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Abstract

Microkernel-based systems divide the operating system functionality into individ-
ual and isolated components. The system components are subject to application-
class protection and isolation. This structuring method has a number of benefits,
such as fault isolation between system components, safe extensibility, co-existence
of different policies, and isolation between mutually distrusting components. How-
ever, such strict isolation limits the information flow between subsystems including
information that is essential for performance and scalability in multiprocessorsys-
tems.

Semantically richer kernel abstractions scale at the cost of generality andmini-
mality–two desired properties of a microkernel. I propose an architecture that al-
lows for dynamic adjustmentof scalability-relevant parameters in a general, flex-
ible, and safe manner. I introduce isolation boundaries for microkernel resources
and the system processors. The boundaries are controlled at user-level. Operating
system components and applications can transform their semantic information into
three basic parameters relevant for scalability: the involved processors(depending
on their relation and interconnect), degree of concurrency, and groups of resources.

I developed a set of mechanisms that allow a kernel to:

1. efficiently track processors on a per-resource basis with supportfor very
large number of processors,

2. dynamically and safely adjust lock primitives at runtime, including full de-
activation of kernel locks in the case of no concurrency,

3. dynamically and safely adjust locking granularity at runtime,

4. provide a scalable translation-look-aside buffer (TLB) coherencyalgorithm
that uses versions to minimize interprocessor interference for concurrent
memory resource re-allocations, and

5. efficiently track and communicate resource usage in a component-basedop-
erating system.

Based on my architecture, it is possible to efficiently co-host multiple isolated,
independent, and loosely coupled systems on larger multiprocessor systems, and
also to fine-tune individual subsystems of a system that have different and poten-
tially conflicting scalability and performance requirements.

I describe the application of my techniques to a real system: L4Ka::Pistachio,
the latest variant of an L4 microkernel. L4Ka::Pistachio is used in a variety of
research and industry projects. Introducing a new dimension to a system —paral-
lelism of multiprocessors — naturally introduces new complexity and overheads.
I evaluate my solutions by comparing with the most challenging competitor: the
uniprocessor variant of the very same and highly optimized microkernel.
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Zusammenfassung

Mikrokernbasierte Systeme teilen die Betriebssystemfunktionalität in unabḧan-
gige und isolierte Komponenten auf. Die Systemkomponenten unterliegen dabei
denselben Isolations- und Schutzbedingungen wie normale Nutzeranwendungen.
Solch eine Systemstruktur hat eine Vielzahl von Vorteilen, wie zum Beispiel
Fehlerisolation zwischen Systemkomponenten, sichere Erweiterbarkeit, dieKo-
existenz mehrerer unterschiedlicher Systemrichtlinien und die strikte Isolation
zwischen Komponenten, die sich gegenseitig mißtrauen. Gleichzeitig erzeugt
strikte Isolation auch Barrieren für den Informationsfluß zwischen den individu-
ellen Subsystemen; diese Informationen sind essentiell für die Performanz und die
Skalierbarkeit in Multiprozessorsystemen.

Kernabstraktionen mit semantisch höherem Gehalt skalieren auf Kosten der
Allgemeinheit und der Minimaliẗat, zwei erẅunschte Eigenschaften von Mikro-
kernen. In dieser Arbeit wird eine Architektur vorgestellt, die es erlaubt,die für
die Skalierbarkeit relevanten Parameter generisch, flexibel, und sicherdynamisch
anzupassen. Es werden Isolationsschranken für die Mikrokernresourcen und Sys-
temprozessoren eingeführt, welche unter der Kontrolle von Nutzerapplikationen
stehen. Die Betriebssystemkomponenten und Anwendungen können das ihnen zur
Verfügung stehende semantische Wissen in die folgenden drei skalierbarkeitsre-
levanten Basisparameter umwandeln: die involvierten Prozessoren (abhängig von
den Prozessorbeziehungen und dem Speichersubsystem), den Gradder Paralleliẗat
und Ressourcengruppierungen.

Es wurden die folgenden Methoden und Mechanismen entwickelt:

1. eine effiziente Methode zur Speicherung und Auswertung der zu einer Res-
source zugeḧorigen und relevanten Prozessoren,

2. ein dynamisches und sicheres Synchronisationsprimitiv, welches zur
Laufzeit angepaßt werden kann (dies beinhaltet die vollständige Deak-
tivierung von Kernsperren für den Fall, daß keine Parallelität vorhanden ist),

3. die dynamische und sichere Anpassung der Granularität von Sperren zur
Laufzeit,

4. ein skalierbarertranslation-look-aside buffer(TLB) Kohärenzalgorithmus,
der zur Vermeidung von wechselseitigen Beeinflussungen von Prozessoren
ein Versionsschema nutzt, sowie

5. ein Mechanismus zur effizienten Ermittlung und Weiterleitung von Ressour-
cennutzungsinformationen in einem komponentenbasierten Betriebssystem.

Basierend auf dieser Architektur ist es möglich, mehrere unabhängige,
isolierte, und lose verbundene Systeme gleichzeitig auf einem Mehrprozessorsys-
tem zu betreiben. Desweiteren ermöglicht die Architektur, einzelne Subsysteme
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individuell feinabzustimmen. Dies ist selbst dann möglich, wenn Subsysteme un-
terschiedliche oder sogar widersprüchliche Skalierbarkeits- und Performancean-
forderungen haben.

Die Techniken werden an einem real existenten System exemplarisch evaluiert:
dem L4Ka::Pistachio Mikrokern, der die neueste L4-Version darstellt. L4Ka::Pis-
tachio wird aktiv in einer Reihe von Forschungs- und Industrieprojekteneingesetzt.
Die Einführung der neuen DimensionParallelität von Prozessorenerḧoht sowohl
die Komplexiẗat als auch die Kosten. Die Effizienz der vorgestellten Lösungen
werden daher an dem größten Konkurrenten gemessen: der Uniprozessorvariante
desselben hochoptimierten Mikrokerns.
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Chapter 1

Introduction

In the last years two important trends are changing the systems area: First,perfor-
mance scaling by increasing processor frequency is reaching the pointwhere fur-
ther frequency increases are uneconomical. The current leakage that is inherent in
small structure size of today’s high-frequency processors results in massive energy
dissipation that is emitted as heat. In order to further increase compute power, pro-
cessor development is switching the focus to increasing parallelism. All primary
processor vendors are providing or announcing systems with a large number of
tightly coupled processors, that have previously been only available in mainframe-
class systems.

Second, the increasing variety of usage cases of computers as multi-purpose
devices is setting new demands on operating systems which remain unfulfilled by
traditional operating systems, such as UNIX and Windows. These new demands
require radical new system designs, and cannot be achieved by simply extending
the existing systems with new features. Examples of these requirements are higher
level of security and confidentiality of critical information, real-time support,and
safe sharing of hardware resources in consolidated server environments of poten-
tially untrusted clients.

I argue, that microkernels present a viable alternative for structuring operating
systems that fulfill these new system requirementsif they scale on large multipro-
cessor systems.

Scalability of operating systems for shared-memory multiprocessors is a com-
plex problem that requires careful design of the complete software stack. The com-
plexity stems from the structure of the underlying hardware architecture. With an
increasing number of processors resource access latencies are non-uniform which
has to be considered by the operating system. Naı̈ve synchronization and resource
allocation schemes that are efficient in smaller multiprocessor systems often lead to
resource contention, starvation, high overhead, and ultimately to system saturation
on more sophisticated hardware.

The operating system is an omnipotent software layer on top of the hardware
and therefore a crucial contributor to overall scalability. It manages andmultiplexes
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all hardware resources and mediates them between the competing applications. De-
pending on resource usage patterns, the degree of resource sharing, object scope,
and object granularity, the operating system selects the most appropriate and effi-
cient synchronization algorithm, and thereby minimizes overhead and maximizes
scalability. The choice for the optimal algorithm requires detailed semantic in-
formation about system subjects and objects. For example, the relevant literature
differentiates between as many as ten different synchronization schemes.

In microkernel-based systems, the microkernel is only a very thin software
layer that multiplexes the hardware between isolated or cooperating entities in a
secure, safe, and extensible manner. The managed resources are limitedto basic
memory pages, processor resources, and processor time. All high-level operating
system abstractions, such as file systems, network stacks, and device drivers are
implemented as unprivileged user-level servers.

This system structure drastically reduces the complexity of the kernel itself and
previous research validates that it is possible to construct real-time [53] and se-
cure systems [90] on a microkernel. However, moving operating system constructs
out of the kernel also eliminates detailed semantic information that is required to
achieve optimal scalability. The microkernel lacks the necessary informationto
make an educated decision on the most efficient strategy.

Previous research on multiprocessor microkernel systems therefore compro-
mised either on the scalability aspect (by choosing one specific synchronization
policy), or on the strict separation of mechanism and policy and blurred theline
between kernel and applications. The latter approach looses the desiredproperties
of a microkernel.

In this thesis I present solutions that allow for an uncompromised microker-
nel design while achieving excellent scalability with low overhead. My solutions
comprise four areas: I developed a space and time efficient tracking scheme for par-
allelism allowing every kernel object to be tagged with a processor mask. Using
the tracking mask, the kernel derives the potential concurrency on kernel objects
and adjust its synchronization scheme.

I developeddynamic locksthat can be safely enabled and disabled at runtime
thus eliminating synchronization overhead while still guaranteeing functionalcor-
rectness in the kernel. Based on the dynamic locking scheme, I derived a method
for dynamically adjusting thelock granularityfor divisible objects. This provides
applications with control over lock granularity in the microkernel. Applications
can dynamically choose between coarse-grain locking for lower runtime overhead
or fine-grain locking for a higher level of parallelism.

Memory is a primary resource managed at application level but enforced by
the microkernel. Besides synchronization on kernel meta data, the microkernel has
to enforce coherency of the translation look-aside buffer (TLB). I present an algo-
rithm that decouples memory permission updates from outstanding TLB updates.
With this scheme, multiple processors can manipulate permissions to memory ob-
jects in parallel while still minimizing the overhead for TLB coherency updates.

Finally, I present a low-overhead event logging mechanism that transfers
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scheduling-relevant resource usage data between system components. The mech-
anism uses memory as a high-bandwidth and low-overhead transport mechanism
and thereby only induces a marginal runtime overhead. It enables application-level
schedulers to efficiently manage and allocate kernel resources, such as allocating
threads to processors and also managing the per-processor kernel memory pools.

I describe the application of my techniques to a real system: L4Ka::Pistachio,
the latest variant of an L4 microkernel. I played a significant role in the design and
development of L4Ka::Pistachio. At this time, it supports nine different hardware
architectures and is used in a number of industry and research projects.Introduc-
ing a new dimension to a system — parallelism of multiprocessors — naturally
introduces new complexity and overheads. I evaluate my solutions by comparing
with the most challenging competitor: the uniprocessor variant of the very same
and highly optimized microkernel.

I see my contribution as extending minimalistic microkernel design, epito-
mized by L4, to the important domain of multiprocessors. However, the solutions
are not restricted to microkernels, but are also applicable in the area of virtual ma-
chines, monolithic operating systems and even applications.

Organization

This thesis is structured as follows: In Chapter 2, I define common terms and
principles required for the following sections. In Chapter 3, I evaluate related work
on synchronization, scalability of multiprocessor operating systems in general, and
microkernel-based systems in particular.

In Chapter 4, I develop my principles for adaptive synchronization primitives
for the kernel. In Section 4.1, I discuss the structural differences of microkernel-
based systems as compared to traditional operating systems for large multiproces-
sor systems. Then, I develop my resource tracking scheme (Section 4.2) which
forms the foundation for the dynamic locking scheme described in Section 4.3.In
Section 4.4, I describe the TLB coherency tracking algorithms that decouples mem-
ory permission management and TLB coherency updates. Finally, in Section4.5,
I develop the event-logging mechanism that enables the microkernel and isolated
system components to efficiently exchange resource usage information that is re-
quired for user-level scheduling and multiprocessor resource allocation policies.

Chapter 5 shows how I applied my methodology to L4Ka::Pistachio, an L4
microkernel. In Section 5.1, I give a general overview of L4 primitives required
for the later development. In Section 5.2, I specify functional and performance
requirements and define design goals and non-goals. I then introduce themul-
tiprocessor extensions to the uniprocessor kernel abstractions. In Section 5.3, I
describe the implications of parallelism to L4’s most performance-critical primi-
tive: interprocess communication (IPC). I use dynamic locks for IPC to eliminate
the synchronization overhead for the most important common cases. Section5.4
details scalable user-level memory management applying dynamic locking and the
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TLB coherency scheme to L4. Finally, in Section 5.5, I show how event-tracing
can be used to manage kernel memory and threads via a user-level scheduler.

In Chapter 6, I evaluate the performance of my design for L4Ka::Pistachio.
After detailing the peculiarities of my evaluation platform in Section 6.1, I evaluate
the performance and scalability of the multiprocessor IPC primitive on the same
and different processor (Section 6.2), the event logging scheme (Section 6.3), and
user-level memory management (Section 6.4).

Chapter 7 includes a summary and suggestions for future work.



Chapter 2

Facts and Notation

In this chapter I introduce common terminology and principles of operating sys-
tems and multiprocessor hardware that is used throughout the later chapters in this
dissertation.

Operating System and Microkernels

An operating system (OS) is a program (or a set of programs), which mediates ac-
cess to the basic computing resources provided by the underlying hardware. Most
operating systems create an environment in which an application can run safely and
without interference from other applications. In addition, many OSes provide the
application with an abstract, machine independent interface to hardware resources
that is portable across different platforms.

There are two popular views of an operating system: The operating systemas
a resource manager or the operating system as an abstract virtual machine.

The view of a resource manager has the operating system acting as an arbiter
for system resources. These resources include disks, networks, processors, time
and others. The resources are shared among the various applications depending on
individual applications’ requirements, security demands, and priority.

An alternative view of operating systems is that of an abstract virtual machine.
Each virtual machine provides a level of abstraction that hides most of the idiosyn-
crasies of lower-level machines. A virtual machine presents a complete interface
to the user of that machine. This principle can be applied recursively.

An operating system provides an interface to its applications to enhance the
underlying hardware capabilities. This interface is more portable, provides protec-
tion among competing applications, and has a higher level of abstraction than bare
hardware. Briefly, operating systems typically provide services in the following
areas: (i) program creation, (ii ) program execution, (iii ) access to I/O devices, (iv)
controlled access to devices, (v) error detection and response, and (vi) accounting.

A number of different architectural organizations are possible for an operat-
ing system; the two most relevant structures aremonolithicandclient-server. In
the monolithic system, all OS functions are integrated into a single system image.
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The advantage is good performance with the disadvantage of high complexity. In
monolithic systems, all subsystems share the same protection domain and faults in
one subsystem can propagate into others. Client-server systems employ amicro-
kernel, that mediates resource access to the bare hardware. The OS subsystems are
implemented as applications that run in their own address space. The microker-
nel provides inter-process communication for interaction between the subsystems.
Microkernels provide significantly better fault isolation because subsystems are
confined to their own protection domain.

Multiprocessor Systems

In multiprocessor systems, multiple connected processors operate in parallel. De-
pending on the processor interconnect, the systems are differentiated in (i) clusters
(or multicomputers) and (ii)shared memory multiprocessors. In clusters, each pro-
cessor has its dedicated memory and is an autonomous computer; the computers
communicate via a network. Shared memory multiprocessors have common mem-
ory for code and data and communication between processors may take place via
shared memory.

One general classification of shared memory multiprocessors is based on how
processes are assigned to processors. The two fundamental approaches aremas-
ter/slaveandsymmetric. For master/slave, the operating system always runs on a
particular processor and the other processors execute applications. In symmetric
multiprocessor systems(SMP), the operating system can execute on any processor.

For a small number of processors, multiprocessor systems commonly use a
shared memory busthat connects all processors and the memory. The shared bus
structure limits the overall memory bandwidth, because only one processor can ac-
cess the bus at a time. With an increasing number of processors, the shared bus
becomes a performance bottleneck. Large scale systems therefore use either mul-
tiple interconnected buses or per-processor memory. The buses are interconnected
via memory routers. These systems, however, exhibit different accesslatencies for
memory that is local to the accessing processor compared to remote memory. The
non-uniform memory accessproperty gave the systems their name: NUMA.

With the increasingly high integration, two other multiprocessor structures be-
come more common:simultaneous multithreading(SMT) andchip-level multipro-
cessing(CMP). SMT uses the multiple-issue-per-instruction features of modern su-
perscalar processors to hide latencies of resource stalls, such as cache misses. SMT
processors [108] provide multiple threads of execution that share the functional
units of one processor. On resource stalls the processor automatically switches to
another thread. The primary goal of SMT is to increase the utilization of functional
units of one processors.

CMP is an SMP implemented on a single chip. Multiple processor cores typ-
ically share a common second- or third-level cache and interconnect. CMPs are
also often referred to as multicore processors.
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Caches

Cache memory is intended to give memory speed approaching that of the fastest
memory available, and at the same time provide a large memory size at the price
of less expensive memory. The cache contains a copy of portions of main memory.
When the processor attempts to read a word of memory, a check is made to deter-
mine whether the word is in the cache. If so, the word is delivered to the processor,
otherwise a block of memory is fetched from main memory into the cache.

