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Overview

How to adjust your clock or
how to get a precise time stamp?

Outline of Next Lectures

 Motivation for Timing
 Physical Clocks
 Logical Clocks

Gl b l S
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How to control concurrent 
activities?

 Global State
 Election Algorithms 

 Mutual Exclusion

 Distributed Transactions

 Distributed Deadlocks How to deal with complicated 
distributed applications? 



Synchronization & Coordination

Synchronize to order actions or events, i.e.
 Sequencing accesses to exclusive resources
 Requires a concept of a global time

Overview
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Coordinate to agree on states/values, i.e.

 Actions that must occur simultaneously

 Actions that must occur at predefined times 

 Agree on environment variables

 Agree on system/process state



Problems with Time
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Principle problems with time in a DS



Philosophy
Myth of Simultaneity: 
Suppose: Event 1 and event 2 happen at the same time

Event 1 Event 2

Motivation
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Observer A:
Event 2 is earlier than Event 1

Observer B:
Event 2 is simultaneous to Event 1

Observer C:
Event 1 is earlier than Event 2time



time

Node 1

Node 2

Event 1

Event 2

Event Timelines (Previous Example)

Motivation
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Node 3

Node 4

Node 5

Note: Arrow starts from an event and ends at an observation point.
The slope of arrow depends on the relative speed of propagation
(that can vary according to network congestions)



Physical Clocks
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Motivation

Why Precise Timestamps in DS?

In order to: 

1. do some “precise”  measurements

2. guarantee “up-to-date“ data or 
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3. judge the actuality of data

4. establish a “total ordering” of objects or 
operations (see distributed transactions)



Editor on

Compiler on
computer 2

Local time on 
computer 1

Local time on 

107

105

108 109 110

106 107 108

104

102

106

104103

105

create file test.o

Inprecise Time Stamps 

Motivation
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Editor on
computer 1

Absolute time
(God’s clock)

computer 2
close file test.c 

Assume: Clock(computer2) is faster than clock(computer1)

test.cwas created after previous test.o, but make
doesn‘t recompile, because test.o has a newer time stamp



Lack of a Uniform Global Time in DS

Introduction

 However, due to nature of non precise clocks 

  no global, unique time in a DS, if each node has 
its own physical clock

 Assumption:  central time server being able to
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Transfer-time of time-messages from the 
central time server may vary over time 

Assumption:  central time server being able to 
deliver exact times via “time-messages” to all nodes 
of a widely spread DS (e.g. a LAN or a MAN) 

 due to non deterministic transfer-times of messages 

 no uniform time on all nodes of the DS



1. Earth  Today: 1 sec ~ 1 solar day / 86400, however,

Physical Time

Some systems (e.g. Real-Time-Systems) may need accurate times.

How to achieve a high accuracy?
Which physical entity may deliver precise timing?

Physical Time
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2. Atom

rotation of earth slows down due to tidal friction 
and atmospheric drag (T-Rex had a “~400 day year”
However, the year was as long as today) 

State transitions in atoms (defined by BIH* in Paris)
1 sec = time a cesium atom needs for 9 192631 770
state transitions, invention 1948, initiate 1958,
about 50 labors with cesium 133 clocks

*BIH = Bureau International de l´Heure à Paris



Mean Solar Day 

Physical Time
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Mean solar day ≠ turnaround of 360o

~ 359,xyz o



Problem with Physical Time

 Definition:

TAI-day = mean day of all cesium 133 clocks,
TAI-day ~ 3 msec shorter than a solar day 

Physical Time
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

BIH inserts a leap sec, if the difference between 
a solar day and a TAI*-day is more than 800 msec

* TAI (Temps Atomic International)



Leap Second1

TAI

0   1   2   3   4   5   6    7   8  9  10  11 12 13  14 15 16

Solar

0 1 2 3 4 6 7 8 9 10 12 13 14 15

Physical Time
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0    1    2     3    4    6    7    8    9    10  12  13  14  15

Introduce a „leap second“

1See Gregorian calendar in 1582 when pope Gregory XIII 
decreed that 10 days had to be cancelled from the calendar. 
This event caused major problems. Which ones?
(BTW protestant people refused to obey for another 150 years!)



