples of Schedules

Transactions
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read1(y)

write1(y)

write1(x)

commit1

read2(z)

write2(y)

commit2

S3 completely determined, not serializable

S2 completely determined, not serializable 
(the order of writes on x and y is reverse)



read1(x)

read1(y)

write2(x)

read2(z)

T1 T2

S1 not yet determined (write conflict on x) 

S0 is not yet determined,
due to write conflicts on x and y

Examples of Schedules

Transactions
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write1(y)

write1(x)

commit1

read2(z)

write2(y)

commit2 S4 completely determined and serializable, 
equivalent to the serial schedule
S’: T2 S’ T1

S3 completely determined, not serializable

S2 completely determined, not serializable 
(the order of writes on x and y is reverse)



Definition: The serialization graph of a schedule S is a 
digraph (directed graph), 
whose nodes are all committed transactions.

h d f ff h

Serialization Graph

Transactions
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There is an edge from Ti to Tj iff there is 
a pair of conflicting transaction operations,  
i.e. pi  Ti and qj  Tj and  pi S qi



T1

read1(x)

write1(y) write2(x)

T2

read2(x)
T3

read3(x)

T1

Example of a Serialization Graph

Transactions
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write1(y)

commit1

write2(x)

write2(y)

commit2

read3(x)

write3(y)

commit3Schedule S

T2

T3

Serialization Graph SG(S)



A shedule S is conflict-serializable if its 
serialization graph SG(S) is acyclic!

Serializability Theorem

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 79

Conclusion: Running concurrent transactions we have 
to guarantee, that executing their transaction
operations concurrently does not imply that
the corresponding SG(S) becomes acyclic.

Remark: Serializablity is necessary, but not sufficient for a correct
schedule of concurrent transactions



Achieving Serializability 

Problem:

A scheduler of concurrent transactions is responsible 
for achieving a schedule with some desired properties, 
i.e. serializability, recoverability etc. 

The scheduler can not alter the transaction operations

Transactions
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The scheduler can not alter the transaction operations 
of these concurrent transactions, but it can:

(1) Execute the transaction operation immediately

(2) Postpone its execution (changing the ordering)

(3) Reject its execution, thus aborting its transaction



Summary of Schedules

Recoverable schedules

Schedules avoiding
Cascading aborts

Serializable schedule

Transactions
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Cascading aborts
Strict schedules

Serial schedules

Correct schedules



sched le

T1 T2 Tn

Scheduler 

Sequence F of 
transaction operations

Scheduler has to produce a desired schedule*

(e.g. a serializable one):

1. Immediate execution of an operation

2 D l f i f i

Transactions
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data base

data objects

Sequence F’ of 
data operations

scheduler2. Delay of execution of an operation,
to reorder the sequence

3. Refuse an operation (leading to
an abort of the transaction)

*without affecting the operations



Reordering of Commuting Operations

The order of 2 commutative consecutive operations of            
different transactions within a schedule S can be changed
without affecting the result of the reordered schedule S’. 
This reordering is called a legal swap.

R k

Transactions
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Remark:

If schedule S can be transformed into a serial S’ 
via some legal swaps, S is conflict serializable.



T1 T2

read(x)
write(x)

read(y)
write(y)

read(x)
write(x)

read(y)
write(y)

Transactions
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write(y)



T1 T2

read(x)
write(x)

read(y)
write(y)

read(x)
write(x)

read(y)
write(y)

legal
swap

T1 T2

read(x)
write(x)

read(y)

write(y)

read(x)

write(x)

read(y)
it ( )

Transactions
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write(y) write(y)

Are there further legal reordering possibilities leading to a serial schedule?



T1 T2

read(x)
write(x)

read(y)
write(y)

read(x)
write(x)

read(y)
write(y)

legal
swap

T1 T2

read(x)
write(x)

read(y)

write(y)

read(x)

write(x)

read(y)
it ( )

legal
swap

T1 T2

read(x)
write(x)
read(y)

write(y)

read(x)
write(x)

read(y)
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write(y) write(y)
(y)

write(y)



T1 T2

read(x)
write(x)

read(y)
write(y)

read(x)
write(x)

read(y)
write(y)

legal
swap

T1 T2

read(x)
write(x)

read(y)

write(y)

read(x)

write(x)

read(y)
it ( )

legal
swap

T1 T2

read(x)
write(x)
read(y)

write(y)

read(x)
write(x)

read(y)legal
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write(y) write(y)
(y)

write(y)

