
Systems Design and Implementation
I.5 – File Systems

h

Jan Stoess

Philipp Kupferschmied

University of Karlsruhe

System Architecture Group, SS 2009

University of Karlsruhe

May 26, 2009

Reminder

 All SDI Groups:
Please contact the tutor before
your presentations take place!

2
© 2009 University of Karlsruhe, System Architecture Group

 Tutor
 Marcel Noe
 Consultation Time:

Monday, 16.00 - 18.00
 R154, 50.34

Overview

 Introduction
 Motivation
 File types, attributes, access, operations
 Directory types, operations

3
© 2009 University of Karlsruhe, System Architecture Group

o y yp s, op a o s
 Implementing files and directories
 [Parts taken from A.Tanenbaums slides on modern

OSes]
 Case Studies:

 FAT
 NFS

 Tanenbaum’s motivation for files:
 Enable storing large amount of data
 Make data survive termination of processes

or the system

Why files?

4
© 2009 University of Karlsruhe, System Architecture Group

or the system
 Let processes access persistent data

concurrently
 My 2cents

 Structure your data

Source: Andy Tanenbaum: Modern Operating Systems, 2nd edition. Supplementary powerpoint slides, http://www.cs.vu.nl/~ast/books/book_software.html

File naming and structuring

5
© 2009 University of Karlsruhe, System Architecture Group

Typical file extensions.

File Structure

6
© 2009 University of Karlsruhe, System Architecture Group

 Three kinds of files
 byte sequence
 record sequence
 tree

File Types

7
© 2009 University of Karlsruhe, System Architecture Group

(a) An executable file (b) An archive

File Attributes

8
© 2009 University of Karlsruhe, System Architecture Group

Possible file attributes

File Access

 Sequential access
 read all bytes/records from the beginning
 cannot jump around, but rewind
 convenient when medium was mag tape

9
© 2009 University of Karlsruhe, System Architecture Group

g p
 Random access

 bytes/records read in any order
 essential for data base systems
 read can be …

 move file marker (seek), then read or …
 read and then move file marker

File Operations

1. Create
2. Delete
3. Open

7. Append
8. Seek
9. Get

10
© 2009 University of Karlsruhe, System Architecture Group

4. Close
5. Read
6. Write

attributes
10. Set

Attributes
11. Rename

Example Program Using File System Calls

11
© 2009 University of Karlsruhe, System Architecture Group

Example Program Using File System Calls

12
© 2009 University of Karlsruhe, System Architecture Group

Memory-Mapped Files

Buffer cacheBuffer cache

sys_read()

13
© 2009 University of Karlsruhe, System Architecture Group

(a) Reading files using file system calls
(b) Reading files using memory mappings

Buffer cacheBuffer cache

Directories
Single-Level Directory Systems

14
© 2009 University of Karlsruhe, System Architecture Group

 A single level directory system
 contains 4 files
 owned by 3 different people, A, B, and C

 (Letters indicate owners of the directories and files)

Directories
Two level Directory Systems

15
© 2009 University of Karlsruhe, System Architecture Group

Directories
Hierarchical Directory Systems

16
© 2009 University of Karlsruhe, System Architecture Group

A hierarchical directory system

Directory and Path Names

17
© 2009 University of Karlsruhe, System Architecture Group

A UNIX directory tree

Directory Operations

1. Mkdir
2. Rmdir
3 Opendir

5. Readdir
6. Rename
7. Link

18
© 2009 University of Karlsruhe, System Architecture Group

3. Opendir
4. Closedir 8. Unlink

File System Implementation

19
© 2009 University of Karlsruhe, System Architecture Group

A possible file system layout

Implementing Files

20
© 2009 University of Karlsruhe, System Architecture Group

(a) Contiguous allocation of disk space for 7 files
(b) State of the disk after files D and E have been removed

Implementing Files

21
© 2009 University of Karlsruhe, System Architecture Group

Storing a file as a linked list of disk blocks

Implementing Files

22
© 2009 University of Karlsruhe, System Architecture Group

Linked list allocation using a file allocation table in RAM

Implementing Files

23
© 2009 University of Karlsruhe, System Architecture Group

An example i-node

Implementing Directories

24
© 2009 University of Karlsruhe, System Architecture Group

 A simple directory
 fixed size entries
 disk addresses and attributes in directory entry

