Systems Design and Implementation
1.5 — File Systems

System Architecture Group, SS 2009
University of Karlsruhe

May 26, 2009 Jan Stoess

Philipp Kupferschmied

University of Karlsruhe

-
[") Reminder

= All SDI Groups:
Please contact the tutor before
your presentations take place!

= [utor
= Marcel Noe

= Consultation Time:
Monday, 16.00 - 18.00

= R154, 50.34

[") Overview

= Introduction
= Motivation
= File types, attributes, access, operations
= Directory types, operations

= Implementing files and directories

n [Parts taken from A. Tanenbaums slides on modern
OSes/

s Case Studies:
s FAT
= NFS

[C) Why files?

= Tanenbaum’s motivation for files:
= Enable storing large amount of data

= Make data survive termination of processes
or the system

= Let processes access persistent data
concurrently

= My 2cents
= Structure your data

Source: Andy Tanenbaum: Modern Operating Systems, 2" edition. Supplementary powerpoint slides, http://www.cs.vu.nl/~ast/books/book_software.html

[") File naming and structuring

Extension

Meaning

file.bak

Backup file

file.c

C source program

file.gif

Compuserve Graphical Interchange Format image

file.hlp

Help file

file.html

World Wide Web HyperText Markup Language document

file.jpg

Still picture encoded with the JPEG standard

file.mp3

Music encoded in MPEG layer 3 audio format

file.mpg

Movie encoded with the MPEG standard

file.o

Object file (compiler output, not yet linked)

file.pdf

Portable Document Format file

file.ps

PostScript file

file.tex

Input for the TEX formatting program

file.txt

General text file

file.zip

Compressed archive

) © 2009 University of Karlsruhe, System Architecture Group

Typical file extensions.

—
D File Structure

= Three kinds of files
= byte sequence
= record sequence
= tree

) © 2009 University of Karlsruhe, System Architecture Group

-
[") File Types

Magic number
Text size
Data size
E BSS size
E Symbol table size
Entry point
} 7
Flags
L Text A
L Data A
A Relocation I
~ bits
A Symbol A
- table

(@)

/ Module
name
Header
Date
Object Owner
module
Protection
Size
Header
Object
module
Header
Object
module

(b)

(a) An executable file (b) An archive

) © 2009 University of Karlsruhe, System Architecture Group

[]) File Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASClI/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file has last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

) © 2009 University of Karlsruhe, System Architecture Group

Possible file attributes

[7) File Access

= Sequential access
= read all bytes/records from the beginning
= cannot jump around, but rewind
= convenient when medium was mag tape
= Random access
= bytes/records read in any order
= essential for data base systems

= read can be ...
= move file marker (seek), then read or ...
= read and then move file marker

[") File Operations

1.

2.

3.

Create
Delete
Open
Close
Read
Write

7. Append
5. Seek

o. Get
attributes

10. Set
Attributes

11. Rename

10

Example Program Using File System Calls

int main(int argc, char *argvy])
{
> int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF _SIZE];

2009 University of Karlsruhe, System Architecture Group

11

D Example Program Using File System Calls

/* Open the input file and create the output file */
—=> in_fd = open(argv[1], O_RDONLY); /* open the source file */

=—> out_fd = creat(argv[2], OUTPUT_MODE); /* create the destination file */

/* Copy loop */
— rd_count = read(in_fd, buffer, BUF_SIZE): /* read a block of data */
— wt__count = write(out_ fd, buffer, rd__count); /* write data */

}

/* Close the files */
——> close(in_fd);
close(out_fd);

}

) © 2009 University of Karlsruhe, System Architecture Group

12

[") Memory-Mapped Files

O)

‘[sys_read()

CJ Buffer cache

.

SR

=)

[j Buffer cache

@ Reading files using file system calls
®) Reading files using memory mappings

13

O

Directories
Single-Level Directory Systems

. Root directory

= A single level directory system
= contains 4 files
= owned by 3 different people, A, B, and C
= (Letters indicate owners of the directories and files)

14

™ Directories
Two level Directory Systems

Root directory

User
directory

15

Directories
Hierarchical Directory Systems

——Root directory

User
directory_ |

User subdirectories

(¢) (c) (c) (C) < uUserfile

A hierarchical directory system

16

[_) Directory and Path Names

~—— Root directory

bin

etc

lib

usr
tmp

bin etc lib

usr

ast

jim

lib

:

lib

7

jim

dict.