A consistency problem arises in multiprocessor systems, where each processor
has its own cache. When one processor modifies a datum, the other processors’
caches may still contain the old value, which is now incorrect.Cache coherency
mechanismsthat are implemented in hardware transparently update the processor
caches. In bus-based systems processors cansnoopthe memory bus for addresses
that they have cached. When a write operation is observed to a location thata cache
has a copy of, the cache controller invalidates its own copy. Various modelsand
protocols have been devised for maintaining cache coherency (e.g., MESI, MSI,
MOSI, and MOESI).

In cache-coherent NUMA systems (ccNUMA), processors have no common
memory bus prohibiting cache snooping for cache coherency. Instead,ccNUMA
systems use directory tables to keep track of which processors cache a specific
word. On modification, the hardware sends directed update and invalidate mes-
sages to the processors. This scheme has a significantly higher overhead compared
to snoopy caches and requires specific attention when designing a system.

Memory Management Unit

The memory management unit (MMU) of a processor is responsible for handling
memory accesses requested by the CPU. Among others, the MMU translates virtual
address to physical addresses (to implement virtual memory), it enforcesmemory
protection, and controls the caching strategy. The virtual address space is divided
into pages of a size of 2N, usually a few KBytes. When accessing memory, the
lower N bits remain unchanged while the upper bits select the (virtual) page num-
ber. The page number is used to index into apage table, that contains the translation
from virtual address to the physical memory page.

To reduce the translation latency, processors cache page table entries inthe
translation look-aside buffer(TLB) [66]. TLBs work similarly to normal caches
and contain the page table entries most recently used. Given a virtual address, the
processor will first inspect the TLB, and if the page table entry is present (i.e., a
TLB hit) the physical address is retrieved. Otherwise, the processor examines the
page table and if a valid entry is found the entry is loaded into the TLB. If the page
table contains an invalid entry, the processor signals a page fault exception to the
operating system.

Similar to memory caches, TLBs need to be kept coherent between multiple
processors. While cache coherence for memory is implemented in hardware, en-
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forcement of TLB coherence is left to the operating system. When updatinga page
table entry, the operating system has to specifically issue aTLB invalidationin-
struction. With very few exceptions, architectures require explicit invalidation of
TLB entries on remote processors. The updating processor sends an inter-processor
interrupt (IPI) to the remote processors, which then invoke the TLB invalidation
instruction updating their respective TLB. This remote invalidation is commonly
referred to asTLB shoot-down.



Chapter 3

Related Work

Related work to this thesis can be classified into the following four areas:

Scalable systems.My thesis proposes a number of mechanisms that control and
adjust kernel algorithms for resource allocation and management. In Sec-
tion 3.1 I discuss the general problem of multiprocessor scalability. I review
previous work that addresses the problem of operating system scalability,
discuss the relevant findings and relate them to my work.

Locks and synchronization. Locks are an important primitive for mutual exclu-
sion in multiprocessor systems but also a main source for limited scalability
and overhead. My thesis proposes an adaptable locking mechanism. In Sec-
tion 3.2 I describe the scalability problem of locks and other approaches that
address lock overhead and lock contention in scalable systems.

Partitioning. I use resource partitioning to isolate independent subsystems and
thereby avoid potential interference. In Section 3.3 I review other approaches
— software and hardware — that use resource partitioning to achieve better
scalability.

Microkernel-based systems.This thesis investigates scalability of microkernels.
As the disappointing performance results of early approaches have shown,
microkernels require careful design and implementation. In Section 3.4 I
describe the state of the art in microkernel-based systems laying the ground
for many design decisions, but also discuss other related work in the field of
microkernels on multiprocessors.

3.1 Scalable Systems

Multiprocessor scalability is addressed at various levels of the system stack: the
hardware level, the operating system, and the application and algorithmic level.

At the hardware level, a higher degree of circuit integration and the limitations
of frequency scaling puts a stronger focus on parallelism. Most microprocessor
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vendors ship now or have announced multicore versions of their processors, and
offer multiprocessors based on a single shared bus. Single bus systems,however,
are not scalable beyond a small number of processors. Because of this, the memory
bus becomes the system’s performance bottleneck.

The first scalable shared-memory machines are based on Omega 0 networks
[101], such as the NYU Ultra-Computer [3], the IBM RP3 [89], and the BBN
Butterfly [28]. In these systems, each processor has locally accessiblememory,
but is able to access the memory of remote processors via the memory intercon-
nect. Accesses to remote memory have a higher latency than to local memory. The
non-uniformity for memory accesses gives these machines their name:NUMA. Al-
ternative interconnect structures are ring or grid topologies, as used by the Stanford
DASH [68] and KSR [24] architectures, and the HECTOR [118] multiprocessor.

A critical design issue of all shared memory architectures is the cache co-
herency scheme. Each processor in a multiprocessor system has its own cache;
hence data can appear in multiple copies among the various caches. Cache co-
herence ensures that all processors have identical copies of a datum.In shared
bus systems, snoopy caches [11] provide a very simple method for cacheco-
herence, whereas NUMA systems employ directory-based cache-coherency ap-
proaches [50]. In this scheme, a directory keeps track of which processors have
cached a given memory block. When a processor wishes to write into that block,
the directory sends point-to-point messages to processors with an updated copy,
thus invalidating all other copies.

Cache-coherency updates and cache-migration costs are the prime limiting fac-
tors for scalability and need to be considered for software and system construction.
The overhead for cache-coherency updates has implications on all areas of multi-
processor systems, including the selection of synchronization primitives (such as
locks), the overhead for data sharing between processors, and formemory alloca-
tions in order to reduce the cost for memory accesses.

The metric for software scalability is speedup. According to Amdahl’s law [4],
the maximum speedup that parallelism can provide is bounded by the inverse of the
fraction that represents the serial portion of the task. Theoretical parallel comput-
ing models, such as PRAM [38, 87] and LogP [31], provide abstractionsof hard-
ware machines in a portable high-level manner. For example, LogP incorporates
four parameters into its model: communication latency, communication overhead,
the gap between consecutive messages, and the number of processors. However,
LogP and PRAM assume that they can distribute the workload across processors
and model a strategy for load distribution. This strategy is not applicable to oper-
ating systems and therefore theoretical models consider the operating system as a
given extension of the hardware platform.

3.1.1 Operating System Scalability

Unrau’s thesis [113] is probably the first that addresses operating system scalability
in a new and systematic manner. Instead of addressing the algorithmic speedup, he
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proposes the concept of the operating system as aservice center. His work bases
the scalability evaluation on queuing theory [65] with the three fundamental perfor-
mance metrics: throughput, utilization, and response time. Based on his analysis,
Unrau derives the following three fundamental design criteria for a scalable operat-
ing system that are quantified as runtime overhead of an operating system function.

Preserving parallelism: The operating system must preserve the parallelism af-
forded by the application.If several threads of an executing application re-
quest independent operating system services, then they must be serviced in
parallel. Otherwise the OS becomes a bottleneck limiting scalability and
application speedup.

Bounded overhead: The overhead for each independent operating system service
call must be bounded by a constant, independent of the number of proces-
sors. If the overhead of each service call increases with the number of pro-
cessors, the system will ultimately saturate.

Preserving locality: The operating system must preserve the locality of the appli-
cation. It is important to consider the memory access locality in large-scale
systems, because many large scale multiprocessors have non-uniform mem-
ory access times, where the cost of accessing memory is a function of the
distance among accessing processors, and because cache consistency incurs
higher overhead in large systems.

While these three design principles are a necessary requirement for scalable
systems, they are not sufficient for the following reason: Unrau’s requirements
only address the scalability of agiven system. This approach leaves two important
aspects unaddressed:overheadandisolation.

According to Unrau’s first and second design rule, a system is still considered
scalable if the actual execution time of a function is significantly higher than the
achievable minimum. The problem thereby is to determine the minimally achiev-
able overhead, which depends on the specific system scenario and on the number
of processors.

In order to determine the minimal overhead, I propose to incorporate an addi-
tional aspect: theisolation propertyof an operation. This proposal is based on the
following observation from hardware partitioning: Hardware partitioning divides a
large multiprocessor system into a set of independent smaller systems. The individ-
ual subsystems are fully isolated and behave (almost) like a physically partitioned
multiprocessor system. Most importantly, the isolated subsystemspreservetheir
performance and scalability properties. Hence, the achievable minimum overhead
for an operation, which is executed on (or affects) only a subset of theprocessors
of the system, should be identical to the overhead of a system of the size of the
subsystem.

The overhead of an operation is a function of its isolation boundaries; the
boundaries are represented by the processors affected by the operation. I propose
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a fourth design rule that addresses the overhead of a system function inrelation to
its isolation boundaries:

Preserving isolation: The operating system must preserve the isolation properties
of an application.When applications are restricted to a subset of processors,
the overhead for a system operation should be identical to the overhead of a
system with the size of the processor subset.

An implication of that requirement is that the cost for operations which are
restricted to a single processor should also have the overhead of a single-processor
system.

A system with more processors has an inherently higher management over-
head. This overhead includes memory resources that need to be allocatedand more
complex algorithms in order to accommodate hardware peculiarities which do not
exist in smaller hardware configurations. Therefore, it is hard to strictly follow the
postulated isolation requirement. However, in some cases it is possible to trade
memory footprint against less performance for the uncommon case.

Unrau’s third design rule addresses the special case of NUMA accessoverhead.
More generally, the operating system should use memory that is isolated to one(or
a subset) of the system’s processors.

3.1.2 Clustering

Hierarchical clustering is a way to structure shared-memory multiprocessoroper-
ating systems for scalability [113,114]. The basic unit of structuring is a cluster. A
cluster provides the functionality of an efficient, small-scale SMP that comprises a
small number of processors only. On larger systems, multiple clusters are instan-
tiated such that each cluster manages a group of neighboring processingmodules.
A processing module consists of a small number of processors, local memory, and
the memory interconnect. Major system services are replicated to each cluster so
that independent requests can be handled locally. In a later paper, Gamsa et al. [41]
list a number of problems with this approach, including poor locality, increased
complexity, and difficulties to support customized policies.

Clustered objects[7,41] (as used in Tornado and K42) extend the idea of a clus-
tered system structure to the OS object granularity (i.e., a C++ object instance). A
clustered object presents the illusion of a single object but is actually composed
of multiple object instances. Each individual instance handles calls from a sub-
set of the processors and the object instance presents the collective whole for all
processors. The specific implementation of clustered object instance can differ to
reflect the degree of parallelism and access patterns. The key to the implemen-
tation is the use of a per-processor translation table that contains a reference to a
handling method. The indirection table allows the creation of object representa-
tives on demand by installing a default fault handler in the table. When an object is
first referenced on a processor, the default handler catches the access attempt and
instantiates a local representative.
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Clustered objects are a powerful method for runtime adaptation. In particular,
it is possible to dynamically replace object code and the object’s synchronization
models via the indirection table. The faulting scheme, however, creates the prob-
lem that it only supports a forward scheme. The per-processor representatives are
established on access fault. There is no similar event for the destruction ofrepre-
sentatives and a fall-back to a less-scalable scheme that may incur a lower over-
head. While the authors describe a garbage collection mechanism very similarto
read-copy-update, there is no equivalent for a down-sizing (or de-parallelization)
of a clustered object. While this may not impose a problem for short-lived ker-
nel objects, it is critical for long-lived objects with significantly changing access
patterns, as seen in microkernels with user-level resource management.

3.2 Locks and Synchronization

Locks provide individual processors with exclusive access to shared data and crit-
ical sections of code. The most common locks for in-kernel synchronization are
spin locks, where a shared memory location stores the lock state (i.e., taken or
free). In order to acquire the lock, the processor atomically replaces thecontent
of the lock variable with the value that denotes a taken state. If the previous value
wasfree, the lock was acquired successfully, or otherwise the processor retries in a
loop.

The overhead for locks falls into three different categories: (i) the runtime
overhead for the lock primitive itself, (ii ) the cache footprint for the lock, and (iii )
utilization of memory bus bandwidth.

Locks are implemented with atomic processor primitives. A variety of alter-
native atomic primitives have been proposed and implemented on shared mem-
ory architectures in order to minimize locking overheads. Many of those special
primitives support one particular synchronization operation [45, 59, 68]. Although
special-purpose primitives have advantages in certain scenarios, commonproces-
sor architectures support a set of general-purpose primitives, suchas FETCH& Φ
[46], COMPARE&SWAP [25], and the pair of LOADL INKED–STORECONDITION-
AL [61].

• The FETCH& Φ primitive takes two parameters: the address of the destina-
tion and a value parameter. The primitive atomically reads the value from the
destination, computes the new value asΦ(original value,parameter), stores
it, and returns the original value.

Example primitives are TEST&SET, FETCH&A DD, and FETCH&STORE1.

• COMPARE&SWAP takes three parameters: the address of the destination,
an expected value and a new value. If the original value at the destination

1FETCH&STORE is also known as EXCHANGE that atomically replaces a register value with a
memory location. It is the atomic operation with the lowest overhead for IA32.
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address is identical to the expected value, it gets replaced atomically with
the new value. The return value indicates success or failure.

• The pair LOADL INKED–STORECONDITIONAL must be used together to
read, modify, and write a shared location. LOADL INKED returns the value
stored at the shared location and at the same time sets a reservation associ-
ated with processor and location. The reservation remains valid until another
processor accesses the recorded cache line. STORECONDITIONAL checks
the reservation; if valid it writes the new value and returns success, other-
wise failure. The reservation is commonly implemented in the processor
cache and invalidation can be easily embedded in the cache snooping proto-
col. When a STORECONDITIONAL fails it fails locally and does not cause
any bus traffic.

3.2.1 Locks: Software Approaches

The näıve use of atomic operations can induce significant overhead in larger mul-
tiprocessor systems. Processors that compete for a lock create memory bus traffic
due to the cache coherency protocol. Alternative locking schemes, suchas Mellor-
Crummey Scott locks (MCS locks) [82], reduce the overhead with locking queues
and employ spinning on local memory. Local spinning reduces the overhead of the
cache coherence protocol from all competing processors to one.

The optimal synchronization scheme depends on the peculiarities of the sce-
nario, such as the level of contention, the memory interconnect of competingpro-
cessors, and access frequency and pattern. Less concurrency and less complex
memory interconnects (such as simple snoopy caches of SMP systems) also require
less complex lock mechanisms and code paths, thus reducing runtime overhead and
cache footprint.

Overhead and complexity increases when locks are contended and lock at-
tempts cross NUMA node boundaries. However, no single best locking scheme
exists. Anderson [6] observed that the choice between spin-locks andMCS queue
locks depends on the level of lock contention. Lim [76] proposes dynamicrun-
time adaptation between both lock protocols. Depending on the degree of lock
contention the code adapts the lock protocol. For low contention cases (with less
than four processors) the scheme uses spin locks with the significantly lower run-
time overhead, whereas in high contention cases the more expensive, butbetter
scalable, MCS locks are used.

McKenney [79] argues that the choice for the best locking strategy depends on
a large number of factors, such as duration of critical section, read-to-modify ratio,
contention, and complexity. He differentiates as much as ten alternative design
patterns for choosing an optimal locking strategy.

Unrau et al. [115] address the problem of overhead vs. parallelism for fine gran-
ular locks. They propose a hybrid coarse-grain/fine-grain locking strategy that has
the low latency and space overhead of a coarse grain locking strategy while having



3.2. LOCKS AND SYNCHRONIZATION 15

the high concurrency of fine-grain locks. The idea is to implement fine-granular
locks using non-atomic memory operations and protect the lock data structures
with a single coarse lock. The coarse lock must be held in order to acquire the fine
granular locks, which then can be implemented as a simple reserve bit. When spin-
ning on the lock, only the reserve bit is tested and does not require an acquisition
of the coarse lock.

The scheme has two limitations. First, the coarse lock still has to be taken
by all processorsand thus needs to be migrated between the different processor
caches. Real fine granular locks can eliminate that inter-dependency and overhead.
Second, in order to reduce contention on the coarse lock, processorsspin on the
reserve bit of the object. Only when the reserve bit gets cleared do the processors
retry the lock acquisition via the coarse lock. That scheme puts restrictions on
object destruction and prohibits free memory reuse. A lock that is embeddedin
an object which is released and re-allocated may never be cleared. Processors that
are spinning on such a lock will spin infinitely. The authors solve this problem
by introducing object classes for memory in order to guarantee that the particular
reserve bit reaches an unlocked state.

3.2.2 Locks: Hardware Approaches

In addition to software-based approaches, research proposes special hardware sup-
port in order to minimize the lock overhead.

Goodman et al. proposed the Queue-On-Lock-Bit primitive (QOLB) [45] that
was also the first proposal for a distributed, queue-based locking scheme. QOLB

maintains a hardware queue of waiting processors in the cache so that processors
can spin locally. On lock release the first processor in the queue receives a specially
formed cache-coherency packet; the other processors remain spinning. Kägi et al.
[63] compares the throughput of TEST&SET locks, TEST&T EST&SET locks [95],
MCS locks, LH locks [77], M locks [77], and QOLB locks. The QOLB locks
outperform all other lock mechanisms, however, the locks rely on support of the
special QOLB primitive. The simple TEST&SET and TEST&T EST&SET locks
performs well under low contention but throughput degenerates quicklyfor more
than four processors.