UTC Time

UTC = universal time coordinated, being the
base of any international time measure.

Physical Time
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How to implement?

Whenever BIH (or Braunschweig) announces a leap second,
power-companies raise the frequency of their to
61 Hz or 51 Hz for 60 s or 50 s to adjust their 
clocks being based upon 60 Hz or 50 Hz.



UTC Time Broadcasting 

Physical Clocks

UTC-signals come from radio broadcasting stations 
or from satellites (GEOS, GPS) with an accuracy of:

 10 msec (broadcasting station)

SS 2009 Universität Karlsruhe, System Architecture Group 16

Remark:
Using more than 1 UTC source may improve accuracy

 0.5 msec (GEOS)

 1.0 msec (GPS)



Sources of Precise Times (1)

 DCF77-sender
 Long wave transmitter

 Sending time-signals based on the atomic clock at 
the physical technical institute in Braunschweig
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p y g

 Range ~ 2000 km

 Transmission of a 1-second pulse

 Modulated bit template (60 Bits)
 Minute, hour, month, year, day of the week
 Additional hints when changing from summer to 

inter time an vice versa + leap seconds, years, …

 Accuracy ~2*10-13 averaged on 100 days



Sources of Precise Times (2)

 GPS-receiver
 Satellites with atomic clocks
 High precision time signal (necessary for a precise 

location of a specific location)
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 Accuracy ~ 0.1 sec



Problems with Clock Synchronization

Physical Clocks

 Interconnection path between local clock and 
reference clock
 Uncertain transfer time of messages

 Different transfer speed according to medium

Latency in network components (router switches)

SS 2009 Universität Karlsruhe, System Architecture Group 19

 Latency in network components (router, switches)

 Local OS
 Different copy operations per OS

 Different latency per interrupt handling

 Exact clock synchronization is impossible



Problems with Clock Synchronization

Physical Clocks

Adjusting your local clocks:

 local clock behind reference clock 
 could be adjusted in one jump or in n steps
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 local clock ahead of reference clock!!!
 If you adjust in one step 2 different time stamps 

might get the same value

 Solution: reduce speed of your local clock until it is 
synchronized again



Deviations of Local Clocks

Physical Clocks

Assume: 
Each machine has a local timer causing timer interrupt
h times per second.
If interrupts occurs its handler adds 1 to a software
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clock, based upon some reference time in the past. 

Assumption:
c(t) is the value of this local timer and
t is the exact UTC time.



Deviations of Local Clocks

Physical Clocks

Modern timer chips have an accuracy of about 10 -5

i.e. if h = 60 instead of 216 000 ticks per hour, 
a timer chip may produce # ticks  [215 998, 216 002]

More precisely:
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More precisely:
A timer chip works within its specification 
if  there is a constant  :

1 -  ≤  dc(t)/dt  ≤  1 + 



Deviations of Local Clocks

Clock time c(t)

perfect clock, i.e. dc/dt = 1

fast clock, i.e. dc/dt > 1

Sl l k i d /dt < 1

Physical Clocks
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UTC, t

Slow clock, i.e. dc/dt < 1



Maximal Deviation

Physical Clocks

If 2 clocks drift in opposite directions from UTC-time,
at t -after having been synchronized- they may be 
as much as 2  t apart 
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If OS has to guarantee that no 2 clocks ever differ by
more than , then clocks have to be synchronized at
least every /2  seconds



Absolute Clock Synchronization

Physical Clocks

Cristian’s1 Algorithm:

1 wwv-node receiving UTC-signals, serving as
the central UTC-time server (CUTCS) for the DS

SS 2009 Universität Karlsruhe, System Architecture Group 25

the central UTC time server (CUTCS) for the DS

Periodically (no more than every /2  seconds) each
node in the DS sends a time request to CUTCS, which 
responds with its current time tUTC

1Flaviu Cristian from UoC



computer to be
synchronized with
a UTC-Receiver CUTCS

t0 request

Absolute Clock Synchronization

Physical Clocks

SS 2009 Universität Karlsruhe, System Architecture Group 26

time

t1

ts = time to handle the request

Remark: Both time values (t0 and t1) are 
measured with the same clock

tUTC



Problems with tutc

Physical Clocks

1. Suppose node‘s local clock is too fast, i.e. 

tUTC < t1

Just adopting t can cause problems
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Just adopting tUTC can cause problems,
(i.e. an object file may have an earlier time  
stamp than its previous changed source.)

