
GPU4FS: A Graphics
Processor-Accelerated File System

Master’s Thesis
submitted by

Peter Maucher
to the KIT Department of Informatics

Reviewer: Prof. Dr. Frank Bellosa
Second Reviewer: Jun.-Prof. Dr. Christian Wressnegger
Advisor: Lukas Werling, M.Sc.

Friday 10th December, 2021 – Saturday 6th August, 2022

KIT – The Research University in the Helmholtz Association www.kit.edu

I hereby declare that the work presented in this thesis is entirely my own and that I did
not use any source or auxiliary means other than these referenced. This thesis was carried
out in accordance with the Rules for Safeguarding Good Scientific Practice at Karlsruhe
Institute of Technology (KIT).

Karlsruhe, Saturday 6th August, 2022

Abstract

Modern file systems with fast storage media take up valuable CPU resources,

especially if used with Intel Optane in write-heavy applications. Optane is writ-

ten synchronously, and accessing CPU cores stall if Optanes relatively low write

bandwidth is saturated. To combat that issue, we propose GPU4FS, a novel GPU-

accelerated user-space file system mainly targeted at Intel Optane as the main

representative of high-performance non-volatile memory. GPU4FS relieves the CPU

from all file system management tasks, including the writes to the Optane DIMMs.

The CPU only queues requests to the file system into a shared command buffer.

With our prototype, we achieve similar bandwidth figures to CPU-side Optane

tasks using a fio benchmark and sequential writes to DAX-EXT4. During the

benchmark, the CPU tasks saturate four cores. Our GPU4FS prototype only uses a

measured 12 % of a single core, and offers a 33x reduction in CPU usage. We also

show that we offer twice or more performance improvement for a parallel, CPU-bound

blender render benchmark when running in parallel to GPU4FS, as compared to the

CPU-side file system tasks.

Based on our findings, we conclude that future research into file system accelerators

poses a worthwhile topic.

Kurzfassung
Moderne Dateisysteme benötigen vermehrt Rechenleistung, auch weil die Perfor-

mance der darunterliegenden Speichertechnologien gestiegen ist. Intel Optane zeigt

dabei in schreiblastigen Anwendungsfällen eine besonders hohe CPU-Auslastung.

Das Problem sind die synchronen Schreibzugriffe und die relativ geringe Schreib-

bandbreite von Intel Optane. Sobald diese Bandbreite erreicht ist, fangen die Kerne

an zu stallen. Als Lösung für dieses Problem schlagen wir GPU4FS vor, ein neu-

artiges GPU-beschleunigtes Dateisystem im Userspace. GPU4FS ist besonders für

Intel Optane als der wichtigste Typ von nichtvolatilem Speicher gedacht. GPU4FS

übernimmt alle Dateisystemverwaltungsaufgaben von der CPU, einschließlich der

Schreiboperationen auf die Optane-DIMMs. Die CPU muss ihre Anfragen nur noch

in einen geteilten Kommandopuffer einfügen.

Unser Prototyp erreicht ähnliche Bandbreiten wie bei CPU-seitigen Zugriffen

auf Optane durch fio und durch sequentielles schreiben auf DAX-EXT4. Dabei

lasten die CPU-seitigen Dateisystembenchmarks vier Kerne voll aus, wohingegen

unser Prototyp nur 12 % eines Kernes nutzt, und damit die benötigte CPU-Zeit

um den Faktor 33 senkt. Zusätzlich erreicht ein parallel zu unserem Prototypen

v

Abstract

laufender Blenderrenderbenchmark um mindestens einen Faktor 2 höhere Ergebnisse

im Vergleich zu den CPU-seitigen Dateisystemen.

Unsere Ergbnisse motivieren zukünftige Forschung an Dateisystembeschleunigern.

vi

Contents

Abstract v

Contents 1
Table of Contents . 1
List of Listings . 3
List of Figures . 5

1 Introduction 11

2 Background 13
2.1 Storage Devices . 13

2.1.1 Block Devices . 13
2.1.2 Byte-Addressable Storage . 14
2.1.3 Discussion . 15

2.2 File Systems . 15
2.2.1 General Structure . 16
2.2.2 Interfaces . 18
2.2.3 User Space vs Kernel Space . 19
2.2.4 Discussion . 21

2.3 GPUs . 21
2.3.1 Basic Structure . 21
2.3.2 Communication . 22
2.3.3 Programming Model . 22
2.3.4 Linux GPU Driver Stack . 23

3 Related Work 25
3.1 File Systems . 25

3.1.1 Kernel-Space File Systems . 25
3.1.2 NVM User Space File Systems . 26
3.1.3 Discussion . 27

3.2 GPU . 27
3.2.1 GPU File Systems . 28

3.3 File System Accelerators . 28
3.3.1 Substep Accelerators . 28
3.3.2 FSMAC . 28
3.3.3 Moneta-D . 28
3.3.4 Discussion . 29

1

Contents

4 The Design of GPU4FS 31
4.1 Two Minute Design Overview . 31
4.2 On-Disk Data Structures . 33

4.2.1 Blocks and Block Pointers . 33
4.2.2 Inode . 34
4.2.3 Directories . 36
4.2.4 Superblock . 36

4.3 Runtime . 37
4.3.1 User Space File System . 37
4.3.2 Command Buffer and Inter-Process Communication 38
4.3.3 Writing to Disk . 38
4.3.4 Reading from Disk . 39
4.3.5 Memory Allocation . 40
4.3.6 Locking and Synchronization . 41
4.3.7 Kernel Communication . 42
4.3.8 File System Caches . 42
4.3.9 Journaling and Consistency . 43

4.4 Discussion . 43

5 Implementation 45
5.1 GPU4FS on CPU . 45
5.2 GPU NVM Passthrough . 46
5.3 GPU Command Buffer Structure . 48

5.3.1 Command Buffer Layout . 48
5.3.2 The Metadata Command . 49
5.3.3 Parsing the Command Buffer . 50

5.4 Efficiently Writing NVM with the GPU 52
5.5 GPU File System . 53
5.6 Lessons Learned . 57

6 Evaluation 63
6.1 Test System . 63
6.2 Memcopy . 64
6.3 Memset . 66
6.4 File Write . 67

6.4.1 Bandwidth and Latency . 67
6.4.2 CPU Usage . 68

6.5 Discussion . 71

7 Future Work 75

8 Conclusion 77

Bibliography 79

2

Contents

Glossary 83

3

List of Listings

1 dispatch_independent(): Synchronize the command descriptor selection
in the workgroup . 51

2 acquire_new_block(): Single SIMD lane command descriptor acquisition 58
3 copy_helper(): helps with copying . 59
4 file_create(), part one: copy the inode 59
5 write_directory(), part one: Directory locking for updates 60
6 write_directory(), part two: Search free space in the directory 60
7 write_directory(), part three: Write the file name 61

5

List of Figures

2.1 Layout of a Linux Mesa3D open-source GPU driver [14]. 24

4.1 GPU4FS with caching and the trusted component. Requests are queued
into the command buffer and request data is stored in the caches. The
GPU parses the command, and fetches the data from the FS caches into
the VRAM cache. It then writes to NVM using the data in VRAM. When
loading, the data is fetched from NVM into VRAM, and then stored to the
FS caches. In case of a command that needs OS support, like mmap(), the
GPU also inserts the command into the trusted component’s command
buffer. The trusted component then issues system calls to the kernel, which
can execute management tasks with kernel privileges. The completion of
the syscall in the trusted component is then signaled back to the GPU,
which forwards the completion to the requesting process. 32

4.2 Bit usage in the tagged block pointer. 57 bits are used for the offset
and three are unused. The remaining four signal whether the pointer is
valid, indirectly pointing to more block pointers, and the size of the data
referenced by the pointer. 34

4.3 The GPU4FS inode. It contains the file size, all required time stamps,
user and group IDs, a 32 bit hardlink count, 16 bit mode flags, a pointer to
meta data, and the actual file pointers. Notably, two bytes with offset 62
and 63 are currently unused, as hardlink_count and mode only need six
bytes, and metadata should be aligned to ensure performant and consistent
NVM accesses. 35

4.4 Example content of a GPU4FS directory, containing two files. The second
file follows directly after the name of the first file, reclaiming the unneeded
space in the filename as far as the alignment allows. The filename is not
8 B-aligned, as the length l shifts the string by one byte. 37

4.5 The write path in GPU4FS. The CPU queues the command and the data
in its command buffer. The GPU copies it to VRAM, validates it, and
updates the NVM accordingly. After this process is finished, the GPU
signals the completion in the command buffer. 39

4.6 The private read path in GPU4FS. The CPU queues the command, which
the GPU parses and executes afterwards. The GPU loads the data from
NVM into its VRAM buffer, and writes it into a reserved space inside the
shared command buffer. 40

7

List of Figures

4.7 Atomic allocation of two block pointers (red). After the increase, the
new index equals five, and block pointers with index three and four are
allocated. The grey blocks were already allocated before, and the white
blocks can be used by a another allocation request. 41

5.1 GPU shared memory: The GPU has its virtual address space (virt AS),
which maps to VRAM and to GART. GART addresses are forwarded to
the IOMMU, which translates it to the CPU’s physical address space (phy
AS). Similarly, the CPU can translate virtual to physical addresses. If the
mappings overlap in CPU physical memory, the memory is shared. 47

5.2 An empty command descriptor. The payload between offset 16 and 112
depends on the specific command type. 49

5.3 The meta data command descriptor. It contains one boolean flag signaling
separated execution, and the number of SIMD lanes. 50

5.4 The memcopy command descriptor. It, too, contains the number of work
items, in addition to the value set in the metadata command descriptor.
This is used to test separated execution as described in Section 5.3.2.
Additionally, the copy_size represents the number of bytes to copy. . . . 53

5.5 The file writing command descriptor. In addition to an empty command
descriptor, several offsets into the command buffer and positions on drive
are transmitted to configure which data is copied from DRAM to NVM.
The file size and file name length control the amount of data to be copied.
num_SIMD_lanes is currently unused, but added as a preparation for a
future feature, as described in Section 5.5. 55

6.1 GPU write bandwidth to Intel Optane and DRAM, per number of SIMD
lanes, for different workgroup sizes. The Optane bandwidth closely follows
the DRAM bandwith up to the peak, where it breaks down quickly. DRAM
shows similar behavior for higher number of SIMD lanes. 65

6.2 GPU write time to Intel Optane and DRAM, per data size. Uses 320 SIMD
lanes with 32 work items per workgroups for maximum performance. The
crossover point between startup latency and write latency is at about 2 MB. 65

6.3 GPU memset bandwidth to Intel Optane and DRAM, per number of SIMD
lanes, for different workgroup sizes. In addition, copy performance to NVM
is shown. The main observations are that memset bandwidth is noisier,
that the benchmark crashes when using only few SIMD lanes, and that it
never reaches peak Optane performance. 66

6.4 GPU file write bandwidth to Intel Optane (x) and DRAM (+), per file
size and number of files. The bandwidth for one file is identical for Optane
and DRAM. This implies that for a single file, the GPU is the bottleneck,
not Optane. 68

6.5 GPU file write latency. Like in the memcopy case, the crossover between
startup and bandwidth is at around 2 MB written as 20 times 100 kB files.
The startup latency also dwarves the write time for multiple files. 69

8

List of Figures

6.6 Reported usage of CPU cores usage for memcopy, memset, and file write.
Additionally, a multiprocessing-optimized file write (GPU4FS-mT) is
shown. The usage is low, but file writing has significantly more over-
head than memset and memcopy. The peaks at beginning and end are
caused by setup and teardown. 70

6.7 Blender benchmark results with different parallel file system tasks running
on four cores. We show the reference results (ref), benchmark in parallel
to memcopy (cpy), with GPU4FS (GPU) and GPU4FS in its multi-file
version with more smaller threads (mT), and with fio and dd running in
parallel on the CPU. 71

9

1 Introduction

In recent years, new storage technologies were developed that promised large gains
in storage performance. In parallel, CPUs still gained performance, but slower than
storage, especially in single threaded and lowly threaded applications. As a consequence,
storage-related tasks slowly required more and more CPU resources. File systems are one
important case for CPU management of storage devices. For example, the CPU has to
walk the directory tree, read and write files, and has to manage the underlying device.
These compute resources cannot be used for application work.

One new storage technology is non-volatile memory like Intel Optane [33]. Optane
blurs the line between said storage media and main memory. Optane promises speeds
similar to that of DRAM, and some flavors sit directly on the memory bus instead of
being accessed via external busses like PCIe. This means that DDR4-Optane is accessed
with normal load and store commands, and not using DMA. Effectively, Optane promises
to be a new level in the memory hierarchy. At the same time, PCIe-accessed NVMe-SSDs
have also gained in performance.

On the one hand, Intel Optane promises fast, non-volatile storage, which makes them
an interesting candidate to build file systems on, especially for read-heavy applications.
On the other hand, writing to Intel Optane Memory from the CPU poses bandwidth
problems: A single Dual Inline Memory Module (DIMM) of Optane Memory can only
sustain up to around 2 GB s−1, far below the bandwidth of Dynamic Random Access
Memory (DRAM) [31]. This bandwidth can be achieved with one to two cores, which are
fully occupied with the synchronous writes. If more cores are writing to the same DIMM,
the involved cores are stalled and make little progress [38]. This means that the CPU
is waiting for Optane, but the operating system (OS) recognizes the cores as busy and
does not schedule different threads. As a consequence, a system featuring heavy writes to
Optane can be severely slowed down by parallel writes, even for processes which do not
want to use Optane memory.

As a solution, coprocessors promise to take over the file system management tasks from
the CPU. Coprocessors are usually well suited to complete tasks asynchronously and in
parallel. In a file system context, delayed asynchronous completions and out-of-process
handling are already quite common. File system coprocessors promise to free up CPU
resources and allow the OS to schedule out waiting processes until the coprocessor signals
completion. The CPU is freed to work on applications instead of the file system.
An important family of accelerators are GPUs: Starting with the invention of CUDA

and OpenCL, and later Vulkan [29], GPUs have become commodity high-performance
compute accelerators. Modern APIs offer easy access to this compute potential, and since
GPUs are sold by the millions every year, they are quite affordable. This makes GPUs
ideal candidates for experiments with coprocessor acceleration.

11

1 Introduction

In this thesis, we present GPU4FS, a novel GPU-based file system accelerator for
fast modern storage. We propose a full design for a modern file system which promises
to mitigate the write deficiency of Intel Optane. Additionally, GPU4FS is designed to
accomodate another level of file system caches in the GPU’s Video RAM (VRAM). With
our design, the CPU only inserts file system commands into a command buffer shared
with and executed by the GPU. This bypasses the CPU’s write bottleneck and frees up
resources commonly used for file system management tasks.
We implement a subset of our design to demonstrate its feasibility. In our evaluation,

we show that the GPU can closely match the CPU’s write performance in both sequential
writes and in actual file system tasks, all while reducing CPU usage drastically. Even
in the worst case we evaluated, five parallel file writes at maximum bandwidth only use
a reported 12 % of a single core. In a traditional CPU task, this would have saturated
all four cores we measured on. We verify our results by measuring the performance
degradation in a parallel benchmark. There, we found that the performance impact of
our GPU file system is rather negligible with only 8 %. The CPU file systems, however,
show slowdowns of a factor of two or greater.
This thesis is divided into multiple parts: In Chapter 2, we introduce core concepts

central to this thesis. In Chapter 3, we discuss prior work of relevance for this thesis. In
Chapter 4, we explain the design of a fully-featured GPU4FS implementation. We present
the actual implementation of the demonstrator evaluated for this thesis in Chapter 5.
We evaluate the demonstrator in Chapter 6. We use the results found in the previous
chapters to propose future work in Chapter 7 and conclude this thesis in Chapter 8.

12

2 Background

This section introduces the main components of the thesis. We introduce different storage
devices that our file system could run on, different flavors of file systems that serve as a
basis for our design, and GPU acceleration as a central part of GPU4FS.

2.1 Storage Devices

The memory of a computer is usually divided into two distinct types: Non-volatile
block-addressable storage and volatile, byte-addressable main memory, though modern
technology like Intel Optane, see Section 2.1.2, blurs the line between these types.

2.1.1 Block Devices

Block devices are random access devices with one key difference: Instead of being written
in terms of bytes, they are accessed in whole blocks. Common sizes of these blocks
are 512 B or 4 kB. Most block devices are also non-volatile, i.e., they do not lose their
information when the system is powered down.

The block structure necessitates that to read a single byte, the whole block needs to be
fetched from the storage device. Write amplification [8] is the resulting problem when
writing: If a single byte is changed, the whole block is fetched first, then modified and
then written back, even though most data did not change. Therefore, a few random
writes of a few bytes can trigger much larger block rewrites, which quickly eats up both
read and write bandwidth.

Solid State Drives

In recent years, flash-based Solid State Drives (SSDs) have progressively become both
more affordable and larger in capacity.

The flash technology offers higher sequential read and write speeds compared to earlier
Hard Disk Drives (HDDs), in the order of several gigabytes per second [19]. Additionally,
no mechanical movement is needed for an access, which means that SSDs can serve
hundreds of thousands random requests per second, far outperforming HDDs in this
metric.
A recent improvement is the usage of the Non-Volatile Memory Express (NVMe)

protocol, which is based on the Peripheral Component Interconnect Express (PCIe) bus
[19]. compared to earlier protocols, NVMe offers both higher speeds and better random
access performance. Additionally, NVMe is designed to cater to highly parallel applications
by offering multiple independent queues which can be filled concurrently by independent

13

2 Background

threads. NVMe SSDs have become the de-facto standard in high-performance storage
systems.

2.1.2 Byte-Addressable Storage

In a byte-addressable device, each byte can be individually addressed, read, and altered.
This avoids the problems of wasted read bandwidth and write amplification. The most
common types of byte-addressable devices are flavors of volatile main memory. It comes in
different flavors, like the Double Data Rate (DDR)standards for PCs and servers, currently
in version 4, or Graphics DDR (GDDR) for GPUs, currently in version 6. GDDR is
optimized for bandwidth, whereas DDR is optimized for latency [61].

Non-Volatile Memory A special type of main memory has been evolving in the last
few years: Non-Volatile Memory (NVM) that is compatible to some DDR controllers.
Arguably the only important representative is Intel’s Optane NVM memory. It offers
a line of DDR4 socket-compatible Dual Inline Memory Modules (DIMMs), which some
Intel Server CPUs can access the same way as DDR4 memory. Optane does not lose
its data on power loss, and also offers much higher read speed as compared to even the
fastest NVMe SSDs. It also serves even more individual random accesses than NVMe
SSDs, offering latencies in the order of 500 ns [37].

Optane has one major downside, though: Compared to sequential writes to an NVMe
SSD, writes to Optane are relatively slow, offering at most about 2 GB s−1 per DIMM
[31]. This low bandwidth poses a problem: Optane looks like main memory to the
CPU, so accesses use load and store commands instead of Direct Memory Access (DMA).
DMA enables the CPU to configure hardware units and do other work while these units
execute the memory accesses. Using load and store commands necessitates waiting for the
memory subsystem, which stops meaningful work in this hardware thread. NVM shares
one characteristic with DRAM that amplifies this issue: to a certain extent, the write
speed can be increased by using multiple threads. For Optane, more than one thread
might be needed to sustain NVM write speeds, but each thread will be significantly slowed
down by the accesses. Hence, a significant part of the CPU is blocked by waiting on the
memory subsystem.
As a solution, prior work tried to use the Intel I/OAT subsystem. It offers DMA

functionality, in particular to accelerate memcpy() and memset() calls using a hardware
implementation [6]. The I/OAT system was initially designed to accelerate 10 Gbit s−1

ethernet. Its design shows this in its operating system focussed access mode: it uses
physical instead of virtual main memory. It also shows unexpected behavior related to
NVM: While it can sustain multiple GB s−1 of write bandwidth into main memory, it
collapses to about 500 MB s−1 into NVM [38]. If accessed from the CPU via synchronous
load and store instructions, the modules can sustain much higher speeds. We assume
this behavior to either be caused when the Optane DIMMs are overwhelmed by parallel
accesses, or that the slowdown is triggered by some kind of write reordering issue. This
makes Intel I/OAT unusable for NVM applications.

