
Distributed SystemsDistributed Systems

12 12 CoordinationCoordination

June 22/24/29 2009
Gerd Liefländer

System Architecture Group

© 2009 Universität Karlsruhe (TH), System Architecture Group 1

Outline: Next Lectures

 Coordination Problems
 Global State

 Failure Detection

 Mutual Exclusion

Overview

© 2009 Universität Karlsruhe (TH), System Architecture Group 2

 Election

 Multicast

 Consensus

 Deadlocks

 Distributed Transactions

Recommended reading:
Tanenbaum, Ch. 5, 7, Coulouris/Dollimore/Kindberg, Ch. 11, 12, 13

Motivation

 Given an asynchronous DS, i.e. no process has a view of the
current global state of the DS

 Need to coordinate the actions of cooperating processes to
achieve common goals
 Failure detection: how to know in an asynchronous network

whether my peer is dead or alive?

© 2009 Universität Karlsruhe (TH), System Architecture Group 3

 Mutual exclusion: how to guarantee that no two processes will ever
get access to a critical section at the same time?

 Election: how will the system elect a new master in a master-slave
based distributed application?

 Multicast: how to enhance when sending to a group of recipients
that
  reliability of the multicast (i.e. correct delivery, only once,

etc.)
  preservation of the order of the messages

Global StateGlobal State

4© 2009 Universität Karlsruhe (TH), System Architecture Group

Chandy/Lamport: Distributed Snapshots: Determining Global States of DS
http://research.microsoft.com/users/lamport/pubs/chandy.pdf

Dijkstra: Comments on Chandy/Lamport/Misra Algorithm
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD864.html

Michael L. Powell and David L. Presotto,“PUBLISHING: A Reliable Broadcast
Communication Mechanism, Proceedings of the Ninth ACM Symposium on
Operating Systems Principles, Oct 83.

Ozalp Babaoglu and Keith Marzullo: Consistent Global States of Distributed
Systems: Fundamental Concepts and Mechanisms, in Distributed Systems,
Sape J. Mullender, Addison-Wesley, 1993.

Outline of this Chapter1

 Complexities of state detection in DS
 The notion of consistent state
 The distributed snapshot algorithm

(Chandy/Lamport)

5

(Chandy/Lamport)
 Application to detect stable properties and

checkpointing
 Another approach for global state recording:

publishing

1 Most slides on Global State are from Sanjeev R. Kulkarni (Princeton Uni)

© 2009 Universität Karlsruhe (TH), System Architecture Group

Model of Computation

 Finite set of processes

 Process send messages on a finite set of
unidirectional channels

6

 Channels are error free, preserve FCFS, and
have infinite buffers

 Messages experience arbitrary but finite
delays

 Strongly connected network

© 2009 Universität Karlsruhe (TH), System Architecture Group

Model of Computation (cont.)

 A computation is a sequence of events.
 An event is an atomic action that changes the

state of a process and at most one channel
state that is incident on that channel.

7

 Arcs indicate a message transfer

p

q
`

Sp
0 Sp

1 Sp
2 Sp

3

Sq
0 Sq

1 Sq
2 Sq

3

© 2009 Universität Karlsruhe (TH), System Architecture Group

Happened Before Relation

 Events e and e` of the same process.
 if e happens before e` then e e`

 e and e` in two different processes

8

 if e = send(m) and e` = recv(m) then e e`

 Transitive
 if e e` and e` e`` then e e``

© 2009 Universität Karlsruhe (TH), System Architecture Group

Determining Global State

 Global State
“The global state of a distributed computation
is the set of local states of all individual
processes involved in the computation plus

9

p o ss s o d o pu a o p us
the state of their communication channels.”

© 2009 Universität Karlsruhe (TH), System Architecture Group

More on States

 process state
 memory state + register state + signal masks +

open files + kernel buffers + …
or

10

 application specific info like transactions
completed, functions executed etc.

 channel state
 “Messages in transit” i.e. those messages that

have been sent but not yet received

© 2009 Universität Karlsruhe (TH), System Architecture Group

Why to deal with Global States?

 Many problems in distributed computing can be cast as
executing some action on reaching a particular state

 e.g.

 distributed deadlock detection is finding a cycle in

11

g y
the wait for graph.

 termination detection

 check pointing

 some more…..

© 2009 Universität Karlsruhe (TH), System Architecture Group

Snapshot Problem

Suppose computation of a distributed application has
become passive on each involved node

We want to be able to distinguish whether
 a distributed application

Global States

© 2009 Universität Karlsruhe (TH), System Architecture Group 12

pp

1. is temporarely blocked

2. has “terminated” or

3. is deadlocked

Snapshot Problem

 Garbage collection

Global States

waits for

© 2009 Universität Karlsruhe (TH), System Architecture Group 13

 Deadlock

 Termination problem
waits for

waits for

passive

terminated

passive

terminated

Why is Global State difficult in DS?

 Distributed state:
Have to collect information that
is spread across several machines!!

14

 Only local knowledge:
A process in a distributed computation
might not really know the current states
of the other processes

© 2009 Universität Karlsruhe (TH), System Architecture Group

Difficulties

 Instantaneous recording not possible

 No global clock: the distributed recording of local
t t t b h i d b d ti

15

states cannot be synchronized based on time
 Some local states reflect an outdated state, some

reflect the current state

 Random network delays: no centralized process
can initiate the detection

© 2009 Universität Karlsruhe (TH), System Architecture Group

Difficulties due to Non Determinism

 Deterministic Computation
 At any point in computation there is at most one

event that can happen next.

16

 Non-Deterministic Computation
 At any point in computation there can be more

than one event that can happen next.

© 2009 Universität Karlsruhe (TH), System Architecture Group

Example: Deterministic Computation

 Producer code:

while (1)
{

 Consumer code:
while (1)
{

17

produce m;
send m;
wait for ack;

}

{
recv m;
consume m;
send ack;

}

Very simple solution for a distributed producer consumer problem

© 2009 Universität Karlsruhe (TH), System Architecture Group

Example: Initial State

18

m

© 2009 Universität Karlsruhe (TH), System Architecture Group

Example: Intermediate State

19

m

© 2009 Universität Karlsruhe (TH), System Architecture Group

Example

20

m

© 2009 Universität Karlsruhe (TH), System Architecture Group

Example

21

a

© 2009 Universität Karlsruhe (TH), System Architecture Group

Example: Intermediate State

22

a

© 2009 Universität Karlsruhe (TH), System Architecture Group

Example: Product m consumed

23

a

© 2009 Universität Karlsruhe (TH), System Architecture Group

Deterministic State Diagram

24© 2009 Universität Karlsruhe (TH), System Architecture Group

Non-Deterministic Computation

25

m1

m2

m3

p

q

r

Three processes interacting asynchronously
© 2009 Universität Karlsruhe (TH), System Architecture Group

p

q q

Three Possible Runs

m1 m3
m1

m2

m3

p

26

r

r

m2
m2

m1
m3

m2

r

p

q

© 2009 Universität Karlsruhe (TH), System Architecture Group

A Non-Deterministic Computation

27

 All these states are feasible

© 2009 Universität Karlsruhe (TH), System Architecture Group

Feasible and Actual States

 Any state that an external observer could
have observed is a feasible state

 A state that an external observer did observe

28

 A state that an external observer did observe
is an actual state

© 2009 Universität Karlsruhe (TH), System Architecture Group

A Non-Deterministic Computation

29

 Only some states are actual

© 2009 Universität Karlsruhe (TH), System Architecture Group

Non-Determinism

 Deterministic computation
 A local event would reveal everything about the

global state!
 The process will know other process’ state

30

 Not so for Non-Deterministic computation!

m

© 2009 Universität Karlsruhe (TH), System Architecture Group

A Naïve Snapshot Algorithm

 Processes record their state at any arbitrary
point

 A designated process collects these states

31

+ So simple!!

- Correct??

© 2009 Universität Karlsruhe (TH), System Architecture Group

Example: Producer Consumer

p records its state

p q

32

m

© 2009 Universität Karlsruhe (TH), System Architecture Group

Example

p q

33

m

© 2009 Universität Karlsruhe (TH), System Architecture Group

Example

q records its state

p q

34

m

© 2009 Universität Karlsruhe (TH), System Architecture Group

Example: Recorded Global State

p q

35

m m

© 2009 Universität Karlsruhe (TH), System Architecture Group

Where did we err?

