
Distributed SystemsDistributed Systems

10 Name Service10 Name Service

1© 2009 Universität Karlsruhe (TH), System Architecture Group

June 10 2009

Gerd Liefländer

System Architecture Group

Overview

Schedule of Today

 Implementing a Name Service
 User friendly structured name
 Distributed Name Space
 Name Resolution

Example Name Services

© 2009 Universität Karlsruhe (TH), System Architecture Group 2

 Example Name Services
 Domain Name Service
 DEC’s Global Name Space

 Attribute Naming
 Directory Service

 X 500
 LDAP

Implementing a Name ServiceImplementing a Name Service

3© 2009 Universität Karlsruhe (TH), System Architecture Group

Name Spaces
 Partitioned
 Replicated

Name Resolution
 Iterative
 Recursive

Example Structured Name

DNS example:

labeli.label i-1.label1
The above pathname consists of labels, each of
which is not longer than 63 characters, whereas the
complete pathname is limited by 255 characters

Resolutions starts at . (whereby this symbolized root
name is often skipped). Further queries are sent to
the corresponding name servers for label1, …. labeli

label1 can be a country, e.g. uk for United Kingdom

© 2009 Universität Karlsruhe (TH), System Architecture Group 4

DistributedDistributed Name Name SpaceSpace

5© 2009 Universität Karlsruhe (TH), System Architecture Group

Implementing a Name Server1

 In a LAN, the name service can be implemented as a
single name server at some node of the DS
 in order to avoid the single point of failure there might be a

backup name server

Implementing Name Service

© 2009 Universität Karlsruhe (TH), System Architecture Group 6

 In WANs, name service is often distributed over
multiple name servers

 How to organize distributed name servers?

 Vertical layering

 Horizontal partitioning (zoning)
1for structured names

Hierarchical Name Space

Implementing Name Service

Name spaces of worldwide system are structured hierarchically,
e.g. according to Cheriton

 Global layer
 Only very few changes
 e g representing a company or university

© 2009 Universität Karlsruhe (TH), System Architecture Group 7

 e.g. representing a company or university

 Administrational layer
 Occasionally changes
 e.g. representing a division or a department

 Managerial layer
 Regular changes
 e.g. representing a working group or an institute

Name Space Distribution (1)

Namespace partitioned into zones:

 Non-overlapping parts of the name space

 Delegated to an authorized organization

Implementing Name Service

© 2009 Universität Karlsruhe (TH), System Architecture Group 8

 Organization provides servers (potentially replicated)
for a zone holding records consisting of at least

<name, access point>

 Organization has authority over name space portion

Name Space Distribution (2)
Frequency
of updates

Implementing Name Service

Tolerable
update time

© 2009 Universität Karlsruhe (TH), System Architecture Group 9

 Partitioning of DNS into zones & layers
 Tables in root and its children are relatively stable

Name Space Distribution (3)

Item Global Administrational Managerial

Geographical scale of network Worldwide Organization Department

Total number of nodes Few Many Vast
numbers

Responsiveness to lookups Seconds Milliseconds Immediate

Implementing Name Service

© 2009 Universität Karlsruhe (TH), System Architecture Group 10

 A comparison of name servers from a large-scale name space
partitioned into the three layers

 Responsiveness for global layers can be low, because in many cases
the needed information is cached at the client

Responsiveness to lookups Seconds Milliseconds Immediate

Update propagation Lazy Immediate Immediate

Number of replicas Many None or few None

Is client-side caching applied? Yes Yes Sometimes

Domains

 Domain is the notion for the administrative authority
responsible for a partition of the name space
 Determines the responsibility for a domain

 Manages and updates its name data base

Implementing Name Service

© 2009 Universität Karlsruhe (TH), System Architecture Group 11

 Management may be extended to sub domains
 Sub domain i30www.ira.uka.de is relatively autonomous

 … but has to be fitted to the department’s domain
www.ira.uka.de

 Naming data of different domains should never be
put into one data base

Name ResolutionName Resolution

12© 2009 Universität Karlsruhe (TH), System Architecture Group

Name Resolution

Implementing Name Resolution

Name resolution:
Given a structured name,. i.e. path name, it should be
possible to look up any information stored in the node
(unless access is forbidden)

© 2009 Universität Karlsruhe (TH), System Architecture Group 13

Possible result:

1. Entity found  identifier or address
2. Entity not found  invalid name
3. Access not allowed  access forbidden

Name Resolution

 Resolving structured names via different name servers
is also called navigation

Three orthogonal design parameters
 Resolving method

Implementing Name Resolution

© 2009 Universität Karlsruhe (TH), System Architecture Group 14

 Iterative
 Recursive

 Site of resolving instance
 Client site
 Server site

 With or without caching

Iterative Client Based Navigation

Implementing Name Resolution

© 2009 Universität Karlsruhe (TH), System Architecture Group 15

 Principle of client based iterative name resolution resolving
root:<nl, vu, cs, ftp, pub, globe, index.txt>

