
Distributed SystemsDistributed Systems

13 Distributed Transactions13 Distributed Transactions

1© 2009 Universität Karlsruhe, System Architecture Group

Virtual Lecture
Part of other Lectures

June 29 2009
Gerd Liefländer

System Architecture Group

Schedule of Today

Transactions in Local systems

Characteristic of Transactions

Serializability How to support
distributed applications

© 2009 Universität Karlsruhe, System Architecture Group 2

Two Phase locking Protocol

Distributed Transactions

The above topics will not be examined in this course

distributed applications
on Data Bases

The Transaction Model (1)

 Updating a master tape is fault tolerant.

© 2009 Universität Karlsruhe, System Architecture Group 3

The Transaction Model (2)

Primitive Description

BEGIN_TRANSACTION Make the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

© 2009 Universität Karlsruhe, System Architecture Group 4

 Examples of primitives for transactions.

ABORT_TRANSACTION Kill transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

The Transaction Model (3)

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi;

END_TRANSACTION
(a)

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION
(b)

© 2009 Universität Karlsruhe, System Architecture Group 5

a) Transaction to reserve three flights commits

b) Transaction aborts when third flight is unavailable

()

Distributed Transactions

© 2009 Universität Karlsruhe, System Architecture Group 6

a) A nested transaction b) A distributed transaction

Private Workspace

© 2009 Universität Karlsruhe, System Architecture Group 7

a) The file index and disk blocks for a three-block file
b) Situation after a transaction has modified block 0 and appended block 3
c) After committing

Writeahead Log
x = 0;
y = 0;
BEGIN_TRANSACTION;
x = x + 1;
y = y + 2
x = y * y;

END TRANSACTION;

Log

[x = 0 / 1]

Log

[x = 0 / 1]
[y = 0/2]

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]

© 2009 Universität Karlsruhe, System Architecture Group 8

a) A transaction

b) – d) The log before each statement is executed

END_TRANSACTION;
(a) (b) (c) (d)

Concurrency Control (1)

© 2009 Universität Karlsruhe, System Architecture Group 9

 General organization of managers for handling transactions.

Concurrency Control (2)

© 2009 Universität Karlsruhe, System Architecture Group 10

 General organization of managers for handling
distributed transactions.

Serializability
BEGIN_TRANSACTION
x = 0;
x = x + 1;

END_TRANSACTION

(a)

BEGIN_TRANSACTION
x = 0;
x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION
x = 0;
x = x + 3;

END_TRANSACTION

(c)

Schedule 1 x = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3 Legal

© 2009 Universität Karlsruhe, System Architecture Group 11

a) – c) Three transactions T1, T2, and T3

d) Possible schedules

Schedule 2 x = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3; Legal

Schedule 3 x = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3; Illegal

(d)

Two-Phase Locking (1)

© 2009 Universität Karlsruhe, System Architecture Group 12

 Two-phase locking.

Two-Phase Locking (2)

© 2009 Universität Karlsruhe, System Architecture Group 13

 Strict two-phase locking.

Pessimistic Timestamp Ordering

© 2009 Universität Karlsruhe, System Architecture Group 14

 Concurrency control using timestamps.

Transactions

Transactions

Notion: A transaction is a sequence of operations
performing a single “logically composite”
function on a shared data base.

Remark:

© 2009 Universität Karlsruhe, System Architecture Group 15

Remark:

Transaction derives from traditional business deals:

 You can negotiate changes until you sign on the
bottom line

 Then you are stuck

 And your peer is also stuck

Some Examples

 Reserve a seat for a flight from Frankfurt to JFK in NY

 Transfer money from your account to mine

 Withdraw money from an automatic teller machine

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 16

 Buy a book from amazon.com

 Apply a change to a name server

Control of Concurrency

 Critical sections
 Basic mechanism to enhance data consistency

 Application programmer has to place locks or
semaphores for himself

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 17

ap o o

 Higher Concept
 Automatically enforcing consistency

 Support for multiple critical sections

 Consistency even with failures and crashes

Early „Transaction Model“

computer

Previous inventory

New inventory

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 18

p

Current updates

y

Updating a master tape is fault tolerant.
If a failure occurs, just rewind the tapes and restart.

{Transfers money from ACC1 to ACC2}
T1: Transfer(ACC1, ACC2, Amount)

{Part1: Take money from ACC1}
balance1 := Read(ACC1)
balance1 := balance1 - Amount
Write(ACC1, balance1) {debit ACC1}
{Part2: Put money to ACC2}

Example (1)

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 19

balance2 := Read(ACC2)
balance2 := balance2 + Amount
Write(ACC2,balance1)

Problems due to concurrent transactions?

{Sum up the balance of both accounts ACC1 and ACC2}
T2: SumUp(ACC1, ACC2, sum)

sum1 := Read(ACC1)
sum2 := Read(ACC2)
sum := sum1 + sum2

{Transfers Amount money from ACC1 to ACC2}
T1: Transfer(ACC1, ACC2, Amount)

{Part1: Take money from ACC1}
balance1 := Read(ACC1)
balance1 := balance1 - Amount
Write(ACC1, balance1) {debit ACC1}

{S th b l f b th ACC1 d ACC2}

Example (1’)

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 20

{Sumup the balance of both ACC1 and ACC2}
T2: SumUp(Acc1, ACC2, sum)

sum1 := Read(ACC1)
sum2 := Read(ACC2)
sum := sum1 + sum2

{Part2 of T1: Put money to ACC2}
balance2 := Read(ACC2)
balance2 := balance2 + Amount
Write(ACC2,balance1)

{Transfers Amount money from ACC1 to ACC2}
T1: Transfer(ACC1,ACC2,Amount)

{Part1: Take money from ACC1}
balance1 := Read(ACC1)
balance1 := balance1 - Amount
Write(ACC1, balance1)
{Part2: Put money to ACC2}
balance2 := Read(ACC2) {old value of ACC2}
{Transfers Amount money from ACC3 to ACC2}

