Systems Design and Implementation
/1.1 — L4 API Crash Course Part /

System Architecture Group, SS 2007
University of Karlsruhe

22 April 2009 Jan Stoess

University of Karlsruhe

Tuesdays 17:30-19:00 SR-134, 50.41 (AVG)
Thursdays 15:45-17:15 SR-134, 50.41 (AVG)

Based on slides by Jochen Liedtke and Kevin Elphinstone

D L4 X.2 APl Reference Manual

= Available from http://l4ka.org/
= Latest version always in the news box on the right
= Defines the kernel APl + ABI
= System call semantics and parameters
= C++ style API definition
= Data types
= Header file to include
= Generic programming interface
= Convenience programming interface
= Support functions

= Binary interface for supported architectures
= Does not describe how to use the kernel

© 2009 University of Karlsruhe, System
Architecture Group

Fundamental L4 Concepts

= Two abstractions

= Address Spaces
= Units of protection
= Resource management

= Threads
= EXecution entities
= Carry unique identifiers

= Two mechanisms
= Communication — IPC
= Synchronous, between threads
= ldentification: thread ids
= Rights delegation — Mapping
= Address space construction via IPC

= FlexPages
Architecture independent page abstraction
Describe range of virtual address space

© 2009 University of Karlsruhe, System
o Architecture Group

[_) Fundamental L4 Concepts

= User-level pagers
= Kernel turns page faults into IPC message
= Establish mapping in reply
= User-level device drivers
= Device drivers run as unprivileged user threads

= Hardware interrupts are delivered via IPC
= Unless used by the kernel internally, e.g. timer interrupt

= Acknowledge interrupt in reply
= User-level exception handlers
= EXxceptions are delivered via IPC
= Unless used by the kernel internally, e.g. FPU virtualization
= Fix exception cause or modify faulting thread in reply
= Goal: No policy in kernel
= Makes kernel universal

© 2009 University of Karlsruhe, System
Architecture Group

D Microkernel System Calls

Ker nel I nterface
| PC

Unmap
ExchangeRegi sters
ThreadSwi t ch
Schedul e

Syst enCCl ock

Thr eadCont r ol
SpaceCont r ol
Processor Cont r ol
Menor yCont r ol

[2) Initial Servers

= Created by kernel at boot time
= Sigma0
= Initial address space
= Root of all mappings
= “Owns” all physical memory
= Root task

= First freely usable user thread
= Address space backed by sigmaO

= Can perform privileged system calls
= ThreadControl
= SpaceControl
= ProcessorControl
= MemoryControl

© 2009 University of Karlsruhe, System
Architecture Group

[") Kernel Interface Page

= Kernel memory object in the address space of a task

Placed on address space creation
= Location dictated by SpaceControl system call

No page faults on access

s Contains information about the kernel and the machine

© 2009 University of Karlsruhe, System
Architecture Group

API version, kernel features

Kernel system call entry points

Supported page sizes

Format and number of thread IDs

Memory layout — Physical memory, virtual address space
Processors — core speed, bus speed

D Ker nel | nterface

= Locates the kernel interface page

= Special system call
= lllegal instruction on x86 — why?
= Doesn’t use KIP for calling
= Slow system call (expensive)

void * L4 Kernellnterface (L4 Wrd t *Api Versi on,
L4 Word t *Api Fl ags,
L4 Word t *Kernel ld)
= Returns
= Pointer to KIP
= API version and flags — revision, word width, endianess
= Kernel Id — identifies implementation

© 2009 University of Karlsruhe, System
Architecture Group

Threads

m Code, da

hread
Execution
Path

© 2009 University of Karlsruhe, System
o Architecture Group

Traditional Thread

s Abstraction for unit of execution
= Registers
= Current variables
= Instruction Pointer Thread
. . Execution
= Next instruction to execute Path
= Stack

= EXxecution history of yet unreturned
procedures

= One stack frame per procedure
invocation

© 2009 University of Karlsruhe, System
itecture

10

) L4 Thread = Thread + ...