T1 T2

read(x)
write(x)
read(y)

write(y)
read(x)

write(x)
read(y)
write(y)

swap



T1 T2

read(x)
write(x)

read(y)
write(y)

read(x)
write(x)

read(y)
write(y)

legal
swap

T1 T2

read(x)
write(x)

read(y)

write(y)

read(x)

write(x)

read(y)
it ( )

legal
swap

T1 T2

read(x)
write(x)
read(y)

write(y)

read(x)
write(x)

read(y)
it ( )

legal
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write(y) write(y) write(y)

T1 T2

read(x)
write(x)
read(y)

write(y)
read(x)

write(x)
read(y)
write(y)

swap

legal
swap

T1 T2

read(x)
write(x)
read(y)
write(y)

read(x)
write(x)
read(y)
write(y)Result: Serial schedule



Implementing Serializability

 Implementing serializability efficiently is to recognize                       
conflicting versus commutative operations.

 Two main approaches:

 Conservative, pessimistic protocol via locking mechanisms  

Transactions
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We’ll focus on 
pessimistic protocols

, p p g
(similar to read/write locks)

 Optimistic protocol via timestamps sometimes has to abort                    
a transaction if a conflict is discovered 
(see J. Bacon: Concurrent System, Chapt. 18)



Conservative Approach

We need 

 Lock Types for the “Data Items” 
(similar to those for the Reader/Writer Problem)

d

Transactions
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and a

 Locking Protocol
(establishing the serializability)



Two Lock Types

 ReadLock (shared lock)
 ReadLocks may increase concurrency level

 WriteLock (exclusive lock)

Transactions
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Discuss the semantics of both lock types!

( )
 WriteLocks may decrease concurrency level



C tl

Concurrency of the Two Lock Types

 ReadLock (shared lock)

 WriteLock (exclusive or conflicting lock)

Transactions
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ReadLock

ReadLock WriteLock

WriteLock

Concurrently
held Locks

yes no

no no



Locking Granularity in a Data Base

Transactions
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Pro:  No deadlocks within the data base

Con: No concurrency at all



Locking Granularity in Data Base

Transactions
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Pro:  Enhanced concurrency

Con: Enhanced danger of deadlocks, 
improved locking overhead



Locking Granularity in Data Base

Transactions
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Pro:  Optimal concurrency

Con: Enhanced danger of deadlocks, 
maximal locking overhead



Two Phase Locking Protocol

Scheduler has to obey the following rules:

(1)  Acquire a ReadLock before reading the data item

(2)  Acquire a WriteLock before writing to the data item

(3) Conflicting locks block the invoking transaction

Transactions
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(3)  Conflicting locks block the invoking  transaction
 RW, WR, WW

(4) Can not acquire another lock 
after releasing a previous one



Two Phase Locking Protocol

Result:

Guarantees that any two transactions which influence
one another (RW, WR, WW) are serialized

Transactions
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 the conflict inducing transaction will be blocked

 releasing the lock will unblock the 
blocked transaction some time later



Two-Phase-Locking Protocol

1. Each transaction has to lock a data item with the 
appropriate lock type before accessing this data item

2. Wait until consistent locking is possible

3. After unlocking the first lock no further locking is allowed

Transactions
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4. Unlock all locks at the end of the transaction!!!

Requirement 3 determines the name of this protocol. 
In the first phase, transactions can acquire their locks.
In the second phase, they only release their locks.

What’s the basic idea behind requirement 3?



Transactions

T1 T2
read_lock(x)

read(x)
read_unlock(x)

write_lock(x)
write(x)

write_lock(y)
write(y)

write_unlock(x)
i l k( )
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Remark: Due to the read_unlock(x) within T1  a so called cyclic dependency 
between T1 and T2, i.e. read1(x) < write2(x) and write2(y) < write1(y),
leading to a non serializable schedule.

write_unlock(y)
commit

write_lock(y)
write(y)

write_unlock(y)
commit



Transactions

The normal two-phase-locking protocol enables serializable schedules,
however, the schedule does not have to be recoverable.