Example (2) “Lost Update Problem”

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 21

{Transfers Amount money from ACC3 to ACC2}
T2: Transfer(ACC3,ACC2,Amount)

{Part1: Take money from ACC3}
balance3 := Read(ACC3)
balance3 := balance3 - Amount
Write(ACC1,balance1)
{Part2: Put money to ACC2}
balance2 := Read(ACC1)
balance2 := balance2 + Amount
Write(ACC2,balance1)

balance2 := balance2 + Amount {ommit the red transaction}
Write(ACC2, balance2)

{Transfers Amount money from ACC1 to ACC2}
T1: transfer(ACC1,ACC2,Amount)

{Part1: Take money from ACC1}
balance1 := READ(ACC1)
balance1 := balance1 - Amount
WRITE(ACC1, balance1)

Example (3) (System Failure)

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 22

balance2 := READ(ACC1)
balance2 := balance2 + Amount
WRITE(ACC2, balance2)

Systemcrash

Results in an inconsistent state of data-base.

T1 T2 T3

Critical
section

Motivation

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 23

Remark: A hard programmer’s job in complex systems with
o > 1 shared objects and n >> 1 concurrent threads.

Waiting in
front
of critical
section

Example: Book a flight to a conference at San Diego. However,
you have to stop for two days in NY where you give a talk.

As a client of a travel office you want to know -after some “minutes”-
if you’ll get an seat to JFK, a car from JFK to the workshop hall,
a nearby hotel, a flight to San Diego etc.
And if they give you an OK, you want to be sure that no other client

Motivation

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 24

 Need for a new higher level concept with the
“all or nothing property”:

Either your request can be fulfilled or your fruitless attempt
does not affect the underlying database at all.

Remark: Let’s first have a look at the controlling problem!

y g y , y
-at some other place round the globe- has booked the same seat in one
of your planes or even worse has booked the same room in the hotel!

Composite
operation
on related
data objects

T1 T2 T3

Complex
composite
operations

Approach 1: Strictly Serial Scheduling

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 25

operations
will increase
these delays

Up to now it’s assumed that all simple operations
within a composite operation conflict with each other.

However, if some of these simple operations don’t conflict
We can improve performance significantly

by interleaving their execution

Remark: Works, but with poor performance!

Composite
operation
on related
data objects

T1 T2 T3

Approach 2: Interleaved Scheduling

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 26

We need more concurrency
without violating data consistency

Motivation

Requirements for a higher concept:

 It should automatically enforce data consistency

 It should support different critical sections

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 27

pp

 It should preserve data consistency
even if system errors occur

Transactions

Remark:

The need for transactions is typical for data bases like:

 ticket reservation system

 banking, taxation and assurance systems etc.

ll i l t d h t ithi di t ib t d t

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 28

normally implemented on hosts within a distributed system.

Assumption (for ease of understanding):

 The data base is located completely in main memory!

 Thus we focus on concurrency aspects and postpone
all problems concerning volatile and non volatile memory.

Operations of a Transaction

 An operation within a transaction is any action
that reads from or writes to the shared data base

 A transaction begins with an explicit operation:
 Start (mostly implicitly)

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 29

 Start (mostly implicitly)

 A transaction is terminated with
 either a COMMIT (if successful)

 or an ABORT (otherwise, with implicit rollback)

 COMMIT requests that the effects of the
transaction be “signed off on”

 ABORT demands that the effects of the transaction
be eliminated thus an aborted transaction is like a

Terminating Transactions

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 30

be eliminated, thus an aborted transaction is like a
transaction that has never occurred

 COMMIT is mandatory, ABORT is optional.

{transfer(ACC1, ACC2, Amount)}
begin transaction T account_transfer;
if check_balance(ACC1, Amount)= true
{ACC1 > Amount?}
then begin debit(ACC1,Amount);

credit(ACC2 Amount);

Example for Commit and Abort

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 31

credit(ACC2,Amount);
Commit;

end
else begin print(“not enough money on ACC1”);

Abort;
end

fi
end transaction T;

Importance of Transactions

 Basis of all computer-based funds management (1998)
 about 50 000 000 000 $ per year

 Because COMMIT/ABORT are visible at the application level they
provide a good foundation for customized distributed-processing
control.

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 32

 Operations on the shared data base are “independent” of the
implementation of this shared data base.

Reliability of some logical function can only be expressed
at the level of that logical function

disk disk
FTP client FTP server

Transaction: “End to End” Mechanism

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 33

TCPTCP

Routing Routing

Link Link

Where do the reliability checks go?

Meaning of an “End to End” Mechanism

 Intermediate checks can not improve correctness

 The only reason to check in lower levels
i i f

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 34

is to improve performance

 common case failures need not be dealt with at higher levels

 significantly simplifies programming of distributed applications

Open File Locally
Begin Transaction

Create Remote File
Send Local Contents to Remote
Close File Remotely

End Transaction
Close File Locally

Simple FTP Example

Transactions

This section is critical.
It either happens completely

or it doesn’t.
Entirely and permanently

© 2009 Universität Karlsruhe, System Architecture Group 35

disk disk
FTP client FTP server

TCPTCP

Routing Routing

Link Link

Assume a replicated name server:

We want to be able to apply changes to the name server and know
that changes either took place on both replicas, or at none of them.

BeginTransaction

Transactions for distributed applicat.

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 36

BeginTransaction
nameserver.write(“espen-pc”, xxx.yy.z.007)
nameserver.write(“gerd-tp”,xxx.yy.z.815)

EndTransaction(committed)
if(committed)
then io.put(“transaction complete\n”)
else io.put(“update transaction failed\”)

Client

Server1 replicated data

Implementation

update

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 37

Server2 replicated data

With transactions the above updates will take place on both servers,
or they will take place on none of them,
otherwise the idea of a replicated server must fail.