= A set of (virtual) registers and — see next slide
= A priority and a timeslice

= A uniqgue thread identifier

= An associated address space

= L4 provides a fixed number of threads in the entire
system

= Root task responsible for creating/deleting threads
and assigning them to address spaces

= System, User and “Hardware” threads

[7) Virtual Registers

= Per-thread “register set” defined by the microkernel

= Map to real machine registers or memory locations

= Mapping depends on architecture and ABI
= |1A-32: 1-3 virtual registers in GPRs, others in memory
= IA-64: 8 in GPRs

= Three basic types
= Thread Control Registers (TCRs)
= Share information about threads between kernel and user level

= Message Registers (MRs)
= Contain the message (or description of it, e.g. region of memory)

= Buffer Registers (BRS)
= Specify where complex message parts are received

© 2009 University of Karlsruhe, System 12
Architecture Group

[_) Thread Control Blocks (TCBs)

m State of a thread is stored in its thread control block
= Security considerations

= Some state can only be modified via a controlled interface
(system calls)
e.g., address space associated with the thread

= Other state can be freely accessible by user-level
applications without compromising the system
e.g., pager thread associated with the thread

= Put uncritical state in a user-level TCB (UTCB)
= more efficient access

© 2009 University of Karlsruhe, System
Architecture Group

13

[_) Thread Control Registers

s Stored in UTCB

ThreadWord1l

= Pinned memory, no page faults on

ThreadWordO

aCCess

Virtual/ActualSender (rw, IPC)

= UTCB area dictated at address
space creation using SpaceControl

IntendedReceiver (ro, IPC)

= UTCBs assigned via ThreadControl

ErrorCode (ro, IPC)

XferTimeouts (rw, IPC)

= Never access them directly

~ Cop (wo) Preempt (rw

= Only modified via provided
programming interface

ExceptionHandler (rw)

Pager (rw, VM)

= Most TCRs are set/read in the context
of other actions (e.g. IPC)

UserDefinedHandle (rw, Threads)

ProcessorNo (ro)

MyGloballd (ro, Threads & IPC)

© 2009 University of Karlsruhe, System
Architecture Group

14

[_) Thread Identifiers

Global Thread Id

= Global Identifiers | o Thread No g Version
= ldentify a thread uniquely within
the system Global Interrupt Id
= No policy — freely assignable Interrupt No ;g 1 e
= Local Identifiers
= ldentify a thread within an
address space
= Unique and useable only within an Local Thread Id
address space
= Typically the address of the Local 1d/64 6, 000000
thread’s UTCB
= Can translate one to another nilthread
. - 0
= Special Identifiers 2
anythread

= hilthread — no thread

= anythread — wildcard 1 (a2

© 2009 University of Karlsruhe, System 15
Architecture Group

D Thr eadCont r ol

= Create, destroy, or modify threads

= Determines a thread'’s
= Global thread identifier
= Address space it executes in
= Scheduler (thread permitted to control scheduling parameters)
= Pager (thread that receives page fault messages)

= Location of the UTCB within the address space’s allotted UTCB
area (See SpaceControl later)

s Threads can be created active or inactive
s /nactive

= Create and manipulate a new address space
= Allocate a new thread to an existing address space

© 2009 University of Karlsruhe, System 16
Architecture Group

D Thr eadCont r ol

L4 Word t L4 ThreadControl (L4 Threadld t dest,
L4 Threadl d t SpaceSpecifier,
L4 Threadl d t Schedul er,
L4 Threadl d t Pager,
void * UtcbLocati on)

m SpaceSpecifier != dest
Creates thread dest in the address space of thread SpaceSpeci fi er
Note: implicit naming of address spaces

m SpaceSpecifier == dest
Creates thread dest in its own (new) address space

= SpaceSpecifier == nilthread
Deletes existing thread dest

= pager == nilthread
Inactive, otherwise active

© 2009 University of Karlsruhe, System 17
Architecture Group

[7) Steps in Creating a New “Task”

= Task = Address Space + Thread
= A task has
= Thread state
« ldentifier, IP, SP, pager, scheduler, UTCB location
= Address space state
« UTCB area, kernel interface page area, redirector
= Code, data, and stack mapped to address space

© 2009 University of Karlsruhe, System
Architecture Group

18

[7) Steps in Creating a New “Task”