Rajwar et al. [92] reduce the runtime overhead for locks viaspeculative lock
elision (SLE). SLE is a micro-architectural technique similar to speculative exe-
cution. The processor dynamically identifies synchronization operations,predicts
them as unnecessary, and elides them. By removing these operations, the program
behaves as if synchronization were not present in the program. Conflicts that would
violate the correctness due to the missing synchronization primitives, are detected
via the cache-coherency mechanisms and without executing the actual synchro-
nization operations. Safe dynamic lock removal exploits the properties of locks
and critical sections as they are commonly implemented. If data is not concurrently
accessed between the lock acquisition and release operations, both operations can
be elided. Data written within the critical section is buffered in an intermediate
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buffer while monitoring the lock variable. If the operation completes without a vi-
olation of atomicity, the buffer is written back. Otherwise the operation is restarted
with a normal lock.

Speculative lock elision addresses the problem of the high overhead forlock
primitives in cases of no concurrency. While SLE is a generic and transparent
solution it has limitations. SLE requires an extension of the hardware micro-
architecture and is thus not applicable to currently available hardware architec-
tures. The size of the critical section is further limited by the size of the write
buffer. Since the processor monitors the cache line of the lock, SLE induces cache
and memory footprint for the lock variable. Furthermore, nesting of locks requires
multiple locks being monitored concurrently.

3.2.3 Lock-free Synchronization

An alternative to lock-based synchronization is lock-free synchronization. Critical
code sections are designed such that they prepare the results out of lineand then try
to commit them using an atomic update instruction such as COMPARE&SWAP. The
most prominent operating systems using lock-free synchronization are theCache
kernel [48], Synthesis [78], and Fiasco [58], which is an L4 microkernel variant.
(A more detailed discussion of Fiasco follows in Section 3.4.2.)

The Cache kernel and Synthesis run on architectures with a COMPARE&-
SWAP2 instruction (Motorola 68K). The authors report lock-free synchronization
as a viable alternative, however, they do not address the performanceimplication
due to frequent atomic operations or lock contention. For example, the SYNTHE-
SIS kernel was only tested on a two-way machine with a shared memory bus and
the CACHE kernel on a four-way machine. The authors argue that the overhead
induced by lock-free synchronization in number ofinstructionsis minimal. How-
ever, the overhead of the COMPARE&SWAP2 operation is reported to be as high
as 114 cycles. The reported overhead for a variety of common kernel operations
using lock-free synchronization vs. unsynchronized operations is between 50 up to
350 percent.

Lock-free synchronization via atomic operations further eliminates the possi-
bility for critical-section fusing[79], where multiple critical sections are protected
by a single lock. Hence, while a single lock may be highly sufficient, scalable,
and induce a very low overhead, the lock-free synchronization schemeadds the
overhead of an atomic COMPARE&SWAP2 to every critical section.

3.2.4 Message-based Synchronization

Chaves et al. [26] discuss alternative in-kernel synchronization schemes for large-
scale shared memory multiprocessors. The authors distinguish between three pri-
mary synchronization mechanisms for kernel–kernel communication:

Remote memory access:The operation executes on processori reading and writ-
ing processorj ’s memory as necessary.
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Remote invocation: Remote invocation is based on sending a message from pro-
cessori to processorj asking j to perform the operation on behalf ofi.

Bulk data transfer: The kernel moves the data required by the operation from
processorj to i, where it is inspected or modified and possibly copied back.

The work discusses the performance trade-offs for the different synchroniza-
tion schemes. The authors conclude that the choice between remote invocation and
remote access is highly dependent on the cost of the remote invocation mechanism,
the cost of the atomic operations used for synchronization, and the ratio ofremote
to local memory access time. Although, coming to this conclusion, the authors do
not discuss methods onhowto resolve the open problem.

A number of operating systems use in-kernel messaging for synchronization:
most prominent are the DragonFly BSD project [1], which bases most in-kernel
synchronization on inter-processor interrupts, and Tornado [41].

I am not aware of any previous work which provides the choice for dynamic
selection of messageand lock based synchronization in one kernel.

3.2.5 Read-Copy Update

For read-mostly data structures, performance can be greatly improved byusing
asymmetric locking primitives that provide reduced overhead for read-sideac-
cesses in exchange for more expensive write-side accesses.Read-copy update
(RCU) [80, 81] takes the idea to the extreme, permitting read-side accesseswith
no locking or synchronization. This means that updates do not block reads, so that
a read-side access that completes shortly after an update can return old data.

Data structures in parallel systems cannot be considered stable unless a partic-
ular update policy is followed, such as holding locks to data. After the locks are
released, the system cannot make any prior-knowledge assumptions about the state
of the data which was protected by the locks. Thus, if a thread does hold nolock,
it cannot make any assumption aboutany data structure that is protected by any
lock. When a thread holds no locks, it is in a quiescent state with respect to any
lock-protected data.

The fundamental idea of read-copy update is the ability to determine when
all threads have passed through a quiescent state since a particular pointin time.
Afterward, it is guaranteed that the threads see the effects of all changes made prior
to the interval. This guarantee significantly simplifies many locking algorithms and
eliminates many existence locks.

The processors signal the event of passing a quiescent state by circulating a
token. When the processor that currently possesses the token reaches a quiescent
state, it passes on the token to the next processor. A newRCU epochstarts with
completion of a full round trip of the token. By then it is guaranteed that all proces-
sors have passed a quiescent state; thus the effects of an operation ofthe previous
epoch are complete and globally visible.
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Operating systems have well-known code paths, where it is structurally guar-
anteed that the current thread does not hold locks and thus are in a quiescent state.
Examples of these code paths include when a thread exits from kernel to applica-
tion level, as well as when the processor enters the idle loop, or on contextswitches.

Read-copy update is used in a variety of scenarios in operating systems, such
as deferred deletion of list members or module existence locks for kernel-loadable
modules. In this thesis I apply the core idea of RCU to a novel domain:kernel lock
primitives.

3.3 Partitioning

Multiprocessor partitioning divides a large multiprocessor system into a set of
independent, smaller multiprocessor subsystems. Each subset acts relatively au-
tonomously and independent of the others. The strict independence between par-
titions eliminates interference, information leakage as well as restricts the levelof
parallelism within each partition. The scalability requirements for an operating
system in a partition are therefore limited by the physical resources (i.e., proces-
sors) allocated to it.

Partitioning shares a subset of goals with scalable microkernel-based systems.
The hard boundaries eliminate the overhead induced by a high degree of paral-
lelism, such as cache and TLB coherency, and also restrict the degree of paral-
lelism and thus the possibility for contention. Hence, operating systems that run
within the partition, can act as if they would run on a smaller overall system, even
though the hardware may have significantly more processors. The OS canreduce
overhead for precautions for processors that are not supported and use the best
synchronization scheme for the partition’s specific resource configuration.

3.3.1 Hardware Partitioning

Hardware partitioning is a well-known technique from mainframe class comput-
ers and was recently introduced on enterprise-class UNIX systems. Hardware re-
sources, including processors, memory and I/O devices, are allocated toindividual
partitions. The partitions are strictly isolated from each other via specialized hard-
ware support.

Brown Associates [32] compares the Sun E10000 and Unisys ES7000 systems
that both support hardware partitioning. The Sun E10000 [102] supports up to
sixteen domains that achieve complete isolation while sharing the interconnect.
Registers on the system boards define the domain per board. All components con-
trolled by the system board become part of the domain. Failures within a domain
do not affect other domains, except for failure of system-wide components.

The Unisys ES7000 [112] supports up to eight partitions and the quantity of
processors, memory, and I/O devices in a partition can be freely configured. Re-
sources between partitions can be adjusted dynamically. The ES7000 memorysys-
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tem supports private memory and memory to be shared among partitions. Similar
hardware partitioning is supported by IBM Sequent, and HP (nPar).

The limiting factors of hardware partitioning are therelatively static resource
allocationand thestrict partition boundaries. Resources that are allocated to one
partition cannot be easily shared by another. In particular it is not possible to share
processor resources between partitions, in case a processor falls idlewhile another
system is overloaded.

An important feature of partitioning is fault containment. The two possible
failure types are hardware failures and software failures. While microkernel-based
systems naturally achieve containment of software failures of applications viaad-
dress space protection, hardware fault containment requires specificsupport in the
microkernel (hardware fault containment is not addressed in this work).

3.3.2 Software Partitioning and Virtual Machines

Similar to the hardware based partitioning approach, software partitioning multi-
plexes the hardware resources between different operating system instances. Each
OS instance has a subset of the overall system resources.

Software partitioning is often used in the context of virtual machines (VM)
[43], where multiple concurrent operating systems compete for the system re-
sources. The virtual machines are under control of a privileged virtual machine
monitor (VMM) that serves as the controlling entity and resource manager. VMs
and microkernel-based systems are very similar in respect of the isolation goals.
They differ insofar that microkernel-based systems provide a set of abstractions
that enable fine-granular resource isolation and recursive resource control for all
system services, whereas most VMMs solely target for monolithic coarse-grain
hardware multiplexing [15]. As our group has shown, a microkernel canserve as
the core platform for virtualization [69, 111], while the opposite is often notthe
case because of the lack of high-performance communication primitives.

Besides our work on scalable virtual machines [111], the other most prominent
research addressing VMs for multiprocessor systems is Cellular Disco [47].2 Cel-
lular Disco aims to provide the advantages of hardware partitioning and scalable
operating systems while avoiding the scalability bottlenecks. Cellular Disco uses
a small, privileged VMM that multiplexes resources of different virtual machines.
The system is divided into cells that act independently and interact via an in-kernel
RPC mechanism. A primary goal of the messaging system is to preserve inde-
pendence for fault containment and to ensure survival of cells in caseof remote
failures.

While Cellular Disco shares some goals with my thesis, it differs in the way
these goals are achieved. Cellular Disco specifically targets VMs and provides
the core services, such as scheduling, page allocation, and device driverswithin
the privileged VMM. Thus, the VMM follows a traditional monolithic operating

2That does not include commercial systems, such as IBM’s OS 390.
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system design paradigm, with in-kernel policies.
A key design decision of Cellular Disco is to assume that the code is correct.

The assumption is warranted by the fact that the size of the virtual machine monitor
is small. The authors report a prototype kernel of 50K lines of code (compared to
13K for L4Ka::Pistachio), however, it isco-locatedwith an SGI IRIX 6.4 OS for
device accesses. Despite the inherent dependence on IRIX for correctness, such
co-location also has implications on scalability. The scalability of an important
aspect of the system — hardware device accesses — becomes dependent on the
overall scalability of IRIX. Also, the work does not specifically addressscalability
of multiprocessor systems but has a stronger focus on general problemsof VMs,
such as eliminating double paging and memory balancing policies.

3.4 Microkernel-based Systems

3.4.1 The Microkernel Argument

A common method for structuring operating systems is amonolithic system, which
integrates all OS functionality in a single system image (e.g. UNIX [93] and VMS
[44]). The main advantage of such a monolithic structure is good performance
and global visibility of system state. Monolithic systems, however, have a number
of disadvantages. Since all system services reside within the monolithic system
image, all subsystems share a single protection space and may interfere. Faults
within one subsystem can propagate to others with potentially fatal consequences
for the system.

In order to extend such systems with new functionality such as different
scheduling policies, file systems or device drivers, the extension has to beinte-
gratedwith the monolithic kernel. The extension is code that is injected in the ker-
nel and runs with full privileges. Thus, the injected code becomes globallytrusted,
however may neither be trustworthy nor error free. A variety of approaches ad-
dress trustworthiness, such as simple code signing [33,83], sandboxing [119], inter-
preted languages [84], type-safe languages [18], domain-specific languages [40],
and proof-carrying code [85,86].

In contrast to monolithic designs, in microkernel-based systems the operat-
ing system functionality is implemented asuser-level servers. These servers run
in separate address spaces and communicate using inter-process communication
(IPC) built into the microkernel. Extensibility is achieved by replacing the system
servers, similar to normal applications.

Microkernels isolate operating system components via address spaces from
each other and also provide them with separate resources. Both properties enable
multiple OS services with different resource policies to co-exist on one system.
These include systems with different security requirements [90] or systemswith
real-time and non-real-time demands [53,97].

The second important property is the size and complexity of microkernels. Mi-
crokernels are tiny and thus can be used as a secure platform for custom, applica-



3.4. MICROKERNEL-BASED SYSTEMS 21

tion specific operating systems [62,75].

First-Generation Microkernels

First-generation microkernels failed to fulfill the promise for better structured and
more flexible systems. The most prominent kernel is Mach [2] and it provides
a good example of the problems of first-generation microkernels. Mach wasde-
signed to exploit modern hardware features such as multiprocessors, and enable
new application domains. At the same time, Mach was supposed to provide back-
ward compatibility to existing operating systems such as UNIX [93]. As a result,
Mach was constructed by refactoring a UNIX kernel and introducing new kernel
interfaces. The UNIX functionality was moved to application servers.

Mach lead to a number of important innovations, such as user-level pagers
[123], with the result of a tremendous growth of the API surface area and an in-
crease of kernel complexity and size. The primary problem of Mach, however, was
its opulent and extremely slow IPC mechanism that resulted in severe performance
problems for systems constructed on Mach.

Second Generation Microkernels

Second generation microkernels addressed the above problems with radical new
designs. Liedtke [71] identified poor structuring and high cache footprint of Mach’s
IPC primitive as the main performance problems. By careful design of the com-
munication mechanism, second generation microkernels such as L4 [71], Exok-
ernel3 [34, 62], and EROS [98] exhibited the envisaged properties with superior
performance to other extension methods.

The fundamental design principles for most second generation microkernels
are:

• The kernel provides aminimal set of abstractions: threadsand address
spaces.4

• The kernel provides aminimal set of mechanismsin order to multiplex hard-
ware in a safe and secure manner. The key primitive is inter-process commu-
nication which enables extensibility of the system via interacting user-level
servers [73].

• The kernel should bepolicy free. The policies should be provided by the
system servers using the kernel mechanisms.

3Exokernels differ from microkernels insofar that exokernels avoid high-level abstractions but
directly multiplex the hardware. I still discuss them with microkernels because many goals are very
similar.

4More general, each microkernel needs at least one abstraction for execution (or an activity) and
one abstraction for a protection domain to permanently bind resources.
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Based on these design principles a number of microkernels were developed
that yielded excellent performance for both system software and user applications.
Härtig et al. [54] showed that L4 not only has excellent IPC performancebut also
incurs a minimal overhead when running a monolithic operating system (Linux)on
top of the microkernel. The reported overhead for macrobenchmarks was between
5 to 10 percent compared to monolithic Linux. Still, microbenchmarks showed
overheads of a factor of three for short-running system calls. I and colleagues [110]
further reduced the microkernel-induced communication overhead from afactor of
three to about thirty percent.

3.4.2 Multiprocessor Microkernels

One aspect of previous research in the area of microkernels is multiprocessor sys-
tems. The reduced complexity of microkernels as compared to monolithic systems
makes them a feasible system architecture.

The Hydra kernel [122] was designed with the goal of separating mechanisms
and policy and thereby provides an exploration testbed for multiprocessor systems.

Mach targets large-scale multiprocessor systems and provides lightweight
threading in order to utilize the parallelism offered by the hardware [20]. Be-
ing a first-generation microkernel, Mach employs a traditional scalability approach
comparable to many monolithic multiprocessor OS’s. The in-kernel subsystems
were optimized on a case-by-case basis [64] by first identifying and thenremoving
scalability bottlenecks. However, Mach still exhibited its poor IPC performance.

The Raven microkernel [94] specifically targets multiprocessor systems with
a focus on minimizing the overhead for kernel invocations. Raven provides user-
level scheduling with a kernel-based callback (similar to scheduler activations [5]),
user-level interrupt handling, user-level interprocess communication,and user-
level synchronization primitives. While moving significant system parts to ap-
plication level, Raven uses a number of global data structures, thus limiting its
scalability. For example, the memory pool is protected by a global lock and ac-
cesses to task objects are serialized.

Chen [27] extended the uniprocessor Exokernel system to multiprocessor sys-
tems. The fundamental idea of Exokernel is to expose the hardware properties
directly to application level thus avoiding the overhead introduced by high-level
OS abstractions. The OS itself is implemented as a library at application level.
The multiprocessor Exokernel uses a variety of alternative synchronization strate-
gies. Similar to my approach described in this thesis, Exokernel localizes kernel
resources and uses in-kernel messaging to manipulate remote resources. However,
the choice for synchronization primitives is ad-hoc and static. The specificker-
nel implementation dictates the synchronization granularity and may result in high
overheads. This is, for example, reflected in the memory subsystem, wherethe
reported cost for memory mappings is three times higher than on the uniprocessor
version of the kernel. Furthermore, the overhead for the kernel’s IPCprimitive
(even for uniprocessor systems) is almost an order of magnitude more expensive
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than L4.
The most prominent work in the area of scalable microkernel systems is Tor-

nado [41] and its successor K42 [8]. K42 is a microkernel-based system that em-
ploys many of the previously described techniques for scalability, including read-
copy update, clustered objects, and lock-free synchronization. K42 scales well to
a large number of processors, provides a Linux-compatible API, and reuses Linux
components in the kernel [9]. K42 differs from my approach insofar, as K42 blurs
the line between kernel and application level and allows the kernel to be extended
in order to overcome performance bottlenecks. For example, K42 allows for co-
location of device drivers if performance requires. K42’s underlyingmicrokernel
provides access to kernel-internal data structures via a wide kernel-user interface
(e.g., for scheduling information). K42 also achieves adaptability of synchroniza-
tion mechanisms, however, via runtime code replacement and with the limitations
of the fault-based scheme described in Section 3.1.2.