 What did we do?

p

36

 We recorded inconsistently

q

m

© 2009 Universität Karlsruhe (TH), System Architecture Group

Error!!

 The sender has no record of the sending

 The receiver has the record of the receipt

 Result:

37

 Global state contains record of the receive event but
no send event, thus violating the happened before
concept

 What we need is something that helps us to
determine consistency of local recording

© 2009 Universität Karlsruhe (TH), System Architecture Group

NotionNotion of of ConsistencyConsistency

38© 2009 Universität Karlsruhe (TH), System Architecture Group

The Notion of Consistency

 A global state is consistent if it could have
been observed by an external observer

 If e e` then it is never the case that e` is

39

 If e e then it is never the case that e is
observed by the external observer and not e

 All feasible states are consistent

© 2009 Universität Karlsruhe (TH), System Architecture Group

An Example

p q

40

p

q

Sp
0 Sp

1 Sp
2 Sp

3

Sq
0 Sq

1 Sq
2 Sq

3

m1

m2

m3

© 2009 Universität Karlsruhe (TH), System Architecture Group

A Consistent State?

p q

Sp
1 Sq

1

41

p

q

Sp
0 Sp

1 Sp
2 Sp

3

Sq
0 Sq

1 Sq
2 Sq

3

m1

m2

m3

© 2009 Universität Karlsruhe (TH), System Architecture Group

Yes

p q

Sp
1 Sq

1

42

p

q

Sp
0 Sp

1 Sp
2 Sp

3

Sq
0 Sq

1 Sq
2 Sq

3

m1

m2

m3

© 2009 Universität Karlsruhe (TH), System Architecture Group

A Consistent State?

p q

Sp
2 Sq

3

m3

43

p

q

Sp
0 Sp

1 Sp
2 Sp

3

Sq
0 Sq

1 Sq
2 Sq

3

m1

m2

m3

© 2009 Universität Karlsruhe (TH), System Architecture Group

Yes

p q

Sp
2 Sq

3

m3

44

p

q

Sp
0 Sp

1 Sp
2 Sp

3

Sq
0 Sq

1 Sq
2 Sq

3

m1

m2 m3

© 2009 Universität Karlsruhe (TH), System Architecture Group

An Inconsistent State

p q

Sp
1 Sq

3

45

p

q

Sp
0 Sp

1 Sp
2 Sp

3

Sq
0 Sq

1 Sq
2 Sq

3

m1

m2

m3

© 2009 Universität Karlsruhe (TH), System Architecture Group

Why Consistent Global State?

How to combine information from multiple nodes,
that the sampling reflects a global consistent state?

Problem:

Global States

© 2009 Universität Karlsruhe (TH), System Architecture Group 46

 Local view is not sufficient

 Global view:

 We need messages transfers to the other nodes in
order to collect their local states

 Meanwhile these local states can change again

Local History

 N processes Pi, P := {P1, P2, ... Pn}, for each Pi:
 On a separate node ni
 Event series = history hi := <ei,1, ei,2, ... >
 May be finite or not

 Observing a local history hi up to event ei k you get:

Global States

© 2009 Universität Karlsruhe (TH), System Architecture Group 47

Observing a local history hi up to event ei,k you get:
prefix of history hi,k := < ei,1, ei,2, ... , ei,k >

 Each ei,k is either a local or a communication event

 Process state:
 State of Pi immediately before ei,k denoted si,k

 State si,k records all events included in history hi,k-1
 Hence, si,0 refers to Pi ‘s initial state

Global History and Global State

Global States

 Global history h := h1  h2  ... hn-1  hn

 Similarly we can combine a set of local states
to form a global state S := (s1, s2, … sn)

© 2009 Universität Karlsruhe (TH), System Architecture Group 48

 However, which combination of local states is
consistent?

Cuts

Global States

 Similar to the global state, we can define cuts based
on k-prefixes:

 C := h1,c1  h2 ,c2  ... hn-1,cn-1  hn,cn

 h1 c1 is history up to and including event e1 c1

© 2009 Universität Karlsruhe (TH), System Architecture Group 49

1,c1 y p g 1,c1

 The cut C corresponds to the state

S = (s1,c1+1, s2,c2+1, … sn,cn+1)

 The final events in a cut are its frontier or its border
line :

BL = {ei,ci | i  {1,2, …n}}

Distributed Snapshots
 Global state of system S:

S := (s1,c1, s2,c2,, sn,cn)
with the border line:

 BL := (e1,c1, e2,c2,, en,cn)
Events have
already happened

Global States

© 2009 Universität Karlsruhe (TH), System Architecture Group 50

P1

P2

P3

e1,1

e2,1

e1,2

e3,1

e1,3

e2,2

e3,2

e2,3

e3,3

e1,4 e1,5

BL = (e1,3, e2,2,e3,1)

Consistent Cut Inconsistent Cut
(e1,4 = message from the
future!!)No problem as long as we

preserve the message in transit

Consistent Cuts

 We call a cut C consistent iff for all events
e’  C: e → e’ implies e  C

A global state is consistent if it corresponds to

Global States

© 2009 Universität Karlsruhe (TH), System Architecture Group 51

 A global state is consistent if it corresponds to
a consistent cut

Remark:
 We can characterize the execution of a system as

a sequence of consistent global states

Linearization

 A global history that is consistent with the
“happened before” relation is also called a
linearization or consistent run

Global States

© 2009 Universität Karlsruhe (TH), System Architecture Group 52

 A linearization only passes through consistent
global states

 A state S’ is reachable from state S’ if  a
linearization that passes through S and S’

Distr. Distr. SnapshotSnapshot AlgorithmAlgorithm
((Chandy/LamportChandy/Lamport))

Features:
Does not promise us to give us exactly what is there
But gives us consistent state!!

53© 2009 Universität Karlsruhe (TH), System Architecture Group

Brief Sketch of the Algorithm

 p sends a marker message along all its outgoing
channels after it records its state and before it sends
any other messages.

 On receipt of a marker message from input channel c
if h t t d d it t t

54

 if p has not yet recorded its process state
 record the local process state
 state (c) = EMPTY

 else
 state (c) = messages received on c since it had

recorded its state excluding the marker.

© 2009 Universität Karlsruhe (TH), System Architecture Group

Chandy/Lamport Algorithm1

Global States

Requirements:

1. No process failures, no message losses

2. Sequence of received messages is the same as
sequence of sent messages

3 d l h l h C S

© 2009 Universität Karlsruhe (TH), System Architecture Group 55

3. Bidirectional channels with FCFS property

4. Network is a strongly connected graph
• From each process there is a connection path to each

other process

P2

P1 P3

Ch1

Ch2

Ch3

Ch4

1published 1985

Chandy Lamport Algorithm (2)

 Each process can initiate CLA to get a new global state

 2 types of messages

 marker messages
li ti

© 2009 Universität Karlsruhe (TH), System Architecture Group 56

 application messages

 First marker message is for saving local process state

 Next marker messages are for saving the other input
channel states

Principle of Operation

Global States

 Initially broadcast a marker message that contains a
unique snapshot id (e.g. initiator id + sequence #) in
order to differ from concurrent snapshot initializations

 Process Q receiving a marker message for the first
f h l

© 2009 Universität Karlsruhe (TH), System Architecture Group 57

time from input channel ic:
 If not yet done, records its local process state
 Define input channel state ic = EMPTY
 Q sends the marker message to all its other output channels
 Continue with the local application process
 Each received application message is queued in its

corresponding message queue

Principle of Operation

Global States

 Process Q receiving the marker message at another
input channel CHi
 Terminates collection of messages at message queue MQi

 Save and records state(CHi) to local state of Q
 If all incoming channels of Q have been saved and recorded

© 2009 Universität Karlsruhe (TH), System Architecture Group 58

 If all incoming channels of Q have been saved and recorded,
send aggregated local state of Q with all its input channels
states to the initiator of the CLA

Chandy/Lamport (1)

Input Channels Output Channels

Local State

© 2009 Universität Karlsruhe (TH), System Architecture Group 59

Pi

disk

Chandy/Lamport (2)

Input Channels Output Channels

Local State

© 2009 Universität Karlsruhe (TH), System Architecture Group 60

Pi

disk

Application messages

Chandy/Lamport (3)

Pi

Input Channels Output ChannelsLocal State

j

j
First
marker

j

j

© 2009 Universität Karlsruhe (TH), System Architecture Group 61

diskApplication message j Marker message from
Initiator Pj

j j


Current state of
Pi input channels

Application messages not
belonging to current snapshot

Chandy/Lamport (4)

