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Outline: Next Lectures

 Coordination Problems
 Global State

 Failure Detection

 Mutual Exclusion

Overview
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 Election

 Multicast

 Consensus

 Deadlocks

 Distributed Transactions

Recommended reading:
Tanenbaum, Ch. 5, 7, Coulouris/Dollimore/Kindberg, Ch. 11, 12, 13



Motivation

 Given an asynchronous DS, i.e. no process has a view of the 
current global state of the DS

 Need to coordinate the actions of cooperating processes to 
achieve common goals
 Failure detection: how to know in an asynchronous network 

whether my peer is dead or alive?
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 Mutual exclusion: how to guarantee that no two processes will ever 
get access to a critical section at the same time?

 Election: how will the system elect a new master in a master-slave 
based distributed application? 

 Multicast: how to enhance when sending to a group of recipients 
that
  reliability of the multicast (i.e. correct delivery, only once, 

etc.)
  preservation of the order of the messages



Global StateGlobal State
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Chandy/Lamport: Distributed Snapshots: Determining Global States of DS
http://research.microsoft.com/users/lamport/pubs/chandy.pdf

Dijkstra: Comments on Chandy/Lamport/Misra Algorithm
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD864.html

Michael L. Powell and David L. Presotto,“PUBLISHING: A Reliable Broadcast 
Communication Mechanism, Proceedings of the Ninth ACM Symposium on 
Operating Systems Principles, Oct 83.

Ozalp Babaoglu and Keith Marzullo: Consistent Global States of Distributed 
Systems: Fundamental Concepts and Mechanisms, in Distributed Systems, 
Sape J. Mullender, Addison-Wesley, 1993. 



Outline of this Chapter1

 Complexities of state detection in DS
 The notion of consistent state
 The distributed snapshot algorithm 

(Chandy/Lamport)

5

(Chandy/Lamport)
 Application to detect stable properties and 

checkpointing
 Another approach for global state recording: 

publishing

1 Most slides on Global State are from Sanjeev R. Kulkarni (Princeton Uni) 
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Model of Computation

 Finite set of processes

 Process send messages on a finite set of 
unidirectional channels

6

 Channels are error free, preserve FCFS, and 
have infinite buffers

 Messages experience arbitrary but finite 
delays

 Strongly connected network
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Model of Computation (cont.)

 A computation is a sequence of events.
 An event is an atomic action that changes the 

state of a process and at most one channel 
state that is incident on that channel. 
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 Arcs indicate a message transfer

p

q
`
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0 Sp

1 Sp
2 Sp

3
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Happened Before Relation

 Events e and e` of the same process.
 if e happens before e` then e       e` 

 e and e` in two different processes

8

 if e = send(m) and e` = recv(m) then e       e` 

 Transitive
 if e       e` and e`       e`` then e       e`` 
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Determining Global State

 Global State
“The global state of a distributed computation 
is the set of local states of all individual 
processes involved in the computation plus 

9

p o ss s o d o pu a o p us
the state of their communication channels.”
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More on States

 process state
 memory state + register state + signal masks + 

open files + kernel buffers + …   
or
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 application specific info like transactions 
completed, functions executed etc.

 channel state
 “Messages in transit” i.e. those messages that 

have been sent but not yet received
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Why to deal with Global States?

 Many problems in distributed computing can be cast as 
executing some action on reaching a particular state

 e.g. 

 distributed deadlock detection is finding a cycle in 
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g y
the wait for graph. 

 termination detection

 check pointing

 some more…..
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Snapshot Problem

Suppose computation of a distributed application has
become passive on each involved node 

We want to be able to distinguish whether
 a distributed application 

Global States
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pp

1. is temporarely blocked 

2. has “terminated” or

3. is deadlocked



Snapshot Problem

 Garbage collection

Global States

waits for
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 Deadlock

 Termination problem
waits for

waits for

passive

terminated

passive

terminated



Why is Global State difficult in DS?

 Distributed state: 
Have to collect information that 
is spread across several machines!!
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 Only local knowledge: 
A process in a distributed computation 
might not really know the current states 
of the other processes 
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Difficulties

 Instantaneous recording not possible

 No global clock: the distributed recording of local 
t t t b h i d b d ti
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states cannot be synchronized based on time
 Some local states reflect an outdated state, some 

reflect the current state

 Random network delays: no centralized process 
can initiate the detection
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Difficulties due to Non Determinism

 Deterministic Computation
 At any point in computation there is at most one 

event that can happen next.
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 Non-Deterministic Computation
 At any point in computation there can be more 

than one event that can happen next.
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Example: Deterministic Computation

 Producer code:

while (1) 
{ 

 Consumer code:
while (1) 
{

17

produce m; 
send m; 
wait for ack; 

}

{
recv m; 
consume m; 
send ack; 

}

Very simple solution for a distributed producer consumer problem
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Example: Initial State
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m
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Example: Intermediate State
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m
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Example
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m
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Example
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a
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Example: Intermediate State
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a
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Example: Product m consumed
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a
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Deterministic State Diagram
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Non-Deterministic Computation
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m1

m2

m3

p

q

r

Three processes interacting asynchronously
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p

q q

Three Possible Runs

m1 m3
m1

m2

m3

p
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A Non-Deterministic Computation

27

 All these states are feasible
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Feasible and Actual States

 Any state that an external observer could 
have observed is a feasible state

 A state that an external observer did observe

28

 A state that an external observer did observe 
is an actual state
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A Non-Deterministic Computation
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 Only some states are actual
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Non-Determinism

 Deterministic computation
 A local event would reveal everything about the 

global state!
 The process will know other process’ state

30

 Not so for Non-Deterministic computation!

m
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A Naïve Snapshot Algorithm

 Processes record their state at any arbitrary 
point

 A designated process collects these states

31

+ So simple!!

- Correct??
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Example: Producer Consumer

p records its state

p q
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m
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Example

p q
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m
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Example

q records its state

p q
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m
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Example: Recorded Global State

p q
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m m
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Where did we err?

 What did we do?

p

36

 We recorded inconsistently

q

m
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Error!!

 The sender has no record of the sending

 The receiver has the record of the receipt

 Result:

37

 Global state contains record of the receive event but 
no send event, thus violating the happened before 
concept

 What we need is something that helps us to 
determine consistency of local recording
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NotionNotion of of ConsistencyConsistency
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The Notion of Consistency

 A global state is consistent if it could have 
been observed by an external observer

 If e e` then it is never the case that e` is

39

 If e       e  then it is never the case that e  is 
observed by the external observer and not e

 All feasible states are consistent
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An Example

p q
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p
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A Consistent State?

p q

Sp
1 Sq

1
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Yes

p q

Sp
1 Sq

1
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A Consistent State?

p q
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43

p

q

Sp
0 Sp

1 Sp
2 Sp

3

Sq
0 Sq

1 Sq
2 Sq

3

m1

m2

m3

© 2009 Universität Karlsruhe (TH), System Architecture Group 



Yes

p q
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An Inconsistent State

p q
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1 Sq

3
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Why Consistent Global State?