L4

Besides the work presented in this thesis, there are at least two other L4 microker-
nel variants that support multiprocessor systems. Liedtke [70] briefly discusses the
implications of multiprocessor support and argues that locking will have a signif-
icant performance impact on all critical system operations including IPC. Potts et
al. [91] realized a multiprocessor version of L4 on the Alpha architecture with the
primary focus on the performance of the local-case IPC. All inter-processor opera-
tions use message-based synchronization schemes. The kernel, however, does not
support kernel memory pool management and also lacks a TLB coherency scheme.

Hohmuth [58] describes Fiasco, an L4 kernel that focuses on real-time proper-
ties via non-blocking synchronization. Fiasco uses a locking-with-helpingscheme
in order to minimize thread blocking time in real-time systems. If threadA tries to
acquire a lock that is held by a preempted threadB, A donates its time toB. After
the lock is released,B immediately switches back toA. Fiasco’s helping scheme is
also used across processor boundaries. The approach, however, is questionable for
larger multiprocessor systems for the following reasons:

Helping may lead to temporary migration of threads between processors. The
overhead induced by the required cache migrations (in particular the active working
set of the thread’s kernel stack) is significant. Even small kernel operations require
multiple cache lines to be migrated. The probability for a hot cache working set
of a preempted thread in L4 is extremely high due to the very short execution
time of kernel operations. Furthermore, the dynamic migration effectively requires
all kernel objects to be protected with atomic lock operations. Hohmuth reportsan
increase in cost for thekernel thread lockon multiprocessor systems of 209 percent
for a Pentium 4. The reported overhead for the lock-with-helping primitive(that
is acquired on the critical path) isfour times higherthan a complete IPC operation
in L4Ka::Pistachio. The work does not discuss scalability aspects, such askernel
memory management, scheduling, TLB coherency, or the implications of helping
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on overall scalability.
Hohmuth argues that a helping scheme is more general, because it is not limited

to microkernels, where operations are in most cases very short. My workspecif-
ically targetsmicrokernels and the trade-off of generality vs. performance clearly
favors performance. My goal is to achieve maximal performance and scalability
without requiring extensibility of the kernel. The base-line is thereby the unipro-
cessor version of L4Ka::Pistachio with its unrivaled IPC performance on almost all
existing hardware platforms.



Chapter 4

Microkernel Performance
Adaptation

In this chapter I present an approach for controlling and adjusting performance-
and scalability-relevant parameters of multiprocessor systems. My approach is
based on efficient tracking of parallelism and dynamic adaptation of multiproces-
sor synchronization mechanisms (i.e., locks). My goal was to develop a setof
general mechanisms that lead to a system construction methodology with excellent
scalability properties and low overhead while preserving strict orthogonalityand
isolation between independent subsystems.

The mechanisms and methodologies target microkernels, component-based
systems, and virtual machines on small and large scale multiprocessor systems
with up to about one hundred processors. Some mechanisms are usable beyond
this specific domain. The dynamic locking scheme I developed can serve as a
drop-in replacement for standard spin locks and clustered locks. The processor
tracking scheme is a drop-in replacement for processor sets as widely used in scal-
able UNIX variants.

This chapter is organized as follows: Section 4.1 defines the problem that my
approach intends to solve, states the general scalability and performancegoals, and
narrows the target hardware architecture. Afterward, I derive a set of requirements
to achieve the performance goals, which I will discuss in the remaining sections of
this chapter. In Section 4.2, I describe a mechanism to efficiently track and restrict
resource usage to a subset of processors. Section 4.3 then comparesthe over-
head of kernel synchronization mechanisms and I propose a scheme thatallows
for safe runtime adaptation depending on the most efficient algorithm. Section4.4
describes a TLB coherency tracking scheme that decouples permission updates
from TLB shoot-downs thereby reducing TLB coherency overhead and minimiz-
ing inter-processor dependencies. Finally, Section 4.5 describes a generic event
logging mechanism that enables user-level components to efficiently monitor and
evaluate events across component boundaries.
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4.1 Overview

The design guidelines for scalable operating systems, as defined by Unrau [113]
(preserving parallelism, bounded overhead, processor locality), leaveperformance
and overhead aspects of multiprocessor algorithms unaddressed. As argued before,
by strictly following these three guidelines, a system is still considered scalable
even if the overhead is multiple orders of magnitude higher than the achievable
minimum.

Minimal overhead and maximum performance for a particular algorithm de-
pends on a variety of parameters, most importantly the degree of parallelism and
concurrency and the (memory) interconnect between the involved processors. The
decision for one or the other alternative depends on the specifics of the system
(both, software and hardware), access pattern, access frequency and so on. It is
possible to optimize on a case-by-case basis when incorporatingsemantic knowl-
edgeon resource usage. In operating systems, such semantic knowledge is avail-
able for many high-level abstractions, such as the degree of sharing ofa file, the
number of threads in an address space, physical memory that backs a device and
therefore is reallocated infrequently, and many others.

In microkernel systems such high-level system abstractions are implemented
as user-level services. Hence, detailed semantic knowledge is not available to the
microkernel itself. Instead it operates on the bare hardware resources: memory,
time, and the processor resources (e.g., caches and TLB). These resources are all
treated identically, independent of the specific usage case. The lack of the detailed
high-level information either leads to an overly conservative design that favors
scalability over performance, or a well-performing but less scalable system. In-
troducing more semantic knowledge via high-level abstractions, however,defeats
the minimality principles of microkernels.

From that starting point I define the following primary design goals:

• The overhead for kernel operations in a multiprocessor has to reflect the
degree of parallelism and concurrency. Semantic knowledge about resource
usage that is available at theapplication levelneeds to be considered at the
kernel level.

• The microkernel abstractions and mechanisms should remain minimal with
a strict focus on orthogonality and independence. The microkernel it-
self should not be extended by multiprocessor-specificpolicies in order to
achieve better scalability or less overhead. Instead, the kernel must provide
mechanims such that applications can adjust and fine tune the kernel’s be-
havior.

• All optimizations and adaptations must be safe and enforce protection and
isolation.
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Furthermore, I define a set of secondary design goals:

• A scalable OS design has to honor Unrau’s design principles: preservepar-
allelism, bounded overhead, and memory locality in NUMA systems. That
requirement is for the microkernel and also for OS components at application
level.

• The design must be efficient on a variety of multiprocessor systems, from
small-scale shared memory to large-scale NUMA architectures. The sup-
ported number of processors must be independent of architectural specifics,
such as the number of bits per register.

• The architecture should target contemporary hardware with high memory
access latencies, high cache-coherency overhead for NUMA configurations,
and potentially long IPI latencies. My specific target hardware architecture
is IA-32.

• The performance baseline is the uniprocessor kernel. Operations that are
restricted to a single processor should have the same overhead as if executed
on a single processor system.

Approach

The separation of operating system functionality into isolated components restricts
information availability and information flow and thus limits microkernel-based
systems in their optimization potential. Figure 4.1 gives a schematic comparison
of information flow in a monolithic OS versus a microkernel-based system. To
achieve the same flexibility and optimization potential for the microkernel-based
system requires (i) an efficient information flow between the kernel and compo-
nents, and (ii ) mechanisms to control and adjust a system’s behavior.

While these are general requirements, I will now narrow them to the specific
problem domain of multiprocessor systems and scalability. In order to achieve
optimal performance, the kernel has to adapt alternative synchronization strategies
and synchronization granularity. They depend on thedegree of parallelism, thefre-
quency of operations, and thegranularityat which individual objects are modified.
The information has to be provided to the kernel by applications and OS compo-
nents and furthermore need to reflect in the kernel’s algorithms and data structures.
By breaking high-level semantic information on resources down to a set ofgeneric
attributes, it is possible to provide those to the kernel in a unified manner.

I developed the following four mechanisms to counteract the limitations that
are inherent to the microkernel’s system structure:

Tracking of parallelism. Applications can explicitly specify the expected paral-
lelism for a kernel object and the kernel keeps track of it. Based on thatin-
formation, the kernel can make an informed decision on the synchronization



28 CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

Operating system

Hardware

App App App App

(a) Monolithic system

Microkernel

Hardware

App App App

OS
component

App

OS
component

(b) Microkernel system

Figure 4.1: Schematic comparison of information flow in (a) monolithic systems
and (b) microkernel-based systems. In a monolithic system all information is com-
bined in a single system image. A microkernel-based system requires mechanisms
to control and adapt the behavior of components and mechanisms for efficient con-
trol flow.

strategy. Explicit specification overcomes the lack of semantic information
about parallelism of kernel resources.

I developed a fixed-size data structure that enables efficient tracking of par-
allelism and locality for every kernel object and forms the basis for adaptive
locking.

Adaptive locking. The usage pattern of resources may change over time. Appli-
cations need to be able to readjust the system’s behavior and need to adapt
the synchronization scheme, such as lock granularity and the synchroniza-
tion primitive.

TLB coherency tracking. Memory is a primary resource that is managed by the
microkernel and is the basis for isolation of components. Memory permis-
sions are stored in page tables and cached in the processor’s TLB. After re-
vocation of memory permissions, the kernel has to enforce TLB coherency,
which is an expensive operation. By combining multiple TLB updates into
one when manipulating a set of page table entries, the shoot-down overhead
can be reduced. However, the combined update has similar negative im-
plications on parallelism as critical section fusing. I developed a tracking
algorithm that decouples permission updates and TLB shoot-downs. The al-
gorithm uses a TLB version that allows for combining multiple TLB shoot-
downs in one. The inter-dependencies between processors is eliminated by
bypassing outstanding shoot-downs.

Event tracing. Feedback-based policies incorporate runtime information that is
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derived from monitoring system behavior. In multiprocessor systems, many
resource allocation policies — including thread balancing and memory poo-
ling — are based on monitoring the system’s behavior and predicting the
future. In a component-based system, the information is distributed and thus
unavailable to schedulers. Event tracing provides an efficient mechanism to
monitor and transfer relevant data between the kernel and components but
also across components.

Having relevant kernel information at hand, avoids the necessity of introduc-
ing multiprocessor kernel policies and leaves such decisions to applications.
A prerequisite of such an approach is minimal overhead for data collection,
transport, and evaluation.

In the following sections I describe these four mechanisms in detail.

4.2 Tracking Parallelism

Multiprocessor optimizations depend on specific knowledge of thedegree of par-
allelismon data structures and thelocality of operations. Based on both properties,
the operating system and applications can select the most suitable (e.g., bestper-
forming) algorithm for a specific task. In monolithic systems, in many cases it is
either possible to derive or imply the degree of parallelism from the system struc-
ture. For example, it is unlikely that the data structure representing a file, which is
opened by a single-threaded application, will experience high contention by many
processors; the most likely processor that accesses the data structureis the home
processor of the thread. In this example, the relevant information is encoded in-
directly by (i) the locality of the thread(s) and (ii ) the number of threads that may
manipulate the file.

If such indirect knowledge on parallelism and locality is unavailable it can
alternatively be explicitly expressed with abitmap. Each bit in the bitmap denotes
one processor in the system. The degree of parallelism is encoded by the number
of bits set and locality is expressed by the specific bit position. This encoding
scheme is efficient and accurate, however,it does not scale. The size of the bitmap
grows linearly with the number of processors in the system. For kernel objects
(e.g., the previously mentioned file structure) that contain a processor bitmap, the
memory footprint and cache footprint depends on the number of processors in the
system. Also the runtime overhead for deriving the number of bits set depends on
the size of the bitmap and thus the total number of processors. Both properties (i.e.,
unbounded size and unbounded runtime) violate Unrau’s scalability requirement of
bounded overhead.

Tracking processor affinity and processor permissions requires an efficient,
fixed size encoding. Processor sets (as used by many UNIX kernels) solve the
space problem by a level of indirection; the bitmap is replaced by a pointer to the
bitmap. However, such an indirection scheme not only increases the runtime over-
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head but has also the disadvantage that it is non-trivial to derive whether or not the
bitmap is still referenced.

I developed an encoding scheme that has both desired properties, it hasa fixed
size and is independent of the number of processors. Similar to floating point
encoding, I trade accuracy for space. The trade-off limits the freedomto combine
arbitrary processors in the mask, which is no limiting factor in the common cases of
resource allocations for the following reasons. Non-uniform memory increases the
cost for remote accesses. Anywell designedsystem should therefore decrease the
frequency of accesses to remote resources with increasing cost. The most common
and relevant approaches for reducing the remote access frequency are (i) to ex-
plicitly favor local over remote resources (and reallocate resources onmigration),
(ii ) minimize resources that are shared across many processors (e.g., by replica-
tion), and (iii ) co-locate tasks that have a high degree of sharing on neighboring
processors.

In order to minimize overheads, a well-designed operating system for multipro-
cessor architectures will therefore try to minimize the degree of sharing of physical
resources with increasing access costs. One can conclude that such systems will
preferably limit resource sharing to nearby processors, that is processors with low
access latencies to the same memory.

4.2.1 Processor Clusters

The specific resource access costs depend on the memory interconnectand its phys-
ical limitations. Shared bus interconnect do not scale due to bandwidth limitations,
while point-to-point connections do not scale because of the quadratic number of
interconnects between processors. The commonly used topologies, suchas hyper-
cubes [55, 56] and fat trees [67], trade performance against hardware complexity
and have only very few neighboring processors. The specific numberdepends on
a variety of hardware factors. For example, most NUMA systems combine a few
processors via a shared memory bus which then connects via a memory router to
other processors. In multi-core and multi-threaded systems, processorsshare one
memory subsystem and in some cases processors even share the same caches.

Based on the limits of the memory subsystems one can conclude that inany
well-designedmultiprocessor system:

1. most resources will be accessed by only a very small subset of processors,

2. the processors that share the resources will be located relatively close to each
other.

Based on that observation, I developed an encoding scheme that avoidsboth
scalability problems stated before. I use an encoding scheme that is specifically
tailored towards the common scenario of neighboring processors. First, Igroup
processors in clusters of neighboring processors. The clusters areconstructed by
considering the access latencies to shared resources. Each processor has its unique
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Figure 4.2: Cluster-mask encoding for different cluster orders. The sample values
show the reduction of accuracy with increasing order.

numerical ID in the system. I assign the IDs in a way that neighboring processors
have neighboring IDs. The organization of the memory interconnect makesthe
ordering process straight forward: first sort processors of the same core, then same
node, and so on.

Similar to the normal bitmap encoding, where one processor is expressed by
one bit, I encodeone clusterper bit. The scheme can be applied recursively result-
ing in a cluster hierarchy. Multiple clusters are then covered by a single bit. The
number of processors per bit is encoded in thecluster orderfield as a power of two.

Obviously, when grouping state about multiple processors into a single bit, the
encoding looses on accuracy. Figure 4.2 shows an example encoding ofa proces-
sor set with different cluster orders. The example has alternative encodings for a
bitmap covering 16 processors. Starting with a cluster order of 0, each processor
has an individually assigned bit. The encoding is accurate and requires as many
bits as processors. For the cluster order of 1, 2 processors are encoded per bit. The
encoding requires half the number of bits but also reduces accuracy by50 percent.
While in the initial encoding the bitmap selects 8 processors, the order 1 encoding
is less accurate and selects 10 processors (respectively, 12 processors for order 2
and 16 processors for order 3).

4.2.2 Processor Cluster Mask

Processor clustering reduces the number of bits required to cover a large number
of processors at the cost of accuracy. As argued before, for performance reasons
many operations on resources are restricted to only a subset of the system’s proces-
sors. The specific processors depend on the resource access costs. The described
assignment of processor IDs for physically neighboring processorsfavorably en-
codes them in neighboring bits in the bitmap.

Instead of encodingall processors in the bitmap, I restrict the bitmap to cover
a subset of the processors only. The subset of processor IDs is encoded by a start
ID (or offset) and the cluster order. The number of bits in the bitmap give the
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Figure 4.3: Cluster mask encoding for 32 and 64 bit systems (left for 32 bit,right
for 64 bit). The structure size is identical to natural word width of the processor.

upper bound of the subset. For example, a bitmap with 16 bits and an order of1
covers a total of 16·21 = 32neighboringprocessors. In comparison, the same-size
bitmap but with an order of 5 covers 16· 25 = 512 neighboring processors. The
start processor ID enables tooffsetthe covered range of the bitmap. The processor
IDs that are covered by a bitmap withb bits are in the interval(2order·offset,2order·
(offset+b)].1

The cluster bitmap can encode very large numbers of processors in a fixed-
size data structure. For the binary representation I defined the following set of
requirements:

1. The data structure must have a size that is identical to the processor’s nat-
ural register width, such that it can be efficiently stored, efficiently passed
around (i.e., from application to kernel in a register), and used with atomic
operations (such as compare-exchange).