Iterative Client Based Navigation
with Local Name Resolver
Example: i30www.ira.uka.de

 Client initiates resolution

1. de is resolved by a root
server, link to “de server” is
given back

root

1
de

uka

2

3

Implementing Name Resolution

client

© 2009 Universität Karlsruhe (TH), System Architecture Group 16

given back

2. uka is resolved by “de
server” + link to “university
KA server”

3. ira is resolved …

4. …

Local
Name
Server ira

i30www

3

4

5

client

client

Advantage: Only local server needs to know the root server
and it can cache multiple name server addresses

Name Resolution (3)

 Server based navigation: name service coordinates
name resolving process contacting other name
servers collecting results until resolution is completed

 Iteratively ~ initial name server communicates with
other name servers of same level

Implementing Name Resolution

© 2009 Universität Karlsruhe (TH), System Architecture Group 17

other name servers of same level

 Recursively ~ initial name server requests another
intermediate name server of the same level to continue
with the name resolution process

 Each server can cache name resolution results for a
while

Sever Based Iterative Name Resolution

Clients

Root
name server

name server nl

1. <nl, vu, cl, ftp>

2. <vu, cl, ftp> 3. #vu, <cs,ftp>

8. #<nl,vu,cs,ftp>

Implementing Name Resolution

© 2009 Universität Karlsruhe (TH), System Architecture Group 18

 Principle of non recursive server based name resolution

 Initial server must keep complete info until resolution has
completed

name
resolver

name server vu

name server cs

4. <cs,ftp) 5. #cs, <ftp>

6. <ftp> 7. #ftp

Recursive Name Resolution

Implementing Name Resolution

© 2009 Universität Karlsruhe (TH), System Architecture Group 19

 Principle of server based recursive name resolution

Analysis: Name Resolution

 Each method requires the same number of messages
if the name has to be resolved for the first time

 Client based iterative name resolution:
 Uncomfortable, client site involved in each resolution step
 Dedicated caching can be done per client i e with a user

Implementing Name Resolution

© 2009 Universität Karlsruhe (TH), System Architecture Group 20

 Dedicated caching can be done per client, i.e. with a user
defined refresh policy

 At client site, the local name resolver can cache name
resolution results for multiple clients

 Server based recursive name resolution:
 root name server has to control the complete resolution

 potential performance bottleneck
 Caching at server sites can be more efficient when different

clients from different client sited request the same info

Tanenbaum’s Analysis

Implementing Name Resolution

© 2009 Universität Karlsruhe (TH), System Architecture Group 21

 Both methods need 6 messages, but in the above example
 iterative with 6 long distance messages

 recursive with only 2 long distance and 4 short distance messages

Example Name ServicesExample Name Services

22© 2009 Universität Karlsruhe (TH), System Architecture Group

DNS: Domain Name System

GNS: Global Name Space

Goals for DNS

 Implement a wide area distributed DB
enabling:
 Scalability & extensibility

 Decentralized maintenance

© 2009 Universität Karlsruhe (TH), System Architecture Group 23

 Robustness

 Fault-tolerance

 Global scope
 Names mean the same thing everywhere

 No need for
 Atomicity
 Strong consistency

Domain Name System (DNS)*

Primary task:
 Mapping from a symbolic name to 32 bit IP address, e.g.

smtp.uni-karlsruhe.de  129.13.185.217
 Complete pathnames names are alphanumeric strings

Examples

© 2009 Universität Karlsruhe (TH), System Architecture Group 24

*Paul Mockapetris (1984, standard in the Internet since 1987)

p p p g
 255 characters of labels  63 characters, e.g.
ira.uka.de, i30www.ira.uka.de

 DNS name space is implemented as a rooted tree

Principle: DNS Tree Structure

.

edu. com. jp. us.

NS RR “pointers”

cornell.edu.

cs.cornell.edu.

cmu.edu. mit.edu.

eng.cornell.edu.

foo.cs.cornell.edu A 10.1.1.1
bar.cs.cornell.edu A 10.1.1.1

DNS Names and IP Addresses are

 … Identifiers and Locators

 Both are typically non-persistent

 Private IP addresses identify only in the
context of an IP realm

 Domain names are good identifiers, e.g.
 woodstock.cs.cornell.edu identifies a host

 www.cnn.com identifies a service

Domain Name System (DNS)

 Distributed directory service

 Hierarchical name space

 Each level separated by ‘.’
 Analogous to ‘/’ separator in file systems

 One global root
 Started with 13 replicated root servers (A,B,…M), only
 Root server A in Dulles in Virginia

 There have been Denial of Service (DoS) attacks on these
root servers, none of them really successful

 Because of intensive caching, queries to root servers are
quite rare

DNS Root Name Servers (1998)

 The root name
servers know how
to find the
authoritative name
servers for all top-

© 2009 Universität Karlsruhe (TH), System Architecture Group 28

p
level zones.