Characteristics of Transactions

 Clients can crash before/during/after a transaction

 Servers may crash before/during/after a transaction

 Messages can get lost

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 38

 Client requests can come in any order to any server

 Servers can reboot

 Performance is an important goal, otherwise useless

Requirements: ACID-Principle

Atomicity = All or nothing concept

Consistency = state(ti) → state(ti+1)

Isolation = Intermediate results of a

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 39

Isolation Intermediate results of a
transactions are hidden
to other transactions

Durability = Result of a committed
transaction is persistent

Properties of Transactions

 Consistency:
 transactions retain internal consistency of the data base

 many kinds of integrity

 unique keys

f ti l i t it

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 40

 referential integrity

 fixed relationships hold

 responsibility belongs to the programmer, not to the data
base

 if each transaction is consistent, then all sequences of
transactions are as well

Properties of Transactions

 Isolation:

 result of running multiple concurrent transactions
is the same as running them in complete isolation

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 41

 often called “serializability”

Properties of Transactions

 Durability:

 once committed, “un-undoable”

 can be “compensated” for though

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 42

• ATOMICITY Undo

• CONSISTENCY Be a good programmer

How to achieve ACID-Principle?

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 43

• ISOLATION Serializability and locking

• Durability Stable storage, logging

BeginTransaction BeginTransaction
old_balance := if bank.read(“espen”) -

bank.read(“gerd”); bank.read(“gerd”) != $1M
new_balance := then CallTheSEC();
old_balance + $1M; EndTransaction(&commit)
bank.write(“espen”,

new_balance);
EndTransaction(&commit)

Consistency Predicate

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 44

EndTransaction(&commit)

The above consistency predicate is quite simple:
“Espen always has 1 M$ more than Gerd”.

SEC = Security and Exchange Commission

As long as one transaction’s operations happens entirely
before(after) the other, consistency is still valid.

However, interleaving of these operations might violate consistency!

1Espens’s favorite bank

Transaction Types

 Flat Transactions
 No commit of partly successful transaction operations is

possible

 Nested Transactions

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 45

 Nested Transactions
 Sub- and sub-sub-transactions
 ACID-Principle valid only for top-level transaction

 Distributed Transactions

Nested/Distributed Transaction

Nested Transaction Distributed Transaction

subtransaction subtransaction subtransaction subtransaction

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 46

Airline DB Hotel DB

2 different (independent)
data bases

2 physically separated
parts of the same data base

Serializability

 Remember sequential consistency:
 Execution order is consistent with some sequential

interleaving of loads and stores in program order

 Serializability is the same, but at transaction level

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 47

 Transactions appear to execute in serial (one at a time) order

 preserves any consistency property of the data base

 system does not need to know consistency properties

 untyped transactions

 can introduce new transactions without worrying about interactions

Serializability: A Powerful Abstraction

 Important abstraction for constructing parallel programs

 Designing a transaction can be done in “splendid isolation”
 an important software-engineering argument

 You can compose transactions

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 48

p

 a modularity argument

 You can verify using pre- and post-conditions

 thanks to isolation and consistency

Main Modules of Transaction Systems

We have to offer mechanisms supporting

 Concurrency Control of Transactions

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 49

Remark: Both concurrency and recovery may be
implemented as isolated modules

 Recovery of faulty Transactions

Transaction Manager

Scheduler

start abort commit read write

Transaction Transaction

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 50

Data Base
read write

Recovery Manager

Buffer Manager

abort commit read write

Terminated Committed

start

commit

tm_commit

Transaction States

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 51

Undefined Active

Failed Aborted

Undefined

abort

tm_rollback

tm_abort

Definition: Transaction Ti is a sequence of reads ri and/or
writes wi, opened via start si and closed either
via commit ci or abort ai

Transaction

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 52

Remarks: A single transaction T is per se serial, i.e.
all its operations are totally ordered.

However, concurrent transactions may lead to conflicts,
as we have seen in the previous examples.

Result of a single transaction is unambiguous.

Definition: p(x) Ti and q(y)  Tj are conflicting
operations p  q, if

(1) they access the same data item, i.e. x = y and
(2) they belong to different transactions, i.e. i  j and

Conflicting Operations

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 53

Objective: Find a schedule, i.e. find a way of controlling
c concurrent transactions Ti, such that the result
is equivalent to one of the c! serial schedules.

(3) at least one of them is a write,
i.e. p = w or q = w

Definition: Two operations p() and q() are commutative,
if in any state, executing them in any
order p S q or q S p, you

- get the same result
l h h

Commutative Operations

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 54

- leave the system in the same state

Examples of commutative operations:
- operations on distinct data items
- reads from the same data item

Conclusion:
Commutative operations can be executed in any order

Definition: A schedule S of concurrent {T1, T2, … Tn} is a
partial ordered set of all transaction operations
(i.e. reads ri,k and/or writes wj,k) with
following properties:

Schedule

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 55

1. Suppose p, q  Ti and p i q,
i.e. p precedes q in Ti, then: p S q
(sequence of operation within a transaction is preserved)

2.  p, q S: p  q 
either p s q or q s p,
(for all conflicting operations we have to find a sequence)

T1 w(x) r(x) c1

T2 w(y) r(y) c2

S’

Inconsistent Schedule

Not valid
!!

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 56

S’: w(y) r(y) c2 r(x) w(x) c1

S‘ violates condition 1

Execution of a Schedule

T1 T2 T3
read(x)

write(x)

read(x)

write(x)

T2: r2(x) → w2(y) → a2

T3: r3(x) → w3(x) → w3(y) → c3

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 57

()

read(x)

write(y)

commit

write(y)

abort

commit

T1: r1(x) → w1(x) → c1

Remark: The execution of as schedule
determines the schedule but
not vice versa!

T1 T2

write(x)
read(x)
commit

time abort

Recoverability

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 58

Remark: The above schedule is not recoverable,
because T2 already has been committed,
even though it had read data x which is not valid any longer.

time abort

Definition: A transaction T reads from another transaction T’,
if T reads data items that have been written by T’ before.