14

2.2 File Systems

2.1.3 Discussion

Out of the three storage media presented here, GPU acceleration only makes sense for
two: Memory-mapped NVM and PCIe-accessed NVMe SSDs.
To justify both the occupation of the computational resources on the GPU, and the

overhead of a GPU, the access to the storage system has to be fast and easy to achieve.
For HDDs, CPUs are fast enough to handle even multiple devices. The protocol used by
HDDs is also difficult to implement, especially on a GPU. For SATA-accessed SSDs, the
same arguments hold: In this configuration, the limiting factor moves from the storage
medium to the interconnect: SSDs easily reach the bandwidth limits of SATA.

For NVMe SSDs, the protocol is a lot simpler, using just two register writes and some
memory-mapped buffers [19]. It can be considered to map those registers and the buffers
to the GPU, thus allowing direct writes bypassing the CPU. NVMe is also designed for
parallel writes, which caters to the parallel nature of a GPU.

In case of directly memory-mapped NVM storage, this is even more applicable. A read
or write is literally that, no further protocol needs to be implemented. It is also fast
enough to require considerable performance from the CPU.

2.2 File Systems

After identifying the types of storage media that GPU acceleration makes sense for, we
now discuss file system (FS) concepts that can be useful for a GPU file system. A file
system is a system that maps files and folders to flat address space. The FS is also
responsible for storing meta information like time stamps and owners. A file system is
usually specified in two parts:

• The interpretation of the bits and bytes on the storage medium: With this spec-
ification, one would be able to implement their own file system driver. For an
introduction, see Section 2.2.1.

• The driver: This is the software component that handles user requests and issues read
and write commands to the drive. For more information about drivers, especially
the interfaces to users, see Section 2.2.2.

Until around 2005, commercially used file systems have been built with hard drives
in mind [18]. Since then, flash technology has become both drastically more affordable
while gaining in capacity and speed. Starting in the early 2010s, additional technologies
like memristors and Intel Optane have appeared. These technologies prefer quite different
access patterns and can offer additional features: Optane DIMMs for example offer byte
addressiblity and atomic accesses, and both Optane and NVMe allow for both massively
parallel and random accesses. This necessitates a shift in file system design.
Even though history offers various types of file systems, we focus on file systems that

were developed with Unix in general and Linux in particular in mind.

15

2 Background

2.2.1 General Structure

This section introduces the features that common file systems implementations use on
drives, for example, as in EXT4 [58].

On-Disk Structures

Every major FS has on disk structures which can generally be sorted into three categories:
inodes, directories, and superblocks. Additionally, all these file systems use some kind of
block structure connected via pointers. Many file systems include additional features like
Journaling and Log Structuring.

Inode An inode contains the meta information for a file. This information includes the
owner, time stamps, permissions, and file type (i.e., regular file or directory), as well as
pointers to the actual data. The file name is not stored in the inode, but in the directory,
as one file can be referenced from multiple directories, possibly with different names [24].

Pointers, Extents, and Blocks File systems have originally been developed for block
devices. As the block needed to be written completely anyway, the file systems used these
blocks for other purposes, too. For example, files are rounded up to the size of blocks
when they are stored. To allow for efficient extension of files on the drive, files are usually
not stored contiguously. Instead, file contents are split into block-sized chunks, which
are then referenced by a pointer structure. One example for such a pointer structure is
indexed allocation: Blocks on the storage device are referenced by an index structure
similar to a page table. Each of these index pointers themselves are in blocks and are
referenced by the block ID [24].

For large files and small blocks, this adds up to large index structures. To remedy that
problem, more modern file systems like EXT4 [58] use a feature called extents to reference
a sequence of blocks by their start ID and a length, thus decreasing seeks and lookups.

Directories A directory in a file system can either contain more directories or files. All
the important information about these files, except the name, is stored either in the inode
or the file contents. A directory is usually implemented as a special file with the contents
being pairs of names and inodes. To manage these pairs efficiently, an index structure is
built. A linked-list based implementation is one simple example, but poses issues with
fast lookup in directories. Modern file systems like the B-tree File System (BTRFS) [13]
and EXT4 [58] have switched to balanced trees, which reduce lookup time while keeping
directory updates fast [24].

Superblock A file system needs to store a lot of meta information. Simple examples
include caching the number of blocks used for fast lookup, but also more interesting
information like the features configured for this instance of the FS. It also commonly
contains pointers to a journaling structure, see Section 2.2.1. A system that is mounting
the file system to use it also has the difficulty of not knowing the offsets of the root

16

2.2 File Systems

directory without a convention. All these issues are usually solved by adding a superblock
at a fixed, defined offset and size on the disk. When mounting the file system, the first
step is to parse that superblock and use the information to configure the file system driver
[24].

Journaling and Log Structuring

One important issue for file systems is crash consistency [20]. As the data is written to
disk both asynchronously and usually out of order, in case of a crash of either the driver
or the whole system, the invariants of the file system might be violated. Journals were
invented to solve this issue: In its core, a journal contains a list of all things the FS tries
or tried to do. It is only cleaned up after the FS is sure that the data was written to disk
completely. If there are open entries in the journal after a crash, the driver can parse the
journal and redo or undo changes as recorded in the journal to the file system until it
reestablished all the invariants. The journal itself is written block-wise, with the block
device guaranteeing that blocks are either written completely or not at all [24].
These journals have the disadvantage of duplicating all writes, once to the journal

and once to the actual FS. For that reason, usually only metadata like file creation or
file renaming is recorded, but not changes in the file’s content. This means that crash
consistency is still also a responsibility of the application running on top of the FS [24].
An attempt to remedy this issue while also increasing write performance is log struc-

turing [2]. After the data is committed to a journal, it needs to be written to disk, in
an order not controlled by the FS. This leads to relatively many seeks for the write
operations, reducing performance. To avoid this issue, all changes are written to new
blocks consecutively. This means file data is not necessarily consecutive anymore. The
new data is committed by updating index pointers, the old data is garbage collected
afterwards. The original intention was to accelerate writes to HDDs as log structuring
promised more sequential writes. Additionally, this reordering promises better crash
safety, as the pointers are only updated when the write operation is complete. On hard
drives with their seek deficiency, the gains are smaller than expected [3], as reads suffer
from the additional seeks. However, on media with high seek performance like (NVMe)
SSDs and Optane NVM, log-structured file systems show real advantages. The advantages
get even more pronounced on DRAM-like NVM systems which are not crash-consistent
on the block level, but rather on an 8 byte level. In this case, the crash consistency needs
to be guaranteed with exactly one pointer or index update [21].

Advanced Features

In addition to these common features, modern file systems like BTRFS [13] and ZFS [5]
offer advanced features, like RAID, checksumming and encryption.
The Redundant Array of Independent Disks (RAID) [1] offers a solution for storage

errors on disk. Such errors might occur due to disks dying or because of bits flipping
on the drive. To solve this issue, information is stored independently on several drives.
This can either be achieved by having multiple disks storing the same information, called

17

2 Background

RAID1, or storing parity information of the blocks on disk. There are two common
implementations which differ in the number of drives which can fail, RAID5 and RAID6.
The former can sustain one drive failure, the latter can sustain two.

Formerly, the RAID implementation was independent of the file system, and the file
system just used a virtual block device. BTRFS and ZFS incorporate the redundancy
information into the file system information, which allows for more fine-grained control of
the amount of redundancy. For example, metadata might be stored more often than file
contents depending on their importance or the file system might want to make sure that
a whole file is sitting on different drives redundantly.

Another feature that helps with data recovery are checksums. If a RAID implementation
detects a mismatch between different copies, it cannot necessarily decide which copy
contains the correct or faulty data. As a solution, modern file systems store additional
checksums. This way, the file system can detect mismatches more easily, as checksum
computation does not necessitate requests to the different drives. In case of errors, the
file system can choose a copy which matches one of the redundant checksums. Even if
the correct data cannot be recovered, the application can be notified that an erorr has
occured.
Another feature is encryption. Previously, encryption was implemented on the block

level [59], similar to RAID. This leads to issues with flexibility, as different applications
have different requirements for encryption. An example is the Android mobile operating
system, where certain device features like alarm clocks should run even without the system
being decrypted. This can be solved with a file system which supports partial encryption
for certain files and folders, like ZFS or Android File-Based Encryption (FBE) [56].

2.2.2 Interfaces

Multiple more or less common interfaces to file systems exist. Two important examples
are introduced here.

POSIX

The Portable Operating System Interface (POSIX) [25] is a specification for operating
systems. It includes function specifications for many major interfaces of operating systems,
including the access to the FS.

A POSIX-compliant file system driver has to implement a few common functions: There
is the pair of read() and write() to access the data, as well as open() and close() to
manage the connection between process and file system. There are also some functions to
manage the file system itself: creat() and unlink() as well as mkdir() and rmdir() are
used to create and remove files and folders, respectively. There are additional functions
to manage metadata like timestamps.

These file systems have the benefit of being widely available [18]. This means benchmarks
are widely available as well. On the other hand, the implementation of a complete and
mostly POSIX-compliant file system takes a lot of effort. POSIX requires more interfaces
and functions that need to be implemented, as compared to a special purpose file system.

18

2.2 File Systems

A special-purpose file system might lack the capability for hard and soft links, special
metadata like time stamps, or even complex folder hierarchies.

The Case of File Mapping The mmap() system call, specified by POSIX, is designed
to map files into the address space of the requesting process. In user space file systems,
the MAP_SHARED mode poses difficulties: It allows for one file to be mapped by multiple
processes simultaneously, and allows inter-process communication using shared memory
through this buffer. In a user space context, a process cannot modify the page tables of
another process, and thus cannot share the buffer without kernel support. The POSIX
specification assumes an operating system-managed file system buffer, which requires
kernel cooperation with the user space file system [25].

The feature also conflicts with some optimizations, especially caching: A private write
cache, possibly containing metadata, needs to be in sync with the changes done through
direct memory writes. The metadata also needs to be protected from writes by other
processes.

Therefore, some kind of external support is required to support mmap(), e.g., the kernel
or a centralized and privileged user space management process [18].

Key/Value-Store File Systems

In case of an application-specific file system, only a subset of these functions and function-
alities is needed. Often, they can be layered on top of existing file systems, themselves
residing in a file. But, these ideas can also be applied to a file system that directly resides
on hardware. One example is a key/value-store, which essentially offers the functions
put(key, value), value = get(key) and possibly erase(key) [18]. They need special
benchmarks, but can offer significantly more performance per implementational effort.

2.2.3 User Space vs Kernel Space

The file system driver needs to be located somewhere. Commonly, this is done in the
kernel, but user space file systems have been emerging.

Kernel Space File Systems

Originally, file systems have been implemented in the kernel. The OS is tasked with
abstraction, and the file system is a major example for abstractions. User space communi-
cates to the kernel via system calls, which mostly represent the high-level functionality of
file systems. For example, in Linux there is a system call called write which implements
the POSIX write() functionality [24]. Inside the kernel, the different file systems are
abstracted in a virtual file system (VFS). The VFS abstracts the different file system
drivers towards user space.

19

2 Background

Mixed User/Kernel Space File Systems

Implementing parts of drivers in user space has several advantages: The security of the
kernel can be guaranteed more easily, and the driver can be updated independently of
the kernel. Additionally, the interface can be used to implement new services like sshfs
[60], which mounts the file system of a different computer via the network.
In a microkernel system, implementing drivers in user space is the intuitive approach,

but user-space FS drivers are also used in monolithic kernels like Linux. The IPC interface
depends on the implementation, but is specified by the kernel or a related API. One
such example is the Unix File System in User Space (FUSE) [57] implementation, which
forwards system calls back into the user space file system driver implementation.
The main difference for this definition to a real user space file system is that a mixed

user/kernel space file system still heavily relies on kernel APIs, kernel support, or kernel-
related documentation and cannot easily be separated from the kernel they are developed
for.

User Space File Systems

In recent years, user space file systems like Aerie [18] have emerged. The main idea is to
allow user space direct read-only access to the storage medium. This means that most
common operations like open() and read() need no syscall or inter-process communication
(IPC).

The main difference between the papers is the way that they handle writing to the
medium. Some papers, for example Aerie [18], Strata [23], or SplitFS [32] remap certain
parts of the drive to be exclusive to a process. In this area, the process gains write
permissions. A different common attempt, used, among others, by EvFS [34] and the
paper “Towards High-Performance Application-Level Storage Management” [16], is to
enforce write separation with hardware support in the storage medium. A third attempt
is to offer the write data to a trusted party, like the kernel or an privileged user-space
process. This is the way that Strata or Aerie, respectively, handle the metadata updates.
To avoid communication bottlenecks, Aerie uses a command buffer for metadata changes.
The requesting process queues commands in the shared memory buffer, which are worked
by the trusted party.
Even though direct access to the medium is efficient, untrusted applications cannot

be allowed complete access to the medium. This would allow user space to overwrite
file system metadata. This can be used both to gain illegal access, or to destroy the
invariants of the file system. Therefore, a trusted component needs to handle metadata
changes, and, to some extent, write requests for file data. In classical file systems this
role is filled by the kernel, and this is a valid implementation for a user level file system,
too. However, the trusted component can also be implemented in a priviledged user space
process, similar to the design of a microkernel operating system. This is the main idea of
Aerie [18]. In both cases, kernel and user space, the trusted component has full read and
write access to the drive. Its task is to validate the requests from other processes, and
commit them to the drive.

20

2.3 GPUs

2.2.4 Discussion

As presented, most modern file systems offer similar sets of basic features. This holds true
for many parts of the implementation, too. Except for reading and writing, basic features
of a file system do not profit from parallelization greatly, however. Additionally, reading
and writing is handled using DMA outside the CPU, except in the NVM use case. GPUs
excel in massively parallel compute, so using them in parallel tasks with large datasets
increases their usage greatly. This suggests implementing a more fully-featured modern
file system, including encryption, raid and checksumming. Each of these features profits
from fast, parallel compute on the whole working set of the file system. The working set
of a file system includes all files read and written at any given point, so it is pretty large at
high FS usage. For this reason, the design of GPU4FS is fully prepared to accommodate
these advanced features.
GPU4FS aims to be generally usable, so a POSIX-compliant interface makes sense.

However, the additional code required for a fully POSIX-compliant file systems is too
great to demonstrate the feasibility. Therefore, our demonstrator only supports a minimal
interface, but the design is fully prepared for POSIX compliance.
GPU4FS selects to run in user space, and uses a privileged process to manage write

permissions. To manage the inter-process communication, we use a shared command
buffer that is also mapped to be GPU visible. With this design, we exploit the discussed
benefits of user-space file systems while allow for efficient communication with the GPU.

2.3 GPUs

Since their introduction in the 1980s, Graphics Processing Units (GPUs) have gained
more and more responsibilities. What started as a simple converter from a pixel buffer
to a VGA output learned to draw first 2D and then 3D shapes and has evolved into a
general purpose parallel computer. In parallel to its features, the graphics APIs also
evolved: At first, OpenGL and DirectX only supplied pixel data, but learned to support
graphics programs, so-called shaders, and general compute tasks [27].

2.3.1 Basic Structure

Modern GPUs are composed of multiple single instruction, multiple data (SIMD) processor
cores. Each of these cores commonly has between 8 and 64 SIMD lanes, which execute
the same instruction on different data. Each processor core also contains multiple process
counters to run multiple hardware threads on the same set of execution units. This way,
memory latency can be hidden by executing other threads in parallel [30].

Modern GPUs either access main CPU memory or have dedicated memory called video
random access memory (VRAM). VRAM is optimized for throughput, not latency, and
commonly accessed via wide memory busses. The memory is connected to the GPU cores
via complex memory management units (MMUs), which can coalesce and reorder memory
accesses. A dedicated memory GPU also has access to a part of main CPU memory,
usually via the PCIe bus. The memory controller can transparently map main memory

21

2 Background

into the GPU’s own address space. This is implemented using a special address range in
the GPU’s physical address space, which is translated to main memory. The Graphics
Address Remapping Table (GART) [11] technology was initially developed for Accelerated
Graphics Port (AGP) [4] GPUs. AGP is a predecessor of PCIe. GART is still used on
modern AMD GPUs. Notably, AMD uses the name Graphics Translation Table (GTT)
synonymously.

2.3.2 Communication

To communicate with the GPU, the CPU usually has three possible options: Memory-
mapped PCIe registers, shared memory, and, to some extent, interrupts. The register
file is mapped into memory, and accesses are transferred to the GPU. There are a fixed
number of those registers, which means that they can only be used for predetermined
purposes. These include power management, configuration, and control of the other
communication channels. Similar issues arise with interrupts: There are very few different
interrupts both CPU and GPU can raise, and they are mostly used to communicate
important events such as completions.
The main path of communication relies on shared-memory command buffers. These

buffers are commonly implemented as ring buffers, which are indexed using control
registers. The primary command buffer contains pointers into secondary buffers. These
secondary buffers contain all the commands the GPU should execute, like GPU process
execution or copying between main memory and VRAM [17].

2.3.3 Programming Model

GPUs are programmed using shaders, which are compiled on the CPU, usually at runtime.
The name shader comes from the initial purpose, programmed shadows in games. For
the programmer, each SIMD lane of a shader looks like its own thread, without much
interdependence to other threads. Only the existence of synchronization primitives inside
local working groups and some fast shared memory hint towards the existance of the
SIMD nature of GPUs. For this reason, the complex MMUs described above need to be
able to gather those independent requests from the SIMD lanes into fewer, wider requests
for VRAM to improve latency and throughput [30].
Traditionally, GPUs were programmed using APIs like OpenGL [50] and DirectX up

to version 11 [52], that hid most of the complexity of GPUs like command buffers and
transfers from the user. With the invention of compute-focussed APIs for graphics cards,
like CUDA [53] and OpenCL [49], GPUs became more versatile, and General Purpose
Computation on GPUs (GPGPU) has become common. The APIs offered direct access to
the GPU without having to go through the graphics pipeline. Additionally, they offered a
more low-level access, especially regarding buffer management. This meant that they also
offered some performance benefits.

In recent years, new APIs like Vulkan [29], DirectX 12 [52], and Metal [39] offer unified
APIs for both graphics and compute. While DirectX 12 and Metal are limited to specific
Microsoft and Apple products, respectively, Vulkan-capable hardware and drivers are

22

2.3 GPUs

commonly available for all major platforms and operating systems. For Linux, these
drivers are also open source for both Intel and AMD graphics cards, which allows for easy
hacking in the drivers.

2.3.4 Linux GPU Driver Stack

GPU4FS is built on top of a modified Linux GPU driver. To understand these modifica-
tions, we introduce the driver stack here.

The graphics drivers under Linux are generally divided into two parts, a kernel space and
a user space component. Each of these components is again separated into subcomponents.

Kernel Driver The kernel-space driver manages process separation and device setup,
including tasks like power management and device hibernation. It also provides user
space with a safe interface for further device configuration. Each GPU family has its
own driver family, for example AMDgpu [44] for modern AMD GPUs, nouveau [42] for
NVidia GPUs or i915 [45] for Intel integrated GPUs. Each of these drivers uses a set of
libraries that fulfill different tasks, like the Direct Rendering Manager (DRM), the Graphics
Execution Manager (GEM), or the Translation Table Maps (TTM) subsystem. GEM and
TTM are different implementations for graphics memory management.

The DRM subsystem offers a common interface to user space, offering the GPU to user
space as a special file with different ioctls. Different DRM drivers offer similar but not
identical feature sets, for example, to configure TTM vs. GEM-based GPUs.

On the user space side, another DRM library (libdrm) is needed that interfaces to the
DRM subsystem in the kernel. This library is mostly concerned with translating more
generic calls from the rest of the graphics stack to the exact DRM call needed by the
kernel.

The actual graphics drivers are layered on top of the libdrm, and are usually part of the
Mesa3D project. Many modern drivers, for example the driver we use in this thesis, are
implemented using the Gallium3D library. Gallium3D offers implementations for common
problems, which are used by different drivers. As shown in Figure 2.1, Gallium3D-based
drivers use multiple layers: One layer is needed to translate the calls from APIs like
OpenGL, Vulkan, and DirectX into a common format. The next level interprets this
common format for each type of GPU. Te last level communicates the results to the kernel
via the libdrm, and also talks to the window management system (WinSys). The kernel
then actually manages the devices like CPU and GPU.