How to combine information from multiple nodes, 
that the sampling reflects a global consistent state?

Problem:

Global States
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 Local view is not sufficient

 Global view:

 We need messages transfers to the other nodes in 
order to collect their local states

 Meanwhile these local states can change again



Local History

 N processes Pi, P := {P1, P2, ... Pn}, for each Pi:
 On a separate node ni
 Event series = history hi := <ei,1, ei,2, ... >
 May be finite or not

 Observing a local history hi up to event ei k you get:

Global States
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Observing a local history hi up to event ei,k you get:
prefix of history hi,k := < ei,1, ei,2, ... , ei,k >

 Each ei,k is either a local or a communication event

 Process state:
 State of Pi immediately before ei,k denoted si,k

 State si,k records all events included in history hi,k-1
 Hence, si,0 refers to Pi ‘s initial state



Global History and Global State

Global States

 Global history h := h1  h2  ... hn-1  hn

 Similarly we can combine a set of local states 
to form a global state S := (s1, s2, … sn)
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 However, which combination of local states is 
consistent?



Cuts

Global States

 Similar to the global state, we can define cuts based 
on k-prefixes:

 C := h1,c1  h2 ,c2  ... hn-1,cn-1  hn,cn

 h1 c1 is history up to and including event e1 c1
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1,c1  y p g 1,c1

 The cut C corresponds to the state

S = (s1,c1+1, s2,c2+1, … sn,cn+1)

 The final events in a cut are its frontier or its border 
line :

BL = {ei,ci | i  {1,2, …n}}



Distributed Snapshots
 Global state of system S:

S := (s1,c1, s2,c2, ...., sn,cn ) 
with the border line:

 BL := (e1,c1, e2,c2, ...., en,cn ) 
Events have 
already happened

Global States
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P1

P2

P3

e1,1

e2,1

e1,2

e3,1

e1,3

e2,2

e3,2

e2,3

e3,3

e1,4 e1,5

BL = (e1,3, e2,2,e3,1) 

Consistent Cut Inconsistent Cut
( e1,4 = message from the 
future!!)No problem as long as we 

preserve the message in transit



Consistent Cuts

 We call a cut C consistent iff for all events 
e’  C: e → e’ implies e  C

A global state is consistent if it corresponds to

Global States
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 A global state is consistent if it corresponds to 
a consistent cut

Remark:
 We can characterize the execution of a system as 

a sequence of consistent global states 



Linearization

 A global history that is consistent with the 
“happened before” relation is also called a 
linearization or consistent run

Global States
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 A linearization only passes through consistent 
global states

 A state S’ is reachable from state S’ if  a 
linearization that passes through S and S’



Distr. Distr. SnapshotSnapshot AlgorithmAlgorithm
((Chandy/LamportChandy/Lamport))

Features:
Does not promise us to give us exactly what is there
But gives us consistent state!!
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Brief Sketch of the Algorithm

 p sends a marker message along all its outgoing 
channels after it records its state and before it sends 
any other messages.

 On receipt of a marker message from input channel c
if h t t d d it t t

54

 if p has not yet recorded its process state
 record the local process state
 state ( c ) =  EMPTY

 else
 state ( c )  = messages received on c since it had 

recorded its state excluding the marker.
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Chandy/Lamport Algorithm1

Global States

Requirements:

1. No process failures, no message losses

2. Sequence of received messages is the same as 
sequence of sent messages

3 d l h l h C S
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3. Bidirectional channels with FCFS property

4. Network is a strongly connected graph
• From each process there is a connection path to each 

other process

P2

P1 P3

Ch1

Ch2

Ch3

Ch4

1published 1985



Chandy Lamport Algorithm (2)

 Each process can initiate CLA to get a new global state

 2 types of messages

 marker messages
li ti
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 application messages

 First marker message is for saving local process state

 Next marker messages are for saving the other input 
channel states



Principle of Operation

Global States

 Initially broadcast a marker message that contains a 
unique snapshot id (e.g. initiator id + sequence #) in 
order to differ from concurrent snapshot initializations

 Process Q receiving a marker message for the first 
f h l
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time from input channel ic:
 If not yet done, records its local process state
 Define input channel state ic = EMPTY
 Q sends the marker message to all its other output channels
 Continue with the local application process 
 Each received application message is queued in its 

corresponding message queue



Principle of Operation

Global States

 Process Q receiving the marker message at another 
input channel CHi
 Terminates collection of messages at message queue MQi

 Save and records state(CHi) to local state of Q
 If all incoming channels of Q have been saved and recorded
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 If all incoming channels of Q have been saved and recorded, 
send aggregated local state of Q with all its input channels 
states to the initiator of the CLA



Chandy/Lamport (1)

Input Channels Output Channels

Local State
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Pi

disk



Chandy/Lamport (2)

Input Channels Output Channels

Local State
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Pi

disk

Application messages



Chandy/Lamport (3)

Pi

Input Channels Output ChannelsLocal State

j

j
First
marker

j

j
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diskApplication message j Marker message from
Initiator Pj

j j


Current state of
Pi input channels

Application messages not 
belonging to current snapshot



Chandy/Lamport (4)

Pi

Input Channels Output ChannelsLocal State

j
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diskApplication message j Marker message



j Last
marker

Send snapshot message of Pi
to the initiator process
via appropriate output channel



Algorithm in Action

p Sp
0 Sp

1 Sp
2 Sp

3
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q
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0 Sq
1 Sq

2 Sq
3

m1 m2 m3
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Algorithm in Action

p Sp
0 Sp

1 Sp
2 Sp

3

q records state as Sq
1 , sends marker to p
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q
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0 Sq
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3

m1 m2 m3
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Algorithm in Action

p Sp
0 Sp

1 Sp
2 Sp

3

p records state as Sp
2, channel state as empty
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Algorithm in Action

p Sp
0 Sp

1 Sp
2 Sp

3

q records channel state as m3
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Algorithm in Action

p Sp
0 Sp

1 Sp
2 Sp

3

Recorded Global State = ((Sp
2, Sq

1),  (0,m3) )
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q
Sq

0 Sq
1 Sq

2 Sq
3

m1 m2 m3

Comment: Although application message m2 has been received in the meanwhile, 
this message does not belong to the global state initiated by q
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Properties: Recorded Global State

 If  Si and Sj are the real global state when 
Lamport’s algorithm started and finished 
respectively and S* is the state recorded by 
the algorithm then,

68

 S* is reachable from Si

 Sj is reachable from S*
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Still what good is it?