Pi

Input Channels Output ChannelsLocal State

j

© 2009 Universität Karlsruhe (TH), System Architecture Group 62

diskApplication message j Marker message



j Last
marker

Send snapshot message of Pi
to the initiator process
via appropriate output channel

Algorithm in Action

p Sp
0 Sp

1 Sp
2 Sp

3

63

q
Sq

0 Sq
1 Sq

2 Sq
3

m1 m2 m3

© 2009 Universität Karlsruhe (TH), System Architecture Group

Algorithm in Action

p Sp
0 Sp

1 Sp
2 Sp

3

q records state as Sq
1 , sends marker to p

64

q
Sq

0 Sq
1 Sq

2 Sq
3

m1 m2 m3

© 2009 Universität Karlsruhe (TH), System Architecture Group

Algorithm in Action

p Sp
0 Sp

1 Sp
2 Sp

3

p records state as Sp
2, channel state as empty

65

q
Sq

0 Sq
1 Sq

2 Sq
3

m1 m2 m3

© 2009 Universität Karlsruhe (TH), System Architecture Group

Algorithm in Action

p Sp
0 Sp

1 Sp
2 Sp

3

q records channel state as m3

66

q
Sq

0 Sq
1 Sq

2 Sq
3

m1 m2 m3

© 2009 Universität Karlsruhe (TH), System Architecture Group

Algorithm in Action

p Sp
0 Sp

1 Sp
2 Sp

3

Recorded Global State = ((Sp
2, Sq

1), (0,m3))

67

q
Sq

0 Sq
1 Sq

2 Sq
3

m1 m2 m3

Comment: Although application message m2 has been received in the meanwhile,
this message does not belong to the global state initiated by q

© 2009 Universität Karlsruhe (TH), System Architecture Group

Properties: Recorded Global State

 If Si and Sj are the real global state when
Lamport’s algorithm started and finished
respectively and S* is the state recorded by
the algorithm then,

68

 S* is reachable from Si

 Sj is reachable from S*

© 2009 Universität Karlsruhe (TH), System Architecture Group

Still what good is it?

 Stable Properties
 A property SP is called a stable property iff for all

states S’ reachable from S

69

SP(s) → SP(S’)

 eg: deadlock, termination, token loss

© 2009 Universität Karlsruhe (TH), System Architecture Group

Stable Properties

70

Si

Sj

S*

© 2009 Universität Karlsruhe (TH), System Architecture Group

Stable Properties

71

Si

Sj

S*

© 2009 Universität Karlsruhe (TH), System Architecture Group

Detection of Stable Properties

Outcome = false;
while (outcome == false)
{

determine Global State S;

72

determine Global State S;
outcome = SP(S);

}

© 2009 Universität Karlsruhe (TH), System Architecture Group

Checkpointing

 S* serves as a
checkpoint

 On a failure, restart
th t ti

73

the computation
from S*

 Problem!
 Not able to restore to

Sj

Si

Sj

S*

© 2009 Universität Karlsruhe (TH), System Architecture Group

Solution: Publishing

 A Broadcast medium
 A central recorder process records all the

messages received by each process

74

messages received by each process
 Processes record their states at their own

time and send it to the recorder

© 2009 Universität Karlsruhe (TH), System Architecture Group

Architecture of Publishing

75

recorder Sp1 Sq1

STATE SENT
ID

MSGS
RECD

 p Sp1

 q Sq1

p q

© 2009 Universität Karlsruhe (TH), System Architecture Group

q sends the message

m1

76

recorder Sp1 Sq2

p q
STATE SENT

ID
MSGS
RECD

 p Sp1

 q Sq1 1

© 2009 Universität Karlsruhe (TH), System Architecture Group

p sends an ack
recorder records m1

77

recorder Sp2 Sq2

p q
STATE SENT

ID
MSGS
RECD

 p Sp1 m1

 q Sq1 1

© 2009 Universität Karlsruhe (TH), System Architecture Group

Determining Global State

 Recorder can construct global state from
 Checkpointed States of all processes

78

Plus

 Messages recd since last checkpoint

© 2009 Universität Karlsruhe (TH), System Architecture Group

Problems

 Publishing keeps track of all messages
received by each process

 Expensive!
 Solution

79

 Solution
 recorder takes checkpoint of process p at time t
 deletes all messages recd by p before t.

© 2009 Universität Karlsruhe (TH), System Architecture Group

p checkpoints

80

recorder Sp2 Sq2

p q
STATE SENT

ID
MSGS
RECD

 p Sp1 m1

 q Sq1 1

© 2009 Universität Karlsruhe (TH), System Architecture Group

Recorder stores Sp2
deletes m1

81

recorder Sp2 Sq2

p q
STATE SENT

ID
MSGS
RECD

 p Sp2

 q Sq1 1

© 2009 Universität Karlsruhe (TH), System Architecture Group

The initial situation

82

recorder Sp2 Sq2

p q
STATE SENT

ID
MSGS
RECD

 p Sp1 m1

 q Sq1 1

© 2009 Universität Karlsruhe (TH), System Architecture Group

Say p crashes

83

recorder Sq2

p q
STATE SENT

ID
MSGS
RECD

 p Sp1 m1

 q Sq1 1

© 2009 Universität Karlsruhe (TH), System Architecture Group

Recorder reinstates p to Sp1

84

recorder Sq2

p q

Sp1

STATE SENT
ID

MSGS
RECD

 p Sp1 m1

 q Sq1 1

© 2009 Universität Karlsruhe (TH), System Architecture Group

Replays back m1

m1

85

recorder Sq2

p q

Sp2

STATE SENT
ID

MSGS
RECD

 p Sp1 m1

 q Sq1 1

© 2009 Universität Karlsruhe (TH), System Architecture Group

q crashes

86

recorder

p q

Sp2

STATE SENT
ID

MSGS
RECD

 p Sp1 m1

 q Sq1 1

© 2009 Universität Karlsruhe (TH), System Architecture Group

Recorder reinstates q to Sq1

87

recorder

p q

Sp2

STATE SENT
ID

MSGS
RECD

 p Sp1 m1

 q Sq1 1

Sq1

© 2009 Universität Karlsruhe (TH), System Architecture Group

Ignore m1

m1

88

recorder

p q

Sp2

STATE SENT
ID

MSGS
RECD

 p Sp1 m1

 q Sq1 1

Sq1

© 2009 Universität Karlsruhe (TH), System Architecture Group

Comparison

SNAPSHOT PUBLISHING
Network Strongly Need not be

89

Network connected Need not be

Mode Distributed Centralized

Scalability Yes No

Restorability No Yes

© 2009 Universität Karlsruhe (TH), System
Architecture Group

Summary

 Global state detection is difficult in DSs

 Chandy/Lamport’s snapshot algorithm may
not give an actual state but is very helpful in
d t ti t bl ti

90

detecting stable properties

 Publishing gives an asynchronous way of
determining global states but is not realy
scalable

© 2009 Universität Karlsruhe (TH), System Architecture Group

Mutual ExclusionMutual Exclusion

Centralized Algorithm
Decentralized Algorithm
Token Ring Algorithm
Distributed Algorithm

© 2009 Universität Karlsruhe (TH), System Architecture Group 91

Mutual Exclusion in Local OS

Well known problem in multitasking OSes, e.g.
 access to shared memory, e.g.