23

2 Background

DRI-1.0-style
Device Driver

DRM

Application

API: OpenGL

CPU & registers & L1 & L2 & L3 & L4 & main memory
GPU & registers & L1 & L2 (& graphic memory)

GPU-specific
Device Driver

API State Tracker

OS WinSys

libGL

Mesa 3D

Kernel

libDRM

G
al
li
u
m
3D

-s
ty
le

libDRM

Figure 2.1: Layout of a Linux Mesa3D open-source GPU driver [14].

24

3 Related Work

In this chapter, we present prior work for file systems, GPGPU, and file system accelerators.

3.1 File Systems

The purpose of a file system is to map tree-like directory and file structures to flat address
spaces on drives. Traditionally, file systems have been implemented as part of the kernel,
but recently, user space file systems have emerged.

3.1.1 Kernel-Space File Systems

Implementing the file system in the kernel is the intuitive choice, as the kernel manages
the access to the devices. Therefore, many different kernel-space file systems with different
feature sets have been developed in the last decades.

EXT4

The EXTended file system in its fourth release, EXT4 [58], is a journaled file system
that finds wide-spread usage in many Linux distributions due to its stability. EXT4 also
serves as inspiration for the on-disk data structures of GPU4FS, especially in the inode.
Additionally, EXT4 supports the Linux Direct Access (DAX) mode, which disables caches
and writes directly to the Optane NVM.

ZFS

ZFS [5] is a modern data-centre oriented copy-on-write file system originally developed
by SUN for the Solaris platform. In addition to traditional file system tasks, it also offers
RAID functionality, volume management, and checksumming to avoid data loss, and
encryption for data security. The integration of these features into the file system allows
both for easier configuration and better performance. Another performance optimization
is an aggressive multi-level caching system integrated into the file system.

This collection of features makes ZFS an interesting target for accelerators, as each of
these features uses precious CPU time.

BTRFS

The B-Tree File system, BTRFS [13], is another attempt at a modern file system similar
to ZFS, with one of the most relevant differences being the license. On the implementation

25

3 Related Work

side, it uses trees for many purposes, not only for the directory entries, hence the name.
Using trees can improve lookup times in many file systems.

NOVA

NOVA [21] is a kernel-space file system specially designed for non-volatile memory on
the memory bus. NOVA is designed to be a fully featured POSIX-compliant file system,
including strong guarantees for consistency and good parallel performance. The main
design trait of NOVA is the log structuring approach: It incorporates the benefits in
random access performance by structuring the log as a simple linked list, and parallelizes
by offering one independent log per inode.

3.1.2 NVM User Space File Systems

There are a few file system papers that demonstrate the feasibility of user-space file
systems. All of them work under the premise that context switches, to both kernel and
other processes, should be avoided.

Aerie

In [18], the authors present Aerie, and demonstrate that user-space file systems are feasible.
Their design moves the trusted component that manages the FS into a separate user space
process instead of the kernel. The trusted component is augmented by a small kernel
module which allows the user space driver to change mappings in the requesting processes.
To allow for efficient file writes, Aerie remaps parts of the NVM as simultaneously readable
and writable. To avoid stale references from the command buffer into the file system, the
driver process hands out locks to parts of the file system. The requesting process then is
the only one allowed to access this memory. The authors deliberately chose this design as
they identified unique file accesses to be the norm.

Additionally, they show their design to be flexible enough that the same driver process
can support both a POSIX-compliant system as well as a key-value file system.

Strata

In [23], the authors demonstrate Strata, another attempt at user space file systems. Their
main idea is to build a layered system and use NVM as one of the storage layers, but also
support other layers like NVMe SSDs. Again, file writeback is solved by remapping the
respective area as read/write. Unlike Aerie, the trusted component moved to the kernel.
Strata focuses on supporting different storage media, which usually need more kernel
support than NVM.

EvFS

The main idea of EvFS as presented in [34] is to reimplement the whole file system stack,
including a lot of the caching, in user space. Instead of involving a trusted component, this

26

3.2 GPU

design splits the NVM in sectors using a proposed hardware feature they call namespaces.
Each process is offered full read/write access to its namespace, and the hardware enforces
separation between the processes.

SplitFS

Kadekodi et al. present SplitFS [32], which tries to avoid some of the costs of going
through the kernel by intercepting POSIX calls, and replacing them by directly mmap()-ing
the underlying device. The requests are then handled using CPU loads and stores in
userspace instead of using the underlying kernel file system.

Towards High-Performance Application-Level Storage Management

In [16], an even more flexible system is proposed: a unified hardware interface that allows
hardware to expose extents. These extents are similar to the NVM namespace feature
that EvFS uses. Each process can then build its own file system in the extent offered
by the base system with full read and write access. This allows each process to have a
file system catered to its unique characteristics, but does not offer a unified file system
anymore.

3.1.3 Discussion

The prior work presented here demonstrates the benefits of user-space file systems
compared to common kernel-based file systems. They achieve both better versatility and
higher speeds, and are better suited to modern storage media.
There are some common issues with these results, though: The benchmark for these

file systems are other, hard drive-optimized file systems. This means that they might also
show the benefits of modern, flexible hardware and optimized operating systems, not just
of the file system. Both the new and the old system suffer from the problem of slow write
speeds to NVM from CPU. The NVM papers, in particular Aerie [18], Strata [23], and
SplitFS [32], mostly use direct writes to limit CPU usage in the file system management.
The major exception is EvFS [34], which includes multiple layers of main memory caches
to improve latency.

Another issue that older papers face is that the performance characteristics that were
promised by the manufacturers and simulated for these early results [18] are not reached
by actual hardware [31]. For example, simulated hardware would not face the issues found
with Intel I/OAT and NVM [38]. This might explain some of the design decisions.

3.2 GPU

There are many APIs for GPU programming which might be usable to implement a
GPU file system. In [29], “Novel Methodologies for Predictable CPU-To-GPU Command
Offloading”, the authors show that the Vulkan graphics API is highly flexible and well

27

3 Related Work

suited for GPGPU, even when the task is latency-bound, or when the GPU is only
executing on small data sets. Vulkan can therefore be used to implement GPU4FS.

3.2.1 GPU File Systems

In the literature, GPU file systems usually try to expose the CPU’s file system to the
GPU or similar accelerators. With that, graphics programs can access the file system,
which can ease software development. Some examples are [36] or [15].

Both of these papers put their emphasis on buffer management between the host and
the client memory, especially on data transfers. These buffers can then be modified from
accelerator-side functions.
As presented above, there is literature on the topic of bringing file systems to the

GPU. GPU4FS implements the inverse idea of bringing GPU acceleration into a CPU file
system, which is a novel concept.

3.3 File System Accelerators

Some research has gone into accelerating file system tasks using special hardware.

3.3.1 Substep Accelerators

There are some papers that put some steps in the file system pipeline into accelerators.
[26] for example uses an Field Programmable Gate Array (FPGA) accelerator for file
system encryption tasks.

3.3.2 FSMAC

In [10], the authors present the File System Metadata ACcelerator. It uses NVM as the
accelerator for normal disks. It splits the file system contents: metadata goes to NVM,
while file contents are stored on the disks. This work blurs the line between a tiered
file system like Strata and an accelerator. We name FSMAC here as it is implemented
entirely in kernel space.

3.3.3 Moneta-D

The Moneta-D accelerator as presented in [9] moves security checks into hardware: Each
process gets access to a certain read queue on the non-volatile device. The kernel only
programs the access checks, and each process can read and write directly to its extent.
The kernel still handles file system metadata, but reading and writing file data is done
completely in user space, with the access checks done in hardware.
To achieve this, they construct an FPGA that offers userspace an easy interface for

read and write. On file open(), the kernel programs the FPGA so it offers direct access
to the file for a process, and the process then can communicate directly with the hardware
to read and write. The implementation still uses a normal file system, only lifting the
task of access checks to external hardware.

28

3.3 File System Accelerators

3.3.4 Discussion

A common pattern is that prior work tries to move individual tasks to the accelerator,
not the file system as a whole. The benefits of lifting most if not all management tasks
from the CPU are not explored.

29

4 The Design of GPU4FS

Current file systems for Optane show high CPU usage due to the synchronous writes to
the medium, which stall the CPU cores. To solve this problem, we aim to offload as much
of the file system as possible a GPU.

To customize our file system to the requirements of both the Optane memory and the
GPU, we develop a new file system, GPU4FS, instead of adapting an existing one. This
file system consists of both an on-disk specification and a driver on both CPU and GPU.
This chapter details a complete implementation, including all features. In Chapter 5,

we shows what was actually implemented and evaluated for this thesis.

4.1 Two Minute Design Overview

GPU4FS is a GPU-accelerated 64 bit user space file system. Each of these qualifiers
shapes the full-scale design, which can be seen in Figure 4.1.

GPU Acceleration A GPU cannot work on its own, but needs to be configured by the
CPU. As discussed in Section 2.3, the GPU management should be implemented by a
process running in user space. As described in the next paragraph, this process assumes
another responsibility.

User Space File System The goal for GPU4FS is to reduce CPU time. Going to the
kernel by executing syscalls takes up resources that should be spent in the application. In
a user-space file system, depending on the read/write path chosen, after the initial setup
no further kernel interaction is necessary. In addition, communication to the GPU does
not use the normal system call interface, and GPU configuration is traditionally easier
from user space than from kernel space. Thus, we decided to implement a user space file
system.

64 Bit File System To be compatible with modern systems and be usable into the
future, while also being easily implementable, all offsets and sizes and nearly all counters
are 64 bit in size. The one exception are the number of hardlinks per file, which is 32 bit
wide1. Intel Optane is also 8 B-crash consistent and much more performant if accesses are
8 B-aligned, so nearly all data structures are stored that way. The one exception works on
strings and 1 B counters. Therefore, the accesses to NVM are made in an aligned fashion,
and are reorganized in registers on the executing device.

14.2 billion subdirectories ought to be enough for everyone. . .

31

4 The Design of GPU4FS

NVM

Processes

Kernel

Trusted
Component

fil
l /

flu
sh

GPU

VRAM

read /
write

open
()

mmap()

cmd

FS Caches

read /
write

com
pleti

on

mmap() mmap()

manage

Figure 4.1: GPU4FS with caching and the trusted component. Requests are queued into
the command buffer and request data is stored in the caches. The GPU parses
the command, and fetches the data from the FS caches into the VRAM cache.
It then writes to NVM using the data in VRAM. When loading, the data is
fetched from NVM into VRAM, and then stored to the FS caches.
In case of a command that needs OS support, like mmap(), the GPU also
inserts the command into the trusted component’s command buffer. The
trusted component then issues system calls to the kernel, which can execute
management tasks with kernel privileges. The completion of the syscall in
the trusted component is then signaled back to the GPU, which forwards the
completion to the requesting process.

GPU Communication The communication between CPU and GPU is done via shared
memory. The CPU maps a buffer to be GPU-accessible, both in read and write. Inside
this buffer, the CPU sets up data structures, which are in turn parsed by the GPU.
Similar to the way graphics drivers are working, a set of command ring buffers contain the
requests of a certain process to the GPU. These commands reference data which is also
stored inside that memory region. After the GPU executed all these buffers, it signals
completion by setting a flag inside the shared memory region. The other alternative,
interrupts signaling completion, would have to be handled by the kernel, which we try to
avoid.

File System Connection A process wishing to use a GPU4FS-formatted partition needs
to establish communications to the GPU. For this reason, it signals the CPU-side GPU
management process that it wants to use the file system. A shared memory region is
created by the management process and mapped to the GPU. The requesting process
also maps the shared memory. From this moment on, the requester can communicate
with the GPU directly. No further interaction from either the kernel or the management
process is needed until either cleanup is required or a shared file mapping is used.

Caching One important performance optimization is the use of file system caches. To
allow the runtime sharing of caches for a shared file mapping, the file system needs to be

32

4.2 On-Disk Data Structures

able to map pages inside of another process at runtime. To avoid all unneeded system calls
and to guarantee consistency which is tracked on the GPU, the request gets passed to the
GPU as a normal command, but the GPU forwards it to the management process. In turn,
the management process calls into the kernel and requests the remapping. For this purpose,
the management process is trusted by the kernel to execute valid remapping requests.
While the kernel communication is ongoing, the GPU already loads the information from
disk to VRAM so the caches can be filled directly after the mapping is completed.

4.2 On-Disk Data Structures

GPU4FS is an inode-based filesystem, with its data stored in aligned blocks. Directories
are special files whose data is interpreted by the file system driver. Special information
like the root directory and allocator metadata is collected in the superblock.

4.2.1 Blocks and Block Pointers

The pointer size is a major consideration for every file system. EXT4 [58] has been
extended to support larger pointers in the past, and other file systems, e.g., BTRFS [13]
and NOVA [21], have been developed for 64 bit pointers directly. In the NOVA paper,
the authors also argue that this size is well-suited to Intel Optane memory given Optanes
crash consistency and atomicity guarantees. We decide to also implement a file system
using 64 bit pointers since it fits the target storage medium well.

Another configuration point is the internal block size of GPU4FS. Other than common
block-addressable storage media, Optane DIMMs are byte-addressable. Common file
systems like EXT4 [58] are built with the storage medium’s block size in mind, but for
Optane NVM, such sizes are less obvious. Luckily, the fact that Optane DIMMs behave
like normal DRAM comes to help here:
On x86-64 systems, the MMU organizes DRAM into 4 kB, 2 MB and 1 GB pages.

DRAM and Optane both can only be mapped in page granularity. To enforce process
and visibility separation, the blocks a file consists of have page size and are aligned to
page boundaries. Therefore, the drive is split into aligned 1 GB blocks, each of them can
be further subdivided into 2 MB and then 4 kB blocks, recursively.

An inode, see Section 4.2.2, does not need a complete 4 kB page, so the recursive block
splitting idea is extended. Depending on the build configuration, the size of an inode is
either 128 B or 256 B. The smallest page size, 4 kB, is an integer multiple of both 128 B
and 256 B.
This leaves us with four possible block sizes, one for inodes and three for page sizes.

By design, each block on drive is aligned to at least 128 B. Therefore, an offset into the
disk that needs to address a block has its 7 least significant bits (LSB) not set, which can
be used for tagging. As can be seen in Figure 4.2, of these 7 bits, 4 are currently used:

• 2 bits = 4 possible values tag the size of the block pointed to,

• 1 bit flags whether the block pointer is valid,

33

4 The Design of GPU4FS

63 7 6 4 3

000 valid indirect tagoffset

2 1 0

Figure 4.2: Bit usage in the tagged block pointer. 57 bits are used for the offset and three
are unused. The remaining four signal whether the pointer is valid, indirectly
pointing to more block pointers, and the size of the data referenced by the
pointer.

• and 1 bit flags whether the offset pointed to is indirect.

An indirect block does not point to data directly, but instead points to another block
which contains block pointers. This feature is recursive, so that infinitly large files could
be accessed in theory. In practice, both file and drive size are limited to 264B.

4.2.2 Inode

The GPU4FS inode, as seen in Figure 4.3, is modeled with the POSIX [25] requirements
for file systems in mind. Aerie [18] shows that a generally usable, POSIX-compliant file
system in user space is possible, and GPU4FS aims to be generally usable. Therefore, we
incorporate the POSIX requirements directly into the design.
We borrow all necessary flags from a preeexisting POSIX-compliant file system, in

particular EXT4 [58]. There are some notable differences to EXT4 though, which are
explained here. A major one is that GPU4FS has been designed from the ground up
to be 64-bit, so all fields are aligned and grouped. EXT4 has been extended multiple
times, and different parts of the same number are spread all over the inode. Another
major difference is the inode number: It is simply the physical offset of the inode on disk,
without any complicated translation. In EXT4, the file system preallocates space for
inodes on different parts of the disc, and then assignes numbers to each inode in each of
these areas. This makes additional lookups necessary.

Time For future-proofing reasons, GPU4FS uses nanosecond-precision timestamps.
Given the general alignment rules that we established, each time stamp should be stored
in a 64 bit number. Additionally, the year 2038 problem [7] should be avoided as far as
possible. This problem exists as POSIX [25] initially specified the time to be presented
in a signed 32 bit number. This number represents the time in seconds since the first of
January, 1970, and overflows 68 years and a few days after that day.

In a GPU4FS timestamp, the nanoseconds are stored in the least significant 30 bits,
while the seconds since epoch are stored unsigned in the most significant 34 bits. This
means that 234s or about 544 years can be stored in one time stamp. GPU4FS therefore
has a year 2514 problem2. Larger time stamps can be enabled for future GPU4FS users
using the built-in extension feature, that we will describe in the following paragraph.

2more precisely: a 30th of May 2514, 01:53:04 am UTC problem

34

4.2 On-Disk Data Structures

file_size

access_time

GID

hardlink_count mode

metadata

pointers

UID

765430

0

8

48

40

56

64

72

128

change_time
modification_time
creation_time
deletion_time

Figure 4.3: The GPU4FS inode. It contains the file size, all required time stamps, user
and group IDs, a 32 bit hardlink count, 16 bit mode flags, a pointer to meta
data, and the actual file pointers. Notably, two bytes with offset 62 and
63 are currently unused, as hardlink_count and mode only need six bytes,
and metadata should be aligned to ensure performant and consistent NVM
accesses.

35

4 The Design of GPU4FS

Extensibility As evidenced by the repeated extension of EXT4 [58] and the resulting
spread of bit patterns over the inode, extensibility is important. For that purpose,
the GPU4FS inode offers space for one, possibly indirect, block pointer. This bears
some similarity to the different data streams in the NTFS file system, with each stream
containing independent data [51]. The storage pointed to can be used for existing meta
information like access control lists (ACLs) or SELinux tags. The extra space can also be
used for more uncommon features, like storing which application should open the file.

Due to alignment, there are also two free bytes which can be used for later extensions
if the space is sufficient. These two bytes are the result of packing the access permissions
and the file type into 16 bits, which together with the 32 bit inode count only fills 48 of
64 bits. This issue is illustrated in Figure 4.3.

4.2.3 Directories

Directories in GPU4FS are implemented as a file, with a special tag in the inode.
The directory entries are stored as a linked list. This is similar to early file system
implementations [24].
In our implementation, each directory entry has four fields: the block pointer of

the inode, the offset into the directories’ file of the next directory entry, the length of
the name and the name string itself. As discussed before, we model GPU4FS to be
POSIX-compliant. In POSIX, a file name length is limited to 255 characters. This
length can be stored in one byte. Therefore, the length of the string is stored the next
byte at offset 16, and the filename starts directly afterwards at offset 17 of the directory
entry. To access the NVM performantly, the length and the string are loaded and stored
together, and only separated in the CPUs’ or GPUs’ registers. In Figure 4.4, we show an
example for a directory containing two files, I_like_trains.mp4 and Whooosh.mp4. As
an optimization, unneeded elements of the name can be overwritten by another entry,
as long as the 8 B-alignment is guaranteed. To avoid having to walk the linked list for
lookups and insertions, it is desirable to implement a tree structure, similar to what
BTRFS [13] uses, in a later iteration.

4.2.4 Superblock

To manage the main file system, a simple superblock is used. Its main task is to persist the
allocation metadata, see Section 4.3.5, between mount operations. Storing the allocation
data in the superblock is also found in other file systems like NOVA [21].
The superblock also references the root inode, and contains fields to signal which

features this instance of the file system uses. Examples for such features include the inode
size or the usage of extended attributes, like larger time stamps. Again, GPU4FS borrows
from prior file systems: EXT4 [58] uses the superblock in a similar fashion, i.e., to signal
which features are active for this instance of file system.

36

4.3 Runtime

l=11 o

4

W h

pm.

o o s h

l=17

76543

l

i

0

0

8

16

24

32

48

40

46

56

1 2

I _

arT

p 4

i

n

k

s

e

.