 1998  only 13
root name servers

 Root servers are
critical for the
proper functioning
of name resolution

Map of DNS Root Name Servers
NORDUnet Stockholm

© 2009 Universität Karlsruhe (TH), System Architecture Group 29

 Map of DNS Root Name Servers (Feb. 2007 currently 123 RNS)

 Up to 13 ORSN DNS server in Europe

DNS is simple but powerful

 Only one type of query
 Query(domain name, RR type)

 Resource Record (RR) type is like an attribute type

 Answer(values, additional RRs) (,)

 Limited number of RR types

 Hard to make new RR types
 Not for technical reasons…

 Rather because each requires global agreement

DNS is the Core of the Internet

 Global name space

 Can be the core of a naming or identifying scheme

 Global directory service

 Can resolve a name to nearly every computer on
the planet

Important DNS RR Types

 NS: Points to next Name Server down the tree

 A: Contains the IP address
 AAAA for IPv6

MX C t i th f th il MX: Contains the name of the mail server

 Service-oriented RR types
 SRV: Contains addresses and ports of services on servers

 One way to learn what port number to use

 NAPTR: Essentially a generalized mapping from one name
space (i.e. phone numbers) to another (i.e. SIP URL)

Primary and Secondary Servers

cornell.edu. NS RRs point to both
primary and secondary

servers

cs.cornell.edu.

RRs are initially
configured into primary

server

Primary server replicates
RRs onto secondary servers

periodically
(updates are incremental)

Resolver Structure & Configuration

.
Static configuration

of root servers

Stub resolver resides
on client host, points to

configured recursive
server

edu.

cornell.edu.

cs.cornell.edu.

com. jp.

cmu.edu.

eng.cornell.edu.

Resolver manages DNS
queries on behalf of stub

resolvers

Resolver Structure & Configuration

. 1. Stub resolver
sends recursive

query

2,3,4… Resolver
makes iterative

edu.

cornell.edu.

cs.cornell.edu.

com. jp.

cmu.edu.

eng.cornell.edu.

queryqueries to servers

N. Resolver
returns final

answer to stub
resolver (which

also caches result)

Resolver
caches results
for efficiency

DNS Cache Management

 All RRs have Time-to-live (TTL) values

 When TTL expires, cache entries are removed

 NS RRs tend to have long TTLs
 Cached for a long time

 Reduces load on higher level servers

 A RRs may have very short TTLs
 Order one minute for some web services

 Order one day for typical hosts

Why DNS iterative, not recursive?

 AT/MvS* teach that recursive is more efficient
 Better caching characteristics

 Caches in servers, not just resolvers

 Shorter pathsp

 However, high-performance recursive server
are much harder to implement
 Maintain state for thousands of concurrent queries

 Manage cache

 Recursive server prone to DoS attacks
* AT/MvS = Andrew Tanenbaum/Martin van Steen text

URLs, URNs, and URIs

 Uniform Resource <Locator, Name, Identifier>

 URL tells a computer where and how to reach a
resource
 These came first

 URN is a true identifier
 Unique, persistent

 URI refers to both URLs and URNs
 Defines syntax for current and future URLs and URNs

 For now we only really care about URLs

URL

 Consists of:

<scheme>:<scheme-specific-part>

URL

 Consists of:

<scheme>:<scheme-specific-part>

A protocol Information the
protocol needs

URL Examples

 HTTP (web)
 http://www.cnn.com/news/story.html

 Email
 mailto://francis@cs.cornell.edu mailto://francis@cs.cornell.edu

 Newsgroups
 news:cornell/class/cs514

 SIP (Session Initiation Protocol)
 sip://service@phone.verizon.com

Note the Central Role of DNS

 HTTP (web)
 http://www.cnn.com/news/story.html

 Email
il //f i @ ll d mailto://francis@cs.cornell.edu

 Newsgroups
 news:cornell/class/cs514

 SIP (Session Initiation Protocol)
 sip://service@phone.verizon.com

Locating Mobile Entities

 What is a mobile entity?

 From naming perspective, it is an entity
whose address changes often

 This doesn’t require physical mobility!
 Every time you dial up, you may get a new

address

 So, “mobility” existed well before laptops
became common
 Though laptops create more mobility

Is Mobility a Problem for DNS?

