
Systems Design and Implementation
II.1 – L4 API Crash Course Part I

h

Jan Stoess

University of Karlsruhe

System Architecture Group, SS 2007

University of Karlsruhe

22 April 2009

Tuesdays 17:30-19:00 SR-134, 50.41 (AVG)
Thursdays 15:45-17:15 SR-134, 50.41 (AVG)

Based on slides by Jochen Liedtke and Kevin Elphinstone

L4 X.2 API Reference Manual

 Available from http://l4ka.org/
 Latest version always in the news box on the right

 Defines the kernel API + ABI
 System call semantics and parameters
 C++ style API definition

2© 2009 University of Karlsruhe, System
Architecture Group

y
 Data types
 Header file to include
 Generic programming interface
 Convenience programming interface
 Support functions

 Binary interface for supported architectures
 Does not describe how to use the kernel

Fundamental L4 Concepts

 Two abstractions
 Address Spaces

 Units of protection
 Resource management

 Threads
 Execution entities

3© 2009 University of Karlsruhe, System
Architecture Group

 Carry unique identifiers

 Two mechanisms
 Communication – IPC

 Synchronous, between threads
 Identification: thread ids

 Rights delegation – Mapping
 Address space construction via IPC
 FlexPages

 Architecture independent page abstraction
 Describe range of virtual address space

Fundamental L4 Concepts

 User-level pagers
 Kernel turns page faults into IPC message
 Establish mapping in reply

 User-level device drivers
 Device drivers run as unprivileged user threads
 Hardware interrupts are delivered via IPC

4© 2009 University of Karlsruhe, System
Architecture Group

 Hardware interrupts are delivered via IPC
 Unless used by the kernel internally, e.g. timer interrupt

 Acknowledge interrupt in reply
 User-level exception handlers

 Exceptions are delivered via IPC
 Unless used by the kernel internally, e.g. FPU virtualization

 Fix exception cause or modify faulting thread in reply
 Goal: No policy in kernel

 Makes kernel universal

Microkernel System Calls

KernelInterface
IPC
Unmap
ExchangeRegisters
ThreadSwitch
S h d l

5© 2009 University of Karlsruhe, System
Architecture Group

Schedule
SystemClock
ThreadControl
SpaceControl
ProcessorControl
MemoryControl

Initial Servers

 Created by kernel at boot time
 Sigma0

 Initial address space
 Root of all mappings
 “Owns” all physical memory

 Root task

6© 2009 University of Karlsruhe, System
Architecture Group

 First freely usable user thread
 Address space backed by sigma0

 Can perform privileged system calls
 ThreadControl
 SpaceControl
 ProcessorControl
 MemoryControl

Kernel Interface Page

 Kernel memory object in the address space of a task
 Placed on address space creation

 Location dictated by SpaceControl system call

 No page faults on access

 Contains information about the kernel and the machine

7© 2009 University of Karlsruhe, System
Architecture Group

 Contains information about the kernel and the machine
 API version, kernel features
 Kernel system call entry points
 Supported page sizes
 Format and number of thread IDs
 Memory layout – Physical memory, virtual address space
 Processors – core speed, bus speed
 ...

KernelInterface

 Locates the kernel interface page
 Special system call

 Illegal instruction on x86 – why?
 Doesn’t use KIP for calling
 Slow system call (expensive)

8© 2009 University of Karlsruhe, System
Architecture Group

void * L4_KernelInterface (L4_Word_t *ApiVersion,
L4_Word_t *ApiFlags,
L4_Word_t *KernelId)

 Returns
 Pointer to KIP
 API version and flags – revision, word width, endianess
 Kernel Id – identifies implementation

 Code, data

CodeThread
Execution
Path

Threads

9© 2009 University of Karlsruhe, System
Architecture Group

Data

Traditional Thread

 Abstraction for unit of execution
 Registers

 Current variables
 Instruction Pointer

 Next instruction to execute
Stack

CodeThread
Execution
Path

10© 2009 University of Karlsruhe, System
Architecture Group

 Stack
 Execution history of yet unreturned

procedures
 One stack frame per procedure

invocation

Data

Stack

L4 Thread = Thread + …

 A set of (virtual) registers and – see next slide
 A priority and a timeslice
 A unique thread identifier
 An associated address space