 Directory in which each entry just refers to an i-node

Implementing Directories

25
© 2009 University of Karlsruhe, System Architecture Group

 Two ways of handling long file names in directory
 In-line
 In a heap

Shared Files

26
© 2009 University of Karlsruhe, System Architecture Group

File system containing a shared file

Shared Files

27
© 2009 University of Karlsruhe, System Architecture Group

 Situation prior to linking
 After the link is created
 After the original owner removes the file

The FAT file system

 Origins in the late 1970s
 Simple file system

 Floppy disks
 less than 500K size.

 Enhanced to support larger data.

28
© 2009 University of Karlsruhe, System Architecture Group

pp g
 FAT = file allocation table

 Specifies used/free areas of disk
 3 FAT file system types

 FAT12
 FAT16
 FAT32
 Specifies #bits/entry in FAT structure

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

FAT structures

 Boot record
 Cluster

 Group of data sectors on disk
 Used to store file and directory data

29
© 2009 University of Karlsruhe, System Architecture Group

Us d o s o a d d o y da a
 Number of sectors stored in boot record

 File allocation table (FAT)
 Simple array of 12/16/32 bit entries
 Singly linked list of cluster chains (files)
 2 synchronized copies / disk

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

FAT structures

 Root directory
 Normal directory without “..”
 Location hardcoded after FAT

Data area

30
© 2009 University of Karlsruhe, System Architecture Group

 Data area
 Arranged in clusters

 Wasted sectors
 #sectors % sizeof(cluster)

Boot Sector Root Folder DataFAT2FAT1 W

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

FAT entries

 Simple bit field

0x00000000 Free

0x00000001 Reserved

31
© 2009 University of Karlsruhe, System Architecture Group

0x00000001 Reserved

0x00000002-0xFFFFEFFF Used; value points to
next cluster

0xFFFFFFF7 Bad

0xFFFFFFF8-0xFFFFFFFF Last cluster in file

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

Directories

 Directories are special files
 Table of file entries

 Structure of file entries
 Name + Extension (fixed size)
 Attributes
 Create time

32
© 2009 University of Karlsruhe, System Architecture Group

 Last access date
 Last modified time
 Last modified date
 Starting cluster number
 File size

 Long file names
 Phony entries (invalid volume attribute)
 Ignored by most old DOS programs
 New programs can retrieve LFN from entry

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

Opening a file

 Go to parent directory
 Search for file entry

 Retrieve first cluster number
Retrieve data from cluster

33
© 2009 University of Karlsruhe, System Architecture Group

 Retrieve data from cluster
 For more clusters

 Go to FAT
 Retrieve entry of first cluster
 Follow chain of clusters
 Retrieve data from clusters

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

NFS – The Network File System

 Invented by Sun Microsystems, mid 1980s
 Idea:

 Transparent, remote access to filesystems
 Portability to different OSes and architectures

34
© 2009 University of Karlsruhe, System Architecture Group

 Approach:
 specified using external data representation (XDR)

 describes protocols machine-independently

 based on RPC package
 Simplify protocol definition, implementation, maintenance

Source: R.Sandberg et al. Design and Implementation of the Sun Network Filesystem. Proceeding of the USENIX 1985 Summer Conference

NFS – The Network File System

 First implementation
 UNIX 4.2 kernel
 Completely new kernel interface

Separates generic from specific filesystem

35
© 2009 University of Karlsruhe, System Architecture Group

 Separates generic from specific filesystem
implementations

 Two basic parts
 VFS: operations on a filesystem
 VNode: operations on a file

Source: R.Sandberg et al. Design and Implementation of the Sun Network Filesystem. Proceeding of the USENIX 1985 Summer Conference

NFS Design considerations

 Goals:
 Machine and OS independence
 Crash recovery

Transparent access

36
© 2009 University of Karlsruhe, System Architecture Group

 Transparent access
 Maintain UNIX semantics on client
 Reasonable performance

Source: R.Sandberg et al. Design and Implementation of the Sun Network Filesystem. Proceeding of the USENIX 1985 Summer Conference

NFS Design considerations

 Basic design
 Uses RPC mechanism

 Protocol defined as a set of procedures, arguments and
results

 Synchronous behavior

37
© 2009 University of Karlsruhe, System Architecture Group

 Synchronous behavior

 Stateless protocol
 Each call contains all information to complete the call
 Stateful alternative discarded since

 Client would need to detect server crashes
 Server would need to detect client crashes (why?)