1. Create an inactive thread in a new address space.

L4 ThreadControl (

t ask,

t ask,

ne,

L4 nilthread,
(void *) -1

© 2009 University of Karlsruhe, System
Architecture Group

[* newtid */

/* new space identifier */

/[* schedul er of new thread */
/* pager = nil, inactive */
[* NOP Utcb | ocation */

19

[7) Steps in Creating a New “Task”

2. Set location of KIP and UTCB area in the new address space.

L4 SpaceControl (
t ask, KIP

0, /* control (ignore) */

ki p_ar ea, UTCB

ut cb_area,
L4 anyt hr ead, /[* redirector */
&cont r ol /* output (ignore) */

= ki p_area and ut cb_ar ea are flexpage descriptors
u redi rector = anyt hread
m Threads in the space can talk to all other threads
i cont r ol is an architecture-specific parameter, ignore for now

© 2009 University of Karlsruhe, System 20
Architecture Group

[7) Steps in Creating a New “Task”

3. Specify the UTCB location and assign a pager to the new thread
to activate it.

KIP
L4 ThreadControl (
t ask, task, ne, UTCB
pager, /* new pager */
(void *) utcb _base [/* utcb |ocation */
)
C The thread will wait for an IPC from the pager.
C The message must contain the IP and SP of the new thread.

© 2009 University of Karlsruhe, System 2 1
Architecture Group

[7) Steps in Creating a New “Task”

4. Send an IPC to the new thread with the IP and SP in the first
two words of the message.

Lmtial SP (32}.-‘5_1) MR o
Initial IP (32/64) ME. 1
'::' [15,."'48] U[—l] t = |_| I:E:I w = 2[6) MRD

¥ The thread will start executing at the received IP with the SP
set as received.

© 2009 University of Karlsruhe, System 22
Architecture Group

B Adding extra inactive threads to a

[0 task

= Use ThreadControl to assign new inactive threads to an existing
address space

L4 ThreadControl (

newt i d, /[* new thread id */

Exi stingld, / * address space identifier */
e, /* schedul er of new thread */
L4 nilthread, /* pager = nil, inactive */

(void *) -1 /* NOP Ucb |location */
)

= Note: Can also add active threads

© 2009 University of Karlsruhe, System 23
Architecture Group

[_) ExchangeRegi sters

= Manipulating threads within an AS

= IP, SP

= User-defined handle

= Pager
= Suspend/resume (i.e. activate/deactivate)
= Convert thread IDs — local <> global

L4 Threadld t L4 ExchangeRegi sters (
L4 Threadl d t dest,
L4 Word t control,
L4 Word t sp, L4 Word_ t ip,
L4 Wrd t flags, L4 Wrd t User Def Handl e,
L4 Threadl d_ t pager,

© 2009 University of Karlsruhe, System
Architecture Group

Thread management

= The microkernel only preserves the user-
level IP and SP

= ... and registers if preempted

= Everything else is managed by
user-level applications
This means by you!

= User stack area
= Allocation, size, deallocation
= Thread identifiers
= Allocation, deallocation
= Entry point — initial IP/SP values
= Thread exit

© 2009 University of Karlsruhe, System
Architecture Group

Data

Stack of t,

Stack of t,

25

Stack corruption

= Common beginner’s problem
= Really weird failure scenarios
= First printf works, second fails
= Pointer messed up after calling foo()
= Random exception when returning
" . .
= Hard to diagnose/debug
= Corruption of completely unrelated
code and/or data

= Adding debug code makes problem
go away

= Works fine when single-stepping

© 2009 University of Karlsruhe, System
o Architecture Group

Communication

(Ignoring Address Spaces)

[7) 1PC Registers

= Message Registers
= 64 “registers”
= Form a message

= Used to transfer
typed items and
untyped words

= Typed items
Stringltem

Buffer Registers
= 34 “registers”

= Specify where typed
items are received

= Typed items
Stringltem

If any are permitted
to be in the message

28

[_) Message Register Only IPC

Thread A Thread B
MR63 Message MR63
transferred
MR13 from one MR13
MR12 thread’s MRs MR12
MRi1 to the other MRi1
MR10) MR10
MRO thread’'s MRs MRO
MR8 MR8
MR7 MR7
MR6 MR6
MR5 MR5
mg‘; Guaranteed to mg‘;
MR2 to not cause MR2
MRL page faults MRL