 Adjust incrementally



Problems with tutc

Physical Clocks

2. How to deal with message propagation time?

Good estimation of MPT is (t1 - t0)/2, i.e.
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c(t) = tUTC + (t1 - t0)/2



Absolute Clock Synchronization

 Initialize local clock: t := tUTC

(Problem: Time-Message Transfer-Time)

 Estimate Message transfer-time, 
(t1-t0)/2  t := tUTC + (t1-t0)/2
(P bl Ti f th R t M t )

Physical Clocks
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(Problem: Time of the Request Message tr)

 Suppose: ts is known,  t := tUTC + (t1- t0 - ts)/2
(Problem: Message transfer-times are load dependent)

 Multiple measurements (t1 - t0):
 Throw away measurements above a certain threshold value
 Take all others to get an average



Berkeley Algorithm

Physical Clocks

 CTS is active, i.e. it periodically polls all nodes to get 
their current local times ci(t).

 Based on these answers it calculates a mean and 
broadcasts this mean to all nodes again.
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 Time server can estimate the local times of all nodes 
regarding the involved message transfer times.

 Time server uses the estimated local times for 
building the arithmetic mean

 Deviations from this arithmetic mean are sent to 
nodes enabling them to slow down respectively to 
speed up.



Berkeley Algorithm

Physical Clocks

SS 2009 Universität Karlsruhe, System Architecture Group 31

a) At 3 p.m. daemon asks all the other machines for their clock values
b) The machines answer
c) The time daemon tells everyone how to adjust their clock



Summary

Physical Clocks

 Cristian’s + Berkeley algorithms useful in intranets 
with only a couple of involved nodes
 Why not that scalable?

 Both may be improved with fault tolerance methods
 Instead of 1 Christian’s UTC server use n time servers
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 Instead of 1 Christian s UTC server use n time servers
and always take the first answer

 Instead of taking the arithmetic mean from all clients in the 
Berkeley algorithm take the fault-tolerance mean, i.e. skip 
deviations with a certain threshold



Network Time Protocol (NTP*)

 NTP Architecture
 Time-servers build up a hierarchical subnet

 Each primary time server “Stratum 1” has a UTC-
receiver 

Physical Clocks
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 Time signals via DCF77, GPS, WWV, CDMA technology 

 Secondary server “Stratum 2” gets its time data via 
network from one of the Stratum 1 machines

 Other stations on level 3 synchronized by Stratum 2

 Accuracy of clocks decreases with increasing level 
number

 the net is able to reconfigure
*Mills, D.: “Improved Algorithms for Synchronizing Computer Network Clocks”, IEEE 1995



Network Time Protocol (NTP)

Internet service synchronizing clients to UTC

Physical Clocks

UTC source

For redundancy purpose use 
additional stratums 1 .. X 
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1

2

3

2

3 3

Stratum 1 with an accuracy 
of ~ 1 msec

Stratum 2 with an accuracy
of ~ 10- 100 msec

Synchronization subnet  with accuracy ~ 20 – 200 msec

1’ 1’’



Logical ClocksLogical Clocks
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Lamport Time
Vector Time
Matrix Time



Motivation for Logical Clocks

 Need not always precise physical time stamps

 However, at least you want to preserve the causality 
of events

Saying that event a has happened before event b
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 Saying that event a has happened before event b 
is the same as saying that event a could have 
affected the outcome of event b

 If the two events a and b happen on activities that 
do not exchange any data via IPC or shared 
memory or shared files, the ordering of a and b is 
irrelevant



Node 1

Node 2

time

Event 1

Event 2

Event Timelines (Example of prev. Slide)

Motivation
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Node 3

Node 4

Node 5



Relation “Happened Before”

Smallest relation satisfying the following conditions:

1. If a and b are events in the same process and a
happens before b, then a  b (we can also say 
event b is potentially causal dependent on a)
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2. If a is a sending event of a message by a sender S 
and b is the receiving event by a receiver R then 
obviously a  b

3. If a  b and b  c then a  c (transitivity)

4. If neither a  b nor b  a, a and b are concurrent 
|| (not in  a “Happened-Before” relation)



Example 

Process i

XX XX
a d

a  d and c  e
because of condition 1

a  c and b  e 
because of condition 2

a  e 
because of condition 3
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Process k

Process j

XX

XX

XX
c

b

e

However, neither a  b 
nor b  a



“Happened Before” (2)

 Let “p” denote the local happened-before relation 
at node p: 

 a p b iff a and b are both events at p, and 
a happens before b.