 No recovery needed after crash
 No difference between crashed and slow server

NFS Design considerations

 Basic design
 RPC package is transport independent

 First implementation uses UDP/IP

 Most common parameter: file handle

38
© 2009 University of Karlsruhe, System Architecture Group

 Most common parameter: file handle
 Provided by server
 Used by client as reference
 Opaque for client

NFS protocol procedures

 null() returns ()
 lookup(dirfh, name) returns (fh, attr)
 create(dirfh, name, attr) returns (newfh, attr)
 remove(dirfh, name) returns (status)

39
© 2009 University of Karlsruhe, System Architecture Group

 getattr(fh) returns (attr)
 setattr(fh, attr) returns (attr)

 read(fh, offset, count) returns (attr, data)
 write(fh , offset, count, data) returns (attr)
 rename(dirfh, name, tofh, toname) returns (status)

NFS protocol procedures

 link(dirfh, name, tofh, toname) returns (status)
 symlink(dirfh, name, string) returns (status)
 readlink(fh) returns (string)

40
© 2009 University of Karlsruhe, System Architecture Group

 mkdir(dirfh, name, attr) returns (fh, newattr)
 rmdir(dirfh, name) returns (status)
 readdir(dirfh, cookie, count) returns(entries)

 statfs(fh) returns (fsstats)
next

NFS protocol procedures

 Filesystem root obtained via external mount protocol
 Takes UNIX directory pathname
 Checks permissions
 Returns filehandle
 Idea:

41
© 2009 University of Karlsruhe, System Architecture Group

 Easy extension of filesystem access checks
 Only place where UNIX names are used

 External data representation XDR
 Similar to IDL
 Specification of data types
 Specification of procedures
 Defines size, byte order, alignment of data types
 C-like definition

NFS Server Side

 Stateless server
 No server-internal caching
 Server flushes modified data immediately

 Filehandle generation

42
© 2009 University of Karlsruhe, System Architecture Group

 Filehandle =
<filesystem id, inode number, inode generation number>

 NFS introduces filesystem IDs
 NFS introduces inode generation number

(what for?)

NFS Client Side

 Need transparent access to remote files
 Do not change path name structure
 Explicit <host:/path> not backwards compatible
 Approach:

43
© 2009 University of Karlsruhe, System Architecture Group

 Do hostname lookup and file address binding once
 Attach remote filesystem to local path
 Use mount protocol

 Implementation:
 Add new filesystem interface to the kernel

 VFS: operations on a remote file system
 VNode: operations on files within a file system

NFS Filesystem Interface

System Calls System Calls

Client Server

44
© 2009 University of Karlsruhe, System Architecture Group

RPC/XDR

VFS/VNode

Sun 4.2 FS NFS Filesystem

RPC/XDR

Server routines

VFS/VNode

NFS Filesystem Interface

 Filesystem operations
 per filesystem
 mount, mount_root

 VFS operations
 per mounted filesystem

t t t tf

45
© 2009 University of Karlsruhe, System Architecture Group

 unmount, root, statfs, sync
 VNode operations

 lookup, create, remove, rename
 open, close, rdwr, ioctl, select
 getattr, setattr, access
 mkdir, rmdir, readdir
 link, symlink, readlink
 …

NFS Filesystem Interface

 VNode operations
 some operations map to NFS procedures, some

not
 Pathname lookup

 Problem:

46
© 2009 University of Karlsruhe, System Architecture Group

 Pathname could contain mountpoint
 Mount information is contained in the client, above the

VNode layer
 Server cannot keep track of client mount points

 Approach:
 Break path into components
 Do lookup per component
 Cache lookups in the client