Recoverability

Definition: A schedule S is recoverable (S RC)
if each transaction T in S is committed
only if all transactions T’, from which T
had read before are either committed

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 59

had read before, are either committed
or aborted.

In the last case you have to undo transaction T.

T1 T2

write(x)
read(x)

time

T3

read(y)
abort

write(y)

Dirty Read

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 60

time

Remark: This schedule is recoverable,
however transactions T2 and T3 have to be rolled back.

Definition: A schedule S avoids cascading aborts (S  ACA),
if no transaction ever reads
not-yet-committed data.

abort
commit

commit

T1 T2

write(x,2)
write(x,3)

Initially x = 1

commit

Dirty Write (1)

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 61

Remark: You have to ensure that the committed value x=2
will be reinstalled,
you need a before-image (rolling back transaction T2).

time
commit

abort

T1 T2

write(x,2)

write(x,3)

Initially x = 1

Dirty Write (2)

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 62

Remark: You do not have to reinstall x=1 in this case,
because before T1 is aborted the data object x
already got a new consistent value x=3.

(,)

time
abort

commit

T1 T2

write(x,2)

Initially x = 1

abort
write(x,2)

Dirty Write (3)

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 63

Remark: In this case you have to reinstall x=1,
because both transactions abort
and both have to be rolled back.

Result: Overwriting uncommitted data may lead to recovery problems !

time
abort

Definition: Schedule S is strict (S  ST) if no transaction
reads and overwrites non-committed data

First Idea: Serial Schedule

Run all transactions completely serially =>

 transactions ordered according to some serial order

 the simplest order is the order in which the transactions
arrive to the system

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 64

Potential implementation:
Use one central lock for all transactions,
each transaction is a critical section.

arrive to the system

 drawback: “no performance” at all

Definition: A schedule S is serial if the following holds
for each pair of transactions <T, T’>  S:
either all transactions operations of T precede
all transaction operations of T’ or vice versa.

Serial Schedule

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 65

Conclusion: Suppose each transaction T to be scheduled
is correct, i.e. after its execution the data base
is consistent, then each serial schedule S
is correct.

Problem:
Suppose there are 2 transactions T and T’.
Are the results of both serial schedules identical?

Not at all!

Properties: Serial Schedule

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 66

Not at all!
Simple example: 3 accounts: acc1, acc2, acc3



T: sumup(acc1, acc2, sum) and

T’: transfer (acc1, acc3, 1 000 €)

Construct a schedule being equivalent to a serial schedule

Definition: 2 Schedules S and S’ are equivalent,
if their output results are identical and
if th d t b t i th d t

How to get a Correct Schedule?

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 67

if the data base contains the same data.

Definition: A schedule S is serializable (S  SR),
if its committed projection C(S) is
equivalent to a serial schedule..

C(S)  S: skip all transaction operations
belonging to not committed transactions in S

T1

read1(x)

write1(x) write2(x)

T2
read2(x)

T3

read3(x)

Schedule S

Commited Projection

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 68

write1(x)

commit1

write2(x)

write2(y)

commit2

read3(x)

write3(y)

abort

Committed
projection
of Schedule S

Assumptions: Serializable Transactions

 Date base consistency requirements are application specific
 e.g. Espens’s additional 1 M $

 Semantics of per-item operations are understood by system
 Read bank account

Write bank account

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 69

How to find an easy way
to construct serializable schedules?

 Write bank account

 Each operation onto a data item of the data base is atomic
 Reading a bank account is a single operation that either

 occurs or it does not. It can not partially occur.

Towards Serializable Schedules

In order to decide during the execution of transactions,
whether they contribute to a serializable schedule,
we need a definition for equivalent schedules:

Definition: Two schedules S and S’ are said to be conflict-
equivalent, if they contain the same transaction

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 70

operations and if they resolve their conflicts
in the same way, i.e. the following holds:
 conflicting transaction operations, i.e. p  q:

p S q  p S’ q

 2 conflict-equivalent schedules produce the same result.

Remark: 2 schedules S and S’ may produce same results,
even if they are not conflict-equivalent.

Definition: A schedule S is said to be conflict-serializable
(i.e. S CSR), if its committed projection C(S)
is conflict-equivalent to a serial schedule.

Towards Serializable Schedules

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 71

 Serializability is independent of strictness or recoverability,
i.e. in general a serializable schedule can be incorrect!

Definition: A schedule S is correct, if it is serializable
and recoverable

read1(x)

read1(y)

write1(y)

T1

write2(x)

T2 S0 is not yet determined,
due to write conflicts on x and y

Examples of Schedules

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 72

write1(x)

commit1

()

read2(z)

write2(y)

commit2

read1(x)

read1(y)

write1(y)

T1

write2(x)

T2

S1 not yet determined (write conflicts on x)

S0 is not yet determined,
due to write conflicts on x and y

Examples of Schedules

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 73

write1(x)

commit1

()

read2(z)

write2(y)

commit2

read1(x)

read1(y)

write2(x)

T1 T2

S1 not yet determined (write conflict on x)

S0 is not yet determined,
due to write conflicts on x and y

Examples of Schedules

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 74

read1(y)

write1(y)

write1(x)

commit1

read2(z)

write2(y)

commit2

S2 completely determined, not serializable
(the order of writes on x and y is reverse)

read1(x)

d1()

write2(x)

T1 T2

S1 not yet determined (write conflict on x)

S0 is not yet determined,
due to write conflicts on x and y

Examples of Schedules

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 75

read1(y)

write1(y)

write1(x)

commit1

read2(z)

write2(y)

commit2

S3 completely determined, not serializable

S2 completely determined, not serializable
(the order of writes on x and y is reverse)

read1(x)

read1(y)

write2(x)

read2(z)