 Stable Properties
 A property SP is called a stable property iff for all 

states S’ reachable from S 

69

SP(s) → SP(S’)

 eg: deadlock, termination, token loss
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Stable Properties
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Si

Sj

S*
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Stable Properties

71

Si

Sj

S*
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Detection of Stable Properties

Outcome = false;
while ( outcome == false )
{

determine Global State S;

72

determine Global State S;
outcome = SP(S);

}
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Checkpointing 

 S* serves as a 
checkpoint

 On a failure, restart 
th t ti

73

the computation 
from S*

 Problem!
 Not able to restore to 

Sj

Si

Sj

S*
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Solution: Publishing

 A Broadcast medium
 A central recorder process records all the 

messages received by each process

74

messages received by each process
 Processes record their states at their own 

time and send it to the recorder
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Architecture of Publishing

75

recorder Sp1 Sq1

STATE SENT
ID

MSGS
RECD

    p Sp1

    q Sq1

p q
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q sends the message

m1

76

recorder Sp1 Sq2

p q
STATE SENT

ID
MSGS
RECD

    p Sp1

    q Sq1 1
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p sends an ack 
recorder records m1
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recorder Sp2 Sq2

p q
STATE SENT

ID
MSGS
RECD

    p Sp1 m1

    q Sq1 1
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Determining Global State

 Recorder can construct global state from
 Checkpointed States of all processes

78

Plus

 Messages recd since last checkpoint
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Problems

 Publishing keeps track of all messages 
received by each process

 Expensive!
 Solution

79

 Solution
 recorder takes checkpoint of process p at time t
 deletes all messages recd by p before t.
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p checkpoints
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recorder Sp2 Sq2

p q
STATE SENT

ID
MSGS
RECD

    p Sp1 m1

    q Sq1 1
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Recorder stores Sp2
deletes m1
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recorder Sp2 Sq2

p q
STATE SENT

ID
MSGS
RECD

    p Sp2

    q Sq1 1
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The initial situation 
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recorder Sp2 Sq2

p q
STATE SENT

ID
MSGS
RECD

    p Sp1 m1

    q Sq1 1
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Say p crashes

83

recorder Sq2

p q
STATE SENT

ID
MSGS
RECD

    p Sp1 m1

    q Sq1 1
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Recorder reinstates p to Sp1
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recorder Sq2

p q

Sp1

STATE SENT
ID

MSGS
RECD

    p Sp1 m1

    q Sq1 1
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Replays back m1

m1
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recorder Sq2

p q

Sp2

STATE SENT
ID

MSGS
RECD

    p Sp1 m1

    q Sq1 1
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q crashes
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recorder

p q

Sp2

STATE SENT
ID

MSGS
RECD

    p Sp1 m1

    q Sq1 1
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Recorder reinstates q to Sq1
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recorder

p q

Sp2

STATE SENT
ID

MSGS
RECD

    p Sp1 m1

    q Sq1 1

Sq1
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Ignore m1

m1
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recorder

p q

Sp2

STATE SENT
ID

MSGS
RECD

    p Sp1 m1

    q Sq1 1

Sq1
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Comparison

SNAPSHOT PUBLISHING
Network Strongly Need not be

89

Network connected Need not be

Mode Distributed Centralized

Scalability Yes No

Restorability No Yes
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Summary

 Global state detection is difficult in DSs

 Chandy/Lamport’s snapshot algorithm may 
not give an actual state but is very helpful in 
d t ti t bl ti
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detecting stable properties

 Publishing gives an asynchronous way of 
determining global states but is not realy 
scalable
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Mutual ExclusionMutual Exclusion

Centralized Algorithm
Decentralized Algorithm
Token Ring Algorithm
Distributed Algorithm
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Mutual Exclusion in Local OS

Well known problem in multitasking OSes, e.g.
 access to shared memory, e.g.

 Buffers

 Global variables …

h d
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 access to shared resources

 access to shared data

  various centralized mechanisms to ensure mutual 
exclusion, e.g.
 Semaphores

 Monitors

 Spin locks



No Starvation
No deadlock

Requirements: Mutual Exclusion 
Requirements for a valid solution:

1. Safety: At most one process allowed to be in the CS

2. Liveliness (bounded Waiting): Each competitor must enter or 
exit its CS after some finite waiting time

3 Fair Ordering: Waiting in front of a CS is handled according to

Mutual Exclusion
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3. Fair Ordering: Waiting in front of a CS is handled according to 
FCFS

4. Progress: Length on RS does not influence the protocol in front 
of a CS

5. Portability: Hard to achieve in a DS

6. Fault tolerance: We assume that messages are delivered 
correctly, e.g. only once and after some finite delay



 Number of needed messages per critical section CS, minimal nm

 Protocol delay (to evaluate who is the next) per CS, minimal d
Last node leaves CS Next node enters CS

Protocol delay

time

Performance Criteria
Mutual Exclusion
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 Turnaround time TTCS, time interval between requesting to enter
a CS and leaving the CS, minimal TTCS

 Throughput TPCS, # passing a CS per time unit (maximize TPCS)
TPCS = 1/(d + ECS)

Node requests CS Node leaves CS
time

Node enters CS

Execution time ECS
Turnaround time TTCS



Centralized Lock ManagerCentralized Lock Manager
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Centralized Lock Manager CLM

 A specific process CLM per critical region is designated to 
be the lock manager for all competing application clients 

 CLM controls accesses to CR using a grant token 
representing permission to enter

Mutual Exclusion
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p g p

 To enter its CS, a client sends a request message to the 
CLM awaiting a positive answer from the CLM

 If no client has the token, CLM replies immediately with 
the grant token. Otherwise CLM queues this request 

 Leaving the CS the client sends the grant token back to 
the CLM 



A Centralized Algorithm
Mutual Exclusion
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a) P1 asks CLM (P3) for permission to enter its CR  granted

b) P2 asks permission to enter same CR.  CLM does not reply.

c) When P1 exits its CR, it notifies CLM that grants access to P2



Client Client Client

request request
request “token granted”

Token holder

Problems with Centralized Locking?
Mutual Exclusion
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CLM = Centralized 
Lock Manager

request request

queueIf CLM crashes 
uncertain state of CLM

1. A client might still hold the token
2. Client has sent token, but token 

was not yet received at CLM
3. The CLM has the token
4. How long would you wait, before 

electing a new CLM?



Application 1 Application 2Lock Manager

send_message

receive_message

send_messagereceive_message

critical region

send_message

receive_message
queued_requesreceive message

Queued message is optional
Benefits?Centralized Lock Manager

Mutual Exclusion
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queued requests

A1

g

A2

send_message

t?

critical region

receive_message

send_message

Disadvantages:
• single point of failure

• potential bottleneck



Summary on CLM

 Easy to implement
 Scalability? Bottleneck?
 Safety fulfilled
 Liveliness fulfilled

F i d i t f lfill d With t dditi l

Mutual Exclusion
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 Fair ordering not fulfilled: Without additional 
requirements concerning the network, request are 
not served in FCFS order
 Adding logical time stamps per request might improve the 

situation, but still does not solve fair ordering

 Progress is fulfilled
 Fault tolerance: CLM might fail 

 Elect a new CLM (see election algorithms)



Performance Properties of CLM

 Per CS you need at least 3 messages
1. Request from client to enter

2. Reply from CLM that client can enter

3. Notification from client that it has left CS 
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 Turnaround time of CS is augmented by at least 
3 Δd + tCLM if
 Δd is the message transfer time

 tCLM is average execution time of CLM

What is the maximal delay in front of a CS?