 Buffers

 Global variables …

h d

© 2009 Universität Karlsruhe (TH), System Architecture Group 92

 access to shared resources

 access to shared data

  various centralized mechanisms to ensure mutual
exclusion, e.g.
 Semaphores

 Monitors

 Spin locks

No Starvation
No deadlock

Requirements: Mutual Exclusion
Requirements for a valid solution:

1. Safety: At most one process allowed to be in the CS

2. Liveliness (bounded Waiting): Each competitor must enter or
exit its CS after some finite waiting time

3 Fair Ordering: Waiting in front of a CS is handled according to

Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 93

3. Fair Ordering: Waiting in front of a CS is handled according to
FCFS

4. Progress: Length on RS does not influence the protocol in front
of a CS

5. Portability: Hard to achieve in a DS

6. Fault tolerance: We assume that messages are delivered
correctly, e.g. only once and after some finite delay

 Number of needed messages per critical section CS, minimal nm

 Protocol delay (to evaluate who is the next) per CS, minimal d
Last node leaves CS Next node enters CS

Protocol delay

time

Performance Criteria
Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 94

 Turnaround time TTCS, time interval between requesting to enter
a CS and leaving the CS, minimal TTCS

 Throughput TPCS, # passing a CS per time unit (maximize TPCS)
TPCS = 1/(d + ECS)

Node requests CS Node leaves CS
time

Node enters CS

Execution time ECS
Turnaround time TTCS

Centralized Lock ManagerCentralized Lock Manager

© 2009 Universität Karlsruhe (TH), System Architecture Group 95

Centralized Lock Manager CLM

 A specific process CLM per critical region is designated to
be the lock manager for all competing application clients

 CLM controls accesses to CR using a grant token
representing permission to enter

Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 96

p g p

 To enter its CS, a client sends a request message to the
CLM awaiting a positive answer from the CLM

 If no client has the token, CLM replies immediately with
the grant token. Otherwise CLM queues this request

 Leaving the CS the client sends the grant token back to
the CLM

A Centralized Algorithm
Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 97

a) P1 asks CLM (P3) for permission to enter its CR  granted

b) P2 asks permission to enter same CR. CLM does not reply.

c) When P1 exits its CR, it notifies CLM that grants access to P2

Client Client Client

request request
request “token granted”

Token holder

Problems with Centralized Locking?
Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 98

CLM = Centralized
Lock Manager

request request

queueIf CLM crashes 
uncertain state of CLM

1. A client might still hold the token
2. Client has sent token, but token

was not yet received at CLM
3. The CLM has the token
4. How long would you wait, before

electing a new CLM?

Application 1 Application 2Lock Manager

send_message

receive_message

send_messagereceive_message

critical region

send_message

receive_message
queued_requesreceive message

Queued message is optional
Benefits?Centralized Lock Manager

Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 99

queued requests

A1

g

A2

send_message

t?

critical region

receive_message

send_message

Disadvantages:
• single point of failure

• potential bottleneck

Summary on CLM

 Easy to implement
 Scalability? Bottleneck?
 Safety fulfilled
 Liveliness fulfilled

F i d i t f lfill d With t dditi l

Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 100

 Fair ordering not fulfilled: Without additional
requirements concerning the network, request are
not served in FCFS order
 Adding logical time stamps per request might improve the

situation, but still does not solve fair ordering

 Progress is fulfilled
 Fault tolerance: CLM might fail 

 Elect a new CLM (see election algorithms)

Performance Properties of CLM

 Per CS you need at least 3 messages
1. Request from client to enter

2. Reply from CLM that client can enter

3. Notification from client that it has left CS

© 2009 Universität Karlsruhe (TH), System Architecture Group 101

 Turnaround time of CS is augmented by at least
3 Δd + tCLM if
 Δd is the message transfer time

 tCLM is average execution time of CLM

What is the maximal delay in front of a CS?

Decentralized AlgorithmDecentralized Algorithm

Lin’s Voting Algorithm in DHT DS.
“A Practical Distributed Mutual Exclusion

Protocol in Dynamic P2P Systems”

Study of your one

© 2009 Universität Karlsruhe (TH), System Architecture Group 102

Decentralized Mutual Exclusion

 Principle: n lock manager per CS (resource), i.e. the
resources are replicated and each replica has its own
lock manager

 A client can only access a resource if the majority of
the n lock managers have sent a grant reply

© 2009 Universität Karlsruhe (TH), System Architecture Group 103

g g p y

 Each lock manager responds ”immediately” to a
client’s request with grant or deny

 A client receiving a deny will retry again soon after

 When a lock manager crashes, it will recover quickly,
but will have forgotten about permission it had
granted in the past

Decentralized Mutual Exclusion

 Lin et al. showed that it is quite robust

 However, under heavy load, i.e. high
concurrency in front of the CS (resources) no
client will get the majority of the n lock

© 2009 Universität Karlsruhe (TH), System Architecture Group 104

client will get the majority of the n lock
managers, thus resulting in a poor
performance

Algorithms based on Logical Algorithms based on Logical
StructuresStructures

Token Ring
Tree Structured

© 2009 Universität Karlsruhe (TH), System Architecture Group 105

Token Ring Algorithm
Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 106

a) A group of processes on a network à la Ethernet

b) A logical ring (constructed in software)

Token-Passing Mutual Exclusion
Mutual Exclusion

The token-passing algorithm:
 A process can enter its CS iff it is the current owner

of the access token

 When leaving its CS, the owner of the access token

© 2009 Universität Karlsruhe (TH), System Architecture Group 107

g ,
sends this token to its immediate successor

Observation:
In times when no participant wants to enter its CS,
nevertheless the access token is circulating within the
logical ring reducing the bandwidth of the network
 overhead

Logical Ring

Current

Standard Token Algorithm
Mutual Exclusion

Given a lattice of nodes:

© 2009 Universität Karlsruhe (TH), System Architecture Group 108

Token Holder

Processes waiting in
front of their critical

sections CS 
request are not served

according to FCFS

t1
t0

Check out the list of requirements:

1. Safety, yes, due to unique token,
only token holder may enter its CS

2. Liveliness, yes, as long as logical
ring has a finite number of nodes

Mutual Exclusion

Analysis of Token Based
Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 109

ring has a finite number of nodes

3. Sequence order, no, TLM may
change the internal order of the
waiting requests

4. Fault tolerance?
• splitting of the logical ring

and you might be lost.
• losing the token

Problems with Token-Algorithm
Mutual Exclusion

1. How to distinguish if the token has been lost or if it is
used very long?

2. What happens if token-holder crashes for some time
and recovers later on?

© 2009 Universität Karlsruhe (TH), System Architecture Group 110

3. How to maintain a logical ring if a participant
drops out (voluntarily or by failure) of the system?

4. How to identify and add new participants?

5. Ring imposes an average delay of N/2 hops 
limiting scalability

Receive(“Token” from Node i-1)

Participant on Node i

Receive(“Token” from Node i)

Participant on Node i +1

Implementation Issues
Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 111

Send(“Token” to Node i+1)

Critical Section

Send(“Token” to Node i+2)

Critical Section

Implementation Issues

Receive(“Token” from Node i-1)

Participant on Node i

Receive(“Token” from Node i)

Participant on Node i +1

Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 112

Send(“Token” to Node i+1)

Critical Section

Send(“Token” to Node i+2)

Critical Section

Receive(“Token” from Node i-1)

Participant on Node i

Receive(“Token” from Node i)

Participant on Node i +1

Mutual Exclusion

Implementation Issues

© 2009 Universität Karlsruhe (TH), System Architecture Group 113

Send(“Token” to Node i+1)

Critical Section

Send(“Token” to Node i+2)

Critical Section

Question:
What may happen if you try to give token to immediate successor?

Receive(“Token” from Nodei-1)

Participant on Node i

Critical Section

Receive(“Token” from Nodei)

Participant on Node i +1

Critical Section

?

Prob 1

Mutual Exclusion

Implementation Issuess

© 2009 Universität Karlsruhe (TH), System Architecture Group 114

Send(“Token” to Nodei+1)

C t ca Sect o

Send(“Token” to Node i+2)

Critical Section

Question: How to solve this problem as a system architect?

Send_Request(“Token” for CrS_1)

Participant on Node i +1

Prob 1

A token-handler-thread per application and critical section

Receive(“Token” from Nodei)

TokenHandler Node i +1

R i (L l R t) N bl ki

Implementation of a System
Architect

Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 115

Send_Release(“Token” for CrS_1)

Critical Section_1

Send(“Token” to Node i+2)

If Local_Request ?
yes

Receive(Local_Request)Receive(“Token” for CrS_1)

Receive(Local_Release)

Send(Local_Request)

no

Non blocking

Performance of Token Ring Alg.

 Suppose your logical token ring consists of p
processes on p different nodes

 Per CS you need at least 2 messages
1. Token passing message from immediate predecessor

© 2009 Universität Karlsruhe (TH), System Architecture Group 116

2. Token passing message to immediate successor

 Minimal turnaround time of CS is increased by 2 Δd
 Δd is the message transfer time

Average and maximal turn around times?

What about the requirements for a valid solution?