Global happened before relation “” :

Logical Clocks
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Note:
The “Happened before” relation reflects potential causality, 
it does not model real causality

Global happened-before relation   : 
a  b holds iff
  node p: a p b,  or
  message m: a = send(m), b = receive(m)



Logical Time

 In many cases it’s sufficient just to order the related
relevant events, i.e. we want to be able to position
these events relatively, but not absolutely.

 Interesting is only the relative position of an event on 

Logical Clocks
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g y p
the time axis
 no need for any scaling on this time axis

 Simple solution is the ring clock (André Barroso et al. 
“Synchronization, Coherence, and Event Ordering, 
1988):
 A clock message circulates
 Incremented at each event (~ HW token ring)



Logical Time

 Characteristics of a logical time:
 Causal dependencies have to be mapped correctly (e.g. 

sending a message “happens before” receiving the message)
 Non related events do not have to be ordered, i.e. can 

appear in any order on the logical time axis)

 Assumptions:

Logical Clocks
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 Assumptions:
 DS := {n single-processor nodes}
 Activity of each node=sequence of totally ordered events EN 
 3 types of events 

 local events
 send events
 receive events

 The total activity of the system is: E = ENall nodes



Relation: Happened Before

 We cannot always order all events: relation “has 
happened” before is only a preorder

 If a did not happen before b, it cannot cause b

Logical Clocks
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Concurrent events:
 Two events a and b are concurrent , ab , 

if neither a  b nor b  a holds.



node1

node2

node3

message1

message2

e11 e12

e21 e22

e31 e32

Example 
Logical Clocks
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It holds: 
e11  e12  e21  e22  e32 , furthermore   e31  e32,
whereas e31 is neither related “has happened before” to e11,
nor to e12, nor to e21, nor to e22.

e31 is concurrent to e11, e12, e21, and e22.

Remark: Relation “happened before” 
is also called causality-relation.



Logical Clock Conditions

 If an event b is potentially causal dependent 
on another event a (or if a happened before 
b) then the according logical times LT of both 
events must satisfy the following condition:

Logical Clocks
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a  b  LT(a) < LT(b) 



Logical Times

 Scalar time (~ Lamport)
 Vector time (~ Fidge, Mattern, Schmuck)
 Matrix time (~ Michael, Fischer, Wuu, Bernstein, 

Lynch, SarinRaynal, Singhal)
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Each of these logical clocks obeys 2 major rules:

R1: Describes how the local logical clock is updated   
when executing one of the 3 major events

 Internal
 Send
 Receive

R2: Describes how the global logical clock is updated



LamportLamport TimeTime
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Lamport Time
Vector Time
Matrix Time



Scalar (Lamport) Clock

E := {events} and L: E  N defines the Lamport-time L,
i.e. each e  E gets a time stamp L(e)as follows:

1.  Assume e is either a local event or a sending-event:
A. If event e has no local predecessor, L(e):= 1,

Lamport Time
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B. Otherwise  a local predecessor e’, thus the timestamp
of e, L(e):= L(e’) + 1

2. Assume e is a receiving event (with a previous 
corresponding sending-event s):
A. If e has no local predecessor, L(e):=L(s)+1 
B. Otherwise  a local predecessor e’, then 
L(e):= max{L(s), L(e’)} + 1



node 1

node 2

node 3

1 4 5 7

651

2 3 4

Lamport Time
Lamport Time
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Note: Each local counter is incremented with each local event.
In a communication we adjust the involved counters of the
two communicating nodes to be consistent with 
the “happened-before”-relation. 

Remark:
Lamport time is consistent with the “happened-before”-relation, 
i.e. if x  y, then L(x) < L(y), but not vice versa. 