Decentralized AlgorithmDecentralized Algorithm

Lin’s Voting Algorithm in DHT DS.
“A Practical Distributed Mutual Exclusion 

Protocol in Dynamic P2P Systems”

Study of your one
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Decentralized Mutual Exclusion

 Principle: n lock manager per CS (resource), i.e. the 
resources are replicated and each replica has its own 
lock manager

 A client can only access a resource if the majority of 
the n lock managers have sent a grant reply
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g g p y

 Each lock manager responds ”immediately” to a 
client’s request with grant or deny

 A client receiving a deny will retry again soon after

 When a lock manager crashes, it will recover quickly, 
but will have forgotten about permission it had 
granted in the past



Decentralized Mutual Exclusion

 Lin et al. showed that it is quite robust

 However, under heavy load, i.e. high 
concurrency in front of the CS (resources) no 
client will get the majority of the n lock
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client will get the majority of the n lock 
managers, thus resulting in a poor 
performance 



Algorithms based on Logical Algorithms based on Logical 
StructuresStructures

Token Ring 
Tree Structured
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Token Ring Algorithm
Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 106

a) A group of processes on a network à la Ethernet  

b) A logical ring (constructed in software)



Token-Passing Mutual Exclusion
Mutual Exclusion

The token-passing algorithm:
 A process can enter its CS iff it is the current owner

of the access token 

 When leaving its CS, the owner of the access token 
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g ,
sends this token to its immediate successor 

Observation:
In times when no participant wants to enter its CS, 
nevertheless the access token is circulating within the 
logical ring reducing the bandwidth of the network
 overhead



Logical Ring

Current

Standard Token Algorithm
Mutual Exclusion

Given a lattice of nodes:
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Token Holder

Processes waiting in 
front of their critical 

sections CS 
request are not served 

according to FCFS 

t1
t0



Check out the list of requirements:

1. Safety, yes, due to unique token,   
only token holder may enter its CS

2. Liveliness, yes, as long as logical
ring has a finite number of nodes

Mutual Exclusion

Analysis of Token Based 
Exclusion
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ring has a finite number of nodes

3. Sequence order, no, TLM may
change the internal order of the
waiting requests

4. Fault tolerance?
• splitting of the logical ring 

and you might be lost.
• losing the token



Problems with Token-Algorithm
Mutual Exclusion

1. How to distinguish if the token has been lost or if it is 
used very long?

2. What happens if token-holder crashes for some time 
and recovers later on?
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3. How to maintain a logical ring if a participant 
drops out (voluntarily or by failure) of the system?

4. How to identify and add new participants?

5. Ring imposes an average delay of N/2 hops 
limiting scalability



Receive(“Token” from Node i-1)

Participant on Node i

Receive(“Token” from Node i)

Participant on Node i +1

Implementation Issues
Mutual Exclusion
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Send(“Token” to Node i+1)

Critical Section

Send(“Token” to Node i+2)

Critical Section



Implementation Issues

Receive(“Token” from Node i-1)

Participant on Node i

Receive(“Token” from Node i)

Participant on Node i +1

Mutual Exclusion
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Send(“Token” to Node i+1)

Critical Section

Send(“Token” to Node i+2)

Critical Section



Receive(“Token” from Node i-1)

Participant on Node i

Receive(“Token” from Node i)

Participant on Node i +1

Mutual Exclusion

Implementation Issues
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Send(“Token” to Node i+1)

Critical Section

Send(“Token” to Node i+2)

Critical Section

Question: 
What may happen if you try to give token to immediate successor?



Receive(“Token” from Nodei-1)

Participant on Node i

Critical Section

Receive(“Token” from Nodei)

Participant on Node i +1

Critical Section

?

Prob 1

Mutual Exclusion

Implementation Issuess
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Send(“Token” to Nodei+1)

C t ca Sect o

Send(“Token” to Node i+2)

Critical Section

Question: How to solve this problem as a system architect?



Send_Request(“Token” for CrS_1)

Participant on Node i +1

Prob 1

A token-handler-thread per application and critical section

Receive(“Token” from Nodei)

TokenHandler Node i +1

R i (L l R t) N bl ki

Implementation of a System 
Architect

Mutual Exclusion
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Send_Release(“Token” for CrS_1)

Critical Section_1

Send(“Token” to Node i+2)

If Local_Request ?
yes

Receive(Local_Request)Receive(“Token” for CrS_1)

Receive(Local_Release)

Send(Local_Request)

no

Non blocking 



Performance of Token Ring Alg.

 Suppose your logical token ring consists of p 
processes on p different nodes

 Per CS you need at least 2 messages
1. Token passing message from immediate predecessor
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2. Token passing message to immediate successor 

 Minimal turnaround time of CS is increased by 2 Δd
 Δd is the message transfer time

Average and maximal turn around times?

What about the requirements for a valid solution?



Tree Based Token Algorithm

 Set of processes can be structured as a 
rooted tree

 Each node has a list for storing processes 
h h i i i l i
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that want to enter their critical sections

 Initially all request lists are empty and the 
root contains the grant token

 Lower nodes send their requests to the 
immediate predecessors



Tree Based Mutual Exclusion (1)
P1

P2 P3 P4

Token
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P6P5

Initially root P1 is the token holder



Tree Based Mutual Exclusion (2)
P1

P2 P3 P5
P6

P4

Token
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P6

P6P5



Tree Based Mutual Exclusion (3)
P1 P3

P2 P3 P5
P6

P4

Token
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P6

P6P5



Tree Based Mutual Exclusion (4)
P1 P3

P2 P3 P5
P6

P4

Token
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P6

P6P5



Tree Based Mutual Exclusion (5)
P1 P3

P2 P3 P5
P6

P4
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P6

P6P5Token

Finally P5 can use the token to enter its critical section
Releasing the token is almost as easy, but …



Performance of Tree Based Token?

 Analyze in the tutorial

 How to implement an as fair solution as possible 
avoiding unbounded waiting of sub-trees
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 Problem: P3 in the example has no knowledge what’s 
going on in the other sub-trees

 Where to collect needed information about the 
requests



Distributed Mutual ExclusionDistributed Mutual Exclusion

Ricard Agrawala

Maekava
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Distributed Lock Managers
Mutual Exclusion

Two distinct solutions:
 Ricart/Agrawala consensus algorithm

 All competitors have to agree upon the process that is 
allowed to enter its CS

 Algorithm needs logical clocks
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g g

 Ricart, G.; Agrawala, A.: “An optimal Algorithm for 
Mutual Exclusion in Computer Networks”, C.ACM, 1981

 Maekawa’s voting algorithm
 Sufficient processes have to vote for one competitor 

before it can enter its CS

 M. Maekawa. "A Square-root(N) Algorithm for Mutual 
Exclusion in Decentralized Systems". ACM Transactions 
on Computer Systems, May 1985.