 Not really
 Even though DNS was designed with relatively

stable IP addresses in mind

 Because mobility only effects leaf DNS
servers
 Recall: A RR TTL is short, but NS RR TTL is long

 Note: non-mobile web server’s A RRs often
have very short TTLs
 To allow quick failover to another web server

Is Mobility a Problem at all?

 Less than you’d think

 Most mobile systems are clients; servers are
rarely mobile
 Clients are initiators of connections not recipients Clients are initiators of connections, not recipients

 Therefore, there is not a client locating problem

 What about email, instant messaging, and
VoIP (Voice over IP)?
 Clients receive emails, instant messages, and

phone calls

Application specific Registration
as a Mobility Solution
 To receive email, client connects to an email server

 To do instant messaging, client registers with an IM
server

 To do VoIP, client registers with a SIP server

This is an adequate solution to 90% of mobility issues
 This is why Mobile IP hasn’t gotten traction (i.e. Microsoft

has not implemented it)

Mobile IP uses an IP-Level
Registration

Mobile
Node

Home
Agent

Mobile Node has a stable home
address at its home network

Foreign
Agent

g

Correspondent
Node

Internet

Mobile IP uses an IP-Level
Registration

Home
Agent

Mobile Node moves to foreign
network, gets a Care-of Address

Foreign
Agent

Mobile
Node

g

Correspondent
Node

Internet

Mobile IP uses an IP-Level
Registration

Home
Agent

Mobile Node registers with Home
Agent, creates IP tunnel

Foreign
Agent

Mobile
Node

g

Correspondent
Node

Internet

Mobile IP uses an IP-Level
Registration

Home
Agent

Connection initiated by Correspondent
Node will be tunneled to Mobile Node

Foreign
Agent

Mobile
Node

g

Internet

Correspondent
Node

Mobile IP Adds a Layer of
Indirection

Mobile IPMobile IP

DNS
Routing

•Home address is
stable

•Care-of address
changes

Client Identification

 Servers cannot locate clients, but often must be able
to identify them

 HTTP cookies serve this role

 HTTP cookies also contain many attributes about the HTTP cookies also contain many attributes about the
client or session

 They also typically contain some kind of signature
 To prevent tampering

Identifiers: hard to spoof

 That is why driver’s licenses have pictures
and credit cards have signatures

 In networking, two ways:

1. Identifier is also a locator
 Reverse routability

2. Some kind of secret-protected signature

Reverse Routability: DoS & Mobile IP

20.1.1.1
I’m 30.1.1.1

30.1.1.1

Server
Internet

Ok, prove it by echo’ing
this number back to me!

Since challenge doesn’t go back to
20.1.1.1 (i.e. is not reverse routable),

20.1.1.1 cannot spoof 30.1.1.1

DNS Implementation

 Distributed DB implemented in hierarchy of many
name servers

 Decentralized control and management of data

 Application-layer protocol used by hosts and name

© 2009 Universität Karlsruhe (TH), System Architecture Group 55

 Application layer protocol used by hosts and name
servers
 Communicate to resolve names (i.e. name/address

translation)

 Core Internet function implemented as application-layer
protocol

DNS Server Name DB

 DB contains entries called resource records (RR)

 RR contains type, class, and application data
 Before attribute type has been added, there was only record

type (A, used to resolve IP address for a given domain name)

 Classes = Internet (IN) Chaos net (CH) etc

© 2009 Universität Karlsruhe (TH), System Architecture Group 56

 Classes Internet (IN), Chaos net (CH), etc.

 Each class defines types, e.g. for IN:

 A = address
 NS = name server

 CNAME = canonical name (for aliasing)

 HINFO = CPU/OS info

 MX = mail exchange
 PTR = pointer for reverse mapping of address to name

DNS Record Types

 Type=A
 name is hostname

 Type=CNAME
 name is an alias name for

some canonical name

RR format: (name, value, type, ttl)

© 2009 Universität Karlsruhe (TH), System Architecture Group 57

 value is IP address

 Type=NS
 name is domain (e.g.

foo.com)
 value is IP address of

authoritative name
server for this domain

some canonical name
 value is canonical name

 Type=MX
 value is priority and

hostname of mail server
associated with name

DNS Resource Records
Associated
entity Description

SOA Zone Holds information on the represented zone

A Host Contains an IP address of the host this node represents

MX Domain Refers to a mail server to handle mail addressed to this node

SRV Domain Refers to a server handling a specific service

Examples

© 2009 Universität Karlsruhe (TH), System Architecture Group 58

 Most important types of resource records forming the
contents of nodes in the Internet DNS name space

NS Zone Refers to a name server that implements the represented zone

CNAME Node Symbolic link with the primary name of the represented node

PTR Host Contains the canonical name of a host

HINFO Host Holds information on the host (OS + HW-type) this node represents

TXT Any kind Contains any entity-specific information considered useful

DNS MX Record Type

 MX records point to mail exchanger for a
name, e.g.
 mail.acm.org is MX for acm.org

Additi f MX d t d t b

© 2009 Universität Karlsruhe (TH), System Architecture Group 59

 Addition of MX record type proved to be a
challenge

 How to get mail programs to lookup MX record for
mail delivery rather than an A record?