Properties of Lamport Time

The Lamport time is consistent with the causality, 
but it does not characterize causality, i.e. it is not 
strongly consistent

Lamport Time
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A: If “x causes y”, then x has a smaller 
Lamport-time stamp than y,

x  y  L(x) < L(y)

B: However: L(x) < L(y)  “x causes y” !!!



Limitation on Lamport Clocks

node 1

node 2

node 3

L(e11)=1 L(e12)=2

L(e22)=3L(e21)=1

L(e31)=1 L(e32)=2 L(e33)=3

Lamport Time
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node 3

From „Lamport time“ values you cannot conclude
whether two events are in any causal relationship,
e.g. e12  e22, because L(e12) < L(e22), but

e11  e32 , even though L(e11) < L(e32)



Total Ordering of Events

A Lamport-time gives us a partial-ordering of distributed
events which is sufficient for many problems.

However, if we add the unambiguous node number1, 
we can establish a total ordering:

Lamport Time’
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we can establish a total-ordering:

An event e at node a gets the global time stamp: 

LT(e) := (L(e), a).

(L(e),a) < (L(e’),b)   L(e) < L(e’) or 
L(e) = L(e’) and a < b

1In Coulouris they use the PID instead of the node ID



Lamport’s Logical Clocks (4)
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 The positioning of Lamport’s logical clocks in DSs



Applications of Total Ordering

 To ensure liveliness properties in distributed 
algorithms, e.g.

 Requests are time stamped and served according 
to the total order in these timestamps e g to
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to the total order in these timestamps, e.g. to 
ensure fair mutual exclusion

 Completely sorted multicast



Unsynchronized Update of 2 Replicas 

Application of Lamport Time
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Update 1 = add 100 $

Update 2 = add 5% interest

of bank accounts

Solution: Sorted multi cast for account transactions



Using Lamport Time-Stamps

Upd1
10.1

Upd2
10.2

Message
queue n1

Message
queue n2

Application of Lamport Time
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Goal: Deliver all multicast messages in a way that 
all sites receive them in the same order

Solution: Install identical local receive message queues
Use total ordered Lamport-Time for each update-
and each acknowledge message



Using Lamport Time-Stamps

Upd1
10.1

Upd2
10.2

Upd1
10.1

Upd2
10.2

Upd1
10.1

Upd2
10.2

Message
queue

Message
queue

Application of Lamport Time
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Ack2
11.2

…

Ack1
11.1

Ack1
11.1

Ack2
11.2

…

Updates are done according to the order in the queue 
after acknowledges from all sites have arrived



Vector Time

58
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Vector Time1

Vector Time

 Introduced to overcome limitations of Lamport times

 If L(a) < L(b)  event a causally precedes event b

 With Lamport-time-stamps no sufficient support for causality

 Example: In a newsgroup every entry is multicasted to all 
subscribers, however any comment should follow the original 
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1Mattern, F.: “Virtual Time and Global Sates in DS”, 
Proceedings of Parallel and Distr. Alg., 1989

Fidge, C.:     “Logical Time in Distr. Computing Systems”,
IEEE Computer, 1991

, y g
article

Requirement for vector time:

If VT(a) < VT(b)  event a causally precedes event b



Limitations of Lamport Time

1

2 3

3 4

4

e

3
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1 1
1

4

4 5

f

Result: Event e  f although L(e) < L(f)



Vector Time

 Assumption:  n tasks (processes) Pi in DS

 Each Pi has its own local “vector clock” being a 
n-dimensional time-vector (initially zeroed)

Vector Time
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Only an estimation

 VTi(a) is timestamp of event a in process Pi

 VTi[i] number of events that have happened or 
are known in in Pi

 If VTi[j] = k means that this is Pi currently best 
guess that at least k events have happened in Pj
or are known to Pj



Vector Time

DS with n distributed processes. Every process p has its
VTp reflecting the current vector-time of p, if it is built
according to the following rules:

(1) Initially, VTi := (0,…0) for all i [1, n]

Vector Time
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*Build the maximum component wise

(2) For each event e in Pi  the local time component of 
VTi is incremented, i.e. VTi[i] += 1