Tree Based Token Algorithm

 Set of processes can be structured as a
rooted tree

 Each node has a list for storing processes
h h i i i l i

© 2009 Universität Karlsruhe (TH), System Architecture Group 117

that want to enter their critical sections

 Initially all request lists are empty and the
root contains the grant token

 Lower nodes send their requests to the
immediate predecessors

Tree Based Mutual Exclusion (1)
P1

P2 P3 P4

Token

© 2009 Universität Karlsruhe (TH), System Architecture Group 118

P6P5

Initially root P1 is the token holder

Tree Based Mutual Exclusion (2)
P1

P2 P3 P5
P6

P4

Token

© 2009 Universität Karlsruhe (TH), System Architecture Group 119

P6

P6P5

Tree Based Mutual Exclusion (3)
P1 P3

P2 P3 P5
P6

P4

Token

© 2009 Universität Karlsruhe (TH), System Architecture Group 120

P6

P6P5

Tree Based Mutual Exclusion (4)
P1 P3

P2 P3 P5
P6

P4

Token

© 2009 Universität Karlsruhe (TH), System Architecture Group 121

P6

P6P5

Tree Based Mutual Exclusion (5)
P1 P3

P2 P3 P5
P6

P4

© 2009 Universität Karlsruhe (TH), System Architecture Group 122

P6

P6P5Token

Finally P5 can use the token to enter its critical section
Releasing the token is almost as easy, but …

Performance of Tree Based Token?

 Analyze in the tutorial

 How to implement an as fair solution as possible
avoiding unbounded waiting of sub-trees

© 2009 Universität Karlsruhe (TH), System Architecture Group 123

 Problem: P3 in the example has no knowledge what’s
going on in the other sub-trees

 Where to collect needed information about the
requests

Distributed Mutual ExclusionDistributed Mutual Exclusion

Ricard Agrawala

Maekava

© 2009 Universität Karlsruhe (TH), System Architecture Group 124

Distributed Lock Managers
Mutual Exclusion

Two distinct solutions:
 Ricart/Agrawala consensus algorithm

 All competitors have to agree upon the process that is
allowed to enter its CS

 Algorithm needs logical clocks

© 2009 Universität Karlsruhe (TH), System Architecture Group 125

g g

 Ricart, G.; Agrawala, A.: “An optimal Algorithm for
Mutual Exclusion in Computer Networks”, C.ACM, 1981

 Maekawa’s voting algorithm
 Sufficient processes have to vote for one competitor

before it can enter its CS

 M. Maekawa. "A Square-root(N) Algorithm for Mutual
Exclusion in Decentralized Systems". ACM Transactions
on Computer Systems, May 1985.

Distributed Lock Managers

Assumptions:

 N Processes have unique numeric identifiers
 They maintain totally ordered Lamport times

 All processes have communication channels to all other
processes

Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 126

processes

 Reliable communication based on multicast
 Process requesting access multicasts its request to all other

N-1 processes

 Process may only enter its CS when all other N-1 processes
have replied an acknowledge message

 No node failures

Process States

 Released, i.e. process doesn‘t need its CS at
the moment

 Wanted i e process wants to enter its CS

Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 127

 Wanted, i.e. process wants to enter its CS

 Held, i.e. process is in its CS

Ricart Agrawala Algorithm
enter():

state := WANTED;
Multicast request to all peers;
T := request’s Lamport timestamp;
Wait until (N - 1) responses are received;
state := HELD;

Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 128

On receipt of a request <T(i), P(i)> at P(j), ji:
if(state == HELD or (state == WANTED and

(T, P(j)) < (T(i), P(i))) {
Queue request without replying;

} else {
Reply to P(i);

}

release():
state := RELEASED;
Respond to queued requests;

Distributed Lock Manager (DLM)
Mutual Exclusion

Three message types (2 are required, 1 is optional)

 Request_Message

© 2009 Universität Karlsruhe (TH), System Architecture Group 129

 Queued_Message

 Grant_Message

Request Message

 A process wishing to enter its CS either

 multicasts or

 sends (n-1) times individually

Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 130

an according request message to all
processes competing for the critical region

 Each request message contains a “Lamport
timestamp” and the PID of the requester 
 total ordering

Queued Message
Mutual Exclusion

This type of message is only optional and is sent by
recipients of the request message whenever the request
cannot be granted immediately, i.e.

 recipient itself is currently in its CS or

© 2009 Universität Karlsruhe (TH), System Architecture Group 131

 recipient itself is currently in its CS or

 recipient had initiated an earlier request

Remark: This message type eases to find out
whether  suspected dead participants

Grant Message
Mutual Exclusion

Sent to a requesting process from all participants
in two circumstances:

 recipient is not in its CS and has no earlier
request

© 2009 Universität Karlsruhe (TH), System Architecture Group 132

request

 if recipient is in its CS

 first, it queues the request

 Later on when it leaves its CS it will send the
grant message to the requester

Release Message
Mutual Exclusion

Having released the resource this message is sent to all
participants with a queued request-message.

 Another example for Java’s notify_all()

© 2009 Universität Karlsruhe (TH), System Architecture Group 133

 Why is it not sufficient to notify just one of the
waiting participants?

Ricart-Agrawala Algorithm
Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 134

a) 2 processes enter same CR at the same moment.

b) Process 0 has the lowest timestamp, so it wins.

c) When process 0 is done, it sends an OK also, process 2
can now enter the critical region.

Analysis of Ricart/Agrawala
 No tokens anymore

 Cooperative voting to determine sequence of CSs

 Does not rely on an interconnection media offering
ordered messages

S i li ti b d l i l ti t (t t l

Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 135

 Serialization based on logical time stamps (total
ordering)

 If client wants to enter CS it asks all others for
permission and proceeds if all others have agreed

 If a client C gets a permission request from another
client C’ and if C is not interested in its CS, C returns
permission immediately to the requester C’.

Correctness Conditions (1)
Mutual Exclusion

All nodes behave identically, thus we just have to regard
node x
After voting, 3 groups of requests can be distinguished:

1 known at node x with time stamp less than C

© 2009 Universität Karlsruhe (TH), System Architecture Group 136

1. known at node x with time stamp less than Cx

2. known at x with a time stamp greater than Cx

3. those being still unknown at node x

Correctness Conditions (2)

During this voting, marks may change according
to the following conditions:

Condition 1: Requests of group 1 have to be served or
they have to take a time stamp greater
th C

Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 137

than Cx

Condition 2: Requests of group 2 may not get a time
stamp smaller than Cx

Condition 3: Request of group 3 must have time
stamps greater than Cx

Two Phases of Voting Algorithm

1. Participants at node i willing to enter their CS send
request messages ei to all other participants, where
ei contains the actual Lamport time Li of node i.
(After each send, node i increments its counter Ci).

Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 138

Result: If all permission messages have arrived at node i,
the corresponding requester may enter its critical section.

Delay a bit

Cx := max{Cx,Ci +1}

2. All other participants return permission messages ai.
Node x replies to a request message ei as soon as all
older requests (received at earlier Lamport times) are
completed.

Node i

N d j

<eiMi>

Ci := max{Ci,M’k+1}
delay permission ak

ai

Example of the Voting Algorithm
Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 139

Suppose: Mi < Mk  the request message Mi has a smaller time stamp than Mk,
we have to delay the answer for the request message ek in node i !

Node j

Node k
Ck := max{Ck,Mi+1}

<ek,Mk> ak ak<ak,M’k>

Summary

 Instead of a single point of failure in the centralized
solution, now each node is supposed not to fail

 We need an efficient multi-cast and/or a group
management

Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 140

 In practice rarely used

Algorithm #messages
per CS

Delay d

Response time
if CS is free

Potential
Problems

Centralized 3 2T* 2T + E** Crash of
central node

Decentralized 3mk 2m Starvation, low

Mutual Exclusion

Analysis of Mutual Exclusion Alg.