T1 T2

S1 not yet determined (write conflict on x)

S0 is not yet determined,
due to write conflicts on x and y

Examples of Schedules

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 76

write1(y)

write1(x)

commit1

read2(z)

write2(y)

commit2 S4 completely determined and serializable,
equivalent to the serial schedule
S’: T2 S’ T1

S3 completely determined, not serializable

S2 completely determined, not serializable
(the order of writes on x and y is reverse)

Definition: The serialization graph of a schedule S is a
digraph (directed graph),
whose nodes are all committed transactions.

h d f ff h

Serialization Graph

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 77

There is an edge from Ti to Tj iff there is
a pair of conflicting transaction operations,
i.e. pi  Ti and qj  Tj and pi S qi

T1

read1(x)

write1(y) write2(x)

T2

read2(x)
T3

read3(x)

T1

Example of a Serialization Graph

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 78

write1(y)

commit1

write2(x)

write2(y)

commit2

read3(x)

write3(y)

commit3Schedule S

T2

T3

Serialization Graph SG(S)

A shedule S is conflict-serializable if its
serialization graph SG(S) is acyclic!

Serializability Theorem

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 79

Conclusion: Running concurrent transactions we have
to guarantee, that executing their transaction
operations concurrently does not imply that
the corresponding SG(S) becomes acyclic.

Remark: Serializablity is necessary, but not sufficient for a correct
schedule of concurrent transactions

Achieving Serializability

Problem:

A scheduler of concurrent transactions is responsible
for achieving a schedule with some desired properties,
i.e. serializability, recoverability etc.

The scheduler can not alter the transaction operations

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 80

The scheduler can not alter the transaction operations
of these concurrent transactions, but it can:

(1) Execute the transaction operation immediately

(2) Postpone its execution (changing the ordering)

(3) Reject its execution, thus aborting its transaction

Summary of Schedules

Recoverable schedules

Schedules avoiding
Cascading aborts

Serializable schedule

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 81

Cascading aborts
Strict schedules

Serial schedules

Correct schedules

sched le

T1 T2 Tn

Scheduler

Sequence F of
transaction operations

Scheduler has to produce a desired schedule*

(e.g. a serializable one):

1. Immediate execution of an operation

2 D l f i f i

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 82

data base

data objects

Sequence F’ of
data operations

scheduler2. Delay of execution of an operation,
to reorder the sequence

3. Refuse an operation (leading to
an abort of the transaction)

*without affecting the operations

Reordering of Commuting Operations

The order of 2 commutative consecutive operations of
different transactions within a schedule S can be changed
without affecting the result of the reordered schedule S’.
This reordering is called a legal swap.

R k

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 83

Remark:

If schedule S can be transformed into a serial S’
via some legal swaps, S is conflict serializable.

T1 T2

read(x)
write(x)

read(y)
write(y)

read(x)
write(x)

read(y)
write(y)

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 84

write(y)

T1 T2

read(x)
write(x)

read(y)
write(y)

read(x)
write(x)

read(y)
write(y)

legal
swap

T1 T2

read(x)
write(x)

read(y)

write(y)

read(x)

write(x)

read(y)
it ()

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 85

write(y) write(y)

Are there further legal reordering possibilities leading to a serial schedule?

T1 T2

read(x)
write(x)

read(y)
write(y)

read(x)
write(x)

read(y)
write(y)

legal
swap

T1 T2

read(x)
write(x)

read(y)

write(y)

read(x)

write(x)

read(y)
it ()

legal
swap

T1 T2

read(x)
write(x)
read(y)

write(y)

read(x)
write(x)

read(y)

© 2009 Universität Karlsruhe, System Architecture Group 86

write(y) write(y)
(y)

write(y)

T1 T2

read(x)
write(x)

read(y)
write(y)

read(x)
write(x)

read(y)
write(y)

legal
swap

T1 T2

read(x)
write(x)

read(y)

write(y)

read(x)

write(x)

read(y)
it ()

legal
swap

T1 T2

read(x)
write(x)
read(y)

write(y)

read(x)
write(x)

read(y)legal

© 2009 Universität Karlsruhe, System Architecture Group 87

write(y) write(y)
(y)

write(y)

T1 T2

read(x)
write(x)
read(y)

write(y)
read(x)

write(x)
read(y)
write(y)

swap

T1 T2

read(x)
write(x)

read(y)
write(y)

read(x)
write(x)

read(y)
write(y)

legal
swap

T1 T2

read(x)
write(x)

read(y)

write(y)

read(x)

write(x)

read(y)
it ()

legal
swap

T1 T2

read(x)
write(x)
read(y)

write(y)

read(x)
write(x)

read(y)
it ()

legal

© 2009 Universität Karlsruhe, System Architecture Group 88

write(y) write(y) write(y)

T1 T2

read(x)
write(x)
read(y)

write(y)
read(x)

write(x)
read(y)
write(y)

swap

legal
swap

T1 T2

read(x)
write(x)
read(y)
write(y)

read(x)
write(x)
read(y)
write(y)Result: Serial schedule

Implementing Serializability

 Implementing serializability efficiently is to recognize
conflicting versus commutative operations.

 Two main approaches:

 Conservative, pessimistic protocol via locking mechanisms

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 89

We’ll focus on
pessimistic protocols

, p p g
(similar to read/write locks)

 Optimistic protocol via timestamps sometimes has to abort
a transaction if a conflict is discovered
(see J. Bacon: Concurrent System, Chapt. 18)

Conservative Approach

We need

 Lock Types for the “Data Items”
(similar to those for the Reader/Writer Problem)

d

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 90

and a

 Locking Protocol
(establishing the serializability)

Two Lock Types

 ReadLock (shared lock)
 ReadLocks may increase concurrency level

 WriteLock (exclusive lock)

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 91

Discuss the semantics of both lock types!