(3) Whenever Pi sends a message m, Pi adds its current 
vector-time t=VTi to this message m

(4) When Pj receives a message m with timestamp t
it sets VTj := max{ t[k], VTj[k] }*



Properties of Vector Time

The following relations for the vector-time hold:
Suppose u, v are two vector times of dimension n :

1. u  v  u[k]  v[k] k = 1, …n

Vector Time
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1. u  v  u[k]  v[k] k  1, …n

2. u < v  u  v  and  u  v

3. u v  ¬(u < v ) and  ¬ (v < u) 



Characteristics of Vector Time

Vector Time

a b

c d

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

p1

p2
Physical 

time
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 VT(a) < VT(f)  a → f event a has happened before event f 
(thus a might have caused f) 

 Events c || e, because neither VT(c) < VT(e) nor VT(e) < VT(c)

e f

(2,2,2)(0,0,1)
p3



Example: Vector Time

P1
e11

1
0
0

1
1

e12

2
0
0

e14

4
2
3

1
2

2
4

2
3

e13

3
2
3

Vector Time
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P2

P3

e21

1
0

e31

0
0
1

e22

2
0

e24

4
0

e33

1
2
3

e32

1
2
2

e23

3
0



Characteristics of Vector Time

The following inter relationships between causality or
the “happened before” relation and vector-time hold:

A.) e  e’  VT(e) < VT(e’)

Vector Time
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B.) e  e’  ¬(VT(e) < VT(e’)) and 
¬ (VT(e’) < VT(e))

Vector-time is the best known estimation for global 
sequencing that is based only on local information.



Applications of Vector Time

 Vector time stamps reflect potential causal 
ordering  used for

 Distributed debugging

C l d d
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 Causal ordered communication

 Causal distributed shared memory

 Establishing global breakpoints

 Determining consistency of checkpoints in 
optimistic recovery



Synchronizing Vector Clocks
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 Concurrent message transmission using logical clocks



Enforcing Causal Communication
VT VT
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VT

VTVT

VT

Don’t deliver message to the 
application, because there is an 
older not yet delivered message

• Assumption: Each IPC is a broadcast & only send/receive events



Definition:
Suppose m1 and m2 are two messages being received at the 
same node i. 
A set of messages is causally ordered if for all pairs <m1, m2> 
the following holds:
send(m1)  send(m2)  receive(m1)  receive(m2)

Causal Ordering of Messages
Logical Clocks
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send(m1)  send(m2)  receive(m1)  receive(m2)

Example of non causally ordered messages:

P1

P2

P3



• Each node i maintains a n x n matrix Mi, initialized to 0,
(i.e. no message was sent up to now).

• Before sending a message M from node i to node j, process Pi
increments Mi [i,j]

Logical Clocks

Matrix Clocks by Raynal & Singhal
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Mi[1,1] Mi[1,2] … Mi[1,j] … Mi[1,n] 

Mi[2,1] Mi[2,2] … Mi[2,j] … Mi[2,n]
… … … … … …

Mi[i,1] Mi[i,2] … Mi[i,j] + 1 … Mi[i,n]
…

Mi[n,1] Mi[n,2] … Mi[n,j] … Mi[n,n]

Mi =



Logical Clocks

Protocol: Causal Ordering of Messages

The incremented matrix Mi  and sender number i are 
appended to the message, i.e. < i, Mi, message M> is
sent to node j

Upon receiving a message (with Matrix Mi) at node Pj
first this P updates its matrix M as follows:
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first this Pj updates its matrix Mj as follows:

1.  k,l [1,n], l  j: Mj[k,l] = max{ Mj[k,l] , Mi [k,l] }

2. Increment Mj[i,j], i.e. regard the current message

3. Delay this message, i.e. queue it before delivering 
to the application, until the following holds: 

 k[1,n], Mj[k,j] < Mi[k,j]