MRO MRO

© 2009 University of Karlsruhe, System
Architecture Group

[*) Overview of IPC operations

= L4 Ipc system call performs all IPC operations
= Arguments determine actual operation

= Helper functions for frequent operations (see <l4/ipc.h>)
= L4 Send
= Send a message to a thread (blocking)
= L4 Receive
= Receive a message from a specified thread
= L4 Wait
= Receive a message from any sender
= L4 ReplyWait
= Send a response to a thread and wait for the next message
= L4 Call

= Send a message to a particular thread and wait for it to
respond (usual RPC operation)

© 2009 University of Karlsruhe, System 30
Architecture Group

O VR,

|abel (16) flags(4) te) U

= Message content specified by sender’'s MR,
= U - number of untyped words
= [- number of words holding typed items
= /abel - free for the sender to use as part of the message
(usually a “label” or “tag”)
= flags - specifies option for the IPC operation
= E.g., propagated message
= Not used for SDI project (set = 0)

© 2009 University of Karlsruhe, System
Architecture Group

Example: Sending 4 untyped words

L4 Msg_ t nsg;
L4 MsgTag_ t tag;

L4 Msgd ear (&msQ) ;
L4 MsgAppendWor d(&rsg, wordl);
L4 MsgAppendWor d(&rsg, word2);
L4 MsgAppendWor d(&rsg, wor d3);
L4 MsgAppendWor d(&rsg, wor d4);
L4 MsgLoad(&nsg) ;

tag = L4 _Send(tid);

|abel 0 0 4

© 2009 University of Karlsruhe, System 32
o Architecture Group

") IPC result MR,

= Message result in receiver's MR,
= MsgTag [MR.]

= U - untyped words received (¢ =0, send only IPC)
s - typed words received (¢ =0, send only IPC)
= Flags EXrp

= E: error occurred (send or receive), see ErrorCode TCR for details
= X: received cross processor IPC (ignore)

= I: received redirected IPC (ignore)

= p: received propagated IPC (ignore)

|abel (49) flags(4) te) U

© 2009 University of Karlsruhe, System
Architecture Group

The Stringltem Type

= Specifies base address and length
= Uninterpreted block of bytes

= Used to send a message in place
= Avoid marshalling costs

= Example sends a single simple string
+ two untyped words

In-memory message label

Note: The typed
items always follow
the untyped words

C: specifies whether
more typed items
follow (redundant
with t in MR,)

© 2009 University of Karlsruhe, System
o Architecture Group

34

Receiving Strings

= Buffer Registers used to specify area and size of memory region
to receive strings

= Simple example
= A single receive buffer

BR2
BR1
Rcv Window 1 BRO

© 2009 University of Karlsruhe, System 35
o Architecture Group

[7) IPC Timeouts

= Used to bound the duration of IPC

= Two timeout types

= Receive/Send Timeouts

= Used to control how long the IPC syscall will block prior to
The send phase beginning (SndTimeout)
The receive phase beginning (RcvTimeout)

= XferTimeouts (Snd/Rcv)

= Used to limit how long the IPC transfer takes
Only used for Stringltems (Why?)
Limit time waiting for sender/receiver pagefaults on memory

© 2009 University of Karlsruhe, System 36
Architecture Group

Timeouts

= sSnd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

[
»

wait for send send message
(xfer)

T

= snd to
= min (xfer to snd, xfer to rcv)
= ICv to
= min (xfer to rcv, xfer to snd)

© 2009 University of Karlsruhe, System
Architecture Group

|

37

Timeouts

= Specifying timeouts
= Mantissa/exponent representation

= Relative timeout values
0 [owy]
infinite i [0w]
1us .. 610 h (Iog) [P ERI]