_

m

ptr_to_inode

next_file_offset=40

ptr_to_inode

next_file_offset=0

Figure 4.4: Example content of a GPU4FS directory, containing two files. The second file
follows directly after the name of the first file, reclaiming the unneeded space
in the filename as far as the alignment allows. The filename is not 8 B-aligned,
as the length l shifts the string by one byte.

4.3 Runtime

Most of the features of the file system on disk are borrowed from prior file systems. Most
novel features are found in the runtime management of the file system, especially how
communication is handled from processes to GPU and back. Given that the latency
between operation queuing and completion can be quite long and involved, some thought
is given to crash consistency, particularly at runtime.

4.3.1 User Space File System

The goal of GPU4FS is to free the CPU as much as possible. Mainly, this is achieved
by moving the file system itself to the GPU, but other optimizations are used, too. An
important one is the decision to implement a user space file system, as guided by prior
research: Aerie [18] demonstrates a POSIX-compliant file system in user space, which
is generally usable and only needs minor kernel support. Instead, a user space process
manages the storage medium. In EvFS [34], Yoshimura, Chiba, and Horii additionally
show that extended file system caches in user space are possible and offer performance
improvements. Strata [23] on the other hand moves part of the management into the
kernel.
To decide on the location of the trusted component that manages the file system, we

look onto the other requirement: managing the GPU. In Linux, the GPU configuration
are commonly done in a user space process. This process can also be used to run the
file system management, as presented by Volos et al. in Aerie [18]. Therefore, our setup
combines these two functionalities, Aerie-style user-space file system management, and
GPU management, into one single GPU4FS process.

37

4 The Design of GPU4FS

4.3.2 Command Buffer and Inter-Process Communication

With the layout of a GPU and the way that GPU4FS is set up, the only feasible way
for inter-process and inter-device communication is shared memory. GPU drivers use
ring buffers as command buffers, with a insertion and a completion pointer. Each entry
of this primary ring buffers contains both a command and possibly a reference to more
data [17]. The GPU4FS buffer is setup in a similar way, but also contains individual
completions for each entry as the operations can vary massively in both time and urgency.
Also, if commands are handled in an out of order fashion, the requesting process might
be able to continue with some work out of order, too. The exact layout of the GPU4FS
command buffer as implemented in the demonstrator can be found in Section 5.5. During
the implementation we found the exact contents of the commands to change with the
implementation, but the basic idea stayed the same.

The main goal of GPU4FS is to reduce CPU time as much as possible. Therefore, the
required CPU effort for command buffer prepation should be minimized. For this reason,
the commands are quite high-level and as much work as possible is pushed to the GPU.
For example, instead of letting the calling process work out the inode of a file, the path is
pushed to GPU directly. This also has a latency benefit, because the GPU can directly
read from storage and follow the directory structure. The CPU would have to request
each directory from the GPU individually.
For GPU4FS, we expect to use around one GPU command per POSIX call. The

requesting process can read() and write() files from and to the file system cache, create
and remove files and folders and so on. Since we are not limited to the POSIX specification,
some optimization is possible: For example, a command that creates a file with a given
content can additionally be supported. If the process opens a file on the GPU4FS drive
for the first time, however, a connection to the GPU4FS management process and to
the GPU needs to be established. In this case, we expect to use more than one GPU
command in addition to the CPU work.

4.3.3 Writing to Disk

In a file system, two types of data can be written: Metadata like folders, file block pointers
and file names, and actual opaque content in files. GPU4FS does not interpret the content
and returns it as written, metadata, however, is processed by the file system and will not
be interpreted by the users. Also, metadata is usually small, while file content data can
be quite large. Therefore, the paths for a metadata update and a content write differ
slightly, as can be seen in Figure 4.5.

1. The process queues a write request. The request contains all necessary information,
including the open file descriptor or the path depending on the interface used. It
also contains a pointer to a buffer inside the shared memory region. This buffer
contains the actual information to be written.

In case of a metadata update, no file content data is needed.

38

4.3 Runtime

Processes

write()
copy

GPU

VRAM

update

validate

completion

cmd

NVM

Figure 4.5: The write path in GPU4FS. The CPU queues the command and the data in
its command buffer. The GPU copies it to VRAM, validates it, and updates
the NVM accordingly. After this process is finished, the GPU signals the
completion in the command buffer.

2. The GPU reads the request, copies it to VRAM and verifies it there. The copy
operation is needed as otherwise a malicious process could modify data that has
been marked sane before.

3. The GPU handles the request. It loads the file system data either from NVM
or cached data from VRAM, allocates pages as needed and updates inodes and
directories. It also adds the operations to the journal.

4. When the GPU finishes the command, it sets the completion flag in the command
buffer. The process now knows that all data is successfully written to disk.

4.3.4 Reading from Disk

In other NVM file systems like Aerie [18] or SplitFS [32], the CPU reads directly from
disk. Indeed, prior work [31] shows that the read performance of Intel Optane NVM
memory is a lot better than NVMe SSDs. It is still lacking compared to DRAM, however.
For this reason, caching data in DRAM can be a performance optimization if data is read
multiple times.

In GPU4FS, we use the GPU to load data from storage, with the CPU only queuing a
read command. The GPU can fetch data to VRAM and then forward it to the DRAM
space of the requesting process. This can either be done directly into the shared memory
buffer, or into shared file system caches as described in Section 4.3.8. If the data is read
back privately to the shared memory buffer of the process, no mapping operation involving
the kernel needs to started. For private mappings, this setup therefore is beneficial as
compared to shared file system caches. This process can be seen in Figure 4.6.

39

4 The Design of GPU4FS

Processes

read()

write

GPU

VRAM

read

reque
st

cmd

NVM

Figure 4.6: The private read path in GPU4FS. The CPU queues the command, which the
GPU parses and executes afterwards. The GPU loads the data from NVM
into its VRAM buffer, and writes it into a reserved space inside the shared
command buffer.

With this design, the GPU has a central position in which it can synchronize, order
and arbitrate read and write requests, even before data is written to disk. With this,
VRAM can also act as a file system cache: the GPU can serve read requests from data it
has previously loaded from NVM or that has been written by a process, without going to
NVM.

4.3.5 Memory Allocation

When new data, like an inode or a file, is written, blocks need to be individually assigned
to store that data in. To avoid overwriting data, a centralized block memory allocator for
the storage medium needs to be used. Every file system has to solve this problem using
some kind of block allocator [24]. In case of GPU4FS, this memory allocator needs to
run on the GPU, which is an inherently parallel device.

Memory Allocation is an inherently serialized task, however: each request accesses the
same large pool and each block can only be allocated once. Luckily, with the recursive
block splitting strategy outlined in Section 4.2.1, as soon as a block is split up the allocator
offers multiple pages that can be handed out without much serialization. The arbitration
can be implemented easily and scalably using an atomic index. Serialization using locks
is only needed when the preallocated pages run out. In this case, one larger page needs
to be split into several smaller ones. To avoid fragmentation, as few pages as possible
should be split.

Parallel Allocation To manage the simple case without overflows, only the number of
elements (size), the atomic index, and a pointer to the list of block pointers (data)

40

4.3 Runtime

atomic_index=5

pointer_to_list

Figure 4.7: Atomic allocation of two block pointers (red). After the increase, the new
index equals five, and block pointers with index three and four are allocated.
The grey blocks were already allocated before, and the white blocks can be
used by a another allocation request.

is needed, as illustrated in Figure 4.7. To add further lists, we need a lock for the
serialization, and a pointer to the next such list. Sadly, we cannot clean up the memory
when we allocate the new list as other processes might still be using the data. This
means that as long as other processes are running, we can only allocate more memory
to put these data structures in, but we can never free them. Therefore, some kind of
stop-the-world garbage collector [12] is needed.

Garbage Collection To offer memory to the allocator, and implement the garbage
collection, two equally sized, large buffers are used, the allocator and the cleanup buffer.
The first offers memory which is allocated with the same parallel atomic allocation strategy.
Newly created lists are written into this memory and referenced using pointers from the
allocator data structure. When the allocator buffer inevitebly overflows, a cancellation is
signaled to each process. At this point, allocating processes might still hold some pages
but have not finished their requests. The block pointers to these pages are written back
into the cleanup buffer. The number of allocated pages in flight is unknown, but the size
of the allocation buffer is an upper limit. Therefore, a cleanup buffer with at least the
size of the allocation buffer is definitely sufficient.

All processes signal completion of their writeback operation, and the last process to do
so with an atomic decrease to zero is selected to reconstruct the allocator: Block pointers
are type-tagged, so they can be copied from the cleanup buffer into new allocation lists
in the allocation buffers. The process then creates the new allocation list headers, and
finally resets the indices of both the allocation and the cleanup buffer.

4.3.6 Locking and Synchronization

Previous user space file systems took an easy approach into file and folder synchronization
[18], [23]: A process wanting to operate on them got a unique lock, and these locks
serialized the access to the file. In a POSIX environment, this is uncommon: Files can be
opened and modified by multiple processes, with the kernel implementing synchronization.

In GPU4FS, the ordering is implemented on the GPU: Each process can put operations
into its own command buffer in parallel and independently of other processes. When the

41

4 The Design of GPU4FS

GPU parses these operations, it will order them using internal buffers and commit them
to the drive. With this serialization, several behaviors can be considered, depending on
implementation and user space requests: This means for example that with two processes
both queueing the creation of file foo in folder bar both might succeed and return the
same inode, or one of them might succeed and the other return an error. This also means
that the GPU will arbitrate two write calls using the same file descriptor and decide on
an order.

4.3.7 Kernel Communication

For a user space file system, kernel interaction is usually neither needed nor wanted. It is
still sometimes necessary, for example at connection startup and shutdown, but crucially
also at runtime when using caching, see below, and when modifying buffers. The latter
can be needed if a process wishes to extend its shared command buffer size for better
communicaton. In all cases, the GPU needs to be notified of such changes, so using
the preexisting command buffer structure makes sense. This only solves the problem of
getting the mapping information to the GPU, though.
To communicate to the kernel, the mapping information takes two more steps: The

GPU is managed and programmed by a user space process, which can get the information
by using a command buffer, and use system calls to talk to the kernel. This command
buffer is special in that it is filled by the GPU and parsed by the managed process, and
the management process is also responsible for flagging the completion.
The other issue is one of priviledge: The management process is asking the kernel to

remap pages in a different process, something that should not be possible without further
communication. The management process therefore needs special permission to enable
this behaviour. Prior work, Aerie as described in Section 3.1.2, used a special Linux
kernel module for this purpose.
In Figure 4.1, we present the whole process for an mmap() call.

4.3.8 File System Caches

Why Caches are Desirable The POSIX mmap() function allows multiple processes to
map the same file region and work on them in a shared memory fashion. In a normal file
system, this is achieved by mapping the file system caches into the processes so that they
can directly access that memory. In a normal file system for block storage, these caches
are necessary to mediate between the byte-addressable data written from processes, and
the blocks in which storage need to be accessed.

File system caches can also increase performance. Even though reading from Optane is
much faster than writing, DRAM is still faster [31]. If the same memory is read multiple
times, caching can be beneficial. A GPU offers VRAM for an opportunity to additionally
cache data that is evicted from the CPU. This allows for smaller buffers in main memory,
freeing up memory for actual tasks.

42

4.4 Discussion

Caches in GPU4FS In GPU4FS, some of these caches are managed by the priviledged
process and the GPU in parallel, as shown in Figure 4.1. After a request comes from a
process, the GPU sends a mapping request to the kernel as described in Section 4.3.7.
While the kernel is processing, the GPU can preload the contents of the cache into its
VRAM buffer. As soon as the mapping completion is signaled, the GPU can copy the
data from VRAM into the file system caches in RAM. The initial copy to VRAM is
an optimization in multiple regards: Firstly, having data in VRAM avoids the penalty
of slower NVM as VRAM bandwidth is usually orders of magnitude larger [31] [61].
Secondly, the GPU can reorder the data from NVM to VRAM, so it is ordered in VRAM
sequentially. This avoids walking the file system tree when eventually copying to DRAM.

4.3.9 Journaling and Consistency

A GPU in the write path leads to some latency between command submission and
completion on disk. Journaling [24] and log structuring [2] both rely on few pointer
updates, which is badly matched to a GPU. To add to this problem, the VRAM adds
another level of cache which might not get flushed before a crash occures. Therefore,
crash consistency is an important topic for a GPU-accelerated file system.

To cater to a GPU, we envision a parallel log structure, in cooperation with the memory
allocator. A page is only marked as used if it is completely filled and committed to the file
system. If a crash occures before the commit, the memory block will be garbage collected
and returned into the pool of free pages. GPU4FS can then achieve crash consistency by
copying the whole tree and only commit very late into this process. Even though some
unneeded writing might occur, we expect the parallelization to be beneficial overall.

4.4 Discussion

We designed GPU4FS to be well-matched to the problem, namely to reduce the CPU
usage for general-purpose Intel Optane file systems using a GPU. The different features
of the file system can be followed out of the problem statement.
GPU4FS is tailored towards Intel Optane memory. Therefore, it uses 64 bit pointers,

and 8 B-aligned data structures. Additionally, the block sizes of 4 kB, 2 MB, 1 GB, and
either 128 B or 256 B follow directly from the MMU design and the memory allocation
strategy.
To be generally usable, GPU4FS adheres to the POSIX specification in the inode. It

also offers space for extensions to accomodate future use cases.
To reduce the CPU utilization, GPU4FS uses a GPU for most tasks. Additionally, we

decide to implement a user space file system to further reduce the stress on the CPU.
The design of the inter-process communication interface using shared memory follows

from the decision to use a GPU. The GPU also necessitates the parallel memory allocator,
the kernel communication strategy using an intermediate process, and the parallel journal.

43

5 Implementation

This chapter details the implementation of GPU4FS and its supporting software for the
evaluation in this thesis. We first implement a small CPU file system, then patched the
AMDGPU [44] and RADV [43] driver stack to accomodate our work. After that, we used
the patched driver for bandwidth tests and a small GPU-side file system write accelerator.
The current implementation is targeted for x86-64 Linux systems with modern AMD

GPUs, and for Vulkan as the graphics API. GPU4FS uses the RADV Linux Vulkan driver
with slight modifications, as described in Section 5.2. To implement the shaders, we use
GLSL and Googles glslc GLSL to SPIR-V compiler. The CPU-side implementation uses
C++-20 and is compiled using g++.
The GPU4FS implementation is tested on three systems

• a Lenovo T14 AMD Gen2 laptop using an AMD R7 4750G processor with an
integrated Vega 7 GPU,

• a desktop PC with an AMD R9 5900X processor and a dedicated AMD RX 6800XT
GPU,

• and a server with two Intel Xeon Silver 4215 CPUs, a dedicated AMD RX 6600XT
GPU, and four DIMMs with a combined 512 GB of Intel Optane Memory. This is
also the machine which is used for the benchmarks in our evaluation in Chapter 6.

5.1 GPU4FS on CPU

The CPU implementation of GPU4FS follows the design outlined in Chapter 4. To
distinguish from the GPU-based implementation, the CPU implementation is called
CPU4FS. It supports the major features, including unit tests for those.

• Blocks and block pointers: CPU4FS supports all types of block pointers, for inodes,
small, large, and huge pages. It can decode the bit patterns and supports indirection
using the respective flag in the pointer. CPU4FS fully supports walking a file as
referenced from an inode. It can also skip invalid pointers.

• Inodes: CPU4FS supports full storage of the inode, customizable at compile time.
It can encode and decode the times to both microsecond and nanosecond precision.

• Extensibility: The extensibility feature uses the same code path as the normal
block pointers. The groundwork is therefore done, but no additional features are
implemented.

45

5 Implementation

• Directories: Directory listings and insertion into directories are implemented for
linked list directory entries.

• Superblock: The current CPU4FS implementation does not look for a superblock,
instead expecting a root directory inode at offset zero.

Additionally, CPU4FS contains a mostly complete implementation for the GPU memory
allocation strategy, which is used for GPU debugging purposes. Because it is supposed to
be easily portable to the GPU, the implementation does not use high-level serialization
primitives, and instead relies on direct atomics. The prototype demonstrates the difficulties
in this programming style, and is of limited reliability. The demonstrators both for
CPU4FS and GPU4FS therefore use hardcoded offsets or basic sequential allocators.

5.2 GPU NVM Passthrough

With the CPU-side file system running, the next step is to write to the target storage
system. For this thesis, the main target is NVM memory, but for debugging reasons
normal on-disk files can also be used as the underlying device. In both cases, NVM and
files, the procedure is the same:

1. Make the memory visible in the process context and accessible via virtual memory.

2. Ask the kernel to map the matching physical pages to the GPU via the GART.

Making the Memory Visible For both NVM and normal files, the procedure is to use
the mmap system call. mmap() maps a file into main memory. For normal files, the data
is copied into the file system cache, and this cache is mapped into the address space of
the user process. Copying into a cache can be avoided for NVM memory as it supports
being mapped directly.

Using the GART to Make the Memory GPU-Visible On AMD GPUs as used for this
implementation, the GPUs can already access main memory via the Graphics Address
Remapping Table (GART). The GART acts as a page table in the GPU physical device
memory address space. An access into the GART address range is translated into a
host memory address. The GPU then requests this address from main memory, usually
via PCIe. The IOMMU, if enabled, then acts as another page table and translates the
host device memory address into a host physical memory address. This physical memory
address can also be mapped into the CPUs process’s address space via the CPU’s MMU.
The different address spaces can be seen in Figure 5.1.

Some kind of mapping is required for normal API execution, as data needs to get to
the GPU in some way. This can either be done by mapping CPU memory to the GPU,
GPU memory to the CPU, or, using some non-memory-based protocol. For performance
and programming reasons, all major modern Graphics and Compute APIs require some
amount of shared memory. In Vulkan for example, there is the triple of functions
vkCreateBuffer(), vkAllocateMemory(), and vkMapMemory() [48]. These functions

46

5.2 GPU NVM Passthrough

GPU virt AS

VRAM GART

IOMMU AS

CPU phy AS

CPU virt AS

Figure 5.1: GPU shared memory: The GPU has its virtual address space (virt AS), which
maps to VRAM and to GART. GART addresses are forwarded to the IOMMU,
which translates it to the CPU’s physical address space (phy AS). Similarly,
the CPU can translate virtual to physical addresses. If the mappings overlap
in CPU physical memory, the memory is shared.

first tell the API to create a buffer with a given size and usage in vkCreateBuffer() and
tell the API about its type and residency in vkAllocateMemory(). If the buffer resides
on the CPU, the API configures it to be mapped to be GPU-visible. Also, if the buffer
resides on the CPU, vkMapMemory() offers a CPU pointer to the underlying memory so
it can be filled and later used by the GPU.

The Vulkan API also offers an extension called VK_EXT_external_memory_host, which
is supposed to map memory from other sources to the GPU. The RADV driver does
support it [47], but with some limitations: Crucially, it can not map non-anonymous
memory, for example from files or NVM, to the GPU without patching. The problem is
buried in the call stack of the vkAllocateMemory() function. The call is as follows:

1. The function call gets forwarded into the GPU-agnostic libvulkan.

2. libvulkan detects that the selected device is an AMD one and defers the call into
the RADV Vulkan driver for AMD GPUs.

3. RADV maps all Vulkan objects to objects used by the common Mesa and Gallium
implementations. The call does not need heavy driver support like a shader compile,
but only modifies buffer objects (BOs). Therefore, RADV calls into the AMDGPU
DRM driver to make kernel-level modifications.

4. Inside DRM, the amdgpu_create_bo_from_user_mem() function is called. This
function is essentially a wrapper for the amdgpu_bo_create kernel-level DRM call.
This kernel-level call creates a buffer object for a given memory range, which is the
functionality we need. Crucially, in an unpatched user space DRM driver, multiple
flags are passed to the kernel, one of them being:

47

5 Implementation

args.flags = AMDGPU_GEM_USERPTR_ANONONLY | ... 1 [46].
This flag requires the mapped memory to be anonymous, so we removed the flag.
This allows the usage of the VK_EXT_external_memory_host extension with shared
memory. We do not know why this flag was set in the first place, but assume the
reason to be some detail of the extension’s specification.