P1

0 0 1
0 0 0
0 0 0

0 1 1
0 0 0
0 0 0

0 0 0
0 0 0

0 1 1
0 0 1 Message has 

Example
Logical Clocks
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P2

P3

0 0 0
0 0 0
0 1 0

0 1 1
0 0 1
0 1 0

0 0 0
0 1 0

0 1 1
0 0 0
0 1 0

0 0 1
0 1 0

0 1 1
0 0 1
0 1 0

to be delayed

0 1 0
0 0 1
0 1 0



Global State

74
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Chandy/Lamport: Distributed Snapshots: Determining Global 
States of DS

http://research.microsoft.com/users/lamport/pubs/chandy.pdf

Dijkstra: Comments on Chandy/Lamport/Misra Algorithm
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD864.html



Global State 

Global States

Global state of a DS? 
Consists of:
 Local state of each node (process of an application system) 
 Messages in transit since recording each local state

Local state?
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Local state?
 Dependent on what we are interested in, e.g.

 references in use for distributed garbage collection
 wait conditions in case of distributed deadlock detection

Problem:
 Due to lack of a unique global clock  it is hard to get a 

time consistent snapshot of all local states, i.e. locals states 
are recorded in some unpredictable fashion



Snapshot Problem

Why interested in a global state?

Suppose computation of a distributed application 
has stopped on each involved node 

Distinguish whether

Global States
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Distinguish whether
 a distributed application 

1. is blocked due to I/O 

2. has terminated or

3. is deadlocked



Snapshot Problem

 Garbage collection

Global States

waits for
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 Deadlock

 Termination problem
waits for

waits for

passive

terminated

passive

terminated



Why Consistent Global State?

How to combine information from multiple nodes, 
that the sampling reflects a global consistent state?

Problem:

Global States
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 Local view is not sufficient

 Global view:

 We need messages transfers to the other nodes in 
order to collect their local states

 Meanwhile these local states can change again



Local History

 N processes Pi, P := {P1, P2, ... Pn}, for each Pi:
 On a separate node ni
 Event series = history hi := <ei,1, ei,2, ... >
 May be finite or not

 Observing a local history hi up to event ei k you get:

Global States
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Observing a local history hi up to event ei,k you get:
prefix of history hi,k := < ei,1, ei,2, ... , ei,k >

 Each ei,k is either a local or a communication event

 Process state:
 State of Pi immediately before ei,k denoted si,k

 State si,k records all events included in history hi,k-1
 Hence, si,0 refers to Pi ‘s initial state



Global History and Global State

Global States

 Global history h := h1  h2  ... hn-1  hn

 Similarly we can combine a set of local states 
to form a global state S := (s1, s2, … sn)
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 However, which combination of local states is 
consistent?



Cuts

Global States

 Similar to the global state, we can define cuts based 
on k-prefixes:

 C := h1,c1  h2 ,c2  ... hn-1,cn-1  hn,cn

 h1 c1 is history up to and including event e1 c1
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1,c1  y p g 1,c1

 The cut C corresponds to the state

S = (s1,c1+1, s2,c2+1, … sn,cn+1)

 The final events in a cut are its frontier or its border 
line :

BL = {ei,ci | i  {1,2, …n}}



Distributed Snapshots

 Global state of system S:
S := (s1,c1, s2,c2, ...., sn,cn ) 
with the border line:

 BL := (e1,c1, e2,c2, ...., en,cn ) 
Events have 

already happened

Global States
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P1

P2

P3

e1,1

e2,1

e1,2

e3,1

e1,3

e2,2

e3,2

e2,3

e3,3

e1,4 e1,5

BL = (e1,3, e2,2,e3,1) 

Consistent Cut Inconsistent Cut
( e1,4 = message from the 
future!!)No problem as long as we 

preserve the message in transit



Consistent Cuts

 We call a cut C consistent iff for all events 
e’  C: e → e’ implies e  C

A global state is consistent if it corresponds to

Global States
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 A global state is consistent if it corresponds to 
a consistent cut

Remark:
 We can characterize the execution of a system as 

a sequence of consistent global states 



Linearization

 A global history that is consistent with the 
“happened before” relation is also called a 
linearization or consistent run

Global States
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 A linearization only passes through consistent 
global states

 A state S’ is reachable from state S’ if  a 
linearization that passes through S and S’



Chandy/Lamport Algorithm1

Global States

Assumptions:

1. No process failures, no message losses

2. Sequence of received messages is the same as 
sequence of sent messages

3 d l h l h C S
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3. Bidirectional channels with FCFS property