© 2009 University of Karlsruhe, System
itecture

2°’m US

38

© 00 N O O A WO N BB O O

e e o i
oo D W N PP O

© 2009 University of Karlsruhe, System

Architecture Group

m=1

1.00E-06
2.00E-06
4.00E-06
8.00E-06
1.60E-05
3.20E-05
6.40E-05
1.28E-04
2.56E-04
5.12E-04
1.02E-03
2.05E-03
4.10E-03
8.19E-03
1.64E-02
3.28E-02

m = 1023
1.02E-03
2.05E-03
4.09E-03
8.18E-03
1.64E-02
3.27E-02
6.55E-02
1.31E-01
2.62E-01
5.24E-01
1.05E+00
2.10E+00
4.19E+00
8.38E+00
1.68E+01
3.35E+01

[_) Timeout Value Range

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

m=1
6.55E-02
1.31E-01
2.62E-01
5.24E-01
1.05E+00
2.10E+00
4.19E+00
8.39E+00
1.68E+01
3.36E+01
6.71E+01
1.34E+02
2.68E+02
5.37E+02
1.07E+03
2.15E+03

m = 1023
6.70E+01
1.34E+02
2.68E+02
5.36E+02
1.07E+03
2.15E+03
4.29E+03
8.58E+03
1.72E+04
3.43E+04
6.87E+04
1.37E+05
2.75E+05
5.49E+05
1.10E+06
2.20E+06

39

Timeouts

= Specifying timeouts
= Mantissa/exponent representation

= Relative timeout values
0 [ow]
infinite o e | 0w
lus...610h (log) [of ey [M | 2°m us

= Absolute timeout values
1 en |1 M0

R

clock = M)

clock + 2™ |# Mo

© 2009 University of Karlsruhe, System
itecture

6 IPC system calll

to - from
FromSpecifier
Timeouts

MR,

41

a IPC system calll

s Recelve
from dest

- from

42

a IPC system calll

= Send

- from

43

a IPC system call

= Wait
Receive from anyone ®
|

[nilthread "] 0 >

MR,

44

a IPC system calll

s Call

- from

45

a IPC system calll

= ReplyWait

46

Interrupts

= Interrupts: messages from
“hardware” threads

= Acknowledge hardware interrupt

via replying to interrupt message "% 'PC

INTR
—

-
ACK

ack IPC

The interrupt message is
sent to the hardware
thread’s “pager”

© 2009 University of Karlsruhe, System 47
itecture Grou

[2) Interrupt Association

= Association is done via the privileged thread (root task) using
ThreadContr ol .

= To associate a thread to an interrupt

= Set the pager of the hardware thread ID to the thread ID of
the interrupt handler

= To disassociate the thread from an interrupt

= Set the pager of the hardware thread ID to the hardware
thread ID itself

© 2009 University of Karlsruhe, System 48
Architecture Gro

[*) Sample Code

L4 Threadld t tid;

i nt res;

tid.global.X thread no = irq;

tid.global.X version = 1;

res = L4 ThreadControl (tid, [* irq thread id */
tid,

L4 nilthread,
driver tid, /* pager, the
thread we
want the irqg
to be associ at ed
with */
(void*) -1);
i f (res !'=1) {
printf("BADNESS ON THREAD CONTROL\ n");
}

© 2009 University of Karlsruhe, System
Architecture Group

49

=
D Microkernel System Calls

Kernel I nterface
| PC

Unmap
ExchangeRegi sters
ThreadSwi t ch
Schedul e

Syst enC ock

Thr eadCont r ol
SpaceCont r ol
Processor Cont r ol
Menor yCont r ol

50

D Thr eadSw t ch

= Yields the current thread’s remaining time slice, or donates
remaining time slice to another thread

= You should not need to do this, but...
= Can use to reduce impact of busy-wait
= Ensure progress of resource (lock) holder

= L4 ThreadSwitch (thread);
= Thread = nilthread: Yield the processor
= Thread = threadlD: Donate time slice
= See <l4/schedule.h> for derived functions

© 2009 University of Karlsruhe, System
Architecture Group

51

D Schedul e

= L4 implements a mostly multi-level round robin scheduler
= Static priorities
= Time slice donation on IPC

= Schedul e is used

= To change scheduling parameters of threads
= Priority
= Time slice
= Total quantum (don’t use, set to infinity)
= For controlling preemption parameters
= Not implemented
= Set the processor the thread should run on
= Not needed, you have only one