11© 2009 University of Karlsruhe, System
Architecture Group

 L4 provides a fixed number of threads in the entire
system
 Root task responsible for creating/deleting threads

and assigning them to address spaces
 System, User and “Hardware” threads

Virtual Registers

 Per-thread “register set” defined by the microkernel

 Map to real machine registers or memory locations
 Mapping depends on architecture and ABI

 IA-32: 1-3 virtual registers in GPRs, others in memory
 IA-64: 8 in GPRs

12© 2009 University of Karlsruhe, System
Architecture Group

 Three basic types
 Thread Control Registers (TCRs)

 Share information about threads between kernel and user level

 Message Registers (MRs)
 Contain the message (or description of it, e.g. region of memory)

 Buffer Registers (BRs)
 Specify where complex message parts are received

Thread Control Blocks (TCBs)

 State of a thread is stored in its thread control block
 Security considerations

 Some state can only be modified via a controlled interface
(system calls)
e.g., address space associated with the thread

 Other state can be freely accessible by user-level

13© 2009 University of Karlsruhe, System
Architecture Group

 Other state can be freely accessible by user level
applications without compromising the system
e.g., pager thread associated with the thread

 Put uncritical state in a user-level TCB (UTCB)
 more efficient access

Thread Control Registers

ErrorCode (ro, IPC)

IntendedReceiver (ro, IPC)

Virtual/ActualSender (rw, IPC)

ThreadWord0

ThreadWord1
 Stored in UTCB

 Pinned memory, no page faults on
access

 UTCB area dictated at address
space creation using SpaceControl

 UTCBs assigned via ThreadControl

14© 2009 University of Karlsruhe, System
Architecture Group

MyGlobalId (ro, Threads & IPC)

ProcessorNo (ro)

UserDefinedHandle (rw, Threads)

Pager (rw, VM)

ExceptionHandler (rw)

Preempt (rw)

XferTimeouts (rw, IPC)

Cop (wo)~
 Never access them directly

 Only modified via provided
programming interface

 Most TCRs are set/read in the context
of other actions (e.g. IPC)

Thread No (18) Version (14)

Interrupt No (18) 1 (14)

Global Thread Id

Global Interrupt Id

Thread Identifiers

 Global Identifiers
 Identify a thread uniquely within

the system
 No policy – freely assignable

 Local Identifiers

15© 2009 University of Karlsruhe, System
Architecture Group

Local Id/64 (26) 000000

Local Thread Id

 Identify a thread within an
address space
 Unique and useable only within an

address space
 Typically the address of the

thread’s UTCB
 Can translate one to another

 Special Identifiers
 nilthread – no thread
 anythread – wildcard

0 (32)

nilthread

-1 (32)

anythread

ThreadControl

 Create, destroy, or modify threads

 Determines a thread’s
 Global thread identifier
 Address space it executes in
 Scheduler (thread permitted to control scheduling parameters)

16© 2009 University of Karlsruhe, System
Architecture Group

 Pager (thread that receives page fault messages)
 Location of the UTCB within the address space’s allotted UTCB

area (See SpaceControl later)

 Threads can be created active or inactive
 Inactive

 Create and manipulate a new address space
 Allocate a new thread to an existing address space

ThreadControl

L4_Word_t L4_ThreadControl (L4_ThreadId_t dest,
L4_ThreadId_t SpaceSpecifier,
L4_ThreadId_t Scheduler,
L4_ThreadId_t Pager,
void * UtcbLocation)

 SpaceSpecifier != dest

17© 2009 University of Karlsruhe, System
Architecture Group

Creates thread dest in the address space of thread SpaceSpecifier
Note: implicit naming of address spaces

 SpaceSpecifier == dest
Creates thread dest in its own (new) address space

 SpaceSpecifier == nilthread
Deletes existing thread dest

 pager == nilthread
Inactive, otherwise active

Steps in Creating a New “Task”

 Task = Address Space + Thread
 A task has

 Thread state
 Identifier, IP, SP, pager, scheduler, UTCB location

 Address space state

18© 2009 University of Karlsruhe, System
Architecture Group

 Address space state
 UTCB area, kernel interface page area, redirector

 Code, data, and stack mapped to address space

Steps in Creating a New “Task”

1. Create an inactive thread in a new address space.

L4_ThreadControl (
task, /* new tid */
task, /* new space identifier */
me /* scheduler of new thread */

19© 2009 University of Karlsruhe, System
Architecture Group

me, /* scheduler of new thread */
L4_nilthread, /* pager = nil, inactive */
(void *) -1 /* NOP Utcb location */

);