Distributed Lock Managers

Assumptions:

 N Processes have unique numeric identifiers
 They maintain totally ordered Lamport times

 All processes have communication channels to all other 
processes

Mutual Exclusion
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processes

 Reliable communication based on multicast
 Process requesting access multicasts its request to all other 

N-1 processes

 Process may only enter its CS when all other N-1 processes 
have replied an acknowledge message

 No node failures



Process States 

 Released, i.e. process doesn‘t need its CS at 
the moment

 Wanted i e process wants to enter its CS

Mutual Exclusion
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 Wanted, i.e. process wants to enter its CS

 Held, i.e. process is in its CS



Ricart Agrawala Algorithm
enter():

state := WANTED;
Multicast request to all peers;
T := request’s Lamport timestamp;
Wait until (N - 1) responses are received;
state := HELD;

Mutual Exclusion
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On receipt of a request <T(i),  P(i)> at P(j), ji:
if( state == HELD or (state == WANTED and 

(T, P(j)) < (T(i), P(i)) )   {
Queue request without replying;

} else {
Reply to P(i);

}

release():
state := RELEASED;
Respond to queued requests;



Distributed Lock Manager (DLM) 
Mutual Exclusion

Three message types (2 are required, 1 is optional)

 Request_Message
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 Queued_Message

 Grant_Message



Request Message

 A process wishing to enter its CS either 

 multicasts or 

 sends (n-1) times individually

Mutual Exclusion
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an according request message to all 
processes competing for the critical region

 Each request message contains a “Lamport 
timestamp” and the PID of the requester 
 total ordering



Queued Message
Mutual Exclusion

This type of message is only optional and is sent by 
recipients of the request message whenever the request
cannot be granted immediately, i.e.

 recipient itself is currently in its CS or
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 recipient itself is currently in its CS or

 recipient had initiated an earlier request 

Remark: This message type eases to find out 
whether  suspected dead participants



Grant Message
Mutual Exclusion

Sent to a requesting process from all participants 
in two circumstances: 

 recipient is not in its CS and has no earlier 
request
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request

 if recipient is in its CS 

 first, it queues the request 

 Later on when it leaves its CS it will send the 
grant message to the requester



Release Message
Mutual Exclusion

Having released the resource this message is sent to all
participants with a queued request-message.

 Another example for Java’s notify_all()
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 Why is it not sufficient to notify just one of the 
waiting participants?



Ricart-Agrawala Algorithm
Mutual Exclusion

© 2009 Universität Karlsruhe (TH), System Architecture Group 134

a) 2 processes enter same CR at the same moment.

b) Process 0 has the lowest timestamp, so it wins.

c) When process 0 is done, it sends an OK also, process 2
can now enter the critical region.



Analysis of Ricart/Agrawala
 No tokens anymore 

 Cooperative voting to determine sequence of CSs

 Does not rely on an interconnection media offering 
ordered messages 

S i li ti b d l i l ti t (t t l

Mutual Exclusion
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 Serialization based on logical time stamps (total 
ordering)

 If client wants to enter CS it asks all others for 
permission and proceeds if all others have agreed

 If a client C gets a permission request from another 
client C’ and if C is not interested in its CS, C returns 
permission immediately to the requester C’.



Correctness Conditions (1)
Mutual Exclusion

All nodes behave identically, thus we just have to regard
node x
After voting, 3 groups of requests can be distinguished:

1 known at node x with time stamp less than C
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1. known at node x with time stamp less than Cx

2. known at x with a time stamp greater than Cx

3. those being still unknown at node x



Correctness Conditions (2)

During this voting, marks may change according
to the following conditions:

Condition 1: Requests of group 1 have to be served or 
they have to take a time stamp greater 
th C

Mutual Exclusion
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than Cx

Condition 2: Requests of group 2 may not get a time 
stamp smaller than Cx

Condition 3: Request of group 3 must have time 
stamps greater than Cx



Two Phases of Voting Algorithm

1. Participants at node i willing to enter their CS send 
request messages ei to all other participants, where
ei contains the actual Lamport time Li of node i.
(After each send, node i increments its counter Ci).

Mutual Exclusion
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Result: If all permission messages have arrived at node i, 
the corresponding requester may enter its critical section. 

Delay a bit

Cx := max{Cx,Ci +1}

2. All other participants return permission messages ai. 
Node x replies to a request message ei as soon as all 
older requests (received at earlier Lamport times) are 
completed.



Node i

N d j

<eiMi>

Ci := max{Ci,M’k+1}
delay permission ak

ai

Example of the Voting Algorithm
Mutual Exclusion
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Suppose: Mi < Mk  the request message Mi has a smaller time stamp than Mk,
we have to delay the answer for the request message ek in node i !

Node j

Node k
Ck := max{Ck,Mi+1}

<ek,Mk> ak ak<ak,M’k>



Summary

 Instead of a single point of failure in the centralized 
solution, now each node is supposed not to fail

 We need an efficient multi-cast and/or a group 
management

Mutual Exclusion
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 In practice rarely used



Algorithm #messages 
per CS 

Delay d 
 

Response time 
if CS is free 

Potential 
Problems 

Centralized 3 2T* 2T + E** Crash of 
central node 

Decentralized 3mk 2m Starvation, low 

Mutual Exclusion

Analysis of Mutual Exclusion Alg.

© 2009 Universität Karlsruhe (TH), System Architecture Group 141

efficiency 

Standard 
Token 

1 … (0 … n-1)*T (0,n-1)*T + E Loss of token, 
Crash of node 

Ricard-
Agrawala 

2(n-1) 2(n-1)*T 2(n-1)T + E Crash of any 
node 

 
  *  T: Message Transfer Time
** E: Execution Time of CS



Quorum based AlgorithmsQuorum based Algorithms

Maekawa Quorum Voting
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Motivation

 Major drawback of Ricard/Agrawala is its scalability 
problem, because every other member of the critical 
region has to agree before any P can enter its CS

 Each P when about to leave its CS has to sent the 
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release message to its N-1 partners

 Furthermore, despite the message transfers overhead 
reliability is even less than in the centralized solution

 Goal: Solution with fewer partners accepting a 
current request for entering a CS



Maekawa’s Voting Approach

Observation:
 to get access, not all processes have to agree
 suffices to split set of processes up into subsets (voting sets) 

that overlap
 suffices that there is consensus within every subset
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Model:
 processes p1, .., pN

 voting sets V1, .., VN chosen such that  i, k and for 
some integer M:
 pi  Vi

 Vi  Vk  (some overlap in every voting set)
 | Vi | = K (fairness: all voting sets have equal size)
 each process pk, is contained in M voting sets



Maekawa’s CS-Protocol

Protocol:
 to obtain entry to CS, pi sends request messages to 

all K-1 members of its voting set Vi

 cannot enter until all K-1 replies received

 when leaving CS send release messages to all
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 when leaving CS, send release messages to all 
members of Vi

 when receiving request message
 if state = HELD or already replied (voted) since last request

 then queue request

 else immediately send reply

 when receiving release message
 remove request at head of queue and send reply



Voting Algorithm (Maekawa)

On initialization
state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast request to all processes in Vi – {pi};
Wait until (number of replies received = (K 1));

Mutual Exclusion
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Wait until (number of replies received = (K – 1));
state := HELD;

On receipt of a request from pi at pj (i ≠ j)
if (state = HELD or voted = TRUE)
then

queue request from pi without replying; 
else

send reply to pi;
voted := TRUE;

end if



Voting Algorithm (Maekawa)