© 2009 Universität Karlsruhe (TH), System Architecture Group 141

efficiency

Standard
Token

1 … (0 … n-1)*T (0,n-1)*T + E Loss of token,
Crash of node

Ricard-
Agrawala

2(n-1) 2(n-1)*T 2(n-1)T + E Crash of any
node

 * T: Message Transfer Time
** E: Execution Time of CS

Quorum based AlgorithmsQuorum based Algorithms

Maekawa Quorum Voting

© 2009 Universität Karlsruhe (TH), System Architecture Group 142

Motivation

 Major drawback of Ricard/Agrawala is its scalability
problem, because every other member of the critical
region has to agree before any P can enter its CS

 Each P when about to leave its CS has to sent the

© 2009 Universität Karlsruhe (TH), System Architecture Group 143

release message to its N-1 partners

 Furthermore, despite the message transfers overhead
reliability is even less than in the centralized solution

 Goal: Solution with fewer partners accepting a
current request for entering a CS

Maekawa’s Voting Approach

Observation:
 to get access, not all processes have to agree
 suffices to split set of processes up into subsets (voting sets)

that overlap
 suffices that there is consensus within every subset

© 2009 Universität Karlsruhe (TH), System Architecture Group 144

Model:
 processes p1, .., pN

 voting sets V1, .., VN chosen such that  i, k and for
some integer M:
 pi  Vi

 Vi  Vk  (some overlap in every voting set)
 | Vi | = K (fairness: all voting sets have equal size)
 each process pk, is contained in M voting sets

Maekawa’s CS-Protocol

Protocol:
 to obtain entry to CS, pi sends request messages to

all K-1 members of its voting set Vi

 cannot enter until all K-1 replies received

 when leaving CS send release messages to all

© 2009 Universität Karlsruhe (TH), System Architecture Group 145

 when leaving CS, send release messages to all
members of Vi

 when receiving request message
 if state = HELD or already replied (voted) since last request

 then queue request

 else immediately send reply

 when receiving release message
 remove request at head of queue and send reply

Voting Algorithm (Maekawa)

On initialization
state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast request to all processes in Vi – {pi};
Wait until (number of replies received = (K 1));

Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 146

Wait until (number of replies received = (K – 1));
state := HELD;

On receipt of a request from pi at pj (i ≠ j)
if (state = HELD or voted = TRUE)
then

queue request from pi without replying;
else

send reply to pi;
voted := TRUE;

end if

Voting Algorithm (Maekawa)

For pi to exit the critical section
state := RELEASED;
Multicast release to all processes in Vi – {pi};

On receipt of a release from pi at pj (i ≠ j)
if (queue of requests is non-empty)
then

Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 147

remove head of queue – from pk, say;
send reply to pk;
voted := TRUE;

else
voted := FALSE;

end if

Each process only needs grants from all its potential voters

Maekawa’s Properties

 Optimization goal: minimize K while achieving
mutul exclusion

 Can be shown to be reached when K~(N) and
M=K

© 2009 Universität Karlsruhe (TH), System Architecture Group 148

 optimal voting sets: nontrivial to calculate

 approximation: derive Vi so that | Vi | ~ 2* (N)

 place processes in a N x N matrix

 let Vi the union of the row and column containing pi

Quorum Example (Grid Scheme)

P1 P2 P3 P4 P5

P6 P7 P8 P9 P10

© 2009 Universität Karlsruhe (TH), System Architecture Group 149

V13
P11 P12 P13 P14 P15

P16 P17 P18 P19 P20

P21 P22 P23 P24 P25

Properties of Maekawa

 Satisfies mutual exclusion
 if possible for two processes to enter critical section, then

processes in the non-empty intersection of their voting sets would
have both granted access

 impossible, since all processes make at most one vote after
receiving request

© 2009 Universität Karlsruhe (TH), System Architecture Group 150

receiving request

 However, deadlocks are possible
 consider three processes with

 V1 = {p1, p2}, V2 = {p2, p 3}, V3 = {p3, p1}

 possible to construct cyclic wait graph

 p1 replies to p2, but queues request from p3

 p2 replies to p3, but queues request from p1

 p3 replies to p1, but queues request from p2

Variations

 Maekawa’s algorithm can be modified to ensure
absence of deadlocks
 use of logical clocks
 processes queue requests in happened-before order
 means that ME3 is also satisfied

© 2009 Universität Karlsruhe (TH), System Architecture Group 151

 Performance
 bandwidth utilization

 2 N per entry, N per exit, total 3 N is better than
Ricart and Agrawala for N>4

 client delay
 same as for Ricart and Agrawala

 synchronization delay
 round-trip time instead of single-message transmission

time in Ricart and Agrawala

Comments on Fault Tolerance

 None of these algorithms tolerates message loss

 Ring-algorithms can not tolerate single crash failure

 Maekawa’s algorithm can tolerate some crash failure
 if process is in a voting set not required, rest of the system

not affected

© 2009 Universität Karlsruhe (TH), System Architecture Group 152

not affected

 Central-Server: tolerates crash failure of node that
has neither requested access nor is currently in the
critical section

 Ricart and Agrawala algorithm can be modified to
tolerate crash failures by the assumption that a failed
process grants all requests immediately
 requires reliable failure detector

ElectionElection

Traditional Election
Elections in Wireless Environments
Elections in Large-Scale Systems

© 2009 Universität Karlsruhe (TH), System Architecture Group 153

When Elections?

 Necessary when

 System is booted in order to instantiate a

 centralized coordinator for system activities

© 2009 Universität Karlsruhe (TH), System Architecture Group 154

 centralized monitor to watch system’s state

 At run-time when a serial server

 fails or

 retires

Election Algorithms

 Some distributed applications need one specific
centralized process (task), acting as a

 Coordinator, e.g.
 for centralized mutual exclusion manager

 Monitor

Global States

© 2009 Universität Karlsruhe (TH), System Architecture Group 155

 Monitor

 Collector

 …

 Via election algorithms you can establish a new
coordinator -if the old one has crashed

 You need an agreement on the new coordinator

Election

Global States

An election should fulfill the following requirements:

 E0: Correctness: Only one process will be elected

 E1: Safety: each process pi has the attribute

© 2009 Universität Karlsruhe (TH), System Architecture Group 156

 electedi = null or

 electedi = P,

whereby P is the live process with highest id at the
end of the current election

 E2: Liveness: each process pi eventually will have
the attribute electedi ≠ null

Election

Election Algorithms

Suppose, your centralized lock manager has crashed.
How to do elect a new one in a DS?

 two major election algorithms, both are based upon:

 each process/node has a unique process/node number

© 2009 Universität Karlsruhe (TH), System Architecture Group 157

 each process/node has a unique process/node number
(i.e. there is a total ordering of all processes/nodes)

 live process with highest process number of all active
processes is the current (will b the next) coordinator

 after a crash the restarting former process (eventually
the previous coordinator) is put back to the set of
active processes and the election is restarted again

Election in a Logical Ring

Assumptions:

 Processes (+nodes) have unique identifiers

 Each process can communicate with all live

© 2009 Universität Karlsruhe (TH), System Architecture Group 158

a p o ss a o u a a
successors on the ring

 Processes can fail (stop responding to its
environment); this failure can be detected

Ring Algorithm (Le Lann, 1977)

 Each process/node Ni knows all its successors, i.e.
the complete logical ring

 2 types of messages are used:
 election e: to elect the new coordinator

coordinator c: to introduce coordinator to the nodes

Election

© 2009 Universität Karlsruhe (TH), System Architecture Group 159

 coordinator c: to introduce coordinator to the nodes

 Algorithm is initiated by any node Ni suspecting that
the current coordinator no longer works

 Ni send a message e with its node number i to its
immediate successor Ni+1

 If this immediate successor Ni+1 does not answer, it
is assumed thatNi+1 has crashed and the e is sent to
Ni+2, …

Ring Algorithm

 Ni receives an e/c-message with a list of node numbers:

 If an e-message does not contain its process/node
number i, Ni adds it to the list, sends e-message to Ni+1

 If an e-message contains its node number i, this e-
message has circled the ring of all active nodes The

Election

© 2009 Universität Karlsruhe (TH), System Architecture Group 160

message has circled the ring of all active nodes. The
highest process/node number in the list is the new
coordinator and Ni converts e-message into a c-message

 If its an c-message, Nj keeps in mind the node with the
highest number in that list being the new coordinator

 If a c-message has circled once, it’s deleted

 After having restarted a crashed node you can use an
“inquiry”-message, circling once around the ring

4 5

63

4 5

63

(“e”,2)

(“e”,5)
(“e”,2,3)

(“e”,5,6)

(“e”,2,3,4)

Ring Algorithm

Nodes 2 and 5
both initiate
independently the

5

Election

© 2009 Universität Karlsruhe (TH), System Architecture Group 161

7

81

2

Actual
coordinator
crashes

8

7

81

2
(“e”,5,6,7)

(“e”,5,6,7)

algorithm2

4 5

63

(“e”,2,3,4)

(“e”,2,3,4,5)

(“e”,2,3,4,5,6)(“e”,5,6,7,1,2)

4 5

63
(“e”,5,6,7,1,2,3)

(“e”,5,6,7,1,2,3,4)

Ring Algorithm

Election

© 2009 Universität Karlsruhe (TH), System Architecture Group 162

7

81

2

(“e”,5,6,7)