Steps in Creating a New “Task”

2. Set location of KIP and UTCB area in the new address space.

L4_SpaceControl (
task,
0, /* control (ignore) */
kip_area,
utcb area,

KIP

UTCB

20© 2009 University of Karlsruhe, System
Architecture Group

_ ,
L4_anythread, /* redirector */
&control /* output (ignore) */

);

 kip_area and utcb_area are flexpage descriptors
 redirector = anythread

 Threads in the space can talk to all other threads
 control is an architecture-specific parameter, ignore for now

Steps in Creating a New “Task”

3. Specify the UTCB location and assign a pager to the new thread
to activate it.

L4_ThreadControl (
task, task, me,

KIP

UTCB

21© 2009 University of Karlsruhe, System
Architecture Group

pager, /* new pager */
(void *) utcb_base /* utcb location */

);

 The thread will wait for an IPC from the pager.
 The message must contain the IP and SP of the new thread.

Steps in Creating a New “Task”

4. Send an IPC to the new thread with the IP and SP in the first
two words of the message.

22© 2009 University of Karlsruhe, System
Architecture Group

 The thread will start executing at the received IP with the SP
set as received.

Adding extra inactive threads to a
task

 Use ThreadControl to assign new inactive threads to an existing
address space

L4_ThreadControl (
newtid, /* new thread id */

23© 2009 University of Karlsruhe, System
Architecture Group

ExistingId, /* address space identifier */
me, /* scheduler of new thread */
L4_nilthread, /* pager = nil, inactive */
(void *) -1 /* NOP Utcb location */

);

 Note: Can also add active threads

 Manipulating threads within an AS
 IP, SP
 User-defined handle
 Pager

 Suspend/resume (i.e. activate/deactivate)
 Convert thread IDs – local  global

ExchangeRegisters

24© 2009 University of Karlsruhe, System
Architecture Group

g

L4_ThreadId_t L4_ExchangeRegisters (
L4_ThreadId_t dest,
L4_Word_t control,
L4_Word_t sp, L4_Word_t ip,
L4_Word_t flags, L4_Word_t UserDefHandle,
L4_ThreadId_t pager,
L4_Word_t *old_control,
L4_Word_t *old_sp, L4_Word_t *old_ip,
L4_Word_t *old_flags, L4_Word_t *old_UserDefHandle,
L4_ThreadId_t *old_pager);

Thread management

 The microkernel only preserves the user-
level IP and SP
 ... and registers if preempted

 Everything else is managed by
user-level applications

Code

25© 2009 University of Karlsruhe, System
Architecture Group

user level applications
This means by you!
 User stack area

 Allocation, size, deallocation
 Thread identifiers

 Allocation, deallocation
 Entry point – initial IP/SP values
 Thread exit

Data

Stack of t1

Stack of t2

Stack corruption

 Common beginner’s problem
 Really weird failure scenarios

 First printf works, second fails
 Pointer messed up after calling foo()
 Random exception when returning

Code

26© 2009 University of Karlsruhe, System
Architecture Group

 ...
 Hard to diagnose/debug

 Corruption of completely unrelated
code and/or data

 Adding debug code makes problem
go away

 Works fine when single-stepping

DataStack

Communication

(Ignoring Address Spaces)

IPC Registers

 Message Registers
 64 “registers”
 Form a message
 Used to transfer

 Buffer Registers
 34 “registers”
 Specify where typed

items are received

28© 2009 University of Karlsruhe, System
Architecture Group

typed items and
untyped words
 Typed items

 StringItem
 MapItem
 GrantItem

 Typed items
 StringItem
 MapItem
 GrantItem

if any are permitted
to be in the message

Message Register Only IPC

MR13
...

MR63

MR12
MR11

MR13
...

MR63

MR12
MR11

Thread A Thread B

Message
transferred
from one
thread’s MRs

29© 2009 University of Karlsruhe, System
Architecture Group

MR9
MR10
MR11

MR8

MR5
MR6
MR7

MR4

MR1
MR2
MR3

MR0

MR9
MR10
MR11

MR8

MR5
MR6
MR7

MR4

MR1
MR2
MR3

MR0

to the other
thread’s MRs

Guaranteed to
to not cause
page faults

Overview of IPC operations

 L4_Ipc system call performs all IPC operations
 Arguments determine actual operation
 Helper functions for frequent operations (see <l4/ipc.h>)

 L4_Send
 Send a message to a thread (blocking)