2. Testing for a processor must have very low overhead, because such opera-
tions are in many cases performance critical.

3. The data structure has to provide identical accuracy forall processors in the
system (i.e., there should be no penalty for processors with a particular ID).

4. The runtime overhead of operations on the data structure (e.g., lookup,test,
or merge) must be bounded independent of the number of processors inthe
system.

These four goals are fulfilled by the data structure depicted in Figure 4.3. It
contains three parts, (i) a bitmap for encoding individual processors, (ii ) a field
that denotes the processor order, and (iii ) an offset field that specifies the starting
processor ID of the bitmap.

A processorp in a system with a maximum ofpmax = 2k (k ∈ N0) processors
is selected by the cluster maskm= (bitmap,order,offset), if f (m, p) > 0 with

f (m, p) ≡ bitmap mod 2((⌊p+pmax)/2order⌋−offset) mod ⌊pmax/2order⌋.

1Note that the interval ignores wrap-arounds.
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The equation expresses a bit test using the cluster encoding of Figure 4.2. It
can be efficiently implemented via simple rotate and logical bit operations.

Furthermore, I define a set of operations for the cluster mask, most impor-
tantly themergeoperation for two cluster masks. Merge is similar to a logical OR
operation insofar that it combines the bits of two bitmaps into a new bitmap. Addi-
tionally, it adjusts the order and offset such that all previously specifiedprocessors
are still selected by the new mask. The cluster maskm′ that is merged fromm1

andm2 must hold the condition∀i ∈ (0,1, . . . ,n− 1) : f (m1, i) + f (m2, i) > 0 ⇒
f (m′, i) > 0. For cluster masks that have identical orders and offsets, the merge
operation is a simple logical OR operation of both bitmaps.

The number of processors specified by the cluster mask is the number of set
bits in the bitmap multiplied by 2order. Furthermore, the order field serves as an
indicator for optimizing the locking strategy. A higher value for the order encodes
more processors (thus a higher probability for contention) and also potential over-
head and unfairness in the memory subsystem. The next section covers thisaspect
in more detail.

4.3 Kernel Synchronization

The kernel uses synchronization toensure consistencyof data in the kernel and to
order operations. The two primary synchronization schemes available in shared-
memory multiprocessors are memory-based locks (and atomic operations) andin-
kernel messages. Both schemes have advantages and disadvantages and there is no
single optimal solution.

I propose to provide multiple alternative synchronization schemes for the same
data structures. Applications can then choose the optimal strategy based ontheir
specific local knowledge on access and usage patterns. The degreesof freedom of
the locking strategy is thelock primitive(i.e., memory- or message-based) and the
locking granularity for divisible kernel objects. In case of no parallelism, the lock
primitive is unnecessary and only induces runtime overhead and additionalcache
footprint and could be disabled altogether.

The cluster mask described in 4.2.2 enables the kernel to efficiently store and
evaluate the degree of parallelism on a per kernel-object basis. By tagging each
kernel object with such a mask, applications have detailed control over theused
synchronization primitives for each individual object. Processors thatare specified
in the cluster mask can manipulate kernel objects directly using memory-based
synchronization; all other processors need to use message-based synchronization.
The cluster mask provides the required information for an informed decision. It
alsoenforcesthat only those processors specified in the mask have direct memory
access to the object. For a mask that specifies a single processor the lock primitive
can be safelydisabled.

In this section I first discuss the performance trade-offs of the alternative syn-
chronization schemes. The better-performing scheme thereby depends on the spe-
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cific access pattern. The choice for one of three synchronization schemes —
coarse-grain locking, fine-grain locking and kernel messages — has tobe made
on a case-by-case basis and may change over time. A static selection becomes
suboptimal when locking pattern and parallelism significantly changes over time.

I propose a synchronization scheme that eliminates this deficiency by incor-
porating the additional knowledge provided via the processor cluster mask. When
the cluster mask changes, the kerneladjuststhe synchronization primitive between
normal locks and message-based primitives. A problem of this approach isthat
updates to the mask are not propagated instantaneously to all relevant processors.
Thus, during a transition period some processors may use the previous, while oth-
ers the new synchronization primitive.

However, incorrect (or inconsistent) synchronization could lead to datacorrup-
tion in the kernel and erroneous behavior. I describe a new locking primitive —
dynamic locks— that can be safely adjusted at runtime and guarantees correctness
during the transition period from one locking scheme to another. Dynamic locks
can be enabled and disabled at runtime and allow the kernel to dynamically elim-
inate locking overhead for unshared resources. Built upon the base primitive of
dynamic locks I develop a scheme that cascades multiple dynamic locks in orderto
dynamically and safely adjust thelock granularityaddressing the cost–concurrency
trade-off.

4.3.1 Trade-offs

The performance trade-off for in-kernel synchronization is based on three param-
eters: (i) ratio of local vs. remote access, (ii ) the overhead of the lock primitive,
and (iii ) the degree of concurrency. Based on these parameters, one or the other
synchronization method is more efficient.

Message-based synchronization.In message-based synchronization a datum has
an associated home processor. Only the home processor can manipulate the
datum, thereby achieving mutual exclusion and strict ordering. Message-
based synchronization incurs no overhead for manipulations on the home
processor, however, a significantly higher overhead for accessesfrom re-
mote processors. Hence, the overall cost depends on the fractionfremote

constituting remote operations of the overall operations, with the total syn-
chronization costttotal = fremote· tmessage.

The overhead for message-based synchronization can be divided intothe
cost for message setup and signaling cost, the delivery latency of the mes-
sage, and the overhead for processing. Signaling cost may require aninter-
processor interrupt that induces cost on the sender side and also on the re-
ceiver side (for the interruption itself and interrupt acknowledgment on the
hardware).

After sending a message, the sender can either actively wait for completion
or block and invoke the scheduler. In the latter case the latency of the overall
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operation increases, but the initiator of the message does not busy-wait until
the message gets delivered to the remote processor. Busy-waiting adds the
message delivery latency to the overall cost of the operation. When invoking
the scheduler, the processor is freed for other tasks that can be executed while
the in-kernel message is in transit. However, the context switch may induce a
performance penalty later on for replacements of the preempted task’s active
cache working set (memory and TLB).

Lock-based synchronization.Locks provide mutual exclusion based on memory
ordering that is enforced in the memory subsystem. The overall overheadfor
locks can be divided into the cost for the lock operation (instruction execu-
tion and cache footprint)tlock, and the wait timetwait when the lock is already
taken. The average lock wait time depends on the number of competing pro-
cessorspand the average lock holding timethold and istwait = thold·(p−1)/2.
The cache coherency updates additionally induce indirect costs in the mem-
ory subsystem.

More sophisticated synchronization primitives, such as semaphores, canre-
lease the processor to other runnable tasks. Such primitives, however,are in
most cases too heavyweight for the short critical section of microkernelsand
the overhead outweighs the potential benefits.

The choice between one or the other synchronization scheme depends onthe
specifics of the workload. Following, I compare the costs and derive a decision
metric. The metric is based on the previous simplistic cost analysis. Hence, it
leaves many aspects of algorithms and hardware unaddressed, however, it is suffi-
cient to reflect the general performance and overhead tendencies.

Message-based synchronizationfavors local operations over remote. It elimi-
nates the locking overhead in the local case. Hence, message-based syn-
chronization has a lower overhead if the overall cost for locks (for thelocal
and the remote case) is higher than the cost for sending and processing the
message including all additional costs (e.g., interrupt handling, interrupting
processing on the remote processor, etc.). Message-based synchronization
is therefore preferable for infrequent remote operations or when multiplere-
mote operations can be combined in a single remote request for minimizing
the startup overhead.

Lock-based synchronization yields better overall performance compared to mes-
sage-based synchronization, if the cost for locks on processor-local data is
less than the message overhead from remote processors.

Another performance aspect is the lock granularity fordivisibleobjects. De-
pending on the degree of concurrency, the lock overhead, the number of con-
currently manipulated parts, and the overall lock holding time, either coarse
or fine grain locks may result in better overall performance.
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Instruction Opteron 1.6GHz P3, 800MHz P4 Prescott 2.8GHz
xchg 16 cycles 19 cycles 121 cycles
lock cmpxchg 18 cycles 26 cycles 139 cycles
lock decb 18 cycles 22 cycles 131 cycles

Table 4.1: Cost for atomic instructions for different IA-32 processors

Let’s consider an object that can be divided inton independent parts (e.g.,
a hash table). The runtime overhead for a lock acquisition istlock and the
lock hold time isthold. The average wait time forp competing processors is
twait = (p−1)/2 · thold. The total synchronization overheadttotal to modify
m out of n parts withp processors evenly competing for all parts isttotal =
twait/n+m· tlock = (p−1)/(2n) · thold+m· tlock

The following two common cases are of particular relevance:

• No or low concurrency:For p= 1 the overall cost isttotal= m·tlock. The
synchronization overhead depends on the number of modified partsm.
m can be reduced by decreasing the granularity (i.e., by using coarse-
grain locks).

• High concurrency:For p≫ 1 the overall cost is dominated by the wait
time ttotal = (p− 1)/(2n) · thold. It can be reduced via fine granular
locking (i.e., increasingn) or by reducing the lock holding time.

Please note that this analysis is very simplistic. In particular it does not in-
clude cache effects, such as multiple acquisitions of the same lock, or the
additional overhead induced by cache coherency overhead in NUMA sys-
tems. It also assumes an equal distribution of lock acquisitions between all
locks.

For today’s architectures the cost oftlock is increasingly high and for short
critical sections even more expensive than the actual operation that is protected by
the lock. Table 4.1 compares theminimal overhead for atomic instructions on a
variety of IA-32 processors.

The fundamental idea is to use the available application-specific knowledge
on the degree of concurrency and access pattern (local or remote) and adapt the
kernel’s synchronization mechanisms. The adjustable parameters are the overhead
of the lock primitivetlock and the lock granularityn. The lock primitive can be
adjusted in two ways. First, it can be eliminated by switching from lock-based
synchronization to message based synchronization. Message-based synchroniza-
tion has a lower runtime overhead forfremote· tmessage< tlock.2 Alternatively, the
locking scheme can be adapted, for example by switching from spin locks to MCS
locks as proposed by Lim [76].

2Note that the inequality does not address the implication of higher latencies onoverall perfor-
mance.
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Figure 4.4: Flow chart of dynamic kernel synchronization. If the current proces-
sor is not specified in the cluster mask, the algorithm can either use an in-kernel
messaging scheme or fail (not shown).

Adjustment of the synchronization scheme is based on explicit application
feedback. As opposed to applications, the kernel cannot trust any application
claims of non-existing parallelism but needs to enforce correctness. On every re-
source access the kernel explicitly validates correctness. Figure 4.4 depicts the
general control flow for adaptive in-kernel synchronization. Kernel objects are
tagged with a cluster mask. If a processor is not specified in the mask, the object
can not be manipulated directly but requires a message to a remote processor. If an
application specifies an incorrect cluster mask for a kernel object, the application
either pays a performance penalty or the operation fails altogether. In either case
the application is unable to corrupt the internal kernel state.

When changing the synchronization scheme (e.g., between lock-based and
message-based), the kernel has to guarantee correctness during thetransition pe-
riod. Switching between synchronization primitives takes place in two stages.
First, the new synchronization primitive is enabled while the previous remains ac-
tive. Second, the previous primitive is deactivated, but only after it is structurally
guaranteed that the new scheme is honored by all processors.

4.3.2 Dynamic Lock Primitive

In order to accomplish dynamic adaptability, I extend the memory-based lock prim-
itives by anenable state. The enable state denotes whether or not the lock primitive
is active. In disabled state, the lock operation (e.g., an atomic operation) is not ex-
ecuted thus incurring no (or only marginal) overhead.
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One problem is that switching between enabled and disabled states has a transi-
tion period, where processors of a multiprocessor system have an inconsistent view
on the enabled-state of the lock primitive. Until the transition period is completed,
the kernel must preserve theold semanticof the synchronization primitive.

When a lock is to become disabled, the lock primitive must remain active until
no processors try to acquire the lock. Similarly, when a lock is to become enabled
for a critical section that was dedicated to a single processor before, noother pro-
cessor can enter the critical section until the previous owner is aware of the new
lock semantic.

For common kernel lock primitives it is impossible to derive whether remote
processors actively try to acquire the lock. For example, spin locks are imple-
mented via a shared memory location. A processor acquires the lock by atomically
replacing the memory content with the value that denotes a locked state. If the
previously stored value was locked, the processor retries the operation. It is not
possible to directly derive when an update of the lock state will have propagated
to all processors. A time-based scheme — disable the lock and waitx cycles — is
unfeasible, because it is not possible to predictx. Even by adopting the spin loop
such that it explicitly checks for a state change, it is not possible to predict memory
access latencies in large multiprocessor systems. Furthermore, hardwaremecha-
nisms, such as IA-32’s system management mode, eliminate any predictability.3

Read-copy update successfully addresses the same problem with its epoch
scheme [80]. RCU passes a token between the processors; passing thetoken en-
sures that the processor executes asafecode path (within the kernel) that is guar-
anteed to hold no data references. Obviously, the RCU token thus also guarantees
that a processor is not actively trying to acquire a lock. Hence, a full round-trip of
the token guarantees that all outstanding lock attempts have completed and thatall
processors are aware of the update of the lock primitive.

RCU delays the destruction of data objects as long as references may still be
held. Freed objects are explicitly tracked in a separate list; the list is processed at
expiration of an RCU epoch. Such explicit tracking is unfeasible for locksdue to
the required memory footprint and also because locks are in most cases embedded
in objects and those may get released.

Instead of externally tracking outstanding lock state updates, I integrate the
state updates with the lock primitive. This scheme eliminates the need for ex-
plicit tracking and the existence problem of the object the lock is embedded in.
Furthermore, only those locks that are actively used get modified. Each dynamic
lock carries an RCU epoch counter that denotes when the state switch is safe. The
lock code tests whether the lock is in a transition period. If the stored RCU epoch
counter denotes that the epoch expired, the locking code finalizes the stateswitch.
In addition to theenabledanddisabledstate, the lock has two intermediate states:

3System management mode is activated by a non-maskable interrupt. Theprocessor enters a
special system mode that is not under control of the operating system. The code is provided by
the platform vendor and loaded at system boot time. There are no time bounds whatsoever and the
platform vendor only guarantees that the system gets reactivated at some point.
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Figure 4.6: Delayed lock demotion based on RCU epoch. After disabling the lock,
it has to remain active for one complete RCU epoch to ensure no more outstanding
lock attempts by other processors.

promotinganddemoting(see Figure 4.5). Only when the lock is in the disabled
state, can the locking code be skipped safely.

Figure 4.6 depicts the transition from an enabled to a disabled lock state includ-
ing the required transition period for the RCU epoch. When enabling a disabled
lock I distinguish two cases: If the lock is disabled because the protected object is
only accessible from its home processor, the algorithm must ensure that theproces-
sor is not within the critical section. If the lock is promoted on the home processor
itself, it is sufficient to change the lock’s state from disabled to enabled (see Fig-
ure 4.7b). However, when another processor initiates the lock promotion,the lock
cannot be taken until completion of a complete RCU epoch cycle (see Figure 4.7a).

The additional functionality induces a higher overhead on the lock primitive
as the lock has a higher cache footprint to encode the lock state and RCU epoch,
and also a higher execution overhead for the additional checks. One can minimize
the overhead by carefully locating the state and RCU epoch data and by using an
efficient data encoding of the lock state.

The lock state is accessed on each lock acquisition and is thus performance
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Figure 4.7: Lock promotion for a disabled lock from (a) a remote processor and (b)
a local processor. The lock is restricted to CPUA. When CPUB enables the lock
(a), it cannot be taken until after at least one RCU epoch inA. The lock promotion
therefore requires two RCU epochs inB. When the lock is directly enabled on
CPUA the lock can be immediately enabled because onlyA could potentially hold
the lock (which it does not).

critical. The cache footprint for the state is a few bits that are mostly read and
only modified when the state of the lock changes. Co-locating those bits with
other accessed read-only data minimizes the cache footprint and overhead due to
cache-coherency updates. Testing the state can be used to prefetch other data. The
RCU epoch counter is only accessed during the state transition periods and thus in
general is less performance critical.

The four states can be efficiently encoded in two bits. The encoding shouldbe
optimized for the two performance critical cases, that is when the lock is indisabled
or enabledstate. I specifically chose a zero value for the disabled state, since in all
other states the lock operation has to be performed. On many architectures atest
for zero is particularly optimized.

The following listing shows sample code for a normal spin-lock primitive. A
value of zero in the lock variable (lock) denotes that the lock is free, otherwise the
lock is taken. The overhead for a disabled lock using the specific encoding is a
single jump instruction.

1 if (state != disabled) {
2 while test&set(spinlock)
3 { /* wait */ }
4 if (state != enabled && LockEpoch+1 < GlobalEpoch)
5 {
6 /* perform lock state manipulation */
7 }
8 }
9
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10 /* critical section */
11

12 spinlock = 0; /* lock release */

The corresponding (hand-optimized) assembler spin-lock code on IA-32 is as
follows. (For clarity reasons, the listing only shows the code for the uncontended
case and lacks the code for the spin loop and promotion/demotion.)