(“e”,5,6,7,1)

7

81

2

(“e”,2,3,4,
5,6,7)

(“e”,2,3,4,5,6,7,1)

Both e-messages circled once
around the ring of all active nodes

4 5

63

(“c”,5,6,7,1,2,3,4)

(“c”,2,3,4,5,6,7,1)

Ring Algorithm

Election

© 2009 Universität Karlsruhe (TH), System Architecture Group 163

7

81

2 This coordinator-message circles
once around the logical-ring,
All nodes know that 7
is the new coordinator

Improved Ring Algorithm

Assumptions:

 Processes do not know each others PID

all nodes communicate on a uni directional

© 2009 Universität Karlsruhe (TH), System Architecture Group 164

 all nodes communicate on a uni-directional
ring structure, i.e. only with its successor

 all processes have unique integer id

 asynchronous, reliable system

Improved Ring Algorithm
 Initially, all processes marked “non-participant”
 To start election, process place election message with own

identifier on ring and marks itself “participant”
 upon receipt of election message, compare received identifier

with own
 if received id greater than own id, forward message to neighbor
 if received id smaller than own id,

© 2009 Universität Karlsruhe (TH), System Architecture Group 165

 if own status is “non-participant”, then substitute own id in
election message and forward on ring

 otherwise, do not forward message (already “participant”)
 if received id is identical to own id

 this process’s id must be greatest and it becomes elected
 marks own status as “non-participant”
 sends out coordinator message

 when receiving coordinator message
 mark own status as “non-participant”
 set attribute electedi appropriately and forward coordinator

message

Improved Ring Algorithm1

9

4

3
17

24

1

Process has 2 possible states:
• participating
• not participating

Initially each p = not participating

Election message only contains PID
of maximal passed process

© 2009 Universität Karlsruhe (TH), System Architecture Group 166

1Chang-Roberts 1979

24

15

28

1

Note: The election was started by process 17.
Highest process identifier encountered so far is 24.
Participant processes are shown darkened

Receiving process compares PID
in election message with its own
PID:

If (state = non participating and
ownPID > e(PID)) then

{ e(PID)=ownPID
state = participating}

else …

Analysis: Improved Ring Election

 Properties
 E0 is satisfied, only one new coordinator

 E1 satisfied, since all identifiers are compared

 E2 follows from reliable communication property

© 2009 Universität Karlsruhe (TH), System Architecture Group 167

2 p p y

 Performance
 at worst 2N-1 messages for electing the left-hand neighbor

 another N coordinator messages

 Failures
 tolerates no failures

Election

Election by Bullying

Assumptions:

 Network is synchronous

 Nodes can crash, crashes will be detected reliably

© 2009 Universität Karlsruhe (TH), System Architecture Group 168

 Fully connected network, no message loss

 Crash failures only

 Nodes have unique identifiers and know ids of all
other nodes (else broadcast)

Bully Algorithm1

Election

Goal: Find live node with the highest number, choose it
as coordinator and tell this all other nodes

Start: Algorithm may start at any node, having
recognized that previous coordinator is no
longer responding.

© 2009 Universität Karlsruhe (TH), System Architecture Group 169

g p g

Message types:

 Election e, initiating the election

 Answer a, confirming the reception of an e
message

 Coordinator c, telling all others, that it is the new
coordinator

1Garcia-Molina, 1982

Steps of Bully Algorithm

Election

1. Some node Ni sends e-messages to all other nodes Nj, j > i.

2. If there is no answer within t, Ni elects himself as coordinator
sending this info via a c-message to all others Nj, j < i.

3. If Ni got an a-message within t (i.e. there is an active node
with a higher number), it is awaiting another time-limit t’. It

© 2009 Universität Karlsruhe (TH), System Architecture Group 170

with a higher number), it is awaiting another time limit t . It
restarts election, if there is no c-message within t’

4. If Nj receives an e-message from Ni, it answers with an a-
message to Ni and starts the algorithm for itself (step 1).

5. If a node N -after having crashed and being restarted- is active
again, it starts step 1.

6. Highest numbered node declares itself to be the new
coordinator

e a

a Timeout
N

Node 1

Node 2

Node 3

Node 4

Example Bully Algorithm

Election

© 2009 Universität Karlsruhe (TH), System Architecture Group 171

Node 2 detects the false behavior of the coordinator

New
coordinator

Node 4

Node 5

Current Coordinator
has crashed

Nodes 3 and 4 have to start the algorithm due to their higher number
telling node 2 to stop with its election algorithm

Bully Algorithm (1)

Election

© 2009 Universität Karlsruhe (TH), System Architecture Group 172

(a) Process 4 starts an election
(b) Process 5 and 6 respond, telling 4 to stop
(c) Now 5 and 6 each start an election

Bully Algorithm (2)

Election

© 2009 Universität Karlsruhe (TH), System Architecture Group 173

(d) Process 6 tells 5 to stop
(e) Process 6 wins and tells everyone

Analysis of Bully

 Properties
 E0 is satisfied, only one new coordinator

 E1 satisfied, since all identifiers are compared

 E2 follows from reliable communication property

© 2009 Universität Karlsruhe (TH), System Architecture Group 174

 Performance
 Best case: process p with second highest PID detects crash

of old coordinator

 Elects itself coordinator and send N-2 election messages

 Requires O(N2) messages in worst case when lowest
process detects coordinator crash

 N-1 processes with higher Ids start the election

Algorithm Number of
Messages

Time

Bully O(n2) O(n)

Election

Comparison of 2 Election
Algorithms

© 2009 Universität Karlsruhe (TH), System Architecture Group 175

Ring 2(n-1) 2(n-1)

In M. Weber: “Verteilte Systeme” there is another election
algorithm (from Mattern) based on a tree-topology

Election In Wireless Election In Wireless
EnvironmentsEnvironments

Wireless Ad Hoc Nets with non moving nodes
Vasudevan et al.: “Design and Analysis of a
Leader Election Algorithm for Mobile Ad Hoc

Networks”, Proc. 12. International Conference on
Network Protocols, 2004

http://www-net.cs.umass.edu/~svasu/pubs.html

© 2009 Universität Karlsruhe (TH), System Architecture Group 176

Elections in Wireless Environ. (1)

© 2009 Universität Karlsruhe (TH), System Architecture Group 177

 Election algorithm in a wireless network, with node a as the
source. (a) Initial network. (b)–(e) The build-tree phase

Elections in Wireless Environ. (2)

 Figure 6-22. Election algorithm in a wireless
network, with node a as the source. (a) Initial
network. (b)–(e) The build-tree phase

© 2009 Universität Karlsruhe (TH), System Architecture Group 178

Elections in Wireless Environ. (3)

 Figure 6-22. (e) The build-tree phase.
(f) Reporting of best node to source.

© 2009 Universität Karlsruhe (TH), System Architecture Group 179

Elections in LargeElections in Large--Scale DSScale DS

Study of your own

© 2009 Universität Karlsruhe (TH), System Architecture Group 180

Elections in Large-Scale Systems (1)

 Requirements for superpeer selection:

1. Normal nodes should have low-latency access to
superpeers.

2. Superpeers should be evenly distributed across the

© 2009 Universität Karlsruhe (TH), System Architecture Group 181

p p y
overlay network.

3. There should be a predefined portion of superpeers
relative to the total number of nodes in the overlay
network.

4. Each superpeer should not need to serve more than
a fixed number of normal nodes.

Superpeer Election

In a DHT system:
Reserve a fixed part of the ID space for superpeers

Example:
If s superpeers are needed for the DS that uses m

© 2009 Universität Karlsruhe (TH), System Architecture Group 182

If s superpeers are needed for the DS that uses m-
bit identifiers, simply reserve k = log2S leftmost
bits for superpeers
With n nodes we’ll have on average

2k-m *n superpeers
Routing to superpeer: send message for key p to
node responsible for p AND 11…1100…000

Elections in Large-Scale Systems (3)

© 2009 Universität Karlsruhe (TH), System Architecture Group 183

 Moving tokens in a two-dimensional space using
repulsion forces

Deadlock DetectionDeadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 184

Deadlocks

Outline

 Deadlocks
 Deadlock Conditions
 Centralized Detections
 Path Pushing
 Distributed Detection

How to deal with deadlocks

© 2009 Universität Karlsruhe (TH), System Architecture Group 185

 Transactions
 Transactions in Local systems
 Characteristic of Transactions
 Serializability
 Two Phase locking Protocol
 Distributed Transactions

How to support complicated
distributed applications

Methods against Deadlocks in DS

 Prevention (in some transaction oriented systems)

 Avoidance (too complicated and time consuming)

 Ignoring (still popular)

Deadlock Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 186

g g (p p)

 Detecting (sometimes, if really needed) combined
with repairing

Deadlocks in Distributed Systems

In a DS a distinction is made between:

 Resource deadlock: tasks are stuck waiting for
resources held be each other

Deadlock Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 187

 Communication dl: tasks are stuck waiting for
message to arrive

 However, message buffers ~ resources

T1 holds x

• Using “locks” within transactions may lead to deadlocks:

T1 T2

…

T1 waits for y

Distributed Deadlocks

waiting
graph

Distributed Deadlocks

© 2009 Universität Karlsruhe (TH), System Architecture Group 188

T2 holds y
…

lock(x)
…

lock(y)

…
….

lock(y)
…

lock(x)
time

T2 waits for x

A deadlock has occurred
if global waiting graph contains a cycle.