tmp

~— Just/jim

A UNIX directory tree

17

[") Directory Operations

1 Mkdir 5. Readdir
2. Rmdir 5. Rename
3. Opendir 7. Link

4. Closedir s. Unlink

18

[_) File System Implementation

€ Entire disk =
Partition table Disk partition \
MBR
Boot block | Super block | Free space mgmt |-nodes Root dir Files and directories

A possible file system layout

19

) © 2009 University of Karlsruhe, System Architecture Group

[) Implementing Files

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
" r -) r ol) —"
HEEEEESEEEEEESSSSNEEEEEEEEEEEESEEEEEEEEEMS
G e .) L J
File B File D File F
(3 blocks) (5 blocks) (6 blocks)

@ Contiguous allocation of disk space for 7 files
o State of the disk after files D and £ have been removed

20

D © 2009 University of Karlsruhe, System Architecture Group

D Implementing Files

File A
—— —_ — —_ 0
File File File File File
block block block block block
0 1 2 3 4
Physical 4 £ 2 10 12
block
File B
4 —— -+ O
File File File File
block block block block
0 1 2 3
Physical 6 3 11 14
block

Storing a file as a linked list of disk blocks

D © 2009 University of Karlsruhe, System Architecture Group

21

[) Implementing Files

Physical
block
0
1
2 10
3 11
4 7 —<—— File A starts here
5
6 ——— File B starts here
7
8
9
10 12
11 14
12 1
13
14 1
15 ——— Unused block

Linked list allocation using a file allocation table in RAM

22

) © 2009 University of Karlsruhe, System Architecture Group

[_) Implementing Files

) © 2009 University of Karlsruhe, System Architecture Group

File Attributes

Address of disk block 0 -
Address of disk block 1 >
Address of disk block 2 i
Address of disk block 3 —
Address of disk block 4 e
Address of disk block 5 —
Address of disk block 6 -
Address of disk block 7 —

Address of block of pointers

An example I-node

Y

Disk block

containing

additional
disk addresses

23

D Implementing Directories

A simple directory

= fixed size entries

= disk addresses and attributes in directory entry
Directory in which each entry just refers to an i-node

24

Implementing Directories

= Two ways of handling long file names in directory
= In-line
= Inaheap

°© 2009 University of Karlsruhe, System Architecture Group

[7) Shared Files

. Root directory

Shared file

File system containing a shared file

26

O

Shared Files

= Situation prior to linking
= After the link Is created
= After the original owner removes the file

27

[The FAT file system

= Origins in the late 1970s
= Simple file system
= Floppy disks
= less than 500K size.
= Enhanced to support larger data.
= FAT = file allocation table
= Specifies used/free areas of disk
= 3 FAT file system types
= FAT12
= FATI16
= FAT32
= Specifies #bits/entry in FAT structure

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

28

[_) FAT structures

= Boot record
= Cluster
= Group of data sectors on disk
= Used to store file and directory data
= Number of sectors stored in boot record
= File allocation table (FAT)
= Simple array of 12/16/32 bit entries
= Singly linked list of cluster chains (files)
= 2 synchronized copies / disk

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

29

[_) FAT structures

= Root directory
= Normal directory without “..”
= Location hardcoded after FAT
= Data area
= Arranged In clusters
= Wasted sectors
s #sectors % sizeof(cluster)

Boot Sector FAT1 FAT?2 Root Folder Data W,

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

30

[C) FAT entries

Sourc

= Simple bit field

0x00000000

Free

0x00000001

Reserved

0x00000002-0xFFFFEFFF

Used; value points to
next cluster

OXFFFFFFF7

Bad

OXFFFFFFF8-OXFFFFFFFF

Last cluster in file

e: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

31

[_) Directories

= Directories are special files
= Table of file entries
= Structure of file entries
= Name + Extension (fixed size)
= Attributes
= Create time
= Last access date
= Last modified time
= Last modified date
= Starting cluster number
= File size
= Long file names
= Phony entries (invalid volume attribute)
= Ignored by most old DOS programs
= New programs can retrieve LFN from entry

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Version 1.03, 2000

32

D © 2009 University of Karlsruhe, System Architecture Group

[*) Opening a file

= (o to parent directory

= Search for file entry
= Retrieve first cluster number
= Retrieve data from cluster