1 mov state, %ecx
2 jecxz critical_section ;jump if ecx=0 (lock disabled)
3 xchg %ecx, spinlock
4 test %ecx, %ecx
5 jnz spin_loop ;lock taken -> spin
6 test $2, state
7 jnz promote_demote ;handle RCU epoch
8 critical_section:
9 ...

10 mov $0, spinlock ;release lock

The lock code has thesame register footprintas a normal spin lock and one
more data reference for the lock state. The additionally introduced code onthe
critical path is line 2, 6, and 7. For normal spin locks, line 1 would not need an
explicit memory reference, however, the register has to be preinitialized witha
non-zero value. The specific state encoding combines the state test and register
initialization in a single instruction. In a disabled state the code requires one taken
jump (line 2) and in an enabled (and unlocked) state three non-taken jumps. Note
that the code assumes a state encoding of disabled=0 and enabled=1 (and2, 3 for
the two other states).

On architectures with a more relaxed memory consistency model (e.g., Pow-
erPC and Itanium), the unlock operation additionally requires a memory barrier. If
the overhead of a test of the lock state is lower than the cost of the memory fence,
the unlock operation should be executed conditionally.

4.3.3 Lock Granularity

With a foundation of dynamic locks as the base primitive I derive a method for
dynamically adjusting lock granularity. As discussed in 4.3.1, the optimal lock
granularity depends on the specific workload characteristics and access pattern to
an object. Fine-grained locking induces a high overhead in non-contention cases,
whereas coarse-grained locking may introduce bottlenecks and limit scalability.

The decision for a coarse-grained vs. a fine-grained locking strategydepends
on the specifics of the algorithm, that iswhereto lock andwhatgets protected by
locks. A detailed discussion of locking strategies is beyond the scope of thiswork
and thus I only address the general principles.

Fine-granular locking requires a divisible data structure where each part can be
individually locked without compromising the overall structural integrity. Thedata
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Figure 4.8: Cascaded spin locks to control locking granularity. Only one of the
locks — coarse or fine — is enabled at a time. Reconfiguration at run time ad-
dresses contention vs. overhead.

structure is divided into multiple parts and each part is protected by an individual
lock. The lock granularity depends on the number of independent parts of the
overall data structure.

I make the lock granularity adjustable by introducingmultiple locksto the same
object — one for each locking granularity. In order to lock an object,all locks
have to be acquired, while some locks can be disabled. Acquiring all locks ensures
that processors synchronize on the same locks, whichever lock may be active at
the time. Deadlocks can be avoided by simple lock ordering [106], for example,
coarse-grain locks are always acquired before fine-grain locks. The lock release
has to take place in reverse order of the acquisition. Figure 4.8 shows an example
of multiple cascaded locks protecting a hash table and individual clusters ofthe
table.

Switching the lock granularity for an object takes place in multiple stages. To
preserve correctness, at no point in time should two processors use a different lock
granularity (i.e., one uses coarse grain, the other fine grain locks). A safe transition
between the lock modes therefore requires an intermediate step, whereboth locks
— coarse and fine grain — are active. After that transition period, when all pro-
cessors are aware of the new lock strategy, the previous lock can be disabled. The
completion is tracked with the RCU epoch counter, similar to the dynamic locks.

At first, the cascade may appear overly expensive due to the additional mem-
ory footprint for the fine granular locks. However, efficient encoding and dynamic
memory allocation reduces the overhead. Instead of maintaining a lock state for
each individual fine-grain lock, it is sufficient to maintain the overall lock gran-
ularity for all locks in a single field. The memory overhead for a two-level lock
cascade is therefore identical to dynamic locks: two bits for the state and the RCU
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epoch counter.
Since dynamic locks only access the lock variables when the locks are enabled,

the memory required for the lock variable can be dynamically allocated (i.e., when
first switching to fine-grain locking). The following listing shows pseudo code for
a two-level lock cascade including code that handles dynamic adjustment.

1 enum State = {Coarse, Fine, ToCoarse, ToFine};
2 if (State != Fine) {
3 lock (CoarseLock);
4 if (State != Coarse AND LockEpoch+1 < GlobalEpoch) {
5 if (State == ToCoarse) {
6 State = Coarse;
7 /* potentially release fine lock memory */
8 }
9 else

10 State = Fine;
11 }
12 }
13

14 for index = 0 to NumberObjects {
15 if (State != Coarse) lock (FineLock[index]);
16

17 /* critical section */
18

19 if (State != Coarse) unlock (FineLock[index]);
20 }
21

22 unlock (CoarseLock);

A special case of the scheme occurs when the fine-granular objects themselves
are not locked but modified with an atomic operation (e.g., atomic compare-and-
swap). In coarse-grain lock mode, all objects are protected by a single lock and
the data members can be modified with normal (non-atomic) memory operations.
In fine-granular synchronization mode, manipulations are performed with multi-
processor safe atomic operations. The following pseudo code shows that scenario.

1 enum State = {Coarse, Fine, ToCoarse, ToFine};
2 if (State != Fine) {
3 lock (CoarseLock);
4 if (State != Coarse && LockEpoch+1 < GlobalEpoch) {
5 if (State == ToCoarse)
6 State = Coarse;
7 else
8 State = Fine;
9 }

10 }
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11

12 if (State == Coarse)
13 object = newvalue;
14 else
15 CompareAndSwap(object, newvalue, oldvalue);
16

17 unlock (CoarseLock);

The overhead for the special handling is minor on most architectures. For
example, IA32’scmpxchg instruction requires an additional instruction prefix to
differentiate between the synchronized multiprocessor and the unsynchronized ver-
sion of the instruction. A conditional jump over the one-byte instruction prefix,
depending on the lock state, induces only marginal overhead and code complex-
ity, while reducing the cost from 136 to 12 cycles (Pentium 4 2.2GHz). Itanium’s
predicates allow for a similarly efficient implementation.

4.4 TLB Coherency

In the previous section I addressed the performance aspects of coarse- vs. fine-
granular synchronization in the kernel. TLB coherency updates have similar per-
formance trade-offs that are addressed in this section.

Operating systems store memory address translations and permissions in page
tables. The translations are cached in the processors’ TLBs. After modifications to
page tables, processors may still have old values of the modified page table entries
cached in their TLB; page tables and TLBs are thus inconsistent. Consistency is
recreated by invalidating the affected TLB entries. All processor architectures offer
specific TLB invalidation instructions for that purpose.

When page tables are shared between multiple processors, a page table entry
may be cached in TLBs of multiple processors. On most architectures, the scope of
a TLB invalidation operation is limited to the executing processor. The modifica-
tion of page permissions thus requires a remote TLB invalidation that is executed
on the remote processor.

A shoot-down requires an IPI and interrupts the active operation on the remote
processor. Remote TLB shoot-downs have a high overhead similar to message-
based synchronization. The changed permissions in the page table becomeeffec-
tive onlyafter all remote processors invalidate the respective TLB entries.

In one special case — when the permissions to a page get extended — the
page fault handler can avoid the necessity for the TLB shoot-down. When the page
access raises a fault because of a stale TLB entry, the fault handler validates the
page permissions and if correct only reloads the entry and restarts.

If completion of a system function depends on the completion of permission
updates, then the remote TLB shoot-down latency directly adds to the function’s
cost and latency. Typical examples for such scenarios are permission updates for
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Figure 4.9: Implication of combined TLB shoot-down on latency for individual
entries. The first row shows the combined operation for updating four page table
entries (A–D) followed by a combined TLB shoot-down. The rows below show
the latency for each individual update.

copy-on-write (as used for fork) and page swapping to disk. Both operations de-
pend on the completion of the permission update for their semantic correctness.

I define the following two design goals for the kernel’s TLB coherency algo-
rithm:

1. The overhead for TLB shoot-downs — and thus the absolute number of
shoot-downs — should be minimal. The kernel has to combine as many
TLB shoot-downs as possible into a single remote invocation. Shoot-downs
should be reduced to only those processors that require an update (i.e.,no
global TLB shoot-down).

2. The latency of independent memory updates and therefore the latency of
TLB shoot-downs should be minimal.

The first design goal is achieved by combining multiple TLB coherency up-
dates into one single shoot-down cycle after all page tables are up-to-date. How-
ever, a combined shoot-down violates the second design goal: low latency.When
multiple processors concurrently manipulate memory permissions for the same
memory object, the operations of those processors become inter-dependent. An up-
date of page permissions is completed after the completion of the TLB coherency
cycle (i.e., when all remote TLBs are valid). By combining multiple TLB shoot-
downs in one, the duration of the permission update is the length of theoverall
operationfor all updates (see Figure 4.9).

In order to ensure correctness, permission updates have to be synchronized
between all processors. When one processor changes the memory permissions
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Figure 4.10: Concurrent permission update on two processors. CPU 0 updates
the permissions for multiple pages includingA. In order to guarantee consistency
it locks A and releases the lock after the TLBs are coherent. When CPU 1 tries
to manipulateA shortly after the lock acquisition by CPU 0, it has to wait until
completion of the operation on CPU 0.

but postpones the shoot-down, a second permission update by another processor
must not complete before the first shoot-down is completed. Otherwise, the second
processor incorrectly assumes active page permissions (e.g., as required for copy-
on-write) that are not yet enforced. The inter-dependency is a performance problem
because inexpensive permission updates that only require a simple memory access
suddenly become long-running operations that also include the latency forremote
TLB shoot-downs. Figure 4.10 depicts the delay for a concurrent operation that
depends on the completion of another processor’s update. The inter-dependency
is also a scalability problem, because operations that are independent andmay be
processed in parallel are now serialized.

4.4.1 Independence of Coherency Updates

The delayed TLB shoot-down dynamically creates coarse-grain memory objects,
although individual memory objects may have fine granular locks. The problem
is the tight coupling of modification of memory permissions with the TLB shoot-
down. The necessary TLB shoot-downs are derived and accumulatedwhen updat-
ing the page table. That information is only available to the processor that modifies
the page permissions creating the aforementioned inter-dependency. Remote pro-
cessors become dependent on the completion of the operation, because they arenot
awarewhat TLB shoot-downs are still outstanding.

To counteract the scalability limitations induced by the combined TLB updates,
I propose an algorithm that eliminates inter-dependencies between page permission
updates and TLB shoot-downs. The previously described TLB consistency scheme
is based on a strict causal order; operations are globally ordered andthus safe. I
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relax the ordering model by separating page table updates from the TLB coherency
updates. The algorithm works as follows:

The modification of memory permissions requires a corresponding TLB up-
date. Only after the update completes are the permissions active and globally en-
forced. When all required TLB shoot-downs have completed, an operation that
relies on the page permissions stored in the page table is safe. However, that re-
quirement isindependent of a specific processor; the TLB shoot-down operation
can be initiated by any processor in the system.

In order to detect still outstanding TLB updates, I introduce a per-processor
TLB update epoch. When a processor updates memory permissions to a memory
object, it tags the object with the processor ID and the processor’s current TLB
epoch. Furthermore, the processor records the necessary TLB updates — thus
includes all remote processors and TLB entries that need to be invalidated (details
follow in 4.4.2). A new TLB epoch starts after all shoot-downs are completed.

When a second processor updates the memory permissions to the same object,
it compares the stored epoch counter with the corresponding processor’s current
TLB epoch. When they are different, the TLB shoot-down cycle is completeand
the page table permissions are authoritative. However, when the stored epoch is
identical to the stored processor’s current epoch, the TLB update is stilloutstanding
and the TLB shoot-down is initiated by the second processor.

To preserve the ordering of operations, the second processor updates the pro-
cessor ID and epoch counter stored with the memory object. Furthermore, itin-
cludes the recorded TLB entries into its own shoot-down list and updates thelist
according to the performed updates. Thus, if a third processor updatesthe permis-
sions of the memory object, it now becomes dependent on the second processor’s
TLB epoch. The formal presentation of the algorithm is as follows:

Let D be the set of TLB entriesti that need to be invalidated, witht = (v, p,a). v
denotes the virtual address of the entry that is invalidated,p the processor that may
cache the entry, anda the address space identifier for the particular processor. Let
o be the memory object for which the permissions are changed, witho = (D,e, p).
o.e denotes the TLB epochp.e of processorp stored ino, ando.D denotes the set
of dirty TLB entries, witho.D = {t}. When changing the memory permissions for
objecto that requires to invalidateD TLB entries, theno.D′ = D if o.e 6= p.e or
o.D′ = D∪o.D otherwise.

4.4.2 Version Vector

The described algorithm stores the TLB entries that need to be invalidated with
the object. The required storage memory depends on the number of affected TLB
entries, the number of processors that concurrently manipulate the object,and the
frequency of updates (i.e., whether updates complete or many TLB shoot-downs
are outstanding).

A näıve tracking algorithm that only records the dirty TLB entries, has an un-
bounded memory consumption and is therefore unfeasible. I reduce the memory
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requirements by incorporating architectural knowledge about the MMU. While the
TLB epoch tracking is a general mechanism and applicable to all hardwarearchi-
tectures, the tracking of outstanding TLB shoot-downs depends on veryspecific
details of the MMU, cache, and TLB. The influential properties include whether or
not the TLB is tagged, the TLB shoot-down primitives and their cost, the overhead
for TLB refills and also the cache line transfer costs and the latency of an IPI. A
detailed analysis for a wide variety of MMUs is beyond the scope of this work,
and thus I only provide an exemplary validation and discussion for my reference
architecture: Intel’s IA-32.

IA-32’s MMU has dedicated data and instruction TLBs with a hardware-
walked two-level page table.4 An address-space switch is realized by loading a
different page-table base pointer into the processor’sCR3 control register. The
architecture does not define address-space identifiers and all (non-global) TLB en-
tries are automatically flushed on everyCR3 reload. An update ofCR3 therefore
serves two purposes: (i) to switch between virtual address spaces and (ii ) to in-
validate the TLB. The architecture additionally provides theinvlpg instruction for
selective invalidation of individual TLB entries.

A TLB shoot-down can be either performed by multiple invocations ofinvlpg
or via a complete invalidation. A complete invalidation has the disadvantage that
it also invalidates entries that are still in use and thus need to be reloaded. Onthe
other hand, individual invalidations have a significant overhead (apparently, invlpg
is not optimized). In Figure 4.11 I compare the overhead for individual shoot-
downs against a complete invalidation plus the cost for the re-population of the
TLB. The break-even point for the used test environment (a 2.2 GHz Pentium 4
Xeon) is at eight TLB entries. Starting with nine entries it is more efficient to
invalidate the complete TLB rather than invalidating individual entries. Obviously,
the specific break-even point depends on the architecture’s TLB size and overhead
for shoot-downs.

The lack of address-space identifiers reduces the amount of data that needs to
be tracked. The dirty TLB entries are represented byt = (v, p). On modification
of permissions of a pagev in a page table that is shared across a set of processors
p0, ..., p j−1, the set of dirty TLB entries isD = {(v, p0),(v, p1), . . . ,(v, p j−1)}. The
memory footprint of a simple encoding of the set is|D| · sizeof(t) which does not
scale for many processors. Thus, the algorithm requires a more compactrepresen-
tation.

The TLB shoot-downs ensure that no stale entries are cached in remote TLBs.
Most TLB replacement algorithms are indeterministic and a TLB shoot-down may
target a TLB entry that is not in the TLB anymore or even never was. A shoot-down
strategy still preserves functional correctness if it targetsmoreprocessors. All stale
TLB entries will definitely be evicted, however, the additional (and unnecessary)

4At the time of writing, IA-32 defines four different page table formats. For this work I only
consider the standard 32-bit virtual and physical addressing mode withsupport for 4MB super pages
and the global tag [29].
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Figure 4.11: Comparison of TLB shoot-down costs with complete re-population
against an entry-by-entry shoot-down for a Xeon Pentium 4 2.2 GHz with 128
TLB entries. The costs include the overhead for the invalidation instruction (521
cycles) and required cache line transfers (about 80 cycles). The break-even point
is at eight entries. The negative slope of the repopulation cost curve reflects the
decreasing number of repopulated entries for an increasing number of shoot-down
values. Note that the overhead for the required IPI is not shown.

shot-downs may incur a higher cost.
Based on that observation, the setD = {(v, p0),(v, p1), . . . ,(v, p j−1)} can also

be encoded as the tuple(v,m), wherebym denotes the processor cluster mask (as
defined in Section 4.2.2). The shoot-down is correct if the following condition
holds: ∀i : (∃t ∈ D : t = (v, pi)) ⇒ f (m, i) > 0. The cluster mask’s fixed size
reduces the memory footprint for tracking of an updated page table entry from
|D| · sizeof(t) to sizeof((m,v)) where |D| < n. Note that the limitations of the
memory bus (such as NUMA) make highly shared memory resources unlikely,and
therefore the encoding via the cluster mask is accurate for the vast majority of cases
(see Section 4.2).5

The manipulation of memory permissions of an object may require a TLB
shoot-down ofn entriesD = {(v0,m0),(v1,m1), . . . ,(vn−1,mn−1)}. The memory
footprint depends on the maximum size of the object (and thus the maximum num-
ber of potential dirty TLB entries). The overhead of the by-entry shoot-down op-
eration of the processor architecture limits the number of entries that need to be
recorded. As shown in Figure 4.11, the cost for an entry-by-entry TLB invalidation
exceeds the cost for a complete invalidation for more than eight entries. Hence, the

5Note that accuracy addresses the encoding of processors, not the accuracy of the algorithm itself.
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hardware limits the memory footprint tomax(|D|) = 8 entries. Afterward, a com-
plete TLB invalidation becomes more efficient.