30© 2009 University of Karlsruhe, System
Architecture Group

 L4_Receive
 Receive a message from a specified thread

 L4_Wait
 Receive a message from any sender

 L4_ReplyWait
 Send a response to a thread and wait for the next message

 L4_Call
 Send a message to a particular thread and wait for it to

respond (usual RPC operation)

MR0

 Message content specified by sender’s MR0

label(16) flags(4) t(6) u(6)

31© 2009 University of Karlsruhe, System
Architecture Group

 u - number of untyped words
 t - number of words holding typed items
 label - free for the sender to use as part of the message

(usually a “label” or “tag”)
 flags - specifies option for the IPC operation

 E.g., propagated message
 Not used for SDI project (set = 0)

Example: Sending 4 untyped words

L4_Msg_t msg;
L4_MsgTag_t tag;

L4_MsgClear(&msg);
L4_MsgAppendWord(&msg, word1);
L4_MsgAppendWord(&msg, word2);
L4_MsgAppendWord(&msg, word3);

32© 2009 University of Karlsruhe, System
Architecture Group

word 1

MR5

label 0 0 4

word 2

word 3

word 4

L4_MsgAppendWord(&msg, word4);
L4_MsgLoad(&msg);

tag = L4_Send(tid);

IPC result MR0

 Message result in receiver’s MR0

 MsgTag [MR0]
 u - untyped words received (u = 0, send only IPC)
 t - typed words received (t = 0, send only IPC)
 Flags EXrp

 E: error occurred (send or receive), see ErrorCode TCR for details

33© 2009 University of Karlsruhe, System
Architecture Group

 E: error occurred (send or receive), see ErrorCode TCR for details
 X: received cross processor IPC (ignore)
 r: received redirected IPC (ignore)
 p: received propagated IPC (ignore)

label(48) flags(4) t(6) u(6)

The StringItem Type

 Specifies base address and length
 Uninterpreted block of bytes

 Used to send a message in place
 Avoid marshalling costs

 Example sends a single simple string

Note: The typed
items always follow
the untyped words

C: specifies whether
more typed items
follow (redundant

34© 2009 University of Karlsruhe, System
Architecture Group

+ two untyped words .. with t in MR0)

In-memory message

word 1

MR5

word 2

string ptr

String size 0 0 000C

label 0 2 2

Receiving Strings

 Buffer Registers used to specify area and size of memory region
to receive strings

 Simple example
 A single receive buffer

35© 2009 University of Karlsruhe, System
Architecture Group

Rcv Window

buff ptr

buff size 0 0 000C

1

BR2

BR1

BR0

IPC Timeouts

 Used to bound the duration of IPC

 Two timeout types

 Receive/Send Timeouts
 Used to control how long the IPC syscall will block prior to

36© 2009 University of Karlsruhe, System
Architecture Group

 The send phase beginning (SndTimeout)
 The receive phase beginning (RcvTimeout)

 XferTimeouts (Snd/Rcv)
 Used to limit how long the IPC transfer takes

 Only used for StringItems (Why?)
 Limit time waiting for sender/receiver pagefaults on memory

 snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

t
wait for send send message

(xfer) wait for reply receive message
(xfer)

Timeouts

37© 2009 University of Karlsruhe, System
Architecture Group

 snd to
 min (xfer to snd, xfer to rcv)
 rcv to
 min (xfer to rcv, xfer to snd)

(xfer) (xfer)

 Specifying timeouts
 Mantissa/exponent representation

 Relative timeout values
0

Timeouts

38© 2009 University of Karlsruhe, System
Architecture Group

 0
 infinite
 1µs … 610 h (log) 2em µs

0(16)

0(10)0 1(5)

m(10)0 e(5)