= For more clusters
= Goto FAT
= Retrieve entry of first cluster
= Follow chain of clusters
= Retrieve data from clusters

Source: Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System Specification. FAT: General Overview of On-Disk Format. Vi

ersion 1.03, 2000

33

["J NFS — The Network File System

= Invented by Sun Microsystems, mid 1980s
= ldea:
= Transparent, remote access to filesystems
= Portability to different OSes and architectures

= Approach:
= Specified using external data representation (XDR)
describes protocols machine-independently

= based on RPC package
Simplify protocol definition, implementation, maintenance

Source: R.Sandberg et al. Design and Implementation of the Sun Network Filesystem. Proceeding of the USENIX 1985 Summer Conference

34

D © 2009 University of Karlsruhe, System Architecture Group

["J NFS — The Network File System

= First implementation

UNIX 4.2 kernel
Completely new kernel interface

Separates generic from specific filesystem
Implementations

Two basic parts

=« VFS: operations on a filesystem
= VNode: operations on a file

Source: R.Sandberg et al. Design and Implementation of the Sun Network Filesystem. Proceeding of the USENIX 1985 Summer Conference

35

[_J NFS Design considerations

= Goals:
= Machine and OS independence
= Crash recovery
= Transparent access
= Maintain UNIX semantics on client
= Reasonable performance

Source: R.Sandberg et al. Design and Implementation of the Sun Network Filesystem. Proceeding of the USENIX 1985 Summer Conference

36

[_J NFS Design considerations

= Basic design

= Uses RPC mechanism

= Protocol defined as a set of procedures, arguments and
results

= Synchronous behavior

= Stateless protocol
= Each call contains all information to complete the call

= Stateful alternative discarded since
Client would need to detect server crashes
Server would need to detect client crashes (why?)

= No recovery needed after crash
= No difference between crashed and slow server

D © 2009 University of Karlsruhe, System Architecture Group

37

[_J NFS Design considerations

= Basic design

= RPC package Is transport independent
= First implementation uses UDP/IP

= Most common parameter: file handle
= Provided by server
= Used by client as reference
= Opague for client

38

[_) NFS protocol procedures

null() returns ()

lookup(airfh, name) returns (fh, attr)
create(dairfh, name, attr) returns (newrh, attr)
remove(airfh, name) returns (status)

getattr(/h) returns (attr)
setattr(7/h, attr) returns (attr)

read(/h, offset, count) returns (attr, data)
write(/h , offset, count, data) returns (attr)
rename(airfh, name, tofh, toname) returns (status)

39

[_) NFS protocol procedures

w link(airth, name, tofh, toname) returns (status)
= symlink(dirfh, name, string) returns (status)
= readlink(7h) returns (string)

= Mmkdir(dirfth, name, attr) returns (7h, newattr)
s rmdir(airfh, name) returns (status)
= readdir(airfh, %ook/'e, count) returns(entries)

next
= statfs(/) returns (7sstats)

40

[_) NFS protocol procedures

= Filesystem root obtained via external mount protocol
= Takes UNIX directory pathname

Checks permissions
Returns filehandle

Idea:
= Easy extension of filesystem access checks
= Only place where UNIX names are used

= External data representation XDR

Similar to IDL

Specification of data types

Specification of procedures

Defines size, byte order, alignment of data types
C-like definition

41

[") NFS Server Side

= Stateless server

= No server-internal caching

= Server flushes modified data immediately
= Filehandle generation

= Filehandle =
<filesystem id, inode number, inode generation number>

= NFS introduces filesystem IDs

= NFS introduces inode generation number
(what for?)

D © 2009 University of Karlsruhe, System Architecture Group

42

[") NFS Client Side

= Need transparent access to remote files
= Do not change path name structure
= Explicit <host:/path> not backwards compatible

= Approach:
= Do hostname lookup and file address binding once
= Attach remote filesystem to local path
= Use mount protocol

= Implementation:

= Add new filesystem interface to the kernel
VFS: operations on a remote file system
VNode: operations on files within a file system

D © 2009 University of Karlsruhe, System Architecture Group

43

a NFS Filesystem Interface

Client Server

System Calls System Calls

[2) NFS Filesystem Interface

= Filesystem operations
= per filesystem
= Mmount, mount_root
= VFS operations
= per mounted filesystem
= unmount, root, statfs, sync
= VNode operations
= lookup, create, remove, rename
= open, close, rdwr, ioctl, select
= getattr, setattr, access
= Mmkdir, rmdir, readdir
= link, symlink, readlink