Example:

Drawback of Two-Phase-Locking Protocol 

T1 T2
write_lock(x)

write(x)
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 Introduce the following additional requirement:

5. All acquired locks are held until the end of the transaction.

write_unlock(x)
read_lock(x)

read(x)
read_unlock(x)

commit
abort



Transactions

Strict 2-Phase Locking Protocol

1. Each transaction has to lock a data item with the 
appropriate lock type before accessing this data item

2. Wait until consistent locking is possible

3. After unlocking the first lock no further locking is allowed   
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4. Unlock all locks at the end of the transaction!!!

5. All acquired locks are held until the end of the transaction.

Result: A strict two-phase-locking protocol produces strict 
schedules being recoverable and avoiding cascading aborts



Transactions

time

start commit

“Conservative” 2-P-L

Pro: No Deadlock
Con: All Locking must be known in advance, reduced Concurrency

All locks needed within the transaction have to be set at start time!
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Transactions

time

start commit

“Conservative” 2-P-L

“Normal 2-P-L”
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time

start commit

Pro: Maximal Concurrency Con: Potential Deadlocks,
Serializability Not Recoverable



Transactions

time

start commit

Conservative 2-P-L

“Normal 2-P-L”
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time

start commit

time

start commit

Strict 2-P-L

Pro: Serializability + Recovery Con: Reduced Concurrency
Potential Deadlocks



Transactions

Locks and Deadlocks

Locks often increase the possibility of deadlocks
 T1 waits for T2 waits for T1

 T1: Read1(x) Write1(y) Commit
 T2: Write2(y) Write2(x) Commit
 Schedule: ReadLock1(x) Read1(x) WriteLock2(y) Write2(y)

W it L k1( ) W it L k2( )
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WriteLock1(y) WriteLock2(x)

 Can also happen during “lock conversion”
 T1: Read1(x) Write1(x) Commit
 T2: Read2(x) Write2(x) Commit
 Schedule: ReadLock1(x) Read1(x) ReadLock2(x)

WriteLock1(x) WriteLock2(x)

Remark: Deadlock detection can be restricted to all blocking events



Transactions

Problems with Abort due to a Deadlock

Increases load on the system:
 occurs at exactly the wrong time
 we already have contention, that’s why we possibly got a deadlock
 we have to retry the whole transaction

May have cascading aborts if we played it fast
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May have cascading aborts if we played it fast
and loose with ReadLocks

 T1 sees T2’s actions sees T3’s actions …
 if no abort, all is OK
 if T3 aborts, T2 aborts, T1 aborts



Transactions

Improving Locking Performance

 Aborting long running transactions can really hurt
 for example, reconciling a bank data base

 Weaker locking protocols can help
 may not ensure serializability, but can be “close enough”

 e.g. how much money does the bank have

 Degree 3 is “fully serializable”
t bl d
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 repeatable reads

 Degree 2 serializability (cursor stability)
 release a read lock immediately after use

 can only see results of committed transactions

 Degree 1 serializability allows even reads on uncommitted data
 “dirty reads”

 no locks at all

 the airlines??

 Updated transactions remain serializable



Transactions

Short Overview on Recovery

We have to discuss the potential of failures on to

 Atomicity
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 Durability



Transactions

Types of Failures

 Transactions failures

 System crash
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 Memory failures        



Transactions

Transaction Failures

Causes:
 Internal inconsistency or

 Decision of the transaction management system due to
 Deadlock
 External inconsistency
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y
 Scheduler

Actions:
 Undo transaction completely



Transactions

System Crashes

Causes:
 OS failures
 Power failure
 Failure in the transaction management system
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Actions:
 Recover the last committed state
 Redo committed but lost modifications
 Cancel all modifications of uncommitted 

transactions



Transactions

Memory Failures

Causes:
 Bugs in Device Drivers
 Hardware faults: controller, bus, etc.
 Mechanical demolition (head crash)
 Losses in magnetism of disk surfaces
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 Losses in magnetism of disk surfaces

Actions:
 Copies of all data at different storage locations
 If database is not up to date, redo the effects of 

all meanwhile committed transactions



Transactions

Principal Recovery Mechanisms

Logging
 Any state of a data object results in some sequence of operations

 If you log this sequence you can reproduce any intermediate state 

starting with some confirmed state

 Too much overhead that’s why you note only periodical checkpoints

 The only 2 Operations needed:
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y p
 Undo and

 Redo 

Shadowing
 If you modify some data you do not overwrite the old value of the data object,

but you produce a new version

 If the transaction will be committed the new version is the only valid version



Transactions

Interaction of different Components

T1 T2 T3 Tn

t ti
scheduler

start, read, write, abort, commit
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transaction
manager

recovery manager
(RM)

cache manager

read, write

read, write, abort, commit

stable
storage

Log

volatile
storage
(cache)

read
write

read
write

fetch
flush



Transactions

The Log (write-ahead logging)

A log should represent the execution sequence of the transactions:

It contains entries of the following notion:

<Ti, x, v>, whereby Ti = TID of the transaction
x = data object
v = value (old, new)

f h it th d t b
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for each write on the data base.