 Needed critical mass of such mailers

Resource Records

 The database records of
the distributed data
base are called resource
records (RR)

d

db.mylab.com
$TTL 86400

mylab.com. IN SOA PC4.mylab.com.
hostmaster.mylab.com. (

1 ; serial
28800 ; refresh
7200 ; retry

© 2009 Universität Karlsruhe (TH), System Architecture Group 60

 Resource records are
stored in configuration
files (zone files) at name
servers.

 Example:
Resource records for
db.mylab.com

604800 ; expire
86400 ; ttl

)
;

mylab.com. IN NS PC4.mylab.com.
;

localhost A 127.0.0.1
PC4.mylab.com. A 10.0.1.41
PC3.mylab.com. A 10.0.1.31
PC2.mylab.com. A 10.0.1.21
PC1.mylab.com. A 10.0.1.11

Resource Records

• Max. age of cached data in seconds

• Start of authority (SOA) record.
Means: “This name server is

db.mylab.com
$TTL 86400

mylab.com. IN SOA PC4.mylab.com.
hostmaster.mylab.com. (

© 2009 Universität Karlsruhe (TH), System Architecture Group 61

authoritative for the zone mylab.com”
• PC4.mylab.com is the name

server
• hostmaster@mylab.com is the

email address of the person in
charge

• Name server (NS) record
• One entry for each authoritative

name server
• Address (A) records

• One entry for each host address

1 ; serial
28800 ; refresh
7200 ; retry

604800 ; expire
86400 ; ttl

)
;

mylab.com. IN NS PC4.mylab.com.
;

localhost A 127.0.0.1
PC4.mylab.com. A 10.0.1.41
PC3.mylab.com. A 10.0.1.31
PC2.mylab.com. A 10.0.1.21
PC1.mylab.com. A 10.0.1.11

DNS Examples

Examples

Priority of mail server

Represents domain
as well as zone

Name server star cs vu nl

© 2009 Universität Karlsruhe (TH), System Architecture Group 62

 An excerpt from the DNS database for the zone cs.vu.nl.

Name server star.cs.vu.nl
has 2 network interfaces

thus increasing robustness
Backup mail server

DNS Examples (2)

© 2009 Universität Karlsruhe (TH), System Architecture Group 63

 Excerpt from the DNS database for the zone cs.vu.nl.

DNS Implementation (3)

© 2009 Universität Karlsruhe (TH), System Architecture Group 64

 Part of the description for the vu.nl
domain which contains the cs.vu.nl domain

DNS Implementation

Name Record type Record value

cs.vu.nl NIS solo.cs.vu.nl

© 2009 Universität Karlsruhe (TH), System Architecture Group 65

 Part of the description for the vu.nl domain
which contains the cs.vu.nl domain.

solo.cs.vu.nl A 130.37.21.1

DNS Name Servers

 Authoritative name servers store parts of the DB

 Names assigned to authoritative name servers
 For a host, authority stores host’s IP address, name

 Responds to queries for host IP addresses

© 2009 Universität Karlsruhe (TH), System Architecture Group 66

 Responds to queries for host IP addresses

 Performs name/address translation for that host’s name

 Root name server knows authoritative servers for particular
sub domains

 Hierarchy organizes authoritative name servers

 Reserving a domain gives you control of entry in root
name server for particular names

DNS Name Lookup

 Hierarchical lookup

 Each host has a pointer to a local name server to
query for unknown names

 Each local name server knows root of its sub tree

© 2009 Universität Karlsruhe (TH), System Architecture Group 67

 Each local name server knows root of its sub tree

 Root points to sub-levels, sub-levels point to
deeper sub-levels, … point to leaf name server
representing the authority for unknown name

Top-Level Domains

 Three types of top-level domains:
 Organizational: 3-character code indicates the

function of the organization
 Used primarily within the US

© 2009 Universität Karlsruhe (TH), System Architecture Group 68

 Examples: gov, mil, edu, org, com, net

 Geographical: 2-character country or region code
 Examples: us, va, jp, de

 Reverse domains: A special domain (in-addr.arpa)
used for IP address-to-name mapping

There are more than 200 top-level domains

Authority and Delegation
 Authority for the root domain is with the Internet

Corporation for Assigned Numbers and Names
(ICANN)

 ICANN delegates to accredited registrars (for gTLDs)
and countries for country code top level domains

© 2009 Universität Karlsruhe (TH), System Architecture Group 69

and countries for country code top level domains
(ccTLDs), e.g. DENIC1

 Authority can be delegated further
 Chain of delegation can be obtained by reading domain

name from right to left.