D © 2009 University of Karlsruhe, System Architecture Group

45

[2) NFS Filesystem Interface

= VNode operations

= Some operations map to NFS procedures, some
not

= Pathname lookup

= Problem:
=« Pathname could contain mountpoint

= Mount information is contained in the client, above the
VNode layer

= Server cannot keep track of client mount points
= Approach:

= Break path into components

= Do lookup per component

= Cache lookups in the client

D © 2009 University of Karlsruhe, System Architecture Group

46

[_) NFS implementation

= Completed around 1984
= Implemented VNodes in the kernel
= RPC, XDR ported to kernel
= User-level mount service
= User-level NFS server daemon allows for sleeping

47

[NFS Problems

= Root filesystems

= Sharing root file systems not possible

= /tmp: names of temporary files are created with local
names (process id)

= /dev: no remote device access system

= Approach:
Share root FS partly, e.g., /usr only

= Filesystem naming
= Client can mount a filesystem several times
= Different names for the same file system
= Increases confusion

= Approach:
= Structure mountpoint names, e.g., /usr/serverl

D © 2009 University of Karlsruhe, System Architecture Group

48

[NFS Problems

= Credentials and security
= Wanted UNIX style permissions

= Possible via RPC permission model
= Pass authentication parameters with RPC
= UID, GID

= Problem: global UIDs, GIDs required
= Administrative hassle
= Solution: Yellow pages (YP)
Database-like networked user/group administration
= Problem: remote root access
= Remote root should not be equal to local root
= Solution: map root access to a special UID (nobody)

= Problem: root may have fewer rights to files than users!

root still can impersonate every local user
49

D © 2009 University of Karlsruhe, System Architecture Group

[NFS Problems

= Concurrent access:
= No agreed-on concurrency model for files
= Thus, NFS does not provide file locking

= UNIX open file semantics:

= Problem:
= can open a file and unlink afterwards
= Strange but necessary semantics (tmp files)

= Solution:
= Rename a file temporarily on server
= Client removes file after close

= Similar problem: file access changes on open file
= Time skew:

= E.g., making dependencies on remote files

= Solution: NTP (planned)

D © 2009 University of Karlsruhe, System Architecture Group

50

a Initial NFS Performance

= First version had pretty bad performance

51

[") NFS Performance Optimizations

= Decrease number of read and write calls
= Add client cache
= Flush cache on close
= Helped a lot
= Avoid extensive copying
= Do XDR translation in place
= Saves 1 buffer copy
= gettattr accounted for 90% of server calls
= Stat on client produces 11 (!) getattr RPCs
= Add attribute cache

= Flushed periodically (every 3 seconds)
= Dropped to 10%

52

[") NFS Performance Optimizations

= Make sequential reads faster
= Add read ahead in the server

= For on-demand executables:
= Cluster on-demand loading requests
= For small programs, load all pages at once
= Increase lookup performance

= Add client name lookup cache
= Contains vnodes for remote directory names

= Flushed when retrieved attributes (modify time)
don’'t match cached vnode attributes

53

[") NFS Performance Optimizations

= Performance after optimizations

580 =

540
200
460
410
330

340 - \l_\

260 3—Ladle

220

~NFS

T T T ¥
Base buffer cache beo) att te 4107413 direcjo FCs
large UDF Py J'rfc mg:r,

= Problems remaining:
= Frequently executed stat calls are costly
= Write is synchronous by design

54

[-) NFS Future Work (anno 1984)

= Future work
= Diskless mode for clients
= Remote file locking
s Other filesystem types
= Performance
= Security improvements
= Automatic mounting

55

[_) SDI File Service Design

= File names maintained by name server

= Names translate into a session handle as seen by the
client

= The session handle maps to disk blocks in the file
server

56

[_) SDI File Service Design

= Fileserver design
= Stateful
= Stateless
= Fileserver interfaces
= File handle layout
= Operations on files
= Operations on directories
= File attributes (basic)
= Fileserver implementation
= Fileserver / Nameserver relationship
= Data transfer: copying, mapping
= Stateful fileserver: which state to hold

S7

[_) SDI File Service Design Groups (2)

= Groups
= SDI 3
= SDI 6
= Presentation
= June 04, 2009

= Please don’t forget to discuss your slides with
Marcel beforehand

58