5. The unmodified underlying linux kernel maps makes this memory visible in the
GPUs GART.

This functionality is demonstrated using a simple Vulkan program, which draws a
triangle from a buffer that resides inside a file. A separate process can open the file
and modify data, which alters the triangle drawn to the screen, without any other
communication to the first process.

5.3 GPU Command Buffer Structure

To implement a flexible and configurable GPU shader, a command buffer, as introduced
in Section 4.3.2, is implemented. This section details the general command buffer, the
commands for the tasks themselves are introduced in Section 5.4 and Section 5.5.

5.3.1 Command Buffer Layout

The command buffer manages the execution of different tasks on the GPU. The buffer
is divided into three parts: metainfo, commands, and additional command data. Each
command descriptor consists of a block of 16 numbers, each of them being 8 B in size,
which results in a 128 B command. The command descriptors form a linked list, started
by general execution metadata applicable to all command descriptors and terminated
by a termination command descriptor. The workgroups parse the command buffer by
walking the list, trying to atomically acquire each command descriptor, and executing
the command if successful. Afterwards, the workgroups continue to follow the list until
the termination is reached.

The command descriptors have a common prefix and postfix, and contain a command-
specific payload. The prefix consists of two numbers, and is responsible for the queue
management:

1. A type tag: Each different command is identified by a tag, which the shader uses to
decide which code path to execute. Currently, five different types are specified:

0. MEMSET: Sets the memory in the to buffer to a 8 B pattern p, with a byte length
of l.

1. MEMCOPY: Copies l bytes from the from buffer to the to buffer.

2. FILE_PATH: Creates a file. This command has multiple parameters which are
explained in Section 5.5.

1Commit 7c28f528309d15163678ac1a49e161e3b1692b50, file amdgpu/amdgpu_bo.c:581

48

5.3 GPU Command Buffer Structure

0

8

16

104

112

120

type tag

next

atomic_acquire

atomic_complete

Figure 5.2: An empty command descriptor. The payload between offset 16 and 112
depends on the specific command type.

3. META_INFO: Contains metainfo applicable to all different commands. See below
for more information.

4. TERMINATE: Signals the termination of the command queue.

2. A next offset: This contains the offset of the next command descriptor, from the
beginning of the command buffer. This allows each individual workgroup to walk
along the queue of commands until it reaches the termination.

The postfix also consists of two atomic numbers, and is responsible for the management
of the atomics inside the command descriptor:

15. The acquisition counter: Each workgroup atomically increases this field by one
when it reaches the command descriptor, and checks the return. If the returned
value is zero, the workgroup acquired this command descriptor. Otherwise, the
command descriptor is skipped and the next one in the list is tried.

16. The completion counter: After they successfully finished the task, each SIMD lane
in the workgroup increases atomically increases this field by one. The command is
considered complete as soon as this value equals the workgroup size.

An empty command buffer can be seen in Figure 5.2.

5.3.2 The Metadata Command

The command buffer starts with a set of meta information that is shared for all executions.
The metadata block itself shares the layout of a command descriptor, including type,
next, acquisition and completion fields. Of these four, the acquisition and next fields are
unused. The metadata does not need to be executed, so an acquisition makes no sence,
and the next field is unused as the execution starts by trying to acquire the successing
block. The type tag is set by the CPU side to avoid mistakes. Lastly, the completion field

49

5 Implementation

0

8

16

24

32

104

112

120

type tag

(next)

(atomic_acquire)

atomic_complete

separated_execution

num_work_items

Figure 5.3: The meta data command descriptor. It contains one boolean flag signaling
separated execution, and the number of SIMD lanes.

in metadata is increased by every SIMD lane that is exiting the shader, thus allowing to
signal overall process termination.

The metadata contains two numbers as a payload: Firstly, the number of SIMD lanes
that should be executed. All other SIMD lanes, and thus workgroups just terminate
instantly, without signaling completion. This allows for an easy programming model
inside both the shader and the CPU-side code as the number of SIMD lanes needs to be
communicated to the shader at runtime. The other solution would be to recompile the
shader each time, which is not feasible. Therefore, the CPU can just launch the maximum
number of workgroups and rely on them to terminate immediately.
Secondly, the payload contains a boolean flag, which signals separated execution. For

certain tasks, it makes sense to have all work groups work together, which is called
combined execution. In this case, all workgroups that have not terminated in the step
before execute the first command and then terminate, this time signaling completion.
Separated execution means that each workgroup processes a different command. The
combined mode is used by both the memcopy and memset commands, whereas the file
creation uses separated execution. The whole meta data command descriptor can be seen
in Figure 5.3.

5.3.3 Parsing the Command Buffer

In GPU programs, the programming model dictates that each SIMD lane is programmed
individually, and the compiler bundles them together in the background. We found it
difficult to synchronize the different unbundled SIMD lanes, and to enable communication
between them. In a workgroup, synchronization is easy and fast communication is enabled
via special shared memory. To avoid any race conditions inside one workgroup, a single
SIMD lane is picked which parses the command buffer. The other SIMD lanes are disabled
during the selection, or waiting for the executing SIMD lane inside a barrier. The code
for the work group synchronization can be seen in Listing 1.

50

5.3 GPU Command Buffer Structure

413 void dispatch_independent(int start_block) {
414 uint local = gl_LocalInvocationID.x;
415

416 int block = start_block;
417 while (true) {
418 int block_offset = block * block_size;
419 if (local == 0) {
420 do { block = acquire_new_block(block); } while (block != 0);
421 }
422

423 barrier();
424 block = new_block;
425 if (terminate != 0) return;
426

427 dispatch(new_block);
428 }
429 }

Listing 1: The GLSL code to synchronize the selection of the next command descriptor
inside the workgroup. new_block and terminate are both workgroup-local
variables to communicate the results inside the workgroup. barrier() is a
barrier that releases only when all SIMD lanes in the workgroup have reached
it. The main part is the do while-loop that follows the linked list until a
command descriptor is found. The outer loop is used to work on command
descriptors until the termination is reached. dispatch() selects the correct
code to actually execute the command.

Each workgroup selects its representative using the local workgroup id, and each
representative calls into acquire_new_block(), as seen in Listing 2. This function is
responsible to acquire the block or to figure out the next block that can be tried. The
first step is to check whether the block signals a termination by checking the command
descriptor type of the new block. If it is not a termination, the function tries to acquire the
block by using an atomicAdd() of one onto the acquire field of the command descriptor.
If the return value is zero, the block is considered acquired and zero is returned to signal
success. In both cases, termination and successful block acquisition, a shared variable is
set to communicate the result to the rest of the workgroup.
If neither the acquisition nor the termination returned, the function has the job

of figuring out the next command descriptor. There is a possible race here, though:
Command descriptors might be written in parallel to GPU execution, so a next element
in the list might not yet be available, which is signaled through a value of zero in the
next field. Zero can be used to signal “not a valid block,” as this block offset is reserved
for overall execution metadata and can never contain a valid command descriptor. For

51

5 Implementation

this reason, the next field is repeatedly polled in an atomic fashion, until a value is stored
on the CPU. The CPU process atomically stores a new offset, which will reach memory
eventually and will terminate the loop. In the future, a different GPU process could also
store command descriptors into this work queue. This would allow for communication
between GPU processes.

A notable observation are the various casts to int: GLSL offers only quite limited
support for 64 bit numbers, in particular, GLSL cannot use such numbers as indices into
arrays. The shader is therefore filled with such explicit casts.

5.4 Efficiently Writing NVM with the GPU

The next step is to test the write performance of NVM to disk. After demonstrating
that the GPU can successfully read both files and NVM, we then benchmark the write
performance to NVM. For this, we implement a Vulkan compute shader that copies file
buffers. On the CPU-side, we use a program with three tasks: Firstly, the program
establishes a Vulkan context for the compute shader used. Afterwards, it maps the source
and target file buffers, and makes them available to the GPU. As the last step, the
program configures the command buffer and the respective memory region.

In addition to the general structure described before, the command buffer contains
two more elements: the number of bytes to copy, and the number of SIMD lanes. The
memcopy command is using combined execution as described in Section 5.3.2. To be
prepared to only use a subset of all workgroups, the number of SIMD lanes to use for the
copy operation is stored in the command descriptor, too. The memcopy command buffer
can be seen in Figure 5.4

In the GPU shader, copying data from one buffer offset to another is quite common,
so we implement a copy_helper() that is also used for file creation. The offsets are
not given in bytes, but in factors of eight byte increments as GLSL does not support
reinterpret casts of buffer pointers, and using eight byte accesses makes the code both
easier and faster. For that reason, a lot of divisions by the constant sizeof_int64_t
happen, as the CPU communicates in byte offsets. This conversation is done on the GPU
as the POSIX CPU interfaces communicate sizes in Byte [25], and this division can be
moved to the GPU.

To share the copy functionality with the file system implementation, a helper function
called copy_helper() is used. It takes offsets into the from and to buffers as well as a
size. To be more easily usable, it also takes a buffer id parameter for both the from and
the to buffer. The exact parameter list is shown in Listing 3.

In addition than memcopy, memset is also implemented. A memset command descriptor
has the same parameters as memcopy, but adds a 64 bit pattern that is used to fill the
target. The memset command works similar to memcopy, with the exception that a
user-provided pattern is written instead of data loaded from memory.

52

5.5 GPU File System

0

8

16

24

32

104

112

120

type tag

next

atomic_acquire

atomic_complete

copy_size

num_work_items

Figure 5.4: The memcopy command descriptor. It, too, contains the number of work items,
in addition to the value set in the metadata command descriptor. This is used
to test separated execution as described in Section 5.3.2. Additionally, the
copy_size represents the number of bytes to copy.

5.5 GPU File System

As stated before, we use the same shader for memcopy, memset, and file write, and the
behavior is selected by using a command descriptor in the command buffer. The entire
implementation is tested by queueing a set of file writes, timing the completion and
then checking that all files were written correctly. This implementation uses CPU4FS to
interpret the pattern on disk.

File Write Command Descriptor The command for the writing files contains three
types of numbers in addition to a normal command descriptor: source offsets into the
command buffer, target positions on the drive, and meta information. The whole command
descriptor can be seen in Figure 5.5. In detail, each of the fields in the descriptor has the
following purpose:

2. The file size, to determine how much needs to be copied.

3. Reserved for the number of SIMD lanes for this file, but currently unused, see below.

4. The offset of the file data in the command buffer, to know where the data is coming
from.

5. The length of the filename, to allow for compressed directory storage.

6. The offset of the file name in the command buffer.

7. The position of the directory to be written to on the drive.

53

5 Implementation

8. The offset of the inode in the command buffer. The information in the inode is
copied to the drive directly, the GPU only updates the respective pointers.

9. The target position of the new inode on the drive.

10. The target position of the new file on the drive. The file is written sequentially.

With a progressing implementation, two fields can be removed: the target positions of
file and inode. Currently, the block allocator, see Section 4.3.5, is not working reliably.
When it is ready, the GPU task can allocate these blocks itself, and no preallocation is
be needed. Fixing the memory allocator is future work.
A third parameter is currently unused, but reserved for future use: the parameter for

the number of SIMD lanes. It allows that large or urgent files can allocate more SIMD
lanes. Currently, the number of SIMD lanes per file is hardcoded, and the total number
of SIMD lanes is programmed in the metadata block.

Main Functionality To write a file to disk, the GPU has to fulfill four steps:

1. Writing the file data to disk,

2. writing the inode to disk,

3. setting the block pointers in the inode, and

4. updating the directory.

These steps can be executed in any order and independent of each other, although it
is easier if the inode is written first and the block pointers afterwards. This is because
the inode can be copied as a whole without overwriting the pointers that would have
been set already. Writing the inode and the file data each requires a simple call to the
copy_helper() function, as shown in Listing 4 as exemplarily shown for the inode. Given
that most of the time is spent in the file data copy operation, we do not exploit further
parallelism here and handle one file with one workgroup sequentially.

The remaining tasks, i.e., directory update and file pointer write, are both more involved
and are separated into their own functions.

Directory Updates Updating the directory takes a few steps:
Firstly, the whole inode is locked, as can be seen in Listing 5. The unused extension

pointer in the directory’s inode is used for the locking. To avoid a race condition, only
one SIMD lane is picked for each workgroup. This lane then atomicAdd()s that area by
one, trying to aquire the spinlock. As soon as zero is returned, the lock is considered
held. At the end of the critical section, as soon as all SIMD lanes in the workgroup have
finished the update, the lock is freed by writing zero to that disk area.

After that, the directory inode is read and the storage area for the directory contents is
found, with the implementation shown in Listing 6. The code currently assumes that the
whole directory content fits into one page, so only the first inode is loaded. To get the

54

5.5 GPU File System

0

8

16

24

32

40

48

56

64

72

80

88

104

112

120

type tag

next

atomic_acquire

atomic_complete

file_size

file_data_offset

filename_length

filename_offset

directory_position

inode_offset

inode_position

file_position

num_SIMD_lanes

Figure 5.5: The file writing command descriptor. In addition to an empty command
descriptor, several offsets into the command buffer and positions on drive
are transmitted to configure which data is copied from DRAM to NVM.
The file size and file name length control the amount of data to be copied.
num_SIMD_lanes is currently unused, but added as a preparation for a future
feature, as described in Section 5.5.

55

5 Implementation

correct offset, the bit flags are removed, and the file queue is parsed. By convention, the
first directory entry starts at offset zero. The shader then walks the next pointers until
one of them contains zero. The previously found offset therefore is the last element in the
directory entry list. All SIMD lanes in the workgroup walk the directory independently.
This is not an issue as most SIMD lanes will work in lockstep either way, further, we can
rely on the caches of the GPU to accelerate the accesses. Also, this avoids communication
between the SIMD lanes which makes the code easier to maintain. At this point, a GLSL
barrier is inserted to make sure that all SIMD lanes found the end before we start to
modify the contents.

Currently, GPU4FS does not support file removals from directories. Therefore, we can
assume that the last entry we found is also the last entry on disk and the next entry is
inserted directly after it. For this reason, the offset that was just found can be extended
by the size of the last directory entry: Eight bytes for the inode block pointer, eight bytes
for the next pointer, and string length plus one byte for the string, rounded up to an
alignment of eight bytes. After the new offset is found, three values are written: The
block pointer for the new inode, the next pointer in the current directory entry is set to
0, and the next pointer in the last entry in the list is set to the correct new offset.
The last step before releasing the spinlock is to write the new file name and its

length. The length is loaded from the command buffer, but with the packed storage,
see Section 4.2.3, the stores become misaligned. The GLSL programming language does
not allow for reinterpreting casts or misaligned stores, so instead the data is aligned by
loading the aligned string from the command buffer and shifting appropriately. At this
point, the system’s endianness, little endian, needs to be taken into consideration. To
insert the string’s length at the first byte, it has to be stored in the least significant eight
bits. The remaining bits are filled by shifting the loaded numbers, which contain the
actual strings, appropiately. The code for this can be seen in Listing 7.

Block Pointer Writes The last step is to write the block pointers in the inode. Each
inode has space for seven block pointers, each pointing to either a 4 kB, 2 MB, or 1 GB
block. This provides for a reach of 28 kB, 14 MB, or 7 GB. A different combination of
blocks is also possible. Alternatively, it could access seven indirect blocks. Currently,
the block memory allocator is unreliable, so each inode sits in an otherwise unused,
pre-allocated 4 kB page. This means that further inode-sized blocks can be allocated
there, e.g., for indirect blocks. We use this space to allocate up to seven inode-sized
indirect blocks for a total of 896 B or 112 direct pointers.

To write these pointers, the first step is to figure out the required amount of blocks. For
memory mapping reasons, inode-sized pages make no sense here, so the size is rounded
up to be 4 kB-aligned. The number is then split up to get the number of each page size
needed. The shader loops through the number of pages needed, and then writes them to
disk, together with their respective bit flags.

For the sake of implementation simplicity, all files are currently written using indirect
pointers, even if the number of pointers would fit into the inode. To build a valid block,
all unneeded pointers in a referenced block need to be marked invalid. Therefore, the

56

5.6 Lessons Learned

shader sets the pointers to zero. As a last step, the indirection pointers are set in the
inode: The offset is computed, and the pointers are set as valid and indirect, together
with the type.

5.6 Lessons Learned

During the implementation, several hurdles were found that hindered the progress. Mostly
these hurdles can be found in the GPU programming tooling and description.

The most time-consuming part was the mapping the NVM to the GPU. Even though
it is completely supported by the kernel and works with minor modifications in the user
space drivers, only very little documentation is available that hints to this feature being
easily available. To find the patch described in Section 5.2, nearly a month of stepping
through instrumented driver code was necessary. The drivers also contain dynamically
linked shared objects, the type of which can be decided at runtime. Also, to avoid issues
with dynamic loading, the drivers aggressively strip symbol information. Both features
hamper the usability of CPU-side debuggers.

On the GPU, debugging is even harder, and the setup of toolchains like RenderDoc is
complicated. For debugging and printing, we mapped a file with the established code
path and wrote all information we want from the GPU to the file. Given that we did
not use no high-level primitives like printf(), the results had to be interpreted using
a hexeditor. To use printf, we would have needed external libraries, which we deemed
to be more effort than hexeditor-debugging. Indeed, this style of debugging felt natural
relatively quickly.

Also, the manual locking implemented in the shader and large worksets combined with
slow NVM memory can both trigger kernel timeouts for the shader execution. This leads
to a reset of the GPU, which also means losing all debugging information that might
still be available in the GPU. As a workaround, during debugging we stored as much
information as possible to the device early, so it was still available even if the GPU
crashed.

57

5 Implementation

380 /*!
381 * \brief try to acquire the new block
382 * \param block: where to start in the chain
383 * \return 0 if successful, next element to check otherwise
384 */
385 int acquire_new_block(int block) {
386 const uint next_command_offset = 1;
387 const uint already_acquired_offset = 14;
388

389 int block_offset = block * block_size;
390

391 // check termination first
392 if (int(config.data[block_offset]) == 4) {
393 terminate = 1;
394 return 0;
395 }
396

397 // try to acquire
398 int64_t result = atomicAdd(config.data[block_offset + already_acquired_offset], 1);
399 if (result == 0) {
400 new_block = block;
401 return 0;
402 }
403 // follow next chain
404 int64_t next = 0;
405 do {
406 // fancy way to load the variable, I guess :()
407 next = atomicAdd(config.data[block_offset + next_command_offset], 0) /

sizeof_command;↪→

408 } while (next == 0);
409

410 return int(next);
411 }

Listing 2: The GLSL code to acquire a new block number block. First, the code will
check whether it is a termination by comparing the command descriptor type
to 4, set the termination flag and return if it is a termination. Otherwise, it
will try to acquire the block by atomically increasing the acquire counter in the
command descriptor. If the return is zero, the acquisition was successful and
again a flag is set and returned. If this is also not successful, we spin on the
next field until we get a non-zero block offset. As soon as that happens, we
return the new, untested block.

58

5.6 Lessons Learned

125 void copy_helper(int from, int from_buffer, int to, int to_buffer, int size, int
work_group_size, int global_offset) {↪→

Listing 3: The copy helper takes seven parameters. The size contains the number of
blocks that should be copied. from and to are the offsets into the buffers that
are copied from and to, respectively. As with all indices and sizes, size, from,
and to are in terms of 8 B indices, and need to be of type int or uint to
work in GLSL. from_buffer and to_buffer contain the id of the buffer to be
selected. A value of 0 represents the from file buffer, 1 the to file buffer, and 2
the command buffer. The work_group_size is the number of SIMD lanes that
execute this request. The global_offset is the number of the lowest-numbered
SIMD lane, and allows to use the function with either all workgroups or only
one workgroup.

348 const int inode_target_offset = int(config.data[block_offset +
inode_position_offset] / sizeof_int64_t);↪→

349 const int inode_source_offset = int(config.data[block_offset +
file_inode_offset_offset]) / sizeof_int64_t;↪→

350 copy_helper(inode_source_offset, 2, inode_target_offset, 1, int(INODE_SIZE /
sizeof_int64_t),↪→

351 int(work_group_size), int(base));

Listing 4: In the current implementation, the inode is simply copied from the command
buffer to the disk. All offsets are loaded from the command descriptor in the
buffer, casted to int, and copied to disk.