 Unit of delegation is a “zone”

1DENIC takes part in the ENUM project, e.g. one address for all

Domain Name Meaning
com Commercial bussiness
edu Universities (colleges) in USA

G t d t t (USA)

DNS Top-Level Domain

Examples

© 2009 Universität Karlsruhe (TH), System Architecture Group 70

gov Government departments(USA)
mil Military institutions
net Netprovider
org All other business
arpa Temporal ARPA-domain
int International organisations

Zip code of
Country(e.g. de)

Abbreviations of all countries

Hierarchy of Name Servers

 Resolution of the hierarchical
name space is done by a
hierarchy of name servers

 Each server is responsible
(authoritative) for a

© 2009 Universität Karlsruhe (TH), System Architecture Group 71

contiguous portion of the
DNS namespace, called a
zone

 Zone is a part of the subtree

 DNS server answers queries
about hosts in its zone

Primary/Secondary Name Server

 For each zone, there must be a primary name server
and a secondary name server
 The primary server (master server) maintains a zone file

which has information about the zone. Updates are made to
the primary server.

 The secondary server pulls data stored at primary server

© 2009 Universität Karlsruhe (TH), System Architecture Group 72

 The secondary server pulls data stored at primary server

Adding a host:
 When a new host (e.g. “gold.cs.virginia.edu”)

is added to a zone, the administrator of the cs-
department of the Virginia State University adds the
IP information of the host (IP address and name) to
its primary server

Domain Name Resolution

1. User program issues a
request for the IP address
of a hostname

2. Local resolver formulates a
DNS query to the name
server of the host

© 2009 Universität Karlsruhe (TH), System Architecture Group 73

3. Name server checks if it is
authorized to answer the
query.
a) If yes, it responds.

b) Otherwise, it will query
other name servers,
starting at the root tree

4. When the name server has
the answer it sends it to the
resolver.

Recursive and Iterative Queries

 There are two types of queries:
 Recursive queries

 Iterative (non-recursive) queries

 The type of query is determined by a bit in the DNS

© 2009 Universität Karlsruhe (TH), System Architecture Group 74

query

 Recursive query: When the name server of a host
cannot resolve a query, the server issues a query to
resolve the query

 Iterative queries: When the name server of a host
cannot resolve a query, it sends a referral to another
server to the resolver

“Recursive” Query
root server

Referral to edu name server

1st query: neon.cs.virginia.edu

2nd query: neon.cs.virginia.edu

Referral to virginia.edu name
server

 In a recursive query, the
resolver expects the response
from the name server

 If the server cannot supply the
answer, it will send the query
to the “closest known”
authoritative name server

© 2009 Universität Karlsruhe (TH), System Architecture Group 75

edu server

virginia.edu
 server

cs.virginia.edu
 server

Resolver

Name
server 3rd query:

neon.cs.virginia.edu

Referral to
cs.virginia.edu
name server

4th query:
neon.cs.virginia.edu

IP address of
neon.cs.virginia.edu

authoritative name server
(here: in the worst case, the
closest known server is the
root server)

 The root sever sends a referral
to the “edu” server. Querying
this server yields a referral to
the server of “virginia.edu”

 … and so on

Iterative Query

 In an iterative query,
the name server sends
a closest known
authoritative name
server a referral to the ve

r

to
edu name se

rve
r

uery:
 neon.cs

.vir
ginia.edu

© 2009 Universität Karlsruhe (TH), System Architecture Group 76

server a referral to the
root server.