The number of remote shoot-downs can be further reduced by testing whether
or not the currently active remote page table (i.e., currentCR3 value) corresponds
to the address space of the tracked TLB entry. If the processor loads anew value
into CR3 it implicitly invalidates all TLB entries and the explicit shoot-down can
be omitted. However, the test misses the scenario whereCR3 is reloaded multiple
times and matches the recorded value. The simple equality test delivers a false
positive and indicates a required TLB shoot-down although the TLB is already
up-to-date.

Instead, I introduce aTLB versionthat increases on everyCR3 reload (includ-
ing context switches and TLB invalidations). The version significantly decreases
the probability for a false positive. After modification of memory permissions in
page tables, the algorithm stores the TLB versions for all affected processors in
a vectorw = (w0,w1, . . . ,wn−1). If the remote TLB version already increased at
shoot-down time, the shoot-down is superfluous and can be omitted. The max-
imum size of the vector depends on the number of processors and requires one
vector per memory object.

The last optimization is to reduce the number of vectors to one per processor
at the cost of some additional TLB shoot-downs. At system startup time the ker-
nel preallocates a version vector per processor. The version vectoralso contains
the storage space for the individual entry-by-entry shoot-downs. Memory objects
contain (1) a reference to the version vector of processorp, (2) a processor clus-
ter masko.m, and (3) the TLB epocho.e — an overall memory footprint of three
processor words per memory object.

After modification of page tables, the version vector needs to reflect the re-
quired TLB shoot-downs (including those still outstanding from other processors).
If the TLB epoch that is stored with the object is still active (o.e= p.e), the shoot-
downs of the previous processor did not yet complete. In that case the algorithm
updates the current processor’s version vector by incorporating thestill outstanding
shoot-downs:w′ = (w′

0,w
′
1, . . . ,w

′
n−1) with w′

i = max(w1
i ,w

2
i )∀i ∈ (0,1, . . . ,n−1) |

f (o.m, i) > 0. Additionally, the algorithm updateso.e with the current processor’s
TLB epochp.e, the reference to the processoro.p = p, and the cluster masko.m.

The described optimizations drastically reduce the memory footprint making
TLB tracking feasible. The reduced memory footprint is at the cost of accuracy
and potentially results in a higher overhead compared to the optimal case. How-
ever, the TLB version vector can eliminate many unnecessary remote notifications
via IPIs, if the remote processor already performed aCR3 reload — either due
to a concurrent TLB shoot-down from another processor or by normal context
switch activities. As initially emphasized, the solution is specifically optimized
for IA-32’s MMU and because of this other architectures may have different cost-
performance trade-offs.
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4.5 Event Logging for Application Policies

In uniprocessor systems, scheduling is the activity of deciding which thread of
control gets to run on the CPU. In multiprocessor systems, scheduling has another
dimension, not only deciding when a thread will run but alsowhereit will run, (i.e.
on which processor). In order to make informed resource scheduling decisions (not
limited to thread allocation), adynamic schedulerneeds to combine information
from a variety of sources. The vast majority of scheduling algorithms (naturally)
assume data availability of a monolithic system structure; a single entity maintains
all system states and provides full accessibility and visibility.

The common definition of scheduling includes two dimensions: time and lo-
cality. Although time and locality are inter-dependent they can be handled au-
tonomously. In the following, I will primarily focus on the aspect that is specific to
multiprocessor system: the allocation of threads to processors.

Fundamental to microkernel-based systems is a divided system structure with
highly distributed information that is required for resource scheduling. A scheduler
needs to evaluate runtime information and therefore needs access to runtime data in
the first place. Strict isolation and independence creates a boundary that obstructs
the free information flow available in monolithic systems.

The major challenge is that resource scheduling takes place sporadically and in-
frequently, however, the scheduling decision requires up-to-date information. Effi-
cient scheduling requires sufficiently accurate data that — in most cases —is never
evaluated by the scheduler. Direct access to system-internal data structures mini-
mizes the overhead in monolithic systems, whereas a microkernel system requires
additional action to extract, accumulate, and provide that data. Hence, isolation
increases constant runtime overhead for system components as well as the kernel
and therefore decreases the overall system performance.

To address this problem, I developed an efficient mechanism for runtime data
aggregation with a high-bandwidth interface to a resource scheduler: shared mem-
ory. A primary design goal is to have a single mechanism that is applicable to the
microkernel as well as to system components.

The section is structured as follows: First, I discuss the properties of datathat
are the basis for scheduling decisions. Afterward, I describe mechanisms to collect
and deliver scheduling-relevant data to a scheduling component. While system-
level components can be freely adapted (and potentially replaced at runtime), the
microkernel is static. The wide variety of existing resource scheduling algorithms
requires a flexible mechanism that covers as many usage scenarios as possible.
While very detailed event logging can most likely fulfill that requirement, it incurs
a prohibitively high runtime overhead on performance-critical code paths. I there-
fore develop an adaptable event logging scheme that can be dynamically enabled
and adjusted minimizing the overall performance impact on the system.
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4.5.1 Overview

Resource scheduling policies base their decision on system runtime information,
such as the current load situation [37] derived from the run-queue length [14, 96],
and communication pattern between tasks [36, 88, 99]. An important performance
aspect for scheduling is the resource affinity of processes, such asactive cache
working sets or NUMA memory [16,17,107].

Efficient resource allocation and scheduling in multiprocessor systems is a
widely researched area. A detailed discussion of individual resourcescheduling
policies or comparison is beyond the scope of this work. For a detailed discussion
I refer to an excellent survey of parallel job scheduling strategies for multiprocessor
systems by Feitelson [35]. In this work, I solely focus on therequired mechanisms
for information gathering in order to realize scheduling algorithms.

Dynamic schedulers try to extrapolate future system behavior from past behav-
ior. Hence, they require statistical data on system events in relation to the schedu-
lable principals and system resources. A naı̈ve call-back on event occurrence can
provide very detailed and timely information to the scheduler. In a monolithic sys-
tem, a callback is a simple function call, whereas in a microkernel-based systema
callback may require multiple privilege level changes and address space switches.
Thus, callbacks induce an unacceptable runtime overhead for frequent events.

Theacceptable overheadfor runtime data collection has to be considered for
two scenarios. First, the overhead of a scheduling algorithm is obviously bounded
by the maximum achievable benefit. If the potential performance benefit is less
than the overall cost for data aggregation for deriving a scheduling decision, a
random allocation policy is preferable. The second relevant performance metric is
the cost for steady state after an optimal resource allocation is reached. Here, the
algorithm should only incur a minor runtime overhead.

The upper bound of the frequency for scheduling decisions is given by the over-
head induced by the resource reallocation. The costs fall into two categories: the
cost of the operation and the follow-on costs. Applications benefit from the migra-
tion only after the overhead for both categories are amortized. In today’smultipro-
cessor architectures, the follow-on costs induced by cache working set migrations
are the dominating performance factor. The time spans between re-balancing and
migration decisions are therefore often in the order of multiple milliseconds.6

4.5.2 Data Accumulation

Event recording is an effective method for offline or postponed systemanalysis.
On event occurrence, the system writes a log entry that sufficiently identifies the
event source, event reason, relevant system state, and point in time. Later, the
system behavior and causal dependencies can be reconstructed from the logged in-

6The load balancer of Linux 2.6.10, for example, makes re-balancingdependent on the cache
migration overhead. The minimal re-balancing period for SMP processors is 2.5ms whereas it is
10ms for NUMA nodes.
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formation. Event logging is primarily used for debugging purposes and bottleneck
elimination [121].

I apply the fundamental idea of event recording, but as a method foronline
data collectionfor user-level schedulers. The microkernel and system components
record system events as log entries into a memory-backed log space. Shared mem-
ory provides a low overhead access method to system events for the scheduler while
preserving strict separation between the individual components (i.e., the producer
and consumer) [42].

The sheer amount of events and event sources renders a simplistic per-event
logging scheme unfeasible. However, with increasing frequency of event occur-
rence, the carried information per event decreases. Scheduling decisions are in
many cases based on a quantitative analysis (such as number of events per time
interval [35]). In those cases the cost can be reduced via data aggregation, for
example only counting the number of events instead of logging individual event
instances.

The overhead for logging falls into three primary categories: (i) overhead for
the event recording code, (ii ) overhead for data analysis by the scheduler, and (iii )
overhead induced by higher cache footprint for the logged information.The over-
head of event recording can be reduced by the following three aggregation meth-
ods:

Less frequent logging of the same event.Combining multiple event occurences
in a single log entry reduces the frequency of logging and thus the runtime
overhead. The minimal execution overhead induced by event logging is an
arithmetic add (for event counting) followed by a conditional branch into the
event logging code. With more events combined in a single log entry, the
lower becomes the overhead for logging. The overhead for event counting
itself is minimal (the cache footprint of the counter and two instructions).

Logging of less event sources.The second method is to reduce the event sources,
which can be achieved by conditional logging and filtering. Depending on
the scheduling policy, not all system events are relevant and get evaluated.
Conditionally logging of only the relevant events reduces the static runtime
overhead. Filtering allows more flexibility for event selection than a simple
on/off scheme, however, a complex filtering scheme may induce a higher
runtime cost.

Logging of less information per event.Finally, the overhead can be reduced by
limiting the amount of log data and thus the overhead to generate the log
entry itself.

Event aggregation automatically reduces the overhead for data analysis inthe
scheduler. The scheduler handles already compacted and preprocessed log entries.
Similarly, filtering eliminates irrelevant data from the log file and thus reduces the
runtime overhead for data analysis. Using alternative log buffers per event source
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reduces the event parsing overhead and also the memory and cache footprint. Here,
the scheduler can implicitly derive data from knowledge about the log buffer.

The memory and cache footprint for event logging depends on the frequency
of events, frequency of log entries, and the log entry size. In many cases, statistical
analysis considers only a single or very few entries that happened last. Acircular
log buffer, which is exactly sized for its required back log, can minimize the overall
cache footprint.

4.5.3 Event Sources and Groups

Event sources differ in their expressiveness and potentially require additional con-
text information to become useful for a scheduler. I identified the following three
primary event types:

Access, modification, or occurrence.This event type denotes the occurrence of
one specific event, such as the access to a resource or the execution ofa
specific function. It is unrelated to other events in the system. Event logging
may either log the particular occurrence or simply increase an event counter.

The event has four parameters: (i) a resource identifier, (ii ) an identifier of
the resource principal, (iii ) the number of accesses, and (iv) a time stamp.
The resource identifier uniquely identifies the accessed resource and the re-
source principal identifies the subject that performed the access. Based on
the logged resource principal, a scheduler can account resource usage to a
system’s accounted subjects, such as threads or tasks.

Entry and exit. In time sharing systems, resource utilization is accounted to re-
source principals during the time of activity. The relevant information for
counted events, such as resource usage, time, and hardware performance
counters, is the number of events from activation until preemption. It can
be derived by recording the absolute value of an event counter at the point
of activation and at the point of preemption. The difference of both values
provides the number of events during the time of activity.

Compared to on-access logging, entry–exit logs have a significantly lower
log footprint and additionally cover asynchronous event counters, such as
hardware-provided performance counters. Entry–exit logging combines the
preemption event of a principal with the system information (i.e., counters
and time).

An entry–exit event has four parameters: (i) a resource principal, (ii ) an event
counter, (iii ) the new value, and (iv) a time stamp.

Asynchronous events.Asynchronous events are independent from a resource
principal and execution. On event occurrence, the system logs the system
state and point in time. A typical example for this event class is a periodic
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interval timer or a hardware event counter. Asynchronous events have the
same parameters as on-access events.

Events can be grouped together if at least one event parameter is identical. In
that case the specific parameter can be omitted in the log. Specific event grouping
depends on the event type and what values are useful for a particularscheduling
policy. For example, time stamps may not be required for a scheduler that performs
periodic sampling.

Entry–exit events are bound to resource principals. The primary resource prin-
cipals in systems (e.g., threads or tasks) may not sufficiently represent inter-de-
pendencies, such as client-server relations or act-on-behalf. While fine-granular
resource principals allow for a detailed analysis, they also increase the number of
entry–exit events and thus log entries.

Banga et al. [13] propose resource containers for separating traditional first-
class resource principals from resource accounting. Instead, resource usage is ac-
counted to a shared container with multiple associated threads or tasks. The con-
cept of grouping resource principals in orthogonal resource accounting domains is
an efficient method for event filtering as well.

4.5.4 Log Entries and Log Configuration

Event logging is on the critical code path and low overhead is therefore ofpara-
mount importance. While at application level the application designer has the free-
dom to tune the log structure and log values toward one or a few specific scheduling
policies, the microkernel lacks such freedom. The kernel’s static code base requires
runtime configuration of the log facility that is flexible but still incurs a marginal
overhead.

Runtime configuration for performance and event tracing is well-known for
microprocessors. Most modern microprocessors support hardwareperformance
monitors (HPM) that provide statistical information on hardware events [29,30].
HPMs are used primarily for performance and bottleneck analysis [22, 103], but
have also been proposed as a data source for scheduling decisions [120]. HPMs
are configured via control registers and count hardware event occurrences. More
sophisticated performance monitoring facilities, such as Intel’s Pentium 4, even
provide event logs.

Similar to HPMs, I introduce kernelevent-log control fields. Kernel events
are associated to control field that allow for precise control of the generated event
log entries including deactivation of the log facility altogether. The control field is
constructed for maximum flexibility of statistical analysis with low overhead. Each
control field consists of the following set of parameters:

Log pointer and log size. The log is a circular ring buffer denoted by a log pointer
and a fixed size. The size is encoded as a bit mask that is logically AND-ed
to the log pointer. By using a mask it is possible to arithmetically derive the
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start and the size of the log buffer. This way buffer start, buffer size,and the
current log index is encoded in only two fields.

The encoding restricts the possible log buffer alignment but simplifies over-
flow checks. Each entry has a fixed size that depends on the logged values
per event. A simple offset calculation delivers the next entry. A log buffer
with asingle entryserves as an event counter.

Overwrite or count. The scheduler can specify if event occurrence should over-
write the log event counter or add the counter to the previous value in the
log. This selector enables event tracing (like the time of the last event) or
event counting.

Time stamp and time source.A system may provide multiple time sources and
the cost for recording a time stamp may differ. While the processor cycle
counter provides a highly accurate time source, the overhead is significant
on some architectures.7 Alternatively, the system may use a less accurate in-
terval timer, or a simple counter if the time stamp is solely required to derive
causal dependencies. For many events the time of the event is irrelevant (or
known) and logging the time stamp can be avoided altogether.

Threshold. For very frequent events a per-event log is too expensive. Therefore,
each control register additionally contains an event counter that is incre-
mented per event. A counter overflow leads to recording of the event and
a reload of the counter with the programmed threshold value.

For higher flexibility, event sources and thresholds are decoupled from the log
buffer. Multiple event sources can be freely associated to either one event-log
control registers or alternatively to individual logs. Per-processor control regis-
ters preserve independence between processors. In order to scale, there is no syn-
chronization between processors and the log buffers are located in processor-local
memory.

Figure 4.12 depicts two alternative log configurations, one combined log anda
second configuration using the event log as a counter.

4.5.5 Log Analysis

Having a detailed log of resource information, schedulers further need toevaluate
the logged data. The structure with a shared memory log makes the logging facil-
ity a classical producer–consumer problem, with the logger being the producer and
the scheduler being the consumer (as shown in Figure 4.13). When a scheduler
processes a log file, new entries may be written concurrently, potentially leading to
a scheduler evaluating inaccurate data. I discuss possible counter-measures against
evaluation of inaccurate data, with a focus on minimal runtime overhead for both

7The Intel Pentium 4 architecture has an overhead of 125 cycles for a timestamp counter read.
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Figure 4.12: Event log control. Events refer to a log control structure that refers to
a log buffer, log entry count, and the logged values. Multiple events can belogged
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Figure 4.13: Log analysis via shared memory. The microkernel and a user-level
server log events into memory that is shared with the scheduler. The scheduler
processes the logged entries and derives its scheduling logic.

producer and consumer. The runtime overhead of atomic operations renders ex-
plicit synchronization via locks unfeasible.

One can differentiate between two event types: (i) infrequently occurring
events and (ii ) frequently occurring events. For infrequent events, the probabil-
ity of concurrent logging and analysis is low. Either a repeated analysis run or a
copy-out strategy into a separate buffer eliminate the race condition.

Frequently occurring events are the basis for statistical analysis and individual
event occurrence is of less importance. Missing one of the frequent events there-
fore will have insignificant implications on the overall scheduling policy. In order
to avoid explicit locking, the analysis algorithm repeats the log analysis run in case
the log file changed during the run. However, repetitive analysis is an unbound op-
eration and thus may lead to a lifelock where the consumer constantly updates the
log and the consumer never completes its operation. The lifelock can be avoided
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by careful system construction.