59

5 Implementation

266 if (local == 0) {
267 int64_t atomic_acquire = 0;
268 do {
269 atomic_acquire = atomicAdd(nvm.to[dir_inode_position +

dir_inode_lock_offset], 1);↪→

270 } while (atomic_acquire != 0);
271 }
272

273 barrier();

317 barrier(); // end of modification, now unlock critical section
318 if (local == 0) nvm.to[dir_inode_position + dir_inode_lock_offset] = 0;

Listing 5: The first step is to lock the directory for an update, using a spinlock in the
directory inode. One SIMD lane repeatedly tries to lock the spinlock, the others
wait for completion in the barrier. After all SIMD lanes finished the directory
update, the lock is released. This is done by a singular SIMD lane to avoid
multiple unlocks.

278 int current_offset = 0;
279 while (bool(nvm.to[directory_target_offset + current_offset +

directory_next_pointer_offset])) {↪→

280 current_offset =
281 int(nvm.to[directory_target_offset + current_offset +

directory_next_pointer_offset] / sizeof_int64_t);↪→

282 }
283 barrier(); // please all find the same thing

Listing 6: Loop through the directory, each time testing the offset of the next directory
entry. If the offset of the next element is zero, the last directory entry is found.
To avoid that some SIMD lanes modify the directory before others are finished,
a barrier is added at the end.

60

5.6 Lessons Learned

306 const int file_name_elements = (file_name_length + sizeof_int64_t) / sizeof_int64_t;
307 int64_t first_file_name_word = config.data[file_name_offset] << 8 |

file_name_length;↪→

308 nvm.to[next_directory_entry_drive_offset + directory_length_offset] =
first_file_name_word;↪→

309

310 if (local < file_name_elements && local != 0) {
311 int64_t first = config.data[file_name_offset + local - 1];
312 int64_t second = config.data[file_name_offset + local];
313 int64_t combined = (first >> (8 * (sizeof_int64_t - 1))) | (second << 8);
314 nvm.to[next_directory_entry_drive_offset + directory_length_offset + local] =

combined;↪→

315 }

Listing 7: The file name is written to disk. This part requires a lot of shifting, as the file
name is stored in an aligned fashion in the command buffer, but the length byte
is added at the start on disk. The first element is written by all SIMD lanes,
so some overwriting is possible, but not harmful. For performance reasons,
the rest is copied in parallel by different SIMD lanes. No loop is needed as
a workgroup will always have at least 32 elements for hardware performance
reasons. All 256 bytes (255 characters and one size byte) can be written in one
go.

61

6 Evaluation

The aim of this thesis is to show that file system acceleration on a GPU reduces stress on
the CPU while offering competitive file system performance. We evaluate our demonstrator
in two parts: First, we discuss the results of simply writing to NVM, and whether we
achieve competitive write performance. In the second part, we examine the file system
regarding both write performance as well as CPU stress. Some of the early results also
influenced the design and implementation of later features.

6.1 Test System

We evaluate the approach on our GPU Intel Optane system. It is equipped with

• Dual Intel(R) Xeon(R) Silver 4215 CPUs, operating at 2.5 GHz. It supports Intel
I/OAT copy offloading.

• 128 GB of DDR4 at 2400 MT/s, distributed into 64 GB per CPU and eight 16 GB
DIMMs, respectively.

• 512 GB of DDR4-socket-compatible Intel Optane memory at 2400 MT/s, distributed
into 256 GB per CPU and four 128 GB DIMMs, respectively.

• a Samsung NVMe SSD,

• 3 Micron NVMe SSDs,

• and an AMD RX 6600XT GPU, from AMD’s Navi 2 GPU generation, together
with 8 GB of dedicated VRAM. The GPU is equipped with eight PCIe Gen4 lanes,
but the CPUs only support PCIe Gen3. Therefore, the communication uses eight
PCIe Gen3 lanes.

With its two CPUs, the system uses a NUMA configuration. All benchmarks shown
avoid inter-processor communication bottlenecks by using the Optane DIMMs attached
to the same CPU as the GPU. We tested an asymmetric configuration writing with the
GPU to one CPU and the Optane DIMMs connected to the other. This showed slight
degredations in performance, but with a high variance. We presume this to be caused by
latency when writing across the inter-processor link, but did not study that effect further.

63

6 Evaluation

6.2 Memcopy

A file system needs to store the data from the processes to disk. This means that copying
from main memory to NVM is an important part of each NVM file system and needs
to provide high bandwidth as well as low latency. For one Intel Optane DIMM, the
maximum throughput is at about 2 Gbit s−1. An interesting observation is that, under
certain circumstances, more than one CPU thread is needed to satisfy the DIMM, but
the bandwidth also stalls or even degrades when more than two threads are used [31].

For the GPU, the same characteristics are expected, with a peak bandwidth at a certain
number of SIMD lanes, then a plateau and later a slight degredation as the number
of SIMD lanes increases. The actual bandwidth can be seen in Figure 6.1 for different
workgroup sizes of the shader presented in Section 5.4. We show bandwidth with a 32
SIMD lane workgroup as it matches the hardware [27], and 256 SIMD lane workgroup as
it is used for the file system operation. As shown in the graphs, the workgroup size does
not make a big difference. Smaller workgroups allow for more independent scheduling,
and larger workgroups can provide local communication for more SIMD lanes. As a
comparison, we also measure the copy bandwidth from DRAM to DRAM via the GPU.
This plot shows four interesting results:

1. The GPU bandwidth to DRAM and NVM is very close until the maximum NVM
bandwidth is reached. This suggests that up to peak NVM bandwidth, the shader
is bottlenecked elsewhere, possibly waiting for read requests from DRAM.

2. the CPU bandwidth to NVM per number of threads is mostly flat, and the GPU
bandwidth shows clear spikes. The peak performance with above 1.9 GB s−1 is
reached at 320 SIMD lanes, after which the bandwidth quickly falls, to a minimum
of about 0.5 GB s−1 at 896 SIMD lanes.

3. the GPU bandwidth to NVM reaches a plateau with more SIMD lanes at about a
third of the maximum bandwidth (0.65 Gbit s−1). This plateau is reached at 4096
SIMD lanes.

4. the bandwidth is mostly independent of the workgroup size, which allows for free
selection of a workgroup that fits the task, as we will explain in the following
paragraph.

To be practical, the GPU’s copy bandwidth needs to be similar to the maximum that
the CPU achieves. This is the case between 256 and 512 SIMD lanes, where the bandwidth
is above 75% of the maximum bandwidth of CPUs to NVM. As described in Section 5.5,
the different requests should be handled as parallel as possible. The bandwidth above 512
SIMD lanes shows a sharp decline, and 256 is the minimum for acceptable performance.
The workgroup size can not be changed at runtime, therefore a size of 256 SIMD lanes per
workgroup makes sense. Otherwise, either the bandwidth for single file writes or multiple
parallel file writes would suffer. This also means that only two files can be handled in
parallel with reasonable bandwidth for the general shader.

64

6.2 Memcopy

100 101 102 103 104 105

0

2

4

6

Number of SIMD lanes

B
an

dw
id
th

[G
B
/s
]

NVM
DRAM

(a) workgroup size of 32

100 101 102 103 104 105

0

2

4

6

Number of SIMD lanes
B
an

dw
id
th

[G
B
/s
]

NVM
DRAM

(b) workgroup size of 256

Figure 6.1: GPU write bandwidth to Intel Optane and DRAM, per number of SIMD
lanes, for different workgroup sizes. The Optane bandwidth closely follows
the DRAM bandwith up to the peak, where it breaks down quickly. DRAM
shows similar behavior for higher number of SIMD lanes.

104 105 106 107 108 109

10−2

10−1

100

Copy Size [Byte]

T
im

e
[s
]

Figure 6.2: GPU write time to Intel Optane and DRAM, per data size. Uses 320 SIMD
lanes with 32 work items per workgroups for maximum performance. The
crossover point between startup latency and write latency is at about 2 MB.

65

6 Evaluation

100 101 102 103 104 105

0

2

4

6

Number of SIMD lanes

B
an

dw
id
th

[G
B
/s
]

memset-NVM
memset-DRAM
memcopy-NVM

Figure 6.3: GPU memset bandwidth to Intel Optane and DRAM, per number of SIMD
lanes, for different workgroup sizes. In addition, copy performance to NVM is
shown. The main observations are that memset bandwidth is noisier, that
the benchmark crashes when using only few SIMD lanes, and that it never
reaches peak Optane performance.

The other relevant metric for a file system is latency. Programming the GPU, and
transferring the data through different busses takes time, and the processes should not
wait. Knowing the latency is also important in order to determine the limiting factors for
the bandwidth. As can be seen in Figure 6.2, the crossover point is at about 2 MiB. The
startup and teardown time can be estimated to about 1.5 ms, as compared to the store
latency of CPU writes to NVM of about 100 ns [31].

6.3 Memset

We also implemented memset as a shader command. This command is used to write
eight byte patterns to NVM or DRAM. Figure 6.3 visualizes the NVM write bandwidth
of memset operations with different amounts of SIMD lanes. We expected a similar
bandwidth curve as with memcopy, however, the peak bandwidth should be reached with
slightly less SIMD lanes since memset operations only need to pass the PCIe bus once, as
opposed to memcopy, which requires additional PCIe operations. Instead, the bandwidth
never exceeds 0.75 Gbit s−1. The bandwidth is also much less consistent around the area
where memcopy shows the highest bandwidth, and it shows a slightly higher plateau
bandwidth. Another interesting observation is that the shader hard-timeouted when using
less than seven SIMD lanes, and is considerably slower than memcopy for less than 20
SIMD lanes.

66

6.4 File Write

6.4 File Write

To evaluate the file system behavior, a third command is implemented. This command
can insert files into an existing folder. We measure write bandwidth, latency and CPU
usage. We also compare the bandwidth result while while a multi-threaded benchmark is
running on the CPU to validate the reported CPU usage.

6.4.1 Bandwidth and Latency

As described in Section 5.5, the demonstrator for GPU4FS currently only supports up
to 112 inode pointers, which makes measurements in certain file size ranges impossible.
Therefore, the measurements shown have gaps between the kilobyte domain (4 kB to
448 kB), the megabyte domain (2 MB to 224 MB), and the large domain (around 1 GB).
To compensate, we show plots writing both a single file and multiple files in Figure 6.4.
The bandwidth for all tests with more than one file line up well, so we can use this data
to fill up the empty spaces. The single file write shows a quite different behavior. This
can be attributed to the fact that only 256 instead of 512 SIMD lanes are used, which
means that the expected bandwidth is slightly higher. This also explains why for a single
file, the DRAM plot follows the NVM plot closely: both are limited by the GPU, not by
the memory technology.
In the case of multi-file writes, a slower bandwidth of around 1.4 GB s−1 can be seen

which seems to be caused by overhead in the NVM DIMM. With the memcopy command,
a bandwidth of around 1.5 GB s−1 for 512 SIMD Lanes can be achieved, so the file system
loses some but not much performance compared to the best case here. Interestingly, the
write bandwidth for the single file case does not suffer from this slowdown, achieving
a plateau of about 1.9 GB s−1. In comparison, the maximum memcopy bandwidth we
measured is also around this figure, albeit at slightly higher SIMD lane counts. We expect
the lock-read-modify-write-unlock pattern in the directory to be the cause for the main
performance difference between memcopy and file writing.

One interesting case are the blue plots for three files: The bandwidth at larger file sizes
for DRAM is consistently lower than for other multi-file writes, including two files, and
the DRAM bandwidth is consistently higher: This can be explained by the way the GPU
handles the files: firstly, it processes two files, achieving high bandwidth to DRAM and
lower bandwidth to NVM. The third file is then handled by a single workgroup, which
achieves lower bandwidth to DRAM and higher bandwidth to NVM.
In general, the performance in both the DRAM as well as the NVM case match the

behavior shown for the memcopy case, which means that the file system overhead does
not impact the bandwidth greatly.
The startup latency of a file system task for the GPU is similar to the latency of a

memcopy operation, as can be seen in Figure 6.5. The main bottleneck seems to be the
startup of the GPU, not the file system work. We expect smaller latency if the GPU
environment, including the shaders, is already set up.
Similar to the memcopy results, we measure a crossover point for being bandwidth-

limited versus being startup latency-limited of 2 MB of overall file content written. This

67

6 Evaluation

104 105 106 107 108 109

0

0.5

1

1.5

2

Overall File-Content Bytes Written

B
an

dw
id
th

[G
B
/s
]

NVM
DRAM

(a) Writing a Single File to NVM and DRAM

104 105 106 107 108 109

0

1

2

3

Overall File-Content Bytes Written

B
an

dw
id
th

[G
B
/s
]

1 file
2 files
3 files
4 files
6 files
8 files
10 files

(b) Writing 1, 2, 3, 4, 6, 8, and 10 files in parallel

to NVM (x) and DRAM (+)

Figure 6.4: GPU file write bandwidth to Intel Optane (x) and DRAM (+), per file size
and number of files. The bandwidth for one file is identical for Optane and
DRAM. This implies that for a single file, the GPU is the bottleneck, not
Optane.

is independent of single file size, even the test where we write 20 individual files shows
that point at the mark of 100 kB, see Figure 6.5. We also measure very little difference
between the latency of writing 1 up to 23 small, 4 kB files. We measure differences in the
completion time being of about 5 %, but the results do not show a clear upward trajectory
with more files. We assume the differences to be mostly noise.

In conclusion, these observations closely match the results from the memcopy experi-
ments. Given that a file write is mostly copying data around, this was expected, but the
additional work in managing the file system does not show important overhead.

6.4.2 CPU Usage

The main goal of GPU4FS is to allow for high-performance parallel file-system implemen-
tations while relieving the CPU. In this section, we evaluate the stress GPU4FS puts on
the CPU while running.
To evaluate, we run different file system tasks, either using GPU4FS or CPU-side file

system tasks like fio [22]. We observe the reported CPU usage, and we run a parallel
CPU benchmark to measure the slowdowns. In each case, we use taskset 0xf to limit
both the benchmark process as well as the process using the file system to the first four
cores. To avoid effects of the inter-processor interconnect, we make sure to use an Optane
DIMM that is directly connected to the CPU that houses the first four cores and is
connected to the GPU.
During execution of the GPU4FS file creation benchmark, the reported CPU usage

varies between 5 % and 40 % of one core, and averages at 12 %. To compare, the reported

68

6.4 File Write

104 105 106 107 108

10−2

10−1

100

File size [B]

T
im

e
to

co
m
pl
et
io
n
[s
]

(a) Time to finish a 20 file write, per file size

0 5 10 15 20

1.8

1.82

1.84

1.86

1.88

·10−3

Number of 4kB files

T
im

e
to

co
m
pl
et
io
n
[s
]

(b) Latency of writing n files of 4 kB each.

Figure 6.5: GPU file write latency. Like in the memcopy case, the crossover between
startup and bandwidth is at around 2 MB written as 20 times 100 kB files.
The startup latency also dwarves the write time for multiple files.

CPU usage for memcopy is at only 2 % to 5 % of one core, and for memset it is even
lower at 1 % to 2 %. We assume the usage figures to be caused by CPU side management
requirements like formatting the drive with a clean file system, verifying the results and
managing the GPU connection. The CPU overhead in the file system benchmark is larger
than for memcopy and memset, which explains the difference in CPU usage. Plots for the
CPU usage for memset, memcopy and 23 file writing can be seen in Figure 6.6. Each of
the processes ran 50 iterations and touched about 1 GB of NVM. We also reconfigured the
writing shader to use 5 workgroups with 64 elements each, which achieved over 1.8 GB s−1

in bandwidth, and therefore took less time. Additionally, the different runtimes caused by
the large bandwidth differences can clearly be seen. The most extreme cases are memset
with 211 s as the longest benchmark versus 29 s for memcopy.

As the parallel benchmark, we use a blender [40] render benchmark. This benchmark
occupies all cores, and the results scale very well with the available compute resources.
This blender render offers three subtests, called monster, junkshop, and classroom.
Each of the benchmarks displays a result in the unit samples per minute. We benchmark
blender version 3.2.1 using the blender benchmark tool ./benchmark-launcher-cli [41]
for Linux.
We compare six results, a reference run without anything running on the CPU, and

five file system processes running in parallel to the blender benchmark:

• A run with GPU memcopy,

• a run with GPU4FS,

• a run with multi-file optimized GPU4FS as described above,

69

6 Evaluation

0 50 100 150 200

0

20

40

60

80

Time [s]

U
sa
ge

[C
P
U

%
]

GPU4FS
GPU4FS-mT
memset
memcopy

Figure 6.6: Reported usage of CPU cores usage for memcopy, memset, and file write.
Additionally, a multiprocessing-optimized file write (GPU4FS-mT) is shown.
The usage is low, but file writing has significantly more overhead than memset
and memcopy. The peaks at beginning and end are caused by setup and
teardown.

• a run with the filesystem benchmark fio,

• and a run with four parallel dd [35] command line tools writing one file each to a
DAX-EXT4 file system directly on the NVM.

The benchmark results can be seen in Figure 6.7. The results show very competitive
CPU performance for the GPU-accelerated file systems. The worst case is a slowdown
of 7.5 % in the junkshop benchmark for the multi-file-optimized version of GPU4FS. In
comparison, the best case for GPU-side tasks, memcopy, only shows slowdowns of 0.42 %
to 4.7 %. The average overhead due to GPU management is around 4 %.

The CPU-side file system tasks on the other hand show slowdowns around a factor of
two. The best case, fio running in parallel to the classroom benchmark gets a slowdown
of 99.89 %, the worst case for the CPU-side tasks is dd in parallel to the junkshop
benchmark at a more than 113 % reduction.

During the benchmarks, the bandwidth to the NVM is identical to the bandwidth
without a benchmark running. For the GPU-accelerated tests, this is expected, as the
CPU is not used for writing. For the CPU side, we expected some slowdowns, but the
resulting equivalent of about two cores of CPU performance seems to be enough to
saturate the NVM dimms.

70

6.5 Discussion

ref cpy GPU mT fio dd
0

5

10

15

20

25

Sa
m
pl
es

pe
r
M
in
ut
e

monster
junkshop
classroom

Figure 6.7: Blender benchmark results with different parallel file system tasks running
on four cores. We show the reference results (ref), benchmark in parallel to
memcopy (cpy), with GPU4FS (GPU) and GPU4FS in its multi-file version
with more smaller threads (mT), and with fio and dd running in parallel on
the CPU.

6.5 Discussion

After having presented these results, we now want to discuss their significance towards
solving the problem, and the broader context of the results.

We identify the main problem that motivates this thesis to be the high CPU utilization
when writing synchronously to Optane, which restricts parallel applications. We can verify
that this problem exists with our own measurements, e.g., as shown with the benchmark
numbers of fio [22] and dd [35] in Figure 6.7.
In contrast to the state of the art, GPU4FS demonstrates an at least 2x increase in

performance of a CPU-bound application running in parallel to file system tasks, as can
be seen in Figure 6.7. As shown in Figure 6.4, our solution also achieves competitive
bandwidth, especially if writing a single file at a time. We also measure that, under certain
circumstances, writing multiple files at full GPU bandwidth is possible. We consider
searching for different ways to exploit more parallelism while keeping single file operation
fast an interesting endeavour in the future.
A key factor to the GPU bandwidth to NVM is careful tuning into the bandwidth

sweetspot. A new GPU in the system therefore could move the system out of the sweetspot
if main performance characteristics change. A commercial-grade implementation therefore
needs to offer a way to retest the bandwidth, and offer a way to reconfigure the grade of
GPU parallelism. This might even be possible at runtime, if the bandwidth is measured
during execution.