For pi to exit the critical section
state := RELEASED;
Multicast release to all processes in Vi – {pi};

On receipt of a release from pi at pj (i ≠ j)
if (queue of requests is non-empty)
then

Mutual Exclusion
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remove head of queue – from pk, say; 
send reply to pk;
voted := TRUE;

else
voted := FALSE;

end if

Each process only needs grants from all its potential voters



Maekawa’s Properties

 Optimization goal: minimize K while achieving 
mutul exclusion

 Can be shown to be reached when K~(N) and 
M=K
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 optimal voting sets: nontrivial to calculate

 approximation: derive Vi so that | Vi | ~ 2* (N)

 place processes in a N x N matrix

 let Vi the union of the row and column containing pi



Quorum Example (Grid Scheme)

P1 P2 P3 P4 P5

P6 P7 P8 P9 P10
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V13
P11 P12 P13 P14 P15

P16 P17 P18 P19 P20

P21 P22 P23 P24 P25



Properties of Maekawa

 Satisfies mutual exclusion
 if possible for two processes to enter critical section, then 

processes in the non-empty intersection of their voting sets would 
have both granted access

 impossible, since all processes make at most one vote after 
receiving request
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receiving request

 However, deadlocks are possible
 consider three processes with

 V1 = {p1, p2}, V2 = {p2, p 3}, V3 = {p3, p1}

 possible to construct cyclic wait graph

 p1 replies to p2, but queues request from p3

 p2 replies to p3, but queues request from p1

 p3 replies to p1, but queues request from p2



Variations

 Maekawa’s algorithm can be modified to ensure 
absence of deadlocks
 use of logical clocks
 processes queue requests in happened-before order
 means that ME3 is also satisfied
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 Performance
 bandwidth utilization

 2 N per entry, N per exit, total 3 N is better than 
Ricart and Agrawala for N>4

 client delay
 same as for Ricart and Agrawala

 synchronization delay
 round-trip time instead of single-message transmission 

time in Ricart and Agrawala



Comments on Fault Tolerance

 None of these algorithms tolerates message loss

 Ring-algorithms can not tolerate single crash failure

 Maekawa’s algorithm can tolerate some crash failure
 if process is in a voting set not required, rest of the system 

not affected
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not affected

 Central-Server: tolerates crash failure of node that 
has neither requested access nor is currently in the 
critical section

 Ricart and Agrawala algorithm can be modified to 
tolerate crash failures by the assumption that a failed 
process grants all requests immediately
 requires reliable failure detector



ElectionElection

Traditional Election
Elections in Wireless Environments
Elections in Large-Scale Systems
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When Elections?

 Necessary when

 System is booted in order to instantiate a

 centralized coordinator for system activities

© 2009 Universität Karlsruhe (TH), System Architecture Group 154

 centralized monitor to watch system’s state

 At run-time when a serial server 

 fails or

 retires



Election Algorithms

 Some distributed applications need one specific 
centralized process (task), acting as a

 Coordinator, e.g. 
 for centralized mutual exclusion manager

 Monitor

Global States
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 Monitor

 Collector

 …

 Via election algorithms you can establish a new 
coordinator -if the old one has crashed

 You need an agreement on the new coordinator



Election

Global States

An election should fulfill the following requirements:

 E0: Correctness: Only one process will be elected

 E1: Safety: each process  pi has the attribute
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 electedi = null or 

 electedi = P, 

whereby P is the live process with highest id at the 
end of the current election

 E2: Liveness: each process  pi eventually will have 
the attribute electedi ≠ null



Election

Election Algorithms

Suppose, your centralized lock manager has crashed.
How to do elect a new one in a DS?

 two major election algorithms, both are based upon:

 each process/node has a unique process/node number
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 each process/node has a unique process/node number
(i.e. there is a total ordering of all processes/nodes)

 live process with highest process number of all active 
processes is the current (will b the next) coordinator

 after a crash the restarting former process (eventually 
the previous coordinator) is put back to the set of 
active processes and the election is restarted again



Election in a Logical Ring

Assumptions:

 Processes (+nodes) have unique identifiers

 Each process can communicate with all live 
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a p o ss a o u a a
successors on the ring

 Processes can fail (stop responding to its 
environment); this failure can be detected



Ring Algorithm (Le Lann, 1977)

 Each process/node Ni knows all its successors, i.e. 
the complete logical ring

 2 types of messages are used:
 election e: to elect the new coordinator

coordinator c: to introduce coordinator to the nodes

Election
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 coordinator c: to introduce coordinator to the nodes

 Algorithm is initiated by any node Ni suspecting that 
the current coordinator no longer works

 Ni send a message e with its node number i to its 
immediate successor Ni+1

 If this immediate successor Ni+1 does not answer, it 
is assumed thatNi+1 has crashed and the e is sent to 
Ni+2, …



Ring Algorithm

 Ni receives an e/c-message with a list of node numbers:

 If an e-message does not contain its process/node 
number i, Ni adds it to the list, sends e-message to Ni+1

 If an e-message contains its node number i, this e-
message has circled the ring of all active nodes The

Election
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message has circled the ring of all active nodes. The 
highest process/node number in the list is the new 
coordinator and Ni converts e-message into a c-message

 If its an c-message, Nj keeps in mind the node with the 
highest number in that list being the new coordinator

 If a c-message has circled once, it’s deleted

 After having restarted a crashed node you can use an 
“inquiry”-message, circling once around the ring



4 5

63

4 5

63

(“e”,2)

(“e”,5)
(“e”,2,3)

(“e”,5,6)

(“e”,2,3,4)

Ring Algorithm

Nodes 2 and 5 
both initiate 
independently the 

5

Election
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7

81

2

Actual 
coordinator 
crashes

8

7

81

2
(“e”,5,6,7)

(“e”,5,6,7)

algorithm2



4 5

63

(“e”,2,3,4)

(“e”,2,3,4,5)

(“e”,2,3,4,5,6)(“e”,5,6,7,1,2)

4 5

63
(“e”,5,6,7,1,2,3)

(“e”,5,6,7,1,2,3,4)

Ring Algorithm

Election
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7

81

2

(“e”,5,6,7)

(“e”,5,6,7,1)

7

81

2

(“e”,2,3,4,
5,6,7)

(“e”,2,3,4,5,6,7,1)

Both e-messages circled once 
around the ring of all active nodes 



4 5

63

(“c”,5,6,7,1,2,3,4)

(“c”,2,3,4,5,6,7,1)

Ring Algorithm 

Election
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7

81

2 This coordinator-message circles
once around the logical-ring,
All nodes know that 7 
is the new coordinator



Improved Ring Algorithm

Assumptions:

 Processes do not know each others PID

all nodes communicate on a uni directional
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 all nodes communicate on a uni-directional 
ring structure, i.e. only with its successor

 all processes have unique integer id

 asynchronous, reliable system



Improved Ring Algorithm
 Initially, all processes marked “non-participant”
 To start election, process place election message with own 

identifier on ring and marks itself “participant”
 upon receipt of election message, compare received identifier 

with own
 if received id greater than own id, forward message to neighbor
 if received id smaller than own id,
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 if own status is “non-participant”, then substitute own id in 
election message and forward on ring

 otherwise, do not forward message (already “participant”)
 if received id is identical to own id

 this process’s id must be greatest and it becomes elected
 marks own status as “non-participant”
 sends out coordinator message

 when receiving coordinator message
 mark own status as “non-participant”
 set attribute electedi appropriately and forward coordinator 

message



Improved Ring Algorithm1

9

4

3
17

24

1

Process has 2 possible states:
• participating
• not participating

Initially each p = not participating

Election message only contains PID 
of maximal passed process
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1Chang-Roberts 1979

24

15

28

1

Note:  The election was started by process 17.
Highest process identifier encountered so far is 24. 
Participant processes are shown darkened

Receiving process compares PID 
in election message with its own 
PID:

If (state = non participating and
ownPID > e(PID)) then 

{ e(PID)=ownPID
state = participating} 

else …



Analysis: Improved Ring Election

 Properties
 E0 is satisfied, only one new coordinator

 E1 satisfied, since all identifiers are compared

 E2 follows from reliable communication property
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2 p p y

 Performance
 at worst 2N-1 messages for electing the left-hand neighbor

 another N coordinator messages

 Failures
 tolerates no failures



Election

Election by Bullying

Assumptions:

 Network is synchronous

 Nodes can crash, crashes will be detected reliably
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 Fully connected network, no message loss

 Crash failures only

 Nodes have unique identifiers and know ids of all 
other nodes (else broadcast)



Bully Algorithm1

Election

Goal: Find live node with the highest number, choose it 
as coordinator and tell this all other nodes

Start: Algorithm may start at any node, having 
recognized that previous coordinator is no 
longer responding.
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g p g

Message types:

 Election e, initiating the election

 Answer a, confirming the reception of an e
message

 Coordinator c, telling all others, that it is the new 
coordinator

1Garcia-Molina, 1982



Steps of Bully Algorithm

Election

1. Some node Ni sends e-messages to all other nodes Nj, j > i.

2. If there is no answer within t, Ni elects himself as coordinator 
sending this info via a c-message to all others Nj, j < i.

3. If Ni got an a-message within t (i.e. there is an active node 
with a higher number), it is awaiting another time-limit t’. It
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with a higher number), it is awaiting another time limit t . It 
restarts election, if there is no c-message within t’

4. If Nj receives an e-message from Ni, it answers with an a-
message to Ni and starts the algorithm for itself (step 1).  

5. If a node N -after having crashed and being restarted- is active 
again, it starts step 1.

6. Highest numbered node declares itself to be the new
coordinator



e a

a Timeout
N

Node 1

Node 2

Node 3

Node 4

Example Bully Algorithm

Election
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Node 2 detects the false behavior of the coordinator

New 
coordinator

Node 4

Node 5

Current Coordinator 
has crashed

Nodes 3 and 4 have to start the algorithm due to their higher number
telling node 2 to stop with its election algorithm



Bully Algorithm (1)

Election
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(a) Process 4 starts an election
(b) Process 5 and 6 respond, telling 4 to stop
(c) Now 5 and 6 each start an election



Bully Algorithm (2)

Election
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(d) Process 6 tells 5 to stop
(e) Process 6 wins and tells everyone



Analysis of Bully

 Properties
 E0 is satisfied, only one new coordinator

 E1 satisfied, since all identifiers are compared

 E2 follows from reliable communication property
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 Performance
 Best case: process p with second highest PID detects crash 

of old coordinator

 Elects itself coordinator and send N-2 election messages 

 Requires O(N2) messages in worst case when lowest 
process detects coordinator crash

 N-1 processes with higher Ids start the election



Algorithm Number of 
Messages 

Time 

Bully O(n2) O(n) 

Election

Comparison of 2 Election 
Algorithms
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Ring 2(n-1) 2(n-1) 

 

 

In M. Weber: “Verteilte Systeme” there is another election 
algorithm (from Mattern) based on a tree-topology



Election In Wireless Election In Wireless 
EnvironmentsEnvironments

Wireless Ad Hoc Nets with non moving nodes
Vasudevan et al.: “Design and Analysis of a 
Leader Election Algorithm for Mobile Ad Hoc 

Networks”, Proc. 12. International Conference on 
Network Protocols, 2004

http://www-net.cs.umass.edu/~svasu/pubs.html
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Elections in Wireless Environ. (1)
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 Election algorithm in a wireless network, with node a as the 
source. (a) Initial network. (b)–(e) The build-tree phase



Elections in Wireless Environ. (2)

 Figure 6-22. Election algorithm in a wireless 
network, with node a as the source. (a) Initial 
network. (b)–(e) The build-tree phase
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Elections in Wireless Environ. (3)

 Figure 6-22. (e) The build-tree phase. 
(f) Reporting of best node to source.
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Elections in LargeElections in Large--Scale DSScale DS

Study of your own
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Elections in Large-Scale Systems (1)

 Requirements for superpeer selection:

1. Normal nodes should have low-latency access to 
superpeers.

2. Superpeers should be evenly distributed across the 
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p p y
overlay network.

3. There should be a predefined portion of superpeers 
relative to the total number of nodes in the overlay 
network.

4. Each superpeer should not need to serve more than 
a fixed number of normal nodes.



Superpeer Election

In a DHT system:
Reserve a fixed part of the ID space for superpeers

Example:
If s superpeers are needed for the DS that uses m
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If s superpeers are needed for the DS that uses m-
bit identifiers, simply reserve k = log2S leftmost 
bits for superpeers
With n nodes we’ll have on average 

2k-m *n superpeers
Routing to superpeer: send message for key p to 
node responsible for p AND 11…1100…000



Elections in Large-Scale Systems (3)
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 Moving tokens in a two-dimensional space using 
repulsion forces



Deadlock DetectionDeadlock Detection
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Deadlocks

Outline

 Deadlocks
 Deadlock Conditions
 Centralized Detections
 Path Pushing
 Distributed Detection

How to deal with deadlocks
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 Transactions
 Transactions in Local systems
 Characteristic of Transactions
 Serializability
 Two Phase locking Protocol
 Distributed Transactions

How to support complicated
distributed applications



Methods against Deadlocks in DS

 Prevention (in some transaction oriented systems)

 Avoidance (too complicated and time consuming)

 Ignoring (still popular)

Deadlock Management
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g g ( p p )

 Detecting (sometimes, if really needed) combined 
with repairing 



Deadlocks in Distributed Systems

In a DS a distinction is made between:

 Resource deadlock:  tasks are stuck waiting for 
resources held be each other

Deadlock Management
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 Communication dl:   tasks are stuck waiting for
message to arrive

 However, message buffers ~ resources



T1 holds x

• Using “locks” within transactions may lead to deadlocks:

T1 T2

…

T1 waits for y

Distributed Deadlocks

waiting
graph

Distributed Deadlocks
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T2 holds y
…

lock(x)
…

lock(y)

…
….

lock(y)
…

lock(x)
time

T2 waits for x

A deadlock has occurred 
if global waiting graph contains a cycle.