()
 WriteLocks may decrease concurrency level

C tl

Concurrency of the Two Lock Types

 ReadLock (shared lock)

 WriteLock (exclusive or conflicting lock)

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 92

ReadLock

ReadLock WriteLock

WriteLock

Concurrently
held Locks

yes no

no no

Locking Granularity in a Data Base

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 93

Pro: No deadlocks within the data base

Con: No concurrency at all

Locking Granularity in Data Base

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 94

Pro: Enhanced concurrency

Con: Enhanced danger of deadlocks,
improved locking overhead

Locking Granularity in Data Base

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 95

Pro: Optimal concurrency

Con: Enhanced danger of deadlocks,
maximal locking overhead

Two Phase Locking Protocol

Scheduler has to obey the following rules:

(1) Acquire a ReadLock before reading the data item

(2) Acquire a WriteLock before writing to the data item

(3) Conflicting locks block the invoking transaction

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 96

(3) Conflicting locks block the invoking transaction
 RW, WR, WW

(4) Can not acquire another lock
after releasing a previous one

Two Phase Locking Protocol

Result:

Guarantees that any two transactions which influence
one another (RW, WR, WW) are serialized

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 97

 the conflict inducing transaction will be blocked

 releasing the lock will unblock the
blocked transaction some time later

Two-Phase-Locking Protocol

1. Each transaction has to lock a data item with the
appropriate lock type before accessing this data item

2. Wait until consistent locking is possible

3. After unlocking the first lock no further locking is allowed

Transactions

© 2009 Universität Karlsruhe, System Architecture Group 98

4. Unlock all locks at the end of the transaction!!!

Requirement 3 determines the name of this protocol.
In the first phase, transactions can acquire their locks.
In the second phase, they only release their locks.

What’s the basic idea behind requirement 3?

Transactions

T1 T2
read_lock(x)

read(x)
read_unlock(x)

write_lock(x)
write(x)

write_lock(y)
write(y)

write_unlock(x)
i l k()

© 2009 Universität Karlsruhe, System Architecture Group 99

Remark: Due to the read_unlock(x) within T1  a so called cyclic dependency
between T1 and T2, i.e. read1(x) < write2(x) and write2(y) < write1(y),
leading to a non serializable schedule.

write_unlock(y)
commit

write_lock(y)
write(y)

write_unlock(y)
commit

Transactions

The normal two-phase-locking protocol enables serializable schedules,
however, the schedule does not have to be recoverable.

Example:

Drawback of Two-Phase-Locking Protocol

T1 T2
write_lock(x)

write(x)

© 2009 Universität Karlsruhe, System Architecture Group 100

 Introduce the following additional requirement:

5. All acquired locks are held until the end of the transaction.

write_unlock(x)
read_lock(x)

read(x)
read_unlock(x)

commit
abort

Transactions

Strict 2-Phase Locking Protocol

1. Each transaction has to lock a data item with the
appropriate lock type before accessing this data item

2. Wait until consistent locking is possible

3. After unlocking the first lock no further locking is allowed

© 2009 Universität Karlsruhe, System Architecture Group 101

4. Unlock all locks at the end of the transaction!!!

5. All acquired locks are held until the end of the transaction.

Result: A strict two-phase-locking protocol produces strict
schedules being recoverable and avoiding cascading aborts

Transactions

time

start commit

“Conservative” 2-P-L

Pro: No Deadlock
Con: All Locking must be known in advance, reduced Concurrency

All locks needed within the transaction have to be set at start time!

© 2009 Universität Karlsruhe, System Architecture Group 102

Transactions

time

start commit

“Conservative” 2-P-L

“Normal 2-P-L”

© 2009 Universität Karlsruhe, System Architecture Group 103

time

start commit

Pro: Maximal Concurrency Con: Potential Deadlocks,
Serializability Not Recoverable

Transactions

time

start commit

Conservative 2-P-L

“Normal 2-P-L”

© 2009 Universität Karlsruhe, System Architecture Group 104

time

start commit

time

start commit

Strict 2-P-L

Pro: Serializability + Recovery Con: Reduced Concurrency
Potential Deadlocks

Transactions

Locks and Deadlocks

Locks often increase the possibility of deadlocks
 T1 waits for T2 waits for T1

 T1: Read1(x) Write1(y) Commit
 T2: Write2(y) Write2(x) Commit
 Schedule: ReadLock1(x) Read1(x) WriteLock2(y) Write2(y)

W it L k1() W it L k2()

© 2009 Universität Karlsruhe, System Architecture Group 105

WriteLock1(y) WriteLock2(x)

 Can also happen during “lock conversion”
 T1: Read1(x) Write1(x) Commit
 T2: Read2(x) Write2(x) Commit
 Schedule: ReadLock1(x) Read1(x) ReadLock2(x)

WriteLock1(x) WriteLock2(x)

Remark: Deadlock detection can be restricted to all blocking events

Transactions

Problems with Abort due to a Deadlock

Increases load on the system:
 occurs at exactly the wrong time
 we already have contention, that’s why we possibly got a deadlock
 we have to retry the whole transaction

May have cascading aborts if we played it fast

© 2009 Universität Karlsruhe, System Architecture Group 106

May have cascading aborts if we played it fast
and loose with ReadLocks

 T1 sees T2’s actions sees T3’s actions …
 if no abort, all is OK
 if T3 aborts, T2 aborts, T1 aborts

Transactions

Improving Locking Performance

 Aborting long running transactions can really hurt
 for example, reconciling a bank data base

 Weaker locking protocols can help
 may not ensure serializability, but can be “close enough”

 e.g. how much money does the bank have

 Degree 3 is “fully serializable”
t bl d

© 2009 Universität Karlsruhe, System Architecture Group 107

 repeatable reads

 Degree 2 serializability (cursor stability)
 release a read lock immediately after use

 can only see results of committed transactions

 Degree 1 serializability allows even reads on uncommitted data
 “dirty reads”

 no locks at all

 the airlines??