Another observation is that the file write can not quite sustain the same speeds as the
memcopy operations for the same amount of SIMD lanes. We find two possible reasons

71

6 Evaluation

for this behavior: either the Optane DIMM suffers from some kind of read deficiency
when it is overloaded by parallel write accesses, or the critical section in the shared inode
explains the performance.
Currently, the implementation can either support fast writing of one to two files or

writing a few files in parallel, not both. Writing multiple files in parallel has the advantage
that small files can be written quickly in the name of latency without being blocked by
prior writes of large files.
The demonstrator also does not support fine-grained latency measurements. Low

latency operation is important when forced to handle large amounts of relatively small
files, e.g., when compiling large projects. Currently, the only statements we can make
are about the time between startup of the GPU task and the GPU signaling completion
through the completion flag in the command buffer, as explained in Section 4.3.3. Given
the measurements with 23 files processed by a single GPU command, as depicted in
Figure 6.5, we assume that the time for setting up the shader dwarves the time that a
single file system operation takes. However, without extended tests, we cannot verify this
claim.
Additionally, the demonstrator is quite limited in its feature set. It can only append

new files to a pre-existing directory, and cannot modify the file system, e.g., by deleting
files or by creating directories. Our evaluation therefore focusses on file content writes.
This means that the results we present are dominated by the relatively high-performance
copying of data from DRAM to NVM. This assumption is backed by the observation that
our file system measurements closely match the numbers observed in the memcopy tests,
see Section 6.2.
In modern file systems, features more tailored towards the GPU have appeared, in

particular RAID, checksumming, and encryption. These tasks are all easily and massively
parallelizable. However, our demonstrator also does not implement these features, therefore
we cannot yet evaluate whether this assumption holds in a file system context.

Alleviating these issues, namely parallelization, latency measurement capabilities, and
feature set deficiencies, seems to be a worthwile task in the future. If the results match
our expectations, using GPU acceleration for all kinds of file systems would offer another
tool to speed up this ever-more CPU-intensive task.
A decision we made early into the project was selecting a GPU as the accelerator,

as GPUs are commodity hardware and GPU driver modifications are relatively simple.
GPUs, however, are not tailored well to file system tasks. As presented in Section 5.5, a
major portion of the GPU code for the file system management is single-threaded. This
means that during the management tasks, major parts of the GPU are unused. Therefore,
now that the basic idea has proven to be worthwile, we expect specialized hardware like an
FPGA to be an interesting area for further research. Specialized hardware could contain
parts optimized for sequential management tasks, and other parts optimized for the highly
parallel copy operations. Combined with the support for all file system features, one
could construct small, efficient, full-scale accelerators for modern file systems like ZFS
that can be inserted between the CPU and the storage media.

In conclusion, we show that the aim of the thesis, namely meaningfully reducing CPU
utilization for NVM-based file systems using a GPU, can be attained under certain

72

6.5 Discussion

circumstances. Our evaluation also shows valuable areas for future research: We consider
latency testing and testing of meta data changes to be simple next steps. In the longer
term, we want to suggest scaling up the implementation to the feature sets of modern file
systems, or even changing the type of the accelerator to specialized hardware.

Observations about Optane Prior work [31] has shown that Optane suffers from reduced
bandwidth if accessed by too many parallel CPU threads. Therefore, we expected our
GPU-based solution to eventually hit a similar ceiling in bandwidth, and then to slowly
degrade. Instead, as Figure 6.1 shows, the bandwidth reaches a clear peak after which it
breaks down quickly to about a third of the performance. Additionally, the bandwidth
limitation shown with the GPU is much more pronounced as with the CPU. Interestingly,
DRAM suffers from a similar slowdown, just at a higher bandwidth and higher SIMD
lane count. Whether this is an effect of DRAM or PCIe is not clear, though, as the
bandwidth limit of eight lanes of PCIe Gen3 at 8 GB s−1 per direction is similar to the
peak performance of DRAM at over 6 GB s−1.

We assume that Optane’s bandwidth breakdown is caused by overflowing write queues
either in the memory controllers leading to the Optane DIMM or in the DIMM itself.
A high number of SIMD lanes would fill the queues quickly and then stall the memory
controller. The stall would be communicated to the GPU, which waits for a continuation
signal. Because of high parallelism, the queues would fill rapidly again, so the limit shows
the bandwidth including repeated stalls. The bandwidth plateau of memset is higher than
the limit of memcopy. We assume the reason to be that another minor latency penalty is
taken when the GPU also has to load data from main memory, while other SIMD lanes
fill up the write queues again.

Our observations might also explain the poor performance of Intel I/OAT when writing
to Optane [38]. At peak DRAM performance, our measurements show a bandwidth of
about 500 MB s−1, which is very close to the bandwidth Intel I/OAT shows. Similarily, the
memset bandwidth also hovers around this figure, and shows unexpectedly low bandwidth
for the number of SIMD lanes where Optane exhibits the highest numbers for memcopy,
see Figure 6.3. We assume that Intel tuned the grade of parallelism of their I/OAT
subsystem for peak DRAM performance, which happens to be unfit for Optane DIMMs.
To the best of our knowledge, the grade of parallelism in I/OAT is not configurable in
software. With modifications in hardware, Intel should be able to improve the I/OAT
and Optane bandwidth greatly.

The last major observation we make is about the bandwidth plateaus that memset and
memcopy reach with a high number of SIMD lanes. This plateau does not seem to be
caused by either the GPU or the interconnect, as the DRAM numbers show significant
changes. This holds in both the memcopy case, see Figure 6.1, and in the memset case,
see Figure 6.3. Therefore, we assume the plateau to be an intrinsic characteristic of the
Optane DIMM.
Further studies into these performance characteristics can be an interesting area for

future research.

73

6 Evaluation

GPU4FS Outside of Optane Memory We evaluate GPU4FS against a system equipped
with Intel Optane DIMMs as the storage medium. Other storage media, such as NVMe
SSDs, have also gained high usage in the market, and accelerating file systems on such
media could be interesting, too. Additionally, Intel seems to have discontinued their line
of Optane Memory [55], which means that large-scale adoption of new Optane-and-GPU-
equipped systems is highly unlikely. Whether GPU acceleration works for file systems on
different storage media therefore is crucial to ensure the usability of the idea.
For NVMe SSDs, prior work discussed using the PCIe-P2PDMA feature [28], which

gives the GPU direct access to NVMe drives while bypassing DRAM completely. Similar
to our current design, the GPU would load data from storage into VRAM, process the
data there and forward it to DRAM. Using P2PDMA to accelerate current file systems
faces issues with regards to the file system caches in DRAM. These caches are flushes
asynchronously, which can lead to file system consistency issues [28]. Given that, in our
design, the GPU manages the caches, cache consistency can be guaranteed on the GPU
directly.

Alternatively, the new CXL standard offers shared-memory semantics between different
devices, not only the CPU [54]. For example, Samsung recently announced a CXL SSD
which offers memory semantics [54]. These devices could allow for similar code as used
before, so Optane promises to be usable as a development platform for future hardware.
In conclusion, GPU acceleration for file system tasks seems to be an interesting

opportunity for future optimizations, even outside of the NVM context in which we
evaluate it.

74

7 Future Work

The results of this thesis open new topics for interesting research:

Extending the Demonstrator In its current form, our demonstrator is not very versatile.
An evaluation of an extended implementation could prove the concept to a much larger
degree and with much higher confidence. This implementation should contain, among
others: meta data changes like file renames and file movements, a GPU-side block allocator,
and possibly even extended features like RAID.

Port to More Energy-Efficient Hardware In this thesis, we use a GPU because it is
easily programmable and configurable. This comes with the downside of higher energy
usage and relatively high purchase price, and leaves a lot of the GPU’s die unused. The
setup is also limited in that it passes its information through the PCIe bus twice, first
to the GPU for processing and then back to either the NVDIMM or DRAM. On the
other hand, more tailor-made hardware can alleviate these problems: It can be positioned
between the CPU and the NVDIMM, thus using bus resources only once in the transaction.
Custom hardware also needs only those resources that are actually required for the task.
Lastly, file system tasks contain major sequential code paths which are not well-suited for
GPUs, but can be improved with custom hardware, e.g., containing task-optimized CPU
cores.
All in all, custom hardware, e.g., as implemented in an FPGA or ASIC, promises a

more efficient, faster implementation that also uses less bus resources.

Exploiting more GPU Parallelism The parallel nature of the GPU requires that the
number of SIMD lanes per workgroup needs to be preconfigured. Together with the slim
window for efficient NVM writes from GPU, this poses problems for either few or many
parallel files. A solution could be to implement an API workaround, which allows for
dynamic workgroup sizing.

Exploring Intel I/OAT vs Memset vs Memcopy Bandwidth The different technologies
built for highly parallel memory operations, like Intel I/OAT and the memset and memcopy
behaviors all show a very similar performance for highly parallel requests, which hints at
a general issue with the Optane DIMMs. Verifying this assumption and in turn, finding
ways to limit the parallelism and to thereby increasing performance can be an interesting
endeavour for future work.

75

8 Conclusion

To conclude, in this work we presented GPU4FS, a novel GPU-accelerated NVM file
system built to relieve the CPU. File systems in modern storage applications use significant
compute resources which could be used for other applications. GPU4FS aims to relieve
this congestion by offloading the file system management to external general-purpose
hardware, thus freeing up the compute resources for actual compute tasks.
In our work, we described the design decisions that guide us to our drafted full-scale

GPU4FS implementation. We used our design to implement a demonstrator for the
concept, and evaluated it in both high and low CPU utilization scenarios.
Our evaluation showed that a GPU-accelerated file system is indeed feasible: We

achieved more than 80 % of maximum Optane write bandwidth while using a GPU
instead of a CPU, all while keeping the reported CPU usage below 5 % of a single core.
We measured a startup latency of the GPU at about 1.8 ms. At 2 MB or above, the
startup latency was dwarfed by the write bandwidth to Optane.

With this result, we implemented the GPU-side file system, and evaluated its feasibility.
GPU4FS still achieved the same bandwidth figures as our write tests before, all while
keeping reported CPU utilization low, hovering at an average of about 12 %. The startup
latency also stayed similar to the one measured with the write tests. A small file operation
was very fast, and the GPU could handle multiple small files as soon as it is set up.

We verified these results against a parallel blender rendering process. The CPU-side file
systems slowed down the render by a factor of two or more, all while being only marginally
faster than the GPU4FS demonstrator. On the other hand, the largest slowdown we
measured with a full-speed GPU4FS running in parallel is only at about 7.5 %.

Our work motivates future work into file system accelerators. A fully-featured modern
file system could be implemented on the GPU while focussing on the parallel tasks in
such a system. Alternatively, we suggest porting the file system accelerator to specialized
hardware.

77

Bibliography

[1] David A. Patterson, Garth Gibson, and Randy H. Katz. “A Case for Redundant
Arrays of Inexpensive Disks (RAID)”. In: Proceedings of the 1988 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’88. Chicago, Illinois,
USA: Association for Computing Machinery, 1988, pp. 109–116. isbn: 0897912683.
doi: 10.1145/50202.50214. url: https://doi.org/10.1145/50202.50214.

[2] Mendel Rosenblum and John K. Ousterhout. “The Design and Implementation of
a Log-Structured File System”. In: ACM Trans. Comput. Syst. 10.1 (Feb. 1992),
pp. 26–52. issn: 0734-2071. doi: 10.1145/146941.146943. url: https://doi.
org/10.1145/146941.146943.

[3] Margo I Seltzer et al. “File System Logging versus Clustering: A Performance
Comparison.” In: USENIX. 1995, pp. 249–264.

[4] Intel Corporation. Accelerated Graphics Port Interface Specification. 1998. url:
http://esd.cs.ucr.edu/webres/agp20.pdf (visited on 06/22/2022).

[5] Jeff Bonwick et al. The Zettabyte File System. 2002. url: https://www.cs.
hmc.edu/~rhodes/courses/cs134/fa20/readings/The%20Zettabyte%20File%
20System.pdf (visited on 06/22/2022).

[6] Karthikeyan Vaidyanathan and Dhabaleswar K. Panda. “Benefits of I/O Acceleration
Technology (I/OAT) in Clusters”. In: 2007 IEEE International Symposium on
Performance Analysis of Systems Software. 2007, pp. 220–229. doi: 10.1109/
ISPASS.2007.363752.

[7] M Taniyama et al. “Analysis of the Y2K problem from the viewpoint of risk commu-
nication”. In: WIT Transactions on Information and Communication Technologies.
Vol. 39. WIT Press, 2008, pp. 225–239.

[8] Xiao-Yu Hu et al. “Write Amplification Analysis in Flash-Based Solid State Drives”.
In: Proceedings of SYSTOR 2009: The Israeli Experimental Systems Conference.
SYSTOR ’09. Haifa, Israel: Association for Computing Machinery, 2009. isbn:
9781605586236. doi: 10.1145/1534530.1534544. url: https://doi.org/10.
1145/1534530.1534544.

[9] Adrian M. Caulfield et al. “Providing Safe, User Space Access to Fast, Solid State
Disks”. In: SIGPLAN Not. 47.4 (Mar. 2012), pp. 387–400. issn: 0362-1340. doi:
10.1145/2248487.2151017. url: https://doi.org/10.1145/2248487.2151017.

[10] Jianxi Chen et al. “FSMAC: A file system metadata accelerator with non-volatile
memory”. In: 2013 IEEE 29th Symposium on Mass Storage Systems and Technologies
(MSST). 2013, pp. 1–11. doi: 10.1109/MSST.2013.6558440.

79

https://doi.org/10.1145/50202.50214
https://doi.org/10.1145/50202.50214
https://doi.org/10.1145/146941.146943
https://doi.org/10.1145/146941.146943
https://doi.org/10.1145/146941.146943
http://esd.cs.ucr.edu/webres/agp20.pdf
https://www.cs.hmc.edu/~rhodes/courses/cs134/fa20/readings/The%20Zettabyte%20File%20System.pdf
https://www.cs.hmc.edu/~rhodes/courses/cs134/fa20/readings/The%20Zettabyte%20File%20System.pdf
https://www.cs.hmc.edu/~rhodes/courses/cs134/fa20/readings/The%20Zettabyte%20File%20System.pdf
https://doi.org/10.1109/ISPASS.2007.363752
https://doi.org/10.1109/ISPASS.2007.363752
https://doi.org/10.1145/1534530.1534544
https://doi.org/10.1145/1534530.1534544
https://doi.org/10.1145/1534530.1534544
https://doi.org/10.1145/2248487.2151017
https://doi.org/10.1145/2248487.2151017
https://doi.org/10.1109/MSST.2013.6558440

Bibliography

[11] DRI Developers. Graphics Address Re-Mapping Table (GART). 2013. url: https:
//dri.freedesktop.org/wiki/GART/ (visited on 06/22/2022).

[12] Lokesh Gidra et al. “A Study of the Scalability of Stop-the-World Garbage Collectors
on Multicores”. In: SIGPLAN Not. 48.4 (Mar. 2013), pp. 229–240. issn: 0362-1340.
doi: 10.1145/2499368.2451142. url: https://doi.org/10.1145/2499368.
2451142.

[13] Ohad Rodeh, Josef Bacik, and Chris Mason. “BTRFS: The Linux B-Tree Filesystem”.
In: ACM Trans. Storage 9.3 (Aug. 2013). issn: 1553-3077. doi: 10.1145/2501620.
2501623. url: https://doi.org/10.1145/2501620.2501623.

[14] ScotXW. Illustrates the differences between the Gallium3D and the Direct Rendering
Infrastructure graphics driver models
By ScotXW - Own Work, CC BY-SA 3.0. 2013. url: https://commons.wikimedia.org/
w/index.php?curid=27894555 (visited on 08/03/2022).

[15] Mark Silberstein et al. “GPUfs: Integrating a File System with GPUs”. In: SIGARCH
Comput. Archit. News 41.1 (Mar. 2013), pp. 485–498. issn: 0163-5964. doi: 10.
1145/2490301.2451169. url: https://doi.org/10.1145/2490301.2451169.

[16] Simon Peter et al. “Towards High-Performance Application-Level Storage Manage-
ment”. In: Proceedings of the 6th USENIX Conference on Hot Topics in Storage and
File Systems. HotStorage’14. Philadelphia, PA: USENIX Association, 2014, p. 7.
url: https://dl.acm.org/doi/10.5555/2696578.2696585.

[17] Kun Tian, Yaozu Dong, and David Cowperthwaite. “A Full GPU Virtualization Solu-
tion with Mediated Pass-Through”. In: 2014 USENIX Annual Technical Conference
(USENIX ATC 14). Philadelphia, PA: USENIX Association, June 2014, pp. 121–
132. isbn: 978-1-931971-10-2. url: https://www.usenix.org/conference/atc14/
technical-sessions/presentation/tian.

[18] Haris Volos et al. “Aerie: Flexible File-System Interfaces to Storage-Class Memory”.
In: Proceedings of the Ninth European Conference on Computer Systems. EuroSys
’14. Amsterdam, The Netherlands: Association for Computing Machinery, 2014.
isbn: 9781450327046. doi: 10.1145/2592798.2592810. url: https://doi.org/
10.1145/2592798.2592810.

[19] Qiumin Xu et al. “Performance Analysis of NVMe SSDs and Their Implication
on Real World Databases”. In: Proceedings of the 8th ACM International Systems
and Storage Conference. SYSTOR ’15. Haifa, Israel: Association for Computing
Machinery, 2015. isbn: 9781450336079. doi: 10.1145/2757667.2757684. url:
https://doi.org/10.1145/2757667.2757684.

[20] James Bornholt et al. “Specifying and Checking File System Crash-Consistency
Models”. In: SIGPLAN Not. 51.4 (Mar. 2016), pp. 83–98. issn: 0362-1340. doi:
10.1145/2954679.2872406. url: https://doi.org/10.1145/2954679.2872406.

80

https://dri.freedesktop.org/wiki/GART/
https://dri.freedesktop.org/wiki/GART/
https://doi.org/10.1145/2499368.2451142
https://doi.org/10.1145/2499368.2451142
https://doi.org/10.1145/2499368.2451142
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1145/2501620.2501623
https://commons.wikimedia.org/w/index.php?curid=27894555
https://commons.wikimedia.org/w/index.php?curid=27894555
https://doi.org/10.1145/2490301.2451169
https://doi.org/10.1145/2490301.2451169
https://doi.org/10.1145/2490301.2451169
https://dl.acm.org/doi/10.5555/2696578.2696585
https://www.usenix.org/conference/atc14/technical-sessions/presentation/tian
https://www.usenix.org/conference/atc14/technical-sessions/presentation/tian
https://doi.org/10.1145/2592798.2592810
https://doi.org/10.1145/2592798.2592810
https://doi.org/10.1145/2592798.2592810
https://doi.org/10.1145/2757667.2757684
https://doi.org/10.1145/2757667.2757684
https://doi.org/10.1145/2954679.2872406
https://doi.org/10.1145/2954679.2872406

Bibliography

[21] Jian Xu and Steven Swanson. “NOVA: A Log-structured File System for Hybrid
Volatile/Non-volatile Main Memories”. In: 14th USENIX Conference on File and
Storage Technologies (FAST 16). Santa Clara, CA: USENIX Association, Feb.
2016, pp. 323–338. isbn: 978-1-931971-28-7. url: https://www.usenix.org/
conference/fast16/technical-sessions/presentation/xu.

[22] Jens Axboe. FIO Flexible I/O tester. 2017. url: https://fio.readthedocs.io/
en/latest/fio_doc.html (visited on 02/04/2022).

[23] Youngjin Kwon et al. “Strata: A Cross Media File System”. In: Proceedings of
the 26th Symposium on Operating Systems Principles. SOSP ’17. Shanghai, China:
Association for Computing Machinery, 2017, pp. 460–477. isbn: 9781450350853. doi:
10.1145/3132747.3132770. url: https://doi.org/10.1145/3132747.3132770.

[24] Remzi H Arpaci-Dusseau and Andrea C Arpaci-Dusseau. Operating systems: Three
easy pieces. Arpaci-Dusseau Books LLC Boston, 2018.

[25] PASC. The Open Group Base Specifications Issue 7, 2018 edition. 2018. url: https:
//pubs.opengroup.org/onlinepubs/9699919799/ (visited on 08/05/2022).

[26] Arkan Alkamil and Darshika G. Perera. “Efficient FPGA-Based Reconfigurable
Accelerators for SIMON Cryptographic Algorithm on Embedded Platforms”. In: 2019
International Conference on ReConFigurable Computing and FPGAs (ReConFig).
2019, pp. 1–8. doi: 10.1109/ReConFig48160.2019.8994803. url: https://www.
inesc-id.pt/ficheiros/publicacoes/8197.pdf.