 This involves more
work from the resolver

qu
er

y

re
fe

rra
l t

o
ro

ot
 s

er
v

Referra
l to

1
st que

2
nd query: neon.cs.virginia.edu

Referral to virginia.edu name

server

3rd query: neon.cs.virginia.edu

Referral to cs.virginia.edu

name server

Caching

 To reduce DNS traffic, name servers cache
information on previous <domain name, IP address>

 When entry for a query is cached, immediate reply

 Note: If an entry is sent from a cache the reply from

© 2009 Universität Karlsruhe (TH), System Architecture Group 77

 Note: If an entry is sent from a cache, the reply from
the server is marked as “unauthoritative”

 Also DNS negative queries are also cached
 Don’t have to repeat past mistakes, e.g. misspellings

Typical DNS Name Resolution

 Client does recursive request to local name server

 Local name server does iterative request to find
name

 Local name server has knowledge of root servers

S f l d

© 2009 Universität Karlsruhe (TH), System Architecture Group 78

 Steps for resolving www.ogi.edu
 Application calls gethostbyname()

 Resolver contacts local name server (S1)

 S1 queries root server (RS2) for (www.ogi.edu)

 RS2 returns NS record for ogi.edu (i.e. name server S3)

 S1 queries S3 for for www.ogi.edu

 S3 returns A record for www.ogi.de

DNS Caching

 Cached info periodically times out
 Soft state

 Lifetime (TTL) of date controlled by owner of data

 TTL passed with every record

© 2009 Universität Karlsruhe (TH), System Architecture Group 79

p y

 TTL affects DNS-based load balancing techniques

 Update/notify mechanisms under design by IETF
 TFC 2136

 http://www.ietf.org/html.charters/dnsind-charter.html

Replication and Caching in DNS

 Replication

 for every root server there are at least 2 replicas
 primary/backup principle

 backup servers periodically request updates from

Examples

© 2009 Universität Karlsruhe (TH), System Architecture Group 80

Further reading:
F. Halsall: “Data Communications, Computer Networks and Open System”,

Addison-Wesley 1992
D. Comer: “Computernetzwerke und Internets”, Prentice Hall 1997

backup servers periodically request updates from
their primary servers (zone transfer)

 Caching
 Each name server implements caching

DEC’ Global Name SpaceDEC’ Global Name Space

81© 2009 Universität Karlsruhe (TH), System Architecture Group

Study of your own

Global Name Service (GNS)

UK FR

AC

DI: 599 (EC)

DI: 574DI: 543

DI: 437

© 2009 Universität Karlsruhe (TH), System Architecture Group 82

QMWDI: 322

Peter.Smith

passwordmailboxes

Alpha GammaBeta

DEC’s Global Name Space Model*

Requirements:

 Large size, i.e. handle an arbitrary number of names

 Long life, i.e. many changes may occur to the name space in
the long run

Naming Entities

© 2009 Universität Karlsruhe (TH), System Architecture Group 83

 High availability, because otherwise with a broken name service
the system cannot work any longer

 Fault isolation, local failures don’t crash complete DS

 Tolerance of mistrust, since large scale service won’t have any
component which is trusted by all its clients

• Butler B. Lampson: “Designing a global name service”, 1985
another major paper you should have read

Client Level

  hierarchical names and their values with operations for
reading and updating them

 Client sees a structure like a Unix FS, i.e. a rooted tree with
unique directory identifiers

 Arcs of tree are called directory references i e a directory can

© 2009 Universität Karlsruhe (TH), System Architecture Group 84

 Arcs of tree are called directory references, i.e. a directory can
be named relative to its root by a pathname (full name)

ANSI

DEC

SRC DEMO

Demo has the pathname ANSI/DEC/DEMO

Nodes of the tree have 2 attributes:
a) Time stamp

b) Present/absent mark

Administrative Level

 Administrator controls the number of replicated name
server and controls the update of all replicas

 Each directory reference includes a list of all
replicated servers for the referenced directory

© 2009 Universität Karlsruhe (TH), System Architecture Group 85

DEC

alpha

DEMO
SRC

beta gamma delta
10 10 10 12

Last sweep time update helps
updating the other name servers

DEC’s GNS: Super Root
oxford

Naming Entities

Start point for
name resolution

for all names in NS1

© 2009 Universität Karlsruhe (TH), System Architecture Group 86

 Super root contains a table of all distributed roots, e.g. vu, oxford
and their local names n0, m0

 Name /home/steen/keys in NS1 is expanded to:

 n0://home/steen/keys
 This name is resolved into: /vu/home/steen/keys

AttributeAttribute--Based NamingBased Naming

87© 2009 Universität Karlsruhe (TH), System Architecture Group

Directory Service

Hierarchical Implementations: Lightweight
Directory Access Protocol (LDAP)

Decentralized Implementations
Mapping to DHT

Semantic Overlay Networks

Study of your own

LDAP is another popular DDS

 Richer and more general than DNS
 Has generalized attribute/value scheme
 Can search on attribute, not just name

 Simpler and more efficient than a full relational
database

 Not a global directory service, though namespace
is global
 Its predecessor, X.500, was meant to be
 But “local” LDAP services can point to each other

 Commonly used for personnel RR databases,
subscriber databases

DDS = Distributed Directory Service

Resource Description Framework (RDF)