 Updated transactions remain serializable

Transactions

Short Overview on Recovery

We have to discuss the potential of failures on to

 Atomicity

© 2009 Universität Karlsruhe, System Architecture Group 108

 Durability

Transactions

Types of Failures

 Transactions failures

 System crash

© 2009 Universität Karlsruhe, System Architecture Group 109

 Memory failures

Transactions

Transaction Failures

Causes:
 Internal inconsistency or

 Decision of the transaction management system due to
 Deadlock
 External inconsistency

© 2009 Universität Karlsruhe, System Architecture Group 110

y
 Scheduler

Actions:
 Undo transaction completely

Transactions

System Crashes

Causes:
 OS failures
 Power failure
 Failure in the transaction management system

© 2009 Universität Karlsruhe, System Architecture Group 111

Actions:
 Recover the last committed state
 Redo committed but lost modifications
 Cancel all modifications of uncommitted

transactions

Transactions

Memory Failures

Causes:
 Bugs in Device Drivers
 Hardware faults: controller, bus, etc.
 Mechanical demolition (head crash)
 Losses in magnetism of disk surfaces

© 2009 Universität Karlsruhe, System Architecture Group 112

 Losses in magnetism of disk surfaces

Actions:
 Copies of all data at different storage locations
 If database is not up to date, redo the effects of

all meanwhile committed transactions

Transactions

Principal Recovery Mechanisms

Logging
 Any state of a data object results in some sequence of operations

 If you log this sequence you can reproduce any intermediate state

starting with some confirmed state

 Too much overhead that’s why you note only periodical checkpoints

 The only 2 Operations needed:

© 2009 Universität Karlsruhe, System Architecture Group 113

y p
 Undo and

 Redo

Shadowing
 If you modify some data you do not overwrite the old value of the data object,

but you produce a new version

 If the transaction will be committed the new version is the only valid version

Transactions

Interaction of different Components

T1 T2 T3 Tn

t ti
scheduler

start, read, write, abort, commit

© 2009 Universität Karlsruhe, System Architecture Group 114

transaction
manager

recovery manager
(RM)

cache manager

read, write

read, write, abort, commit

stable
storage

Log

volatile
storage
(cache)

read
write

read
write

fetch
flush

Transactions

The Log (write-ahead logging)

A log should represent the execution sequence of the transactions:

It contains entries of the following notion:

<Ti, x, v>, whereby Ti = TID of the transaction
x = data object
v = value (old, new)

f h it th d t b

© 2009 Universität Karlsruhe, System Architecture Group 115

for each write on the data base.

A log-entry is transferred to the stable storage immediately before the
write on the database.

Other special log records exist to maintain significant events during
transaction processing (e.g. start, commit, abort etc.)

The above log-entries are totally ordered and represent exactly
the execution sequence of the transactions.

Transactions

The Log (write-ahead logging)

The recovery algorithm uses the following two operations

 undo(Ti), which restores the values of all data
updated by Ti to the old values

 redo(Ti), which sets the values of all data

© 2009 Universität Karlsruhe, System Architecture Group 116

updated by Ti to the new values

Remark:

Both recovery operations must be idempotent,
i.e. multiple executions of an operation have the same result
as does only one execution

Transactions

Simple Recovery Algorithm

 If transaction T aborts, we can restore the previous state of the data base
by simply executing undo(T).

 If there is a system failure, we have to restore the state of all updated data
by consulting the log to determine, which transaction need to redone and
which transaction need to be undone.

© 2009 Universität Karlsruhe, System Architecture Group 117

The following holds:

 Transaction T must be undone if the log contains the entry <T, start>,
but does not contain the entry <T, commit>.

 Transaction T must be redone if the log contains both records
<T, start> and <T, commit>

Transactions

Analysis of Simple Recovery Algorithm

 When a system failure occurs in principle we have to search
the entire log, which may be a bit time consuming.

 Furthermore some of the transaction have to be redone
even though their updated results are already on disk.

 To avoid this type of overhead we introduce

© 2009 Universität Karlsruhe, System Architecture Group 118

 To avoid this type of overhead, we introduce
periodical checkpoints with the following actions:

1. Output all log records onto stable storage
2. Output all modified data onto stable storage
3. Output a log record <checkpoint> onto stable storage.

Transactions

time

last checkpoint failure

T1: No additional actionT1
T2

T3
T4

T2: redo

T3: undo
T4: redo

© 2009 Universität Karlsruhe, System Architecture Group 119

T4

T5

T4: redo

T5: undo

Transactions

Managing the Log

The recovery manager is based on the three lists:
 active list (all current transactions)

 commit list (all committed transactions)

 abort list (all aborted transactions)

© 2009 Universität Karlsruhe, System Architecture Group 120

()

The recovery manager deletes an entry (Ti, x, v)
 if the transaction Ti has been aborted

 if the transaction Ti has been committed and

 if some other transaction has overwritten x

with a new value v’.

Transactions

Cache Management
Due to performance reasons current data are kept in a buffer in main
memory, i.e. in a volatile memory portion.

The buffer is organized as a set of cells each containing a complete disk
block. Each cell has an dirty bit indicating whether the content in both
storage media is identical.

The buffer maintains a buffer directory containing

© 2009 Universität Karlsruhe, System Architecture Group 121

data item cell number
x 2
y 1
: :

cell number dirty bit content
1 0 ‘34589.56’
2 1 “New York”
: : :

 buffer directory buffer

y g
all current cells and cell numbers.

Transactions

Operations of Cache Manager

The cache manager supports the following four operations:

 Flush(c) If dirty-bit = set, cell c is written to disk

 Fetch(x) Select a cell c and copy x from disk to c,
dirty bit(c) =0, and update buffer directory. If

th i f ll l t ll ‘ d fl h(‘)

© 2009 Universität Karlsruhe, System Architecture Group 122

there is no free cell, select a cell c‘ and flush(c‘).