A log-entry is transferred to the stable storage immediately before the
write on the database.

Other special log records exist to maintain significant events during
transaction processing (e.g. start, commit, abort etc.)

The above log-entries are totally ordered and represent exactly
the execution sequence of the transactions.



Transactions

The Log (write-ahead logging)

The recovery algorithm uses the following two operations

 undo(Ti), which restores the values of all data                
updated by Ti to the old values

 redo(Ti), which sets the values of all data                      
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updated by Ti to the new values

Remark:

Both recovery operations must be idempotent, 
i.e. multiple executions of an operation have the same result 
as does only one execution



Transactions

Simple Recovery Algorithm

 If transaction T aborts, we can restore the previous state of the data base 
by simply executing undo(T).

 If there is a system failure, we have to restore the state of all updated data
by consulting the log to determine, which transaction need to redone and 
which transaction need to be undone.
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The following holds:

 Transaction T must be undone if the log contains the entry <T, start>,
but does not contain the entry <T, commit>.

 Transaction T must be redone if the log contains both records 
<T, start> and <T, commit>



Transactions

Analysis of Simple Recovery Algorithm

 When a system failure occurs in principle we have to search 
the entire log, which may be a bit time consuming.

 Furthermore some of the transaction have to be redone 
even though their updated results are already on disk.

 To avoid this type of overhead we introduce
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 To avoid this type of overhead, we introduce
periodical checkpoints with the following actions:

1. Output all log records onto stable storage
2. Output all modified data onto stable storage
3. Output a log record <checkpoint> onto stable storage.



Transactions

time

last checkpoint failure

T1: No additional actionT1
T2

T3
T4

T2: redo

T3: undo
T4: redo
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T4

T5

T4: redo

T5: undo



Transactions

Managing the Log

The recovery manager is based on the three lists:               
 active list (all current transactions)

 commit list (all committed transactions)

 abort list (all aborted transactions)
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( )

The recovery manager deletes an entry (Ti, x, v) 
 if the transaction Ti has been aborted

 if the transaction Ti has been committed and 

 if some other transaction has overwritten x 

with a new value v’.



Transactions

Cache Management
Due to performance reasons current data are kept in a buffer in main 
memory, i.e. in a volatile memory portion.

The buffer is organized as a set of cells each containing a complete disk 
block. Each cell has an dirty bit indicating whether the content in both 
storage media is identical.

The buffer maintains a buffer directory containing 
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data item cell number 
x 2 
y 1 
: : 

 

 

cell number dirty bit content 
1 0 ‘34589.56’ 
2 1 “New York” 
: : : 

 
 buffer directory buffer

y g
all current cells and cell numbers.



Transactions

Operations of Cache Manager

The cache manager supports the following four operations:

 Flush(c) If dirty-bit = set, cell c is written to disk

 Fetch(x) Select a cell c and copy x from disk to c, 
dirty bit(c) =0, and update buffer directory. If 

th i f ll l t ll ‘ d fl h( ‘)
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there is no free cell, select a cell c‘ and flush(c‘).

 Pin(c) Prevents flushing of cell c

 Unpin(c) Enables flushing of cell c



Transactions

Recovery

 How to manage recovery depends on the way the resource and the 
cache manager handle data in the buffer.

 Transfer of modifications:
 During a commit all modifications of a transaction are written to disk
 After a commit of a transaction there are still some modified data in
 the buffer not yet having been saved to disk

R l t li
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 Replacement policy:
 All modifications of a transaction are kept in the buffer until a commit 
 The cache manager may even write uncommitted data to disk 

 To keep overhead of recovery low it would be preferable if 
uncommitted data are kept only within the buffer and if committed 
data are only on disk.
However, this results in an increased overhead.
That‘s why in practice one chosses some compromise.