 Resources are described as triples:
<subject, predicate, object>

 Example:
Ali d ib

© 2009 Universität Karlsruhe (TH), System Architecture Group 89

<person, name, Alice> describes a resource
“person” whose “name” is Alice

CCITT and ISO standard (1988):
Names

• List of tuples (attribute = value)
• Attributes

- country “c”

Directory Service: X 500

Examples

© 2009 Universität Karlsruhe (TH), System Architecture Group 90

y
- organization “o”
- organizational unit “ou”
- surname “sn”

...
- telephone number “telephone”

Example:
/c=de/o=uni-karlsruhe/ou=rz/sn=zoller/telephone=+49 721 608 405

Hierarchical Implementations: LDAP

© 2009 Universität Karlsruhe (TH), System Architecture Group 91

 Example of a lightweight directory access protocol LDAP
directory entry using LDAP naming conventions

 LDAP derived from X.500

Hierarchical Implementations: LDAP

© 2009 Universität Karlsruhe (TH), System Architecture Group 92

 Part of a directory information tree

Hierarchical Implementations: LDAP

© 2009 Universität Karlsruhe (TH), System Architecture Group 93

 (b) Two directory entries having Host_Name as RDN

Mapping to Distributed Hash Tables

© 2009 Universität Karlsruhe (TH), System Architecture Group 94

 (a) A general description of a resource

 (b) Its representation as an AVTree.

Mapping to Distributed Hash Tables

© 2009 Universität Karlsruhe (TH), System Architecture Group 95

 (a) The resource description of a query.

 (b) Its representation as an AVTree.

Semantic Overlay Networks

© 2009 Universität Karlsruhe (TH), System Architecture Group 96

 Maintaining a semantic overlay through gossiping

Directory Service: X.500

 A Directory Service supports lookup based on a set of
attribute values (yellow pages)

 Directory entries contain <attrib, value> pairs

 Set of entries forms Directory Information Base (DIB)

© 2009 Universität Karlsruhe (TH), System Architecture Group 97

 Naming attributes of an entry jointly identify an entry
uniquely.

 Canonical sequences of naming attributes form the
Directory Information Tree (DIT)
 Edges are labeled with <attrib, value> pairs

 Each name attribute is a so called RDN (relative
distinguished name)

The X.500 Directory Entries
Attribute Abbr. Value

Country C NL

Locality L Amsterdam

Organization O Vrije Universiteit

OrganizationalUnit OU Math. & Comp. Sc.

Examples

© 2009 Universität Karlsruhe (TH), System Architecture Group 98

 A simple example of a X.500 directory
entry using X.500 naming conventions.

OrganizationalUnit OU Math. & Comp. Sc.

CommonName CN Main server

Mail_Servers -- 130.37.24.6, 192.31.231,192.31.231.66

FTP_Server -- 130.37.21.11

WWW_Server -- 130.37.21.11

The X.500 DIB

Examples

© 2009 Universität Karlsruhe (TH), System Architecture Group 99

 Part of the directory information tree

The X.500 Name Space
Attribute Value Attribute Value

Country NL Country NL

Locality Amsterdam Locality Amsterdam

Organization Vrije Universiteit Organization Vrije Universiteit

OrganizationalUnit Math & Comp Sc OrganizationalUnit Math & Comp Sc

Examples

© 2009 Universität Karlsruhe (TH), System Architecture Group 100

 Two directory entries having Host_Name as RDN

OrganizationalUnit Math. & Comp. Sc. OrganizationalUnit Math. & Comp. Sc.

CommonName Main server CommonName Main server

Host_Name star Host_Name zephyr

Host_Address 192.31.231.42 Host_Address 192.31.231.66

X.500 Directory Information Tree

... France (country) Great Britain (country) Greece (country)...

BT Plc (organization) University of Gormenghast (organization)... ...

X.500 Service (root)

© 2009 Universität Karlsruhe (TH), System Architecture Group 101

Department of Computer Science (organizationalUnit)
Computing Service (organizationalUnit)

Engineering Department (organizationalUnit)

...

...

Departmental Staff (organizationalUnit)

Research Students (organizationalUnit)
ely (applicationProcess)

...

...

Alice Flintstone (person) Pat King (person) James Healey (person) Janet Papworth (person)...

X.500 Lookup

Name lookup

list(/C=NL/O=Vrije Universiteit/
OU=Math.&Comp.Sci./CN=Main server)

d

© 2009 Universität Karlsruhe (TH), System Architecture Group 102

returns corresponding names

star zephyr
Directory lookup

search &(C=NL)(O=Vrije Universiteit)
(OU=*)(CN=Main server)

returns all entries with matching attributes