Deadlock Prevention

Deadlock Prevention 

1. Task may hold only 1 resource at the same time 
(=> no cycles possible)

2. Pre-allocation of resources ( resource 
inefficiency)
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3. Release old resources if requesting a new one

4. Acquire in order (It’s quite a cumbersome task to 
number all resource types in a DS)

5. “Senior rule”:  each application gets a “timestamp” 
(according to Lamport’s time).  

 Oldies (seniors) are preferred



Wait-Die Deadlock Prevention
Deadlock Prevention

 Each transaction gets a time stamp when it starts

 If „old“ transaction (with lower time stamp) requests 
resource -held by a younger one- then oldie has to 
wait and it is queued according to its time stamp
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q g p

 If a younger transaction requests a resource 
-held by an oldie- the young transaction is 
aborted and later on  restarted



„Wait-Die“ Prevention

requester holder requester holder

wait

Deadlock Prevention
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Oldie (5) Kid (20) Kid (20) Oldie (5)
wait

waits dies



„Wound-Wait“ Prevention

requester holder requester holder

Deadlock Prevention
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Oldie (5) Kid (20) Kid (20) Oldie (5)

preempts waits



Deadlock Avoidance

Deadlock Avoidance 

Avoidance* in DS almost never used because:

1. Every node must keep track of global state of DS 

substantial storage & communication overhead
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*Deadlock avoidance rarely used even in local systems

2. Checking for a global state safe must be mutual 
exclusive, otherwise two concurrent checks may 
violate the state safe

3. Checking for a global safe state requires substantial 
processing and communication



Deadlock Detection

Deadlock Detection in DS

Increased problem: 
If there is a deadlock within a DS 
resources from different nodes may be involved

Several approaches:
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In any case: 
Deadlock must be detected within a finite amount of time

Several approaches:

1. Centralized Control

2. Hierarchical control

3. Distributed Control 



Deadlock Detection in DS

Correctness in a waiting-graph depends on:

 progress

Deadlock Detection
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 safety



Deadlock Detection in DS

General remarks:

 Message delay and out of date data may cause false 
cycles to be detected (phantom deadlocks)

Deadlock Detection
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 After a “possible” deadlock has been detected, 
one has to double check if it is a real one

 Having detected a deadlock, delete and restart task, 
if it‘s transaction oriented.



Centralized Deadlock Detection

 Local and global deadlock detector (LDD and GDD) (if 
a LDD detects a local deadlock it resolves it locally!).

 The GDD gets status information from the LDD
 on waiting-graph updates

Deadlock Detection
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 periodically

 on each request

 If a GDD detects a deadlock involving resources at 
two or more nodes, it has to resolve this deadlock 
globally!)



Centralized Deadlock Detection

Major drawbacks:
 The node hosting the GDD = point of single failure

 “Phantom deadlocks” may arise because the 
global waiting graph is not up to date

Deadlock Detection
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global waiting graph is not up to date



Centralized Deadlock Detection

 Each node preserves its local waiting graph 
(respectively its resource usage graph)

 Central coordinator preserve a global waiting graph 
(union of the local ones)

Deadlock Detection
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 If coordinator detects a cycle it kills one task to break 
the deadlock

 Problem: Does the global waiting graph correspond 
to the current global state?



Phantom Deadlocks

Node 1 Node 2 Coordinator Node

A S S C A S C

Deadlock Detection
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B

R T

Question: B having released R, requests T, what may happen?

B

R T

How to solve? Using “Lamport time stamps“ per message



Hierarchical Deadlock Detection

 hierarchy of deadlock detectors (controllers)

 waiting graphs (union of waiting graphs of children)

Deadlock Detection
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 deadlocks resolved at lowest level possible



Hierarchical Deadlock Detection
Deadlock Detection
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 Each node in tree (except of a leaf node) keeps track 
of the resource allocation information of itself and of 
all “kids”

 A deadlock that involves a set of resources will be 
detected by the node that is the common ancestor of 
all nodes whose resources are among the objects in 
conflict.



Simple Distributed Deadlock 
Detection1

 no global waiting-graph

 deadlock detection cycle:

 wait for information from other nodes

Deadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 203

Remark: The non-local portion of the global waiting-graph 
is an abstract node “ex”

 combine with local waiting-information

 break cycles, if detected

 share information on potential global cycles

1Obermark, 1982



Situation on node x:

P1 P4

Some task outside  node x waits 
for a resource currently owned by P4

Simple Distributed Deadlock 
Detection

Deadlock Detection
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P2 P3

No local deadlock

ex

Some task outside of node x
holds a resource P3 is waiting for.



Distributed Deadlock Detection1

 A probe message <i, j, k> is sent whenever a task 
blocks

 This probe message is sent along the edges of the 

Deadlock Detection
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p g g g
waiting-graph if the recipient is waiting for a resource

 If this probe message is sent to the initiating task, 
then there is a deadlock

1Chandy/Misra/Haas 1983)



Distributed Deadlock Detection
Deadlock Detection

 If P has to wait for resource R it sends a message to current 
resource-owner O 

 This message contains:
 PID of waiting task P

 PID of sending task S

PID f i i t k E
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 PID of receiving task E

 Receiving process E checks, if E is also waiting. If so, it modifies 
the message:
 First component of message still holds

 2. Component is changed to: PID(E)

 3. Component is changed to PID of that process, process E is 
waiting for.

 If message ever reaches waiting process P   deadlock



(0, 8, 0)

Example of DDD in DS
Deadlock Detection
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P0  P1 P2

Node 1

P3

Node 2

P6             P8

Node 1

P4

P5 P7
(0,2,3)

(0,4,6)

(0,5,7))
(0,0,1) (0,1,2)



Distributed Deadlock Detection

Recommended Reading:

Knapp, E.: Deadlock Detection in Distributed Databases, 
ACM Comp. Surveys, 1987

Si h P Di t ib t d O ti S t

Deadlock Detection
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Sinha, P.: Distributed Operating Systems: 
Concepts and Design, 
IEEE Computer Society, 1996

Galli, D.: Distributed Operating Systems: 
Concepts and Practice, Prentice Hall, 2000



Deadlocks with Communication

1. Deadlocks may occur if each member of a specific 
group is waiting for a message of another member 
of the same group.

2. Deadlocks may occur due to unavailability of

Deadlock Detection
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2. Deadlocks may occur due to unavailability of 
message buffers etc.

3. Study for yourself: Read Stallings: Chapter 14.4., p. 
615 ff



Recommended Literature
http://link.springer-ny.com/link/service/series/0558/tocs/t2584.htm

A. Schiper, A.A. Shvartsman, H. Weatherspoon, B.Y. Zhao 
(Eds.): Future Directions in Distributed Computing
Research and Position Papers (currently online available)

Part I: Foundations of DS: What to expect from theory?
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Part II. Exploring Next-Generation Communication 
Infrastructures and Applications

Part III. Challenges in Distributed Information and Data 
Management 

Part IV. System Solutions: Challenges and Opportunities in 
Applications of Distributed Computing Technologies