4. Network is a strongly connected graph
• From each process there is a connection path to each 

other process

P2

P1 P3

Ch1

Ch2

Ch3

Ch4

1published 1985



Chandy Lamport Algorithm (2)

 Each process can initiate CLA to get a new global state

 CLA also regards states of the communication channels

 2 types of messages

k
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 Marker messages
 Application messages

 First marker message is for saving process state

 Second marker message is for saving channel state



Principle of Operation

Global States

 Initially broadcast a marker message that contains a 
unique snapshot id (e.g. initiator id + sequence #) in 
order to differ from concurrent snapshot initializations

 Process p receiving a marker message for the first 
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time:
 If not yet done, save and record local state of receiver and 

install per input channel an empty message queue
 Having recorded its local state, process p sends the marker 

message to all its other output channels
 Continue with the local application process p
 Each received application message is queued in the 

corresponding message queue



Principle of Operation

Global States

 Process p receiving the marker message at another 
input channel CHi
 Terminate the collection of messages at message queue MQi

 Save channel state CHi and record it to local state of p
 If all incoming channels of p have been saved and recorded
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 If all incoming channels of p have been saved and recorded, 
send the aggregated local state of p to the initiator of the 
CLA



Principle of Chandy/Lamport
Pi Pj

m

record

m

Global States
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m

record

m
m

a

b

have to be 
recorded, too



Distributed Snapshot

P
local state1. 

record

Task P wants to get a global view

Global States
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P
local state2. P,Vi Channel 1

P,Vi
Channel k

...

record



Distributed Snapshot

Receiver Task Q

L l t t

Incoming messages 
on channel C

Ch l 1

Outgoing messages

Global States
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Local state

Local file system

Channel 1

Channel k



Distributed Snapshot

Case 3a: Q receives a marker for the very first time
on one of its channels 
records its current local state, 
sends marker messages on all output channels

Global States
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Local state
P,Vi

marker

Channel k’

Channel i

P,Vi

P,V



Distributed Snapshot

Case 3b: Q records all incoming messages on those 
channels C’ without a marker message 
up to now

Global States
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Local state

a b

a bC’



Distributed Snapshot

Case 3b: Q records all incoming messages on a channel C
until marker message on channel C has arrived,
then finishes recording at channel C

Global States
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Local state

a b

P,Vi



Distributed Snapshot

Case 3c: 
Having received a marker message on each incoming channel, 
Q sends its accumulated state to the snapshot-initiator P

Global States
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Local state

a b

P,Vi

last channel

a‘ b‘ c‘ d‘

...

ab...c‘d‘



Example of Chandy & Lamport

P1

P2

M’1 M’3
m1 m1

m1m1

m1
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P2

P3

M’2

mi Marker message

M’i Ordinary message

M’3 does not belong to the snapshot,
each Pi has a channel to each other Pj, ij

m1

m1m1

m1



Example: Chandy-Lamport Algorithm

Global State

P1

P2
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P3

Application Messages
P2

P1 P3

Ch1

Ch2

Ch3

Ch4



Example

Global State

P1

P2

P2

P1 P3

Ch1

Ch2

Ch3

Ch4
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P3

• P3 wants to start the algorithm at t0 to get a global view
it constructs an empty message queue to collect future 
application messages from P2 via Ch4

• P3 saves its local state and sends a marker message to
P2 via channel Ch3

t0



Example

Global State

P1

P2

m2 m5

P2

P1 P3

Ch1

Ch2

Ch3

Ch4
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P3

• P2 saves its local state and sends marker messages to 
P1 via Ch2 and to P3 via Ch4

• P3 adds to its local state that transient application 
message m3 was received

t0

m1
m3 m4



Example

Global State

P1

P2

m2 m5

P2

P1 P3

Ch1

Ch2

Ch3

Ch4

Neither m4 Neither m4 
nor m5 belong nor m5 belong 

l ll l

Time recording 
local state of P2
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P3

• P1 saves local state and sends a marker message to P2 & 
its local state to P2 (for forwarding it to P3)

• P2 receives last marker at one of its input channels Ch2
and forwards recorded local states of P1 and P2 to P3 

t0

m1
m3 m4

to global stateto global state