Timeout Value Range
e m = 1 m = 1023

0 1.00E-06 1.02E-03

1 2.00E-06 2.05E-03

2 4.00E-06 4.09E-03

3 8.00E-06 8.18E-03

4 1.60E-05 1.64E-02

5 3.20E-05 3.27E-02

e m = 1 m = 1023

16 6.55E-02 6.70E+01

17 1.31E-01 1.34E+02

18 2.62E-01 2.68E+02

19 5.24E-01 5.36E+02

20 1.05E+00 1.07E+03

21 2.10E+00 2.15E+03

39© 2009 University of Karlsruhe, System
Architecture Group

6 6.40E-05 6.55E-02

7 1.28E-04 1.31E-01

8 2.56E-04 2.62E-01

9 5.12E-04 5.24E-01

10 1.02E-03 1.05E+00

11 2.05E-03 2.10E+00

12 4.10E-03 4.19E+00

13 8.19E-03 8.38E+00

14 1.64E-02 1.68E+01

15 3.28E-02 3.35E+01

22 4.19E+00 4.29E+03

23 8.39E+00 8.58E+03

24 1.68E+01 1.72E+04

25 3.36E+01 3.43E+04

26 6.71E+01 6.87E+04

27 1.34E+02 1.37E+05

28 2.68E+02 2.75E+05

29 5.37E+02 5.49E+05

30 1.07E+03 1.10E+06

31 2.15E+03 2.20E+06

Timeouts

 Specifying timeouts
 Mantissa/exponent representation

 Relative timeout values
0

40© 2009 University of Karlsruhe, System
Architecture Group

clock + 2(e+10)clock + 2(e+10) m(10) 0

0(16)

0(10)0 1(5)

m(10)0 e(5)

m(10)1 e(4) c

clock m(10) 0=

e10



 0
 infinite
 1µs … 610 h (log) 2em µs

 Absolute timeout values

IPC system call

 to  from
 FromSpecifier
 Timeouts

MR

41© 2009 University of Karlsruhe, System
Architecture Group

 MR0

IPC system call

 Receive
from dest  to  from

 FromSpecifier
 Timeouts

MR

nilthread

dest

42© 2009 University of Karlsruhe, System
Architecture Group

me

dest
 MR0

IPC system call

 to  from
 FromSpecifier
 Timeouts

MR

 Send dest
nilthread

43© 2009 University of Karlsruhe, System
Architecture Group

 MR0

me

dest

 to  from
 FromSpecifier
 Timeouts

MR

nilthread

anythread

IPC system call

 Wait
Receive from anyone

44© 2009 University of Karlsruhe, System
Architecture Group

 MR0

me

IPC system call

 Call
 to  from
 FromSpecifier
 Timeouts

MR

dest

dest

45© 2009 University of Karlsruhe, System
Architecture Group

me

dest
 MR0

IPC system call

 ReplyWait

next

 to  from
 FromSpecifier
 Timeouts

MR

dest

anythread

46© 2009 University of Karlsruhe, System
Architecture Group

me

dest
 MR0

 Interrupts: messages from
“hardware” threads

 Acknowledge hardware interrupt
via replying to interrupt message

Driver

Interrupts

intr IPC

47© 2009 University of Karlsruhe, System
Architecture Group

INTR

ACK

The interrupt message is
sent to the hardware
thread’s “pager”

Kernel

IRQ thread

Device
ack IPC

Interrupt Association

 Association is done via the privileged thread (root task) using
ThreadControl.

 To associate a thread to an interrupt
 Set the pager of the hardware thread ID to the thread ID of

48© 2009 University of Karlsruhe, System
Architecture Group

the interrupt handler
 To disassociate the thread from an interrupt

 Set the pager of the hardware thread ID to the hardware
thread ID itself

Sample Code
L4_ThreadId_t tid;
int res;

tid.global.X.thread_no = irq;
tid.global.X.version = 1;

res = L4_ThreadControl(tid, /* irq thread id */
tid,

49© 2009 University of Karlsruhe, System
Architecture Group

L4_nilthread,
driver_tid, /* pager, the

thread we
want the irq
to be associated
with */

(void*) -1);
if (res != 1) {

printf("BADNESS ON THREAD CONTROL\n");
}

Microkernel System Calls

KernelInterface
IPC
Unmap
ExchangeRegisters
ThreadSwitch
S h d l

50© 2009 University of Karlsruhe, System
Architecture Group

Schedule
SystemClock
ThreadControl
SpaceControl
ProcessorControl
MemoryControl

ThreadSwitch

 Yields the current thread’s remaining time slice, or donates
remaining time slice to another thread
 You should not need to do this, but…

 Can use to reduce impact of busy-wait
 Ensure progress of resource (lock) holder

51© 2009 University of Karlsruhe, System
Architecture Group

 L4_ThreadSwitch (thread);

 Thread = nilthread: Yield the processor
 Thread = threadID: Donate time slice
 See <l4/schedule.h> for derived functions

Schedule

 L4 implements a mostly multi-level round robin scheduler
 Static priorities
 Time slice donation on IPC