[27] AMD. https://www.amd.com/system/files/documents/rdna-whitepaper.pdf. 2019.
url: https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
(visited on 02/05/2022).

[28] Shai Bergman et al. “SPIN: Seamless operating system integration of peer-to-peer
DMA between SSDs and GPUs”. In: ACM Transactions on Computer Systems
(TOCS) 36.2 (2019), pp. 1–26.

[29] Roberto Cavicchioli et al. “Novel Methodologies for Predictable CPU-To-GPU Com-
mand Offloading”. In: 2019. url: https://drops.dagstuhl.de/opus/volltexte/
2019/10759/pdf/LIPIcs-ECRTS-2019-22.pdf.

[30] John L Hennessy and David A Patterson. Computer architecture: a quantitative
approach. Elsevier, 2019.

[31] Joseph Izraelevitz et al. Basic Performance Measurements of the Intel Optane
DC Persistent Memory Module. 2019. doi: 10.48550/ARXIV.1903.05714. url:
https://arxiv.org/abs/1903.05714.

[32] Rohan Kadekodi et al. “SplitFS: Reducing Software Overhead in File Systems for Per-
sistent Memory”. In: Proceedings of the 27th ACM Symposium on Operating Systems
Principles. SOSP ’19. Huntsville, Ontario, Canada: Association for Computing Ma-
chinery, 2019, pp. 494–508. isbn: 9781450368735. doi: 10.1145/3341301.3359631.
url: https://doi.org/10.1145/3341301.3359631.

81

https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://doi.org/10.1145/3132747.3132770
https://doi.org/10.1145/3132747.3132770
https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/
https://doi.org/10.1109/ReConFig48160.2019.8994803
https://www.inesc-id.pt/ficheiros/publicacoes/8197.pdf
https://www.inesc-id.pt/ficheiros/publicacoes/8197.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://drops.dagstuhl.de/opus/volltexte/2019/10759/pdf/LIPIcs-ECRTS-2019-22.pdf
https://drops.dagstuhl.de/opus/volltexte/2019/10759/pdf/LIPIcs-ECRTS-2019-22.pdf
https://doi.org/10.48550/ARXIV.1903.05714
https://arxiv.org/abs/1903.05714
https://doi.org/10.1145/3341301.3359631
https://doi.org/10.1145/3341301.3359631

Bibliography

[33] Ivy B. Peng, Maya B. Gokhale, and Eric W. Green. “System Evaluation of the Intel
Optane Byte-Addressable NVM”. In: Proceedings of the International Symposium
on Memory Systems. MEMSYS ’19. Washington, District of Columbia, USA: Asso-
ciation for Computing Machinery, 2019, pp. 304–315. isbn: 9781450372060. doi:
10.1145/3357526.3357568. url: https://doi.org/10.1145/3357526.3357568.

[34] Takeshi Yoshimura, Tatsuhiro Chiba, and Hiroshi Horii. “EvFS: User-Level, Event-
Driven File System for Non-Volatile Memory”. In: Proceedings of the 11th USENIX
Conference on Hot Topics in Storage and File Systems. HotStorage’19. Renton, WA,
USA: USENIX Association, 2019, p. 16. url: https://dl.acm.org/doi/10.5555/
3357062.3357083.

[35] GNU Developers. dd - convert and copy a file. 2020. url: https://man7.org/
linux/man-pages/man1/dd.1.html (visited on 08/06/2022).

[36] Sebastian Reimers. “Extension of an accelerator-friendly in-memory file system for
persistent storage”. In: (2020). url: http://os.inf.tu-dresden.de/papers_ps/
reimers_bachelor.pdf.

[37] Jian Yang et al. “An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory”. In: 18th USENIX Conference on File and Storage Technologies (FAST 20).
Santa Clara, CA: USENIX Association, Feb. 2020, pp. 169–182. isbn: 978-1-939133-
12-0. url: https://www.usenix.org/conference/fast20/presentation/yang.

[38] Lukas Werling, Christian Schwarz, and Frank Bellosa. Towards Less CPU-Intensive
PMEM File Systems. Talk presented at Fachgruppentreffen Betriebssysteme 2021,
Trondheim. 2021. url: https : / / www . betriebssysteme . org / wp - content /
uploads/2021/09/FGBS_Herbst2021_Folien_Werling.pdf.

[39] Apple.Metal - Accelerating graphics and much more. 2022. url: https://developer.
apple.com/metal/ (visited on 08/05/2022).

[40] Blender Developers. blender. 2022. url: https://www.blender.org/ (visited on
08/05/2022).

[41] Blender Developers. Blender Benchmark. 2022. url: https://opendata.blender.
org/ (visited on 08/05/2022).

[42] Freedesktop Developers. Nouveau: Accelerated Open Source driver for nVidia cards.
2022. url: https://nouveau.freedesktop.org/ (visited on 06/27/2022).

[43] Freedesktop Developers. RADV
RADV is a Vulkan driver for AMD GCN/RDNA GPUs. 2022. url: https://docs.mesa3d.
org/drivers/radv.html (visited on 08/02/2022).

[44] Linux Developers. drm/amdgpu AMDgpu driver. 2022. url: https://www.kernel.
org/doc/html/latest/gpu/amdgpu/index.html (visited on 06/27/2022).

[45] Linux Developers. drm/i915 Intel GFX Driver. 2022. url: https://www.kernel.
org/doc/html/latest/gpu/i915.html (visited on 06/27/2022).

[46] Mesa Developers. libdrm Direct Rendering Manager library and headers. 2022. url:
https://gitlab.freedesktop.org/mesa/drm (visited on 08/05/2022).

82

https://doi.org/10.1145/3357526.3357568
https://doi.org/10.1145/3357526.3357568
https://dl.acm.org/doi/10.5555/3357062.3357083
https://dl.acm.org/doi/10.5555/3357062.3357083
https://man7.org/linux/man-pages/man1/dd.1.html
https://man7.org/linux/man-pages/man1/dd.1.html
http://os.inf.tu-dresden.de/papers_ps/reimers_bachelor.pdf
http://os.inf.tu-dresden.de/papers_ps/reimers_bachelor.pdf
https://www.usenix.org/conference/fast20/presentation/yang
https://www.betriebssysteme.org/wp-content/uploads/2021/09/FGBS_Herbst2021_Folien_Werling.pdf
https://www.betriebssysteme.org/wp-content/uploads/2021/09/FGBS_Herbst2021_Folien_Werling.pdf
https://developer.apple.com/metal/
https://developer.apple.com/metal/
https://www.blender.org/
https://opendata.blender.org/
https://opendata.blender.org/
https://nouveau.freedesktop.org/
https://docs.mesa3d.org/drivers/radv.html
https://docs.mesa3d.org/drivers/radv.html
https://www.kernel.org/doc/html/latest/gpu/amdgpu/index.html
https://www.kernel.org/doc/html/latest/gpu/amdgpu/index.html
https://www.kernel.org/doc/html/latest/gpu/i915.html
https://www.kernel.org/doc/html/latest/gpu/i915.html
https://gitlab.freedesktop.org/mesa/drm

Bibliography

[47] Romain ’Creak’ Failliot, Tobias Droste, and Robin McCorkell. mesamatrix. 2022.
url: https://mesamatrix.net/ (visited on 08/05/2022).

[48] Khronos® Group. Khronos Vulkan Registry. 2022. url: https : / / registry .
khronos.org/vulkan/ (visited on 08/05/2022).

[49] The Khronos® Group. OpenCL Overview. 2022. url: https://www.khronos.org/
opencl/ (visited on 08/05/2022).

[50] The Khronos® Group. OpenGL Overview. 2022. url: https://www.khronos.org/
opengl/ (visited on 08/05/2022).

[51] LSoft Technologies Inc. NTFS Multiple Data Streams. 2022. url: http://ntfs.
com/ntfs-multiple.htm (visited on 08/04/2022).

[52] Microsoft. DirectX graphics and gaming. 2022. url: https://docs.microsoft.
com/en-us/windows/win32/directx (visited on 08/05/2022).

[53] NVIDIA. CUDA Zone. 2022. url: https://developer.nvidia.com/cuda-zone
(visited on 08/05/2022).

[54] Anton Shilov. Samsung’s Memory-Semantic CXL SSD Brings a 20X Performance
Uplift. 2022. url: https://www.tomshardware.com/news/samsung- memory-
semantic-cxl-ssd-brings-20x-performance-uplift (visited on 08/05/2022).

[55] Ryan Smith. Intel To Wind Down Optane Memory Business - 3D XPoint Storage
Tech Reaches Its End. 2022. url: https://www.anandtech.com/show/17515/
intel-to-wind-down-optane-memory-business (visited on 08/05/2022).

[56] AOSP developers. Android File Based Encryption. June 06, 2022. url: https://
source.android.com/security/encryption/file-based (visited on 06/17/2022).

[57] FUSE developers. Filesystem in Userspace. May 06, 2022. url: https://github.
com/libfuse/libfuse (visited on 06/17/2022).

[58] Linux kernel developers. EXT4 Linux kernel wiki. September 20, 2016. url: https:
//ext4.wiki.kernel.org/index.php/Main_Page (visited on 06/17/2022).

[59] LUKS developers. Linux Unified Key Setup Website. April 16, 2022. url: https:
//gitlab.com/cryptsetup/cryptsetup/blob/master/README.md (visited on
06/17/2022).

[60] SSHFS developers. SSHFS. May 26, 2022. url: https://github.com/libfuse/
sshfs (visited on 06/17/2022).

[61] Areej Syed. DDR4 vs GDDR6 Memory: Which One is Faster? January 23, 2022.
url: https://www.hardwaretimes.com/ddr4-vs-gddr6-memory-which-one-is-
faster/ (visited on 06/14/2022).

83

https://mesamatrix.net/
https://registry.khronos.org/vulkan/
https://registry.khronos.org/vulkan/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opengl/
https://www.khronos.org/opengl/
http://ntfs.com/ntfs-multiple.htm
http://ntfs.com/ntfs-multiple.htm
https://docs.microsoft.com/en-us/windows/win32/directx
https://docs.microsoft.com/en-us/windows/win32/directx
https://developer.nvidia.com/cuda-zone
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
https://www.anandtech.com/show/17515/intel-to-wind-down-optane-memory-business
https://www.anandtech.com/show/17515/intel-to-wind-down-optane-memory-business
https://source.android.com/security/encryption/file-based
https://source.android.com/security/encryption/file-based
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://ext4.wiki.kernel.org/index.php/Main_Page
https://ext4.wiki.kernel.org/index.php/Main_Page
https://gitlab.com/cryptsetup/cryptsetup/blob/master/README.md
https://gitlab.com/cryptsetup/cryptsetup/blob/master/README.md
https://github.com/libfuse/sshfs
https://github.com/libfuse/sshfs
https://www.hardwaretimes.com/ddr4-vs-gddr6-memory-which-one-is-faster/
https://www.hardwaretimes.com/ddr4-vs-gddr6-memory-which-one-is-faster/

Glossary

ACL Access Control List, used to specify detailed access rights. 36

AGP Accelerated Graphics Port, a GPU interconnection bus and predecessor of PCIe. 22

AMD Major semiconductor company and competitor of Intel. 45, 87

AMDGPU Driver for modern AMD GPUs, both in user and kernel space. 45, 88

Android a mobile Linux distribution. 18, 86

API Application Programming Interface, description to program against. 11, 85–89

Apple a major OS vendor that also ships other software like Metal. 22, 87

ASIC Application Specific Integrated Circuit, a type of custom silicon. 75

BO Buffer Object, wraps a buffer that the GPU can use. 47

BTRFS B-TRee File System, a modern file system that is license-compatible with Linux.
16, 17, 25

C++ now a modern bare metal CPU programming language. 45, 86, 87

CPU Central Processing Unit, the brain of the computer. Used both for computation
and configuration. 11, 85, 87

CPU4FS CPU fo(u)r FS, a CPU side implementation of GPU4FS for testing and debug-
ging purposes. 45

CUDA previously Compute Unified Device Architecture, an NVidia developed-API to
use their GPUs for compute purposes. 11, 22

CXL Compute Express Link, an open interconnect standard built on top of PCIe.. 74

DAX Direct Access, file system mode where file system caches are bypassed. 25

DDR Double Data Rate, modern protocol for DRAM communication. Optimized for
both latency and throughput. 14, 86

DIMM Dual Inline Memory Module, a single mechanical memory component that can
be put into a socket. 11

85

Glossary

DirectX a Microsoft-exclusive graphics API. 21, 87

DMA Direct Memory Access, allows devices direct access to main memory without having
to go through the CPU. 11, 14, 87, 88

DRAM Dynamic RAM, usually used as main memory for most devices. 11, 85

DRM Direct Rendering Manager, allows more direct access to GPU resources, including
user-space configuration. 23

EXT4 The fourth installment of the extended file system, a family of file systems used in
Linux. 16, 25, 34

extent A contiguous sequence of blocks, used for better sequential reads and writes while
keeping overhead low. 16

FBE File-Based Encryption, an Android feature for fine-grained encryption. 18

FPGA Field Programmable Gate Array, hardware which can be reprogrammed after it
has been shipped. 28, 75, 87

FS File System, maps linear data on storage to files data, folders, and other metadata.
15, 85, 87, 89

FUSE File system in USEr space, a Linux subsystem that forwards VFS calls back into
user space. 20

g++ a C++ compiler. 45

GART Graphics Address Remapping Table, translates physical GPU addresses to physical
CPU addresses, or to IO addresses if an IOMMU is present. 22, 46, 87

GDDR Graphics DDR, modern standard of GPU memory. Optimized mostly for through-
put. 14

GEM Graphics Execution Manager, one of Linux’ graphic memory managers. 23, 89

GLSL OpenGL Shader Language, can be used to program not only OpenGL shaders, but
also Vulkan. 45, 51, 86

glslc compiler for GLSL to SPIR-V, built by Google. 45

Google an internet startup that ships a somewhat relevant mobile OS called Android.
45, 86

GPGPU General Purpose Computation on GPU, using the parallel computational re-
sources for non-graphics applications. 22

86

Glossary

GPU Graphics Processing Unit, used to compute graphics and other parallel applications.
Usually needs a CPU for configuration and management. 11, 21, 85–89

GPU4FS GPU fo(u)r FS, a novel GPU accelerated NVM file system written in C++ and
Vulkan. 12, 31, 85

GTT Graphics Translation Table, see GART. 22

HDD Hard Drive Disk, uses rotating magnetic metal plates to store information. 13, 88

I/OAT Intel Input/Output Acceleration Technology, DMA controllers initially designed
to accelerate network communication.. 14

inode stores all information that is relevant for one file, except the file name.. 16, 34

Intel Major semiconductor company and competitor of AMD. 11, 14, 45, 85, 87, 88

IOMMU Input/Output MMU, translates what IO devices think are physical CPU ad-
dresses to actual physical CPU addresses. 46, 86

IPC Inter Processor Communication. Not to be confused with IPC. 87

IPC Inter Process Communication. Not to be confused with IPC. 20, 87

Lenovo a laptop manufacturer. 45

Linux A somewhat relevant OS. 19, 85, 86, 88, 89

Metal an Apple-only modern graphics API. 22, 85

Microsoft a major OS vendor that also ships other software like DirectX. 22

mmap Memory MAP, a system call that can map files and anonymous memory into the
virtual address space. 46

MMU Memory Management Unit, translates address spaces, for example virtual to
physical memory. 21, 46, 87

NOVA NVM-optimized log-structured file system. 26

NTFS New Technology File System, commonly used in the Windows operating system.
36

NVM Non-Volatile Memory. 14, 87, 88

NVMe NVM Express, a PCIe based storage protocol for fast SSDs. 13, 88, 89

OpenCL Open Compute Language, API to program compute accelerators with. Com-
monly used for GPUs or FPGAs. 11, 22

87

Glossary

OpenGL Open Graphics Library, an old vendor-independent graphics API that has
mostly kept up to date. 21, 86

Optane A RAM-like Non-Volatile Memory (NVM) storage technology developed by Intel.
11, 14

OS Operating system, the software that helps run useful code. Linux is a common
representative. 11, 85–88

P2PDMA Peer-to-Peer DMA, PCIe feature that allows different non-CPU devices to
communicate with each other. 74

PC Personal Computer, what you, the reader, are probably sitting in front of right now.
45

PCIe The Peripheral Component Interconnect Express is a common extension bus inside
of PCs, used to connect different components like NVMe SSDs or GPUs. 11, 13, 74,
85, 87, 88

POSIX Portable Operating System Interface, a specification for OS interfaces. 18

RADV RADeon Vulkan, Vulkan driver for GPUs running with AMDGPU. 45

RAID Redundant Array of Independent Disks, a technology that stores redundant infor-
mation to sustain a disk failure. 17

RAM Random Access Memory, volatile storage for all kinds of runtime data in a computer.
86, 89

Samsung Large Semiconductor company, producing, amongst others things, storage
media. 74

SATA Serial “AT Attachment”, an older protocol to connect storage like SSDs and HDDs.
89

SELinux Security-Enhanced Linux, hardened against some common attacks. 36

shader A program or process running on the GPU. 22

SIMD Single Instruction, Multiple Data: Process the same instruction stream on multiple
parallel registers. Each of these streams is called a SIMD lane. 21, 88

SIMD lane A single register lane inside a wide SIMD register. 21, 49, 88, 89

Solaris Operating System developed by SUN. 25

SPIR-V Standard Portable Intermediate Representation, an intermediate representation
of GPU program code that is GPU-independent. 45, 86

88

Glossary

SSD Solid State Drive, flash-based storage medium. Commonly connected via NVMe or
SATA. 11, 13, 87, 88

SSH Secure SHell, an encrypted network protocol. 89

sshfs SSH file system, a type of network file system. 20

SUN Defunct semiconductor and software company. 25, 88

TTM Translation Table Maps, another of Linux’ graphics memory managers, more
versatile than GEM. 23

VFS Virtual File System, abstracts different kernel drivers from the user/kernel interface.
19, 86

VGA Video Graphics Array, a connector and also protocol to connect a monitor to a
computer. 21

VRAM Video RAM, dedicated memory for graphics applications, optimized for band-
width. 12, 21

Vulkan Modern, close to the hardware API for both graphics and compute, mostly
focused on GPUs. 11, 22, 45, 86–88

workgroup A set of SIMD lanes that are bundled together and can communicate and
synchronize efficiently. 49

ZFS Zettabyte File System, complex FS developed for the server and datacenter market.
17, 25

89

	Abstract
	Contents
	Table of Contents
	List of Listings
	List of Figures

	Introduction
	Background
	Storage Devices
	Block Devices
	Byte-Addressable Storage
	Discussion

	File Systems
	General Structure
	Interfaces
	User Space vs Kernel Space
	Discussion

	GPUs
	Basic Structure
	Communication
	Programming Model
	Linux GPU Driver Stack

	Related Work
	File Systems
	Kernel-Space File Systems
	NVM User Space File Systems
	Discussion

	GPU
	GPU File Systems

	File System Accelerators
	Substep Accelerators
	FSMAC
	Moneta-D
	Discussion

	The Design of GPU4FS
	Two Minute Design Overview
	On-Disk Data Structures
	Blocks and Block Pointers
	Inode
	Directories
	Superblock

	Runtime
	User Space File System
	Command Buffer and Inter-Process Communication
	Writing to Disk
	Reading from Disk
	Memory Allocation
	Locking and Synchronization
	Kernel Communication
	File System Caches
	Journaling and Consistency

	Discussion

	Implementation
	GPU4FS on CPU
	GPU NVM Passthrough
	GPU Command Buffer Structure
	Command Buffer Layout
	The Metadata Command
	Parsing the Command Buffer

	Efficiently Writing NVM with the GPU
	GPU File System
	Lessons Learned

	Evaluation
	Test System
	Memcopy
	Memset
	File Write
	Bandwidth and Latency
	CPU Usage

	Discussion

	Future Work
	Conclusion
	Bibliography
	Glossary