Deadlock Prevention

Deadlock Prevention

1. Task may hold only 1 resource at the same time
(=> no cycles possible)

2. Pre-allocation of resources ( resource
inefficiency)

© 2009 Universität Karlsruhe (TH), System Architecture Group 189

3. Release old resources if requesting a new one

4. Acquire in order (It’s quite a cumbersome task to
number all resource types in a DS)

5. “Senior rule”: each application gets a “timestamp”
(according to Lamport’s time).

 Oldies (seniors) are preferred

Wait-Die Deadlock Prevention
Deadlock Prevention

 Each transaction gets a time stamp when it starts

 If „old“ transaction (with lower time stamp) requests
resource -held by a younger one- then oldie has to
wait and it is queued according to its time stamp

© 2009 Universität Karlsruhe (TH), System Architecture Group 190

q g p

 If a younger transaction requests a resource
-held by an oldie- the young transaction is
aborted and later on restarted

„Wait-Die“ Prevention

requester holder requester holder

wait

Deadlock Prevention

© 2009 Universität Karlsruhe (TH), System Architecture Group 191

Oldie (5) Kid (20) Kid (20) Oldie (5)
wait

waits dies

„Wound-Wait“ Prevention

requester holder requester holder

Deadlock Prevention

© 2009 Universität Karlsruhe (TH), System Architecture Group 192

Oldie (5) Kid (20) Kid (20) Oldie (5)

preempts waits

Deadlock Avoidance

Deadlock Avoidance

Avoidance* in DS almost never used because:

1. Every node must keep track of global state of DS 

substantial storage & communication overhead

© 2009 Universität Karlsruhe (TH), System Architecture Group 193

*Deadlock avoidance rarely used even in local systems

2. Checking for a global state safe must be mutual
exclusive, otherwise two concurrent checks may
violate the state safe

3. Checking for a global safe state requires substantial
processing and communication

Deadlock Detection

Deadlock Detection in DS

Increased problem:
If there is a deadlock within a DS
resources from different nodes may be involved

Several approaches:

© 2009 Universität Karlsruhe (TH), System Architecture Group 194

In any case:
Deadlock must be detected within a finite amount of time

Several approaches:

1. Centralized Control

2. Hierarchical control

3. Distributed Control

Deadlock Detection in DS

Correctness in a waiting-graph depends on:

 progress

Deadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 195

 safety

Deadlock Detection in DS

General remarks:

 Message delay and out of date data may cause false
cycles to be detected (phantom deadlocks)

Deadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 196

 After a “possible” deadlock has been detected,
one has to double check if it is a real one

 Having detected a deadlock, delete and restart task,
if it‘s transaction oriented.

Centralized Deadlock Detection

 Local and global deadlock detector (LDD and GDD) (if
a LDD detects a local deadlock it resolves it locally!).

 The GDD gets status information from the LDD
 on waiting-graph updates

Deadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 197

g g p p

 periodically

 on each request

 If a GDD detects a deadlock involving resources at
two or more nodes, it has to resolve this deadlock
globally!)

Centralized Deadlock Detection

Major drawbacks:
 The node hosting the GDD = point of single failure

 “Phantom deadlocks” may arise because the
global waiting graph is not up to date

Deadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 198

global waiting graph is not up to date

Centralized Deadlock Detection

 Each node preserves its local waiting graph
(respectively its resource usage graph)

 Central coordinator preserve a global waiting graph
(union of the local ones)

Deadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 199

 If coordinator detects a cycle it kills one task to break
the deadlock

 Problem: Does the global waiting graph correspond
to the current global state?

Phantom Deadlocks

Node 1 Node 2 Coordinator Node

A S S C A S C

Deadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 200

B

R T

Question: B having released R, requests T, what may happen?

B

R T

How to solve? Using “Lamport time stamps“ per message

Hierarchical Deadlock Detection

 hierarchy of deadlock detectors (controllers)

 waiting graphs (union of waiting graphs of children)

Deadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 201

 deadlocks resolved at lowest level possible

Hierarchical Deadlock Detection
Deadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 202

 Each node in tree (except of a leaf node) keeps track
of the resource allocation information of itself and of
all “kids”

 A deadlock that involves a set of resources will be
detected by the node that is the common ancestor of
all nodes whose resources are among the objects in
conflict.

Simple Distributed Deadlock
Detection1

 no global waiting-graph

 deadlock detection cycle:

 wait for information from other nodes

Deadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 203

Remark: The non-local portion of the global waiting-graph
is an abstract node “ex”

 combine with local waiting-information

 break cycles, if detected

 share information on potential global cycles

1Obermark, 1982

Situation on node x:

P1 P4

Some task outside node x waits
for a resource currently owned by P4

Simple Distributed Deadlock
Detection

Deadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 204

P2 P3

No local deadlock

ex

Some task outside of node x
holds a resource P3 is waiting for.

Distributed Deadlock Detection1

 A probe message <i, j, k> is sent whenever a task
blocks

 This probe message is sent along the edges of the

Deadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 205

p g g g
waiting-graph if the recipient is waiting for a resource

 If this probe message is sent to the initiating task,
then there is a deadlock

1Chandy/Misra/Haas 1983)

Distributed Deadlock Detection
Deadlock Detection

 If P has to wait for resource R it sends a message to current
resource-owner O

 This message contains:
 PID of waiting task P

 PID of sending task S

PID f i i t k E

© 2009 Universität Karlsruhe (TH), System Architecture Group 206

 PID of receiving task E

 Receiving process E checks, if E is also waiting. If so, it modifies
the message:
 First component of message still holds

 2. Component is changed to: PID(E)

 3. Component is changed to PID of that process, process E is
waiting for.

 If message ever reaches waiting process P   deadlock

(0, 8, 0)

Example of DDD in DS
Deadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 207

P0  P1 P2

Node 1

P3

Node 2

P6 P8

Node 1

P4

P5 P7
(0,2,3)

(0,4,6)

(0,5,7))
(0,0,1) (0,1,2)

Distributed Deadlock Detection

Recommended Reading:

Knapp, E.: Deadlock Detection in Distributed Databases,
ACM Comp. Surveys, 1987

Si h P Di t ib t d O ti S t

Deadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 208

Sinha, P.: Distributed Operating Systems:
Concepts and Design,
IEEE Computer Society, 1996

Galli, D.: Distributed Operating Systems:
Concepts and Practice, Prentice Hall, 2000

Deadlocks with Communication

1. Deadlocks may occur if each member of a specific
group is waiting for a message of another member
of the same group.

2. Deadlocks may occur due to unavailability of

Deadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 209

2. Deadlocks may occur due to unavailability of
message buffers etc.

3. Study for yourself: Read Stallings: Chapter 14.4., p.
615 ff

Recommended Literature
http://link.springer-ny.com/link/service/series/0558/tocs/t2584.htm

A. Schiper, A.A. Shvartsman, H. Weatherspoon, B.Y. Zhao
(Eds.): Future Directions in Distributed Computing
Research and Position Papers (currently online available)

Part I: Foundations of DS: What to expect from theory?

© 2009 Universität Karlsruhe (TH), System Architecture Group 210

p y

Part II. Exploring Next-Generation Communication
Infrastructures and Applications

Part III. Challenges in Distributed Information and Data
Management

Part IV. System Solutions: Challenges and Opportunities in
Applications of Distributed Computing Technologies