 Schedule is used
T h h d li t f th d

52© 2009 University of Karlsruhe, System
Architecture Group

 To change scheduling parameters of threads
 Priority
 Time slice
 Total quantum (don’t use, set to infinity)

 For controlling preemption parameters
 Not implemented

 Set the processor the thread should run on
 Not needed, you have only one

Schedule

 Only a thread’s scheduler can invoke the system call
 The scheduler is set using thread control

 Typically the root task will remain the scheduler

L4_Schedule (L4_ThreadId_t dest,
L4 Word t TimeControl

53© 2009 University of Karlsruhe, System
Architecture Group

L4_Word_t TimeControl,
L4_Word_t ProcessorControl,
L4_Word_t prio,
L4_Word_t PreemptionControl,
L4_Word_t * old_TimeControl)

 Derived functions in <l4/schedule.h>

SystemClock

 Returns the current system clock
 64-bit number that counts µ-seconds since boot-up

 Not always a real system call (no kernel entry)
 i.e., may use user-accessible processor cycle counter

54© 2009 University of Karlsruhe, System
Architecture Group

Microkernel System Calls

KernelInterface
IPC
Unmap
ExchangeRegisters
ThreadSwitch
S h d l

55© 2009 University of Karlsruhe, System
Architecture Group

Schedule
SystemClock
ThreadControl
SpaceControl
ProcessorControl
MemoryControl

System Design and
Implementation

L4 API Crash Course
Part II

... next week

Next week

 Change your group password

 Get your build environment going
 See Wiki (http://i30www.ira.uka.de/teaching/courses/sdi)
 Room 149 is accessible till 6pm (often longer)

57© 2009 University of Karlsruhe, System
Architecture Group

p (g)
 Wiki User: student Password: sdi2009

Example Code

 Binaries
 KickStart – 3rd stage loader
 Kernel
 Sigma0

 Root Task
N

Test
Client

58© 2009 University of Karlsruhe, System
Architecture Group

 Name server
 Log Server
 Pager
 Starts the test task

 Test Task
 Uses name server to locate

log server
 Prints message to the log L4 Micro kernel

Name
Server

Simple
Pager

Log
Server

Sigma0

The Boot Sequence

 BIOS loads the boot block – GRUB stage1
 Stage1 is a simple loader that fits into 512 bytes
 Responsible for loading stage2

59© 2009 University of Karlsruhe, System
Architecture Group

Stage 10x7c00

Phys. Mem

The Boot Sequence

 Stage 2 is loaded by stage 1
 Stage 2 is a more complex loader that

 Speaks various file system formats
 Supports loading via network
 Supports a menu providing a choice of load

configurations – menu.lst

60© 2009 University of Karlsruhe, System
Architecture Group

configurations menu.lst
 Approx 60Kb - 80Kb in size + stack and heap
 Supports ELF loading

Stage 10x7c00

Stage 2
0x8000

Stage 2

0x80000

Phys. Mem

The Boot Sequence

 KickStart is ELF loaded at its linked address
(8MB)

 GRUB thinks this is the kernel
 Modules are appended after the kernel

 Modules are loaded beginning on page
boundaries

0x800000 KickStart

Test client

Root task

l4kernel

sigma0

61© 2009 University of Karlsruhe, System
Architecture Group

Stage 2

boundaries
 A multiboot header is generated based on the

modules loaded
 KickStart is started and passed a pointer the

multiboot header

Stage 10x7c00

0x8000

Stage 20x80000

Phys. Mem

 KickStart copies the multiboot info
 It ELF loads

 The L4kernel (at 0x100000),
 Sigma0 (at 0x20000)
 Root task (at 0x200000).

root_task

test_client

l4kernel

0x800000 KickStart

Root task0x200000

sigma0

The Boot Sequence

62© 2009 University of Karlsruhe, System
Architecture Group

l4kernel

Root task (at 0x200000).
 It configures the kernel
 It finally starts the L4 kernel

Stage 10x7c00

Stage 2
0x8000

Stage 20x80000

Phys. Mem

0x200000
0x100000

sigma00x20000

The Boot Sequence

 L4 starts.
 The kernel grabs some upper memory for page

tables etc.
 L4 starts sigma0 and then starts the root task.
 Root task loads and starts test_client

kmem

test_client

0x300000 test_client

0x200000 Root task

63© 2009 University of Karlsruhe, System
Architecture Group

l4kernel

Phys. Mem

0x100000

sigma00x20000

0x200000