 Pin(c) Prevents flushing of cell c

 Unpin(c) Enables flushing of cell c

Transactions

Recovery

 How to manage recovery depends on the way the resource and the
cache manager handle data in the buffer.

 Transfer of modifications:
 During a commit all modifications of a transaction are written to disk
 After a commit of a transaction there are still some modified data in
 the buffer not yet having been saved to disk

R l t li

© 2009 Universität Karlsruhe, System Architecture Group 123

 Replacement policy:
 All modifications of a transaction are kept in the buffer until a commit
 The cache manager may even write uncommitted data to disk

 To keep overhead of recovery low it would be preferable if
uncommitted data are kept only within the buffer and if committed
data are only on disk.
However, this results in an increased overhead.
That‘s why in practice one chosses some compromise.

Transactions

Situations in Volatile/Stable Storage

buffer (main memory) stable storage (disk)

I

II

© 2009 Universität Karlsruhe, System Architecture Group 124

non committed data committed data

II

III

IV

Transactions

situation types of data
in the buffer

types of data
on the disk

needed
operations

needed data

I only non
committed

only
committed

- -

II itt d + l d ft

Overview on Recovery Mechanisms

© 2009 Universität Karlsruhe, System Architecture Group 125

II committed +
non committed

only
committed

redo after
images

III only non
committed

committed +
non committed

undo before
images

IV committed +
non committed

committed +
non committed

redo +
undo

before +
after images

Transactions

Shadowing

 Shadowing is an alternative to recovery via logging.

 The algorithm:
 Modifications within a transaction don‘t overwrite the old value,

they are producing a new version of the modified data item.
 Each transaction maintains two directories with references to all its

data items

© 2009 Universität Karlsruhe, System Architecture Group 126

data items
 One -the so called current- directory points to commited values, only.
 The other directory points to the modified data items (the shadow

versions)
 With an abort of a transaction all shadow data are deleted.
 With a commit the shadow directory takes the role of the current

directory.

Remark: We have to guarantee that commit is an atomic operation
(inclusive the writing to the disk).

Transactions

Master

Master

Directory
Copy 0

Directory
Copy 0

Directory
Copy 1

x
y
z

x
y
z

x
y
z

Last committed value of x
Last committed value of y
Last committed value of z
Ti‘s new version of x
Ti‘s new version of y

Last committed value of x
Last committed value of y
Last committed value of z

© 2009 Universität Karlsruhe, System Architecture Group 127

Master

Directory
Copy 0

Directory
Copy 1

Directory
Copy 1

x
y
z

x
y
z

x
y
z

Last committed value of z
Ti‘s new version of x
Ti‘s new version of y

Last committed value of z
Last committed value of x
Last committed value of y

Shadow version of x
Shadow version of y

Distributed Transactions

Communication Network
Transaction

manager TM1

T1,1 T1,2 T1,t1...

Transaction
manager TM2

T2,1 T2,2 T2,t2...

Transaction
manager TMn

Tn,1 Tn,2 Tn,tn...

System of Transactions

© 2009 Universität Karlsruhe, System Architecture Group 128

Scheduler S1

Resource
manager RM1

Data base

Scheduler S2

Resource
manager RM2

Data base

Scheduler Sn

Resource
manager RMn

Data base

Assumptions

 Homogeneous system,
each node has a local transaction manager TM

 Each node manages its own data (no replicas)

 Each transaction send its operations to its local transaction
manager TM

Distributed Transactions

© 2009 Universität Karlsruhe, System Architecture Group 129

 If the data is not local, local TM sends request to remote TM

 On a commit and on an abort the TM has to notify all nodes, being
affected by the transaction

Potential Failures

Node Failures:

 If node crashes, assume that the node stops immediately,
i.e. it does not perform any operations anymore

The content of volatile memory is lost

Distributed Transactions

© 2009 Universität Karlsruhe, System Architecture Group 130

 The content of volatile memory is lost
and the node has to restart again

 A node is either active (i.e. working correctly) or
inactive (i.e. does not respond anymore)

Potential Failures

Network Failures:

 Broken connection

 Faulty communication software

Crashed intermediate node (bridge gateway etc)

Distributed Transactions

© 2009 Universität Karlsruhe, System Architecture Group 131

 Crashed intermediate node (bridge, gateway etc.)

 Lost of a message

 Altered message

 Partitioning of the network

Managing Failures

 Many failures are handled on lower layers
of the communication software

 However, a few of them have to be handled
on layer 7 within the transaction manager

 The origin of failures on other nodes cannot be detected

Distributed Transactions

© 2009 Universität Karlsruhe, System Architecture Group 132

 The origin of failures on other nodes cannot be detected

 We have to rely on time outs, i.e. we only can conclude
that there might be a failure

Coordination of Distributed Transactions

 Central Scheduler,
i.e. one node is the only scheduler,
responsible for granting or releasing locks

Distributed Transactions

© 2009 Universität Karlsruhe, System Architecture Group 133

 Primary 2 phase locking each data item is
assigned a primary copy

 Decentralized coordination

Transaction
manager TM1

T1,1 T1,2 T1,t1...

Transaction
manager TM2

T2,1 T2,2 T2,t2...

Transaction
manager TMn

Tn,1 Tn,2 Tn,tn...

Centralized Scheduler

Distributed Transactions

© 2009 Universität Karlsruhe, System Architecture Group 134

communication network

Resource
manager RM1

Data base

Scheduler S

Resource
manager RM2

Data base

Resource
manager RMn

Data base

Centralized Scheduler

Analysis:

 We can use 2 phase locking protocol, S has a global view on
all locks within the DS

 Single point of failure This is the most common
point of all drawbacks

Distributed Transactions

© 2009 Universität Karlsruhe, System Architecture Group 135

This is the most inconvenient
point of all drawbacks

 Scheduler may become a bottleneck (bad for scalability)

 Nodes are no longer really autonomous

 Even pure local transaction have to be sent to the central scheduler