NFS implementation

 Completed around 1984
 Implemented VNodes in the kernel
 RPC, XDR ported to kernel
 User-level mount service

47
© 2009 University of Karlsruhe, System Architecture Group

 User-level NFS server daemon allows for sleeping

NFS Problems

 Root filesystems
 Sharing root file systems not possible

 /tmp: names of temporary files are created with local
names (process id)

 /dev: no remote device access system
 Approach:

48
© 2009 University of Karlsruhe, System Architecture Group

 Approach:
 Share root FS partly, e.g., /usr only

 Filesystem naming
 Client can mount a filesystem several times
 Different names for the same file system
 Increases confusion
 Approach:

 Structure mountpoint names, e.g., /usr/server1

NFS Problems

 Credentials and security
 Wanted UNIX style permissions
 Possible via RPC permission model

 Pass authentication parameters with RPC
 UID, GID

49
© 2009 University of Karlsruhe, System Architecture Group

 UID, GID
 Problem: global UIDs, GIDs required

 Administrative hassle
 Solution: Yellow pages (YP)

Database-like networked user/group administration
 Problem: remote root access

 Remote root should not be equal to local root
 Solution: map root access to a special UID (nobody)
 Problem: root may have fewer rights to files than users!

root still can impersonate every local user

NFS Problems

 Concurrent access:
 No agreed-on concurrency model for files
 Thus, NFS does not provide file locking

 UNIX open file semantics:
 Problem:

50
© 2009 University of Karlsruhe, System Architecture Group

 can open a file and unlink afterwards
 strange but necessary semantics (tmp files)

 Solution:
 Rename a file temporarily on server
 Client removes file after close

 Similar problem: file access changes on open file
 Time skew:

 E.g., making dependencies on remote files
 Solution: NTP (planned)

Initial NFS Performance

51
© 2009 University of Karlsruhe, System Architecture Group

 First version had pretty bad performance

NFS Performance Optimizations

 Decrease number of read and write calls
 Add client cache
 Flush cache on close
 Helped a lot

 Avoid extensive copying

52
© 2009 University of Karlsruhe, System Architecture Group

py g
 Do XDR translation in place
 Saves 1 buffer copy

 gettattr accounted for 90% of server calls
 stat on client produces 11 (!) getattr RPCs
 Add attribute cache
 Flushed periodically (every 3 seconds)
 Dropped to 10%

NFS Performance Optimizations

 Make sequential reads faster
 Add read ahead in the server
 For on-demand executables:

 Cluster on-demand loading requests

53
© 2009 University of Karlsruhe, System Architecture Group

 For small programs, load all pages at once

 Increase lookup performance
 Add client name lookup cache
 Contains vnodes for remote directory names
 Flushed when retrieved attributes (modify time)

don’t match cached vnode attributes

NFS Performance Optimizations

 Performance after optimizations

54
© 2009 University of Karlsruhe, System Architecture Group

 Problems remaining:
 Frequently executed stat calls are costly
 write is synchronous by design

NFS Future Work (anno 1984)

 Future work
 Diskless mode for clients
 Remote file locking

Other filesystem types

55
© 2009 University of Karlsruhe, System Architecture Group

 Other filesystem types
 Performance
 Security improvements
 Automatic mounting

SDI File Service Design
 File names maintained by name server
 Names translate into a session handle as seen by the

client
 The session handle maps to disk blocks in the file

server

56
© 2009 University of Karlsruhe, System Architecture Group

SDI File Service Design
 Fileserver design

 Stateful
 Stateless

 Fileserver interfaces
 File handle layout

57
© 2009 University of Karlsruhe, System Architecture Group

 File handle layout
 Operations on files
 Operations on directories
 File attributes (basic)

 Fileserver implementation
 Fileserver / Nameserver relationship
 Data transfer: copying, mapping
 Stateful fileserver: which state to hold

SDI File Service Design Groups (2)

 Groups
 SDI 3
 SDI 6

Presentation Presentation
 June 04, 2009

 Please don’t forget to discuss your slides with
Marcel beforehand

58
© 2009 University of Karlsruhe, System Architecture Group