Transactions

Situations in Volatile/Stable Storage

buffer (main memory) stable storage (disk)

I

II
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non committed data committed data

II

III

IV



Transactions

situation types of data 
in the buffer 

types of data 
on the disk 

needed 
operations

needed data 

I only non 
committed 

only  
committed 

- - 

II itt d + l d ft

Overview on Recovery Mechanisms
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II committed + 
non committed

only 
committed 

redo after
images 

III only non 
committed 

committed + 
non committed 

undo before 
images 

IV committed + 
non committed

committed + 
non committed 

redo + 
undo 

before + 
after images 

 
 



Transactions

Shadowing

 Shadowing is an alternative to recovery via logging.

 The algorithm:
 Modifications within a transaction don‘t overwrite the old value,

they are producing a new version of the modified data item.
 Each transaction maintains two directories with references to all its 

data items
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data items 
 One -the so called current- directory points to commited values, only. 
 The other directory points to the modified data items (the shadow 

versions)
 With an abort of a transaction all shadow data are deleted.
 With a commit the shadow directory takes the role of the current 

directory.

Remark: We have to guarantee that commit is an atomic operation 
(inclusive the writing to the disk).



Transactions

Master

Master

Directory 
Copy 0

Directory 
Copy 0

Directory 
Copy 1

x
y
z

x
y
z

x
y
z

Last committed value of x
Last committed value of y
Last committed value of z
Ti‘s new version of x
Ti‘s new version of y

Last committed value of x
Last committed value of y
Last committed value of z
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Master

Directory 
Copy 0

Directory 
Copy 1

Directory 
Copy 1

x
y
z

x
y
z

x
y
z

Last committed value of z
Ti‘s new version of x
Ti‘s new version of y

Last committed value of z
Last committed value of x
Last committed value of y

Shadow version of x
Shadow version of y



Distributed Transactions

Communication Network
Transaction

manager TM1

T1,1 T1,2 T1,t1...

Transaction
manager TM2

T2,1 T2,2 T2,t2...

Transaction
manager TMn

Tn,1 Tn,2 Tn,tn...

System of Transactions
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Scheduler S1

Resource
manager RM1

Data base

Scheduler S2

Resource
manager RM2

Data base

Scheduler Sn

Resource
manager RMn

Data base



Assumptions

 Homogeneous system, 
each node has a local transaction manager TM

 Each node manages its own data (no replicas)

 Each transaction send its operations to its local transaction 
manager TM

Distributed Transactions
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 If the data is not local, local TM sends request to remote TM

 On a commit and on an abort the TM has to notify all nodes, being 
affected by the transaction



Potential Failures

Node Failures:

 If node crashes, assume that the node stops immediately,
i.e. it does not perform any operations anymore

The content of volatile memory is lost
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 The content of volatile memory is lost
and the node has to restart again

 A node is either active (i.e. working correctly) or  
inactive (i.e. does not respond anymore)



Potential Failures

Network Failures:

 Broken connection

 Faulty communication software

Crashed intermediate node (bridge gateway etc )
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 Crashed intermediate node (bridge, gateway etc.)

 Lost of a message

 Altered message

 Partitioning of the network



Managing Failures

 Many failures are handled on lower layers 
of the communication software

 However, a few of them have to be handled 
on layer 7 within the transaction manager

 The origin of failures on other nodes cannot be detected
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 The origin of failures on other nodes cannot be detected 

 We have to rely on time outs, i.e. we only can conclude 
that there might be a failure



Coordination of Distributed Transactions

 Central Scheduler,
i.e. one node is the only scheduler, 
responsible for granting or releasing locks
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 Primary 2 phase locking each data item is 
assigned a primary copy

 Decentralized coordination



Transaction
manager TM1

T1,1 T1,2 T1,t1...

Transaction
manager TM2

T2,1 T2,2 T2,t2...

Transaction
manager TMn

Tn,1 Tn,2 Tn,tn...

Centralized Scheduler
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communication network

Resource
manager RM1

Data base

Scheduler S

Resource
manager RM2

Data base

Resource
manager RMn

Data base



Centralized Scheduler

Analysis:

 We can use 2 phase locking protocol, S has a global view on
all locks within the DS

 Single point of failure This is the most common 
point of all drawbacks
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This is the most inconvenient 
point of all drawbacks

 Scheduler may become a bottleneck (bad for scalability)

 Nodes are no longer really autonomous

 Even pure local transaction have to be sent to the central scheduler