© 2009 University of Karlsruhe, System
Architecture Group

52

D Schedul e

= Only a thread’s scheduler can invoke the system call
= The scheduler is set using thread control
= Typically the root task will remain the scheduler

L4 Schedule (L4 Threadld t dest,
L4 Word t TimeControl,
L4 Word t Processor Control,
L4 Word t prio,
L4 Wrd t PreenptionControl,
L4 Wrd t * old _TimeControl)

s Derived functions in <l4/schedule.h>

© 2009 University of Karlsruhe, System
Architecture Group

53

1) Syst enC ock

= Returns the current system clock
= 64-bit number that counts p-seconds since boot-up

= Not always a real system call (no kernel entry)
= I.e., may use user-accessible processor cycle counter

© 2009 University of Karlsruhe, System
Architecture Group

54

Microkernel System Calls

Kernel I nterface
| PC

Unmap
ExchangeRegi sters
ThreadSw t ch
Schedul e

Syst enCCl ock

Thr eadCont r ol
SpaceCont r ol

Pr ocessor Cont r ol
Menor yCont r ol

55

System Design and
Implementation

L4 API Crash Course
Part |1

... hext week

-
[T Next week

= Change your group password

= Get your build environment going
= See Wiki (http://i30www.ira.uka.de/teaching/courses/sdi)
= Room 149 is accessible till 6pm (often longer)
= Wiki User: student Password: sdi2009

S7

© 2009 University of Karlsrul

he, Systel
ure

Example Code

Binaries
= KickStart — 3" stage loader
= Kernel
= Sigma0
Root Task
= Name server
= Log Server
= Pager
= Starts the test task
Test Task

= Uses name server to locate
log server

= Prints message to the log

Test
Client

58

[_) The Boot Sequence —

= BIOS loads the boot block — GRUB stagel
= Stagel is a simple loader that fits into 512 bytes
= Responsible for loading stage2

ox7coo | >teget

Phys. Mem

© 2009 University of Karlsruhe, System 59
Architecture Group

[_) The Boot Sequence —

= Stage 2 is loaded by stage 1

= Stage 2 is a more complex loader that
= Speaks various file system formats
= Supports loading via network

= Supports a menu providing a choice of load
configurations — menu.lst

= Approx 60Kb - 80Kb in size + stack and heap

= Supports ELF loading 0x80000
Stage 2
’
T
Stage 2
0x8000
0x7co0 |2ragel
Phys. Mem

© 2009 University of Karlsruhe, System 60
Architecture Group

[_) The Boot Sequence —
= KickStart is ELF loaded at its linked address s et
(M) R::::‘Zk
= GRUB thinks this is the kernel lakernel
= Modules are appended after the kernel 0x800000 |KickStart
= Modules are loaded beginning on page
boundaries
= A multiboot header is generated based on the
modules loaded 0x80000 | Stage 2
= KickStart is started and passed a pointer the '
multiboot header '
Stage 2
0x8000
0x7c00 | >raget

Phys. Mem

© 2009 University of Karlsruhe, System 6 1
Architecture Group

[_) The Boot Sequence .

= KickStart copies the multiboot info %‘
= It ELF loads sigma0
= The L4kernel (at 0x100000), kemnel

. 0x800000 KickStart

= Sigma0 (at 0x20000)

= Root task (at 0x200000). 0x200000 |Roottask

= It configures the kernel 0x 100000 IEkm
= It finally starts the L4 kernel 0x80000 Stigez
0x20000 [Si9mad

f
0x8000 Sage e
0x7co0 f=raget

Phys. Mem

© 2009 University of Karlsruhe, System 62
Architecture Group

[_) The Boot Sequence

. |_ 4 starts_ test_clientl
= The kernel grabs some upper memory for page
tables etc.
= L4 starts sigmaO and then starts the root task. 0x300000 jest=client
= Root task loads and starts test_client 04200000 |Ro0t sk
ldkernel
0x100000

0x20000 | Sigmaod

Phys. Mem
63

© 2009 University of Karlsruhe, System
Architecture Group