I derived the following lock analysis strategy for frequent events. The logger
first writes the log values and afterward updates the index pointer into the logfile.
The analysis code ignores the current entry field because updates may still be in-
flight and the data may be invalid. At the end of the analysis the code validates
whether the index into the log file remained constant and if a wrap-around took
place. The following listing shows sample code for the analysis algorithm.

1 int OldIndex, OldTimeStamp;
2 do {
3 OldIndex = LogCtrl.Index;
4 OldTimeStamp = Log[OldIndex].TimeStamp;
5

6 for (int Index=1; Index<LogCtrl.Entries; Index++)
7 Analyze(Log[(Index + OldIndex) % LogCtrl.Entries]);
8

9 } while(OldIndex != LogCtrl.Index ||
10 Log[OldIndex].TimeStamp != OldTimeStamp);
11 Reschedule();

The lifelock occurs in case the runtime of the analysis is longer than the time
difference between two log entries. This is critical when events occurand get
logged at a high rate. Since event logging is triggered by code execution,it ei-
ther requirespreemption of the analysis codeon the same processor orparallel
execution of analysis and log codeon different processors. In order to avoid cache
migration overhead, processor-local log analysis is preferable over remote analysis.

Due to the inherent performance degradation of long-running analyses(as ar-
gued in Section 4.5.1), log analysis that requires a full time slice is impractical. In
the unlikely case of a preemption during the analysis run which additionally cre-
ates new log entries, a simple retry is sufficient and the next run will most likely
complete. Additionally, preemption precautions that inform the kernel of a critical
section (e.g., provided by L4, K42, and Raven) can further reduce thelikelihood of
an undesired preemption. This scheme is sufficient, as long as events are analyzed
on the same processor on which the events occur and are logged.

When using a scheduler that accesses logs of a remote processor, the likelihood
of a analysis-log conflict increases. For logs with only very few entries or when the
event frequency is sufficiently low, a simple retry method is sufficient. However,
when the time interval between two events on the remote processor is shorter than
the runtime of the log analysis, the algorithm needs to take further precautions.
One possibility is to perform a partial analysis and to combine the different parts at
the end. Alternatively, event logging can be explicitly deactivated until the analysis
completes. This approach avoids corruption of log data at the cost of accuracy. A
more detailed discussion on the design alternatives and trade-offs for efficient log
analysis is given in [100].
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4.6 Summary

In this Chapter I described four mechanisms for adjusting kernel synchronization
primitives in order to reflect the degree of parallelism of resource sharing. It is
founded on an efficient tracking scheme for parallelism (Section 4.2) — theproces-
sor cluster mask— which allows every object to be tagged with a space-efficient
processor bitmap. The cluster mask uses an encoding scheme that trades accuracy
for space with increasing number of encoded processors, similar to floating point
encodings.

I presented dynamic locks, which can be enabled and disabled at runtime in a
safe manner (Section 4.3). Dynamic locks overcome the overhead of a single syn-
chronization strategy (lock vs. message based) in the kernel. Using the information
on parallelism encoded in the cluster mask, the lock primitives can be dynamically
adjusted. Dynamic locks further allow for safe and dynamic adjustment of thelock-
ing granularity (Section 4.3.3). In case of no concurrency, coarse-grain locking
yields better performance and reduces the cache footprint for the lock variable. In
case of high concurrency, fine-granular locking reduces lock contention, increases
parallelism, and thus yields better performance. The best strategy depends on the
specific workload, and a static common-case selection can result in suboptimal
performance. By cascading multiple dynamic locks, the synchronization strategy
— coarse-grain or fine-grain locking — can be dynamically chosen and adopted at
runtime.

In Section 4.4 I presented a TLB coherency scheme that enables a kernel to
batch expensive TLB shoot-downs for multiple memory permission updates. In-
stead of updating TLBs on a per-entry basis, multiple updates are combined. While
this scheme reduces the remote-processor signaling overhead, it also introduces
inter-dependencies of independent and parallel operations in the memorysubsys-
tem. I developed a TLB epoch mechanism that allows processors to safely bypass
outstanding TLB updates bydetectingnon-completed shoot-downs and initiating
the shoot-down themselves.

Finally, in Section 4.5 I presented an event-logging mechanism for system
components including the microkernel itself. Different to monolithic systems,
where resource usage information is directly available to the OS, are scheduling-re-
levant information distributed and isolated between the system components. Event-
logging with shared memory provides a high-bandwidth and low overhead channel
between resource managers and the scheduler, thereby efficiently overcoming the
additional isolation restrictions.

In the next chapter I describe the application of those mechanisms to a specific
microkernel.
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Chapter 5

Application to the L4
Microkernel

In this chapter I describe the application of multiprocessor performance adaptation
to L4Ka::Pistachio, an L4 microkernel. L4Ka::Pistachio is the basis for a variety
of research projects, including the development of multi-server systems [42], and
para-virtualization efforts [69]. I and colleagues [111] have shown that L4Ka::Pis-
tachio is able to efficiently run multiple instances of a multiprocessor Linux kernel
on a single multiprocessor system.

L4 is an ongoing research effort and therefore a moving target. In this thesis, I
refer to the general concepts of the latest L4 specification, Version X.2 Rev. 6 [49],
which I co-authored. Furthermore, I extended the specification to address scalabil-
ity aspects. L4Ka::Pistachio is a group effort by a number of people, however, I
implemented a significant part of the main kernel and maintain the IA-32 specific
part of the kernel.

In this chapter, I concentrate on aspects of L4Ka::Pistachio that relate to the
main subject of this thesis: scalability of microkernel-based systems. I have de-
scribed other aspects — including reasoning for individual design decisions — in
a technical report that accompanies this thesis [109].

The chapter is organized as follows. In Section 5.1, I give a general overview of
the core L4 concepts that are required in later sections. In Section 5.2, I define my
requirements and general goals for a scalable kernel. This is followed bythree sec-
tions that describe the specific application of the ideas of performance adaptation
to L4Ka::Pistachio. In Section 5.3, I detail the construction of the inter-process
communication primitive. Section 5.4 describes the application of dynamic lock
granularity (developed in Section 4.3.3) and the TLB coherency via tracking (Sec-
tion 4.4) to L4’s memory management mechanisms. In Section 5.5, I describe
the mechanisms for efficient resource tracking that provide the basis foruser-level
resource managers.
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5.1 Overview of L4

L4 provides two abstractions in addition to bare hardware:threadsandaddress
spaces.

Threads are the abstraction for an activity; processor time is multiplexed be-
tween threads. A thread is represented by processor state (register context), a
unique global identifier, and an association to an address space. Each thread
belongs to exactly one address space at any time. In L4, threads are alsothe
fundamental abstraction for controlled transfer of execution between differ-
ent protection domains (i.e., address spaces).

Address spacesprovide the abstraction for protection and isolation; resource per-
missions are bound to address spaces. Address spaces are passiveobjects
that are manipulated by threads. Address spaces have no explicit names,but
are named via a thread associated to the particular space.

Permissions in L4 are bound to address spaces; all threads within an ad-
dress space have the same rights and can freely manipulate each other. This
model has implications and significant limitations on multiprocessors dis-
cussed later in more detail.

In L4, the address-space concept is used for different resources, including
memory and I/O ports.

Furthermore, L4 features two mechanisms for permission control:IPC and
resource mapping.

IPC is the mechanism for controlled transfer of data, resource permissions, and
control of execution between exactly two threads. If the threads reside in
different address spaces, IPC implicitly crosses protection domain bound-
aries and transfers data between them.

IPC is a synchronous message transfer and requires mutual agreementbe-
tween both communication parties in the form of a rendezvous. During the
rendezvous, the message content is transfered from the sender to the receiver.

Resource mapping is the mechanism for resource durable permission delegation.
Resource permissions are granted via themapoperation, that is part of IPC
and thus also requires mutual agreement. Map transfers the resource permis-
sions from the sender’s address space to the receiver’s address space. The
permissions to the resource are either identical to the sender’s permission or
more restrictive.

The map operation can be applied recursively. Permission revocation is per-
formed via theunmapprimitive and is involuntary for the receiver of a mem-
ory mapping. Unmap is a recursive operation which revokes all dependent
mappings as well. A more detailed description follows in Section 5.4.
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Permissions are associated with an address space; any thread of an address
space can manipulate (and potentially revoke) resource permissions.

L4 features an in-kernel priority-based round-robin scheduler thatallocates
time to individual threads. When the time slice of a thread expires, the kernel
preempts the thread and chooses the next runnable thread within the same priority
level. When a priority level becomes empty, the kernel considers the next higher
level. If no more runnable threads remain in the system, the kernel switches the
processor into a low-power state.

5.2 Requirements

In this section I describe the design goals (and non-goals) for a multiprocessor
version of the L4 microkernel. The description has a specific focus on themulti-
processor aspects. Afterward, I describe the extensions and modifications I make
to the original uniprocessor kernel design.

The intricate interdependencies between nearly all kernel subsystems requires
a good understanding and detailed discussion of many individual aspectsof kernel
components. I discuss them in more detail in a separate report [109].

5.2.1 Design Goals

I define four major design goals for L4Ka::Pistachio: scalability, performance,
policy freedom of new mechanisms, and compatibility and transparency. Addition-
ally, I define the following set of non-goals (i.e., aspects that were of no interest
even though addressed by important related L4 work): real time [58], fine-granular
user-level memory management [52, 74], and requirements of highly secure sys-
tems [60]. For all design decisions I clearly favored goals over non-goals.

Scalability

Scalability is the primary goal of this work. Following Unrau’s design princi-
ples [113] for scalable operating systems, the microkernel has to fulfill thethree
construction principles:

1. Preserve parallelism.The parallelism of applications must be preserved
throughout the microkernel; requests from independent applications have to
be served independently and in parallel.

2. Bounded overhead.The overhead of operations must be bounded and inde-
pendent of the number of processors.

3. Preserve locality.The kernel has to preserve the locality of the applications.
From this requirement I derive that (i) the kernel code and data need to be
local to the processors, (ii ) upon application migration the kernel meta data
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has to be relocated, (iii ) applications and OS services that manage memory
resources need to be aware of processor locality, and (iv) require mechanisms
to explicitly manage it.

Performance

The performance of microkernel primitives is paramount, with a particular focus
on the IPC primitive. I closely follow the design principle for microkernels as
postulated by Liedtke:Ipc performance is the Master. Anything which may lead to
higher ipc performance has to be discussed. [...][70].

I evaluate the achievable performance based on two factors. First, the unipro-
cessor version of the kernel gives the upper performance bound for operations that
are local to one processor. For all critical operations I choose a structure identical
(or almost identical) to the single processor kernel. Second, for operations that
are either cross-processor or require concurrency precautions (i.e., locking) I target
for the achievable minimal overhead of themacro operations. A macro operation
thereby combines multiple smaller and potentially independent operations into one
larger operation.

The optimization at the macro-operation level allows the kernel to reduce costs
by combining the startup overhead of multiple micro-operations, for example via
critical-section fusing [79], or by performing bulk operations on a remote proces-
sor. Instead of initiating remote operations one by one, the kernel combinesall
operations and initiates a single inter-processor request. In cases where the kernel
has to repeatedly acquire locks, the fusing of multiple micro-operations can result
in reduced concurrency, longer over-all waiting time for a lock, and potentially
unfairness and starvation. Here, I explicitly move the policy decision via a hint
to application level. Applications can then choose between coarse-grainedlocking
with lower overhead or fine-grained locking but with a higher overhead.

Policy Freedom Of New Primitives

A primary design goal of L4 is to have no policies in the kernel. To a large extent
that goal is achieved, with some exceptions such as the in-kernel scheduling policy.
In this work I add newkernel mechanismsto achieve scalability. A primary design
goal is to not introduce additional kernel policies.

Compatibility and Transparency

Developing an operating system from scratch is a tremendous multi-person-year
effort. Therefore, I set a primary design goal that enabled me to leverage the
numerous previous and ongoing system development projects for the L4 kernel
[42, 54, 69, 72, 111]. I favored compatible kernel interfaces, mechanisms, and ab-
stractions to the uniprocessor version over significantly different ones. For opera-
tions that violate isolation restrictions, I favor transparent completion with a perfor-
mance penalty rather than explicit failure with notification. Transparent completion
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preserves compatibility to existing uniprocessor software and algorithms, whereas
explicit failure notification requires that applications be extended with multipro-
cessor error-handling code.

5.2.2 Multiprocessor Extensions to L4

Based on the design goals described in the previous section, I extend the unipro-
cessor L4 microkernel as follows:

Threads. The abstraction for execution is the thread. I extend the thread with
an additional attribute that denotes a thread’shome processor. The kernel
does not automatically migrate threads, instead they are bound to their home
processor. Thread migration (e.g., for load balancing purposes) is a user-
level policy and only takes place upon explicit application request.

Address spaces.In L4, address spaces serve two primary purposes. First, an ad-
dress space is a kernel object that associates virtual addresses to physical re-
sources. Second, the address space provides protection boundaries. Threads
which are associated with the same address space have the same rights to
objects, including the right to manipulate peer threads in the same address
space.

NUMA systems require processor-local memory (see previous section) and
therefore different address translations depending on a thread’s home proces-
sor. I separate virtual-memory address translation from thread permissions.
A thread belongs to a permission domain that specifies the peer threads, and
to a memory address space for the virtual-to-physical memory translations.
An active thread can migrate between memory address spaces which pro-
vides a mechanism for implementing processor-local memory. The memory
manager of the address spaces the thread migrates from and to needs to en-
sure that both address spaces have the samememory contentmapped. The
migration only changes the association to physical resources that is the mem-
ory access latency, but preserves the memory semantics (also see [109]).

Per-processor resources.Scalability requires parallel execution of independent
application requests (see previous section). I replicate all central kernel data
structures and provide per-processor instances. That includesscheduling
queues, thekernel memory pool, and themapping database memory pool.

Processor-local resources require an indirection that referencesthe current
processor’s instance. I minimize the overhead induced by the indirection
via the virtual memory subsystem. The per-processor kernel data structures
are located in a specific area of the kernel’s address space. Each processor
has different memory mappings in that area, such that all accesses address
the corresponding processor-specific instance of kernel data. On proces-
sors with software-loaded TLBs, the TLB-miss handler treats that area spe-
cially. On processors with hardware-walked page tables, the kernel creates
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per-processor instances of the top-level page table. Each instance contains
specific translations for its processor. For identical page mappings (such as
user space and common kernel mappings) processors may share the sameset
of page tables.

One implication of the scheme is that data stored in the per-processor area
cannot (easily) be accessed remotely, because it is only directly accessible
by the specific processor.

Kernel messaging.I provide an in-kernel messaging mechanism for remote ex-
ecution. The kernel uses a preallocated number of request buffers per pro-
cessor to initiate a remote execution. The kernel sends an inter-processor
interrupt in case the remote processor is actively running. If a processor runs
out of free request buffers it busy-waits until a request buffer is freed up; the
scheme avoids kernel deadlocks by continuously serving remote requests.
All request handlers are constructed in such a way that the kernel canneither
deadlock nor lifelock [117].

Read-copy-update epoch.For dynamic lock adaptation and also to avoid exis-
tence locks, the kernel uses read-copy-update epochs. At boot time the ker-
nel forms the processor clusters (see Section 4.2.1). Based on the clusters
it creates a ring of processors that circulate a token. The token is passed by
writing a value into a dedicated per-processor memory field. Each proces-
sor regularly tests its associated field and when set, passes the token to its
successor processor in the ring. The test for the token is at two locations
in the kernel’s code path: on user–kernel crossings and on timer ticks. The
timer tick ttick limits the maximum time for a round trip of a tokentround in a
system withn processors totround ≤ 2n· ttick.

User-kernel crossings include the performance-sensitive IPC primitive. The
ring scheme generates two cache misses every time the token passes a pro-
cessor. The first cache miss occurs when the token is read after it got mod-
ified by the predecessor in the processor ring. The second cache miss oc-
curs when the token is passed on to the successor in the ring. Thus, in an
n-processor system the scheme has an overhead of 2 cache misses every n
system calls. Considering the high cache miss penalty relative to the overall
cost of system calls, a strict token passing scheme incurs too much overhead,
in particular whenn is small. Based on the number of processors in the sys-
tem, I reduce the cache-miss frequency by only testing everymth system call.
The required counter is local to each processor and thus remains in exclusive
state in each processor’s cache. Note that this optimization does not affect
the maximum latency of a token round trip. In very large systems it is possi-
ble to form multiple sub-rings that include a subset of the processors in the
system.
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5.3 Inter-process Communication

Inter-process communication is the central mechanism for thread interaction,
thread synchronization, controlled protection-domain crossing, and resource del-
egation. IPC performance is of paramount importance in a microkernel system.
Operations which require two simple changes of privilege-level in a monolithic
operating system require two IPC invocations in a microkernel. Thus, IPC adds
an immediate overhead on all invoked system operations. Due to careful design,
L4’s IPC primitive has a very low overhead on uniprocessor systems. A detailed
analysis of individual design decisions and principles was given by Liedtke [70].
In that paper, Liedtke briefly addresses multiprocessor systems and proposes a lock
on the critical path. Such a locking scheme, however, would impose a performance
penalty of up to 20 percent (see Section 6.2).

In this section, I describe the most performance-relevant usage scenario for
dynamic lock adaptation for L4: the IPC primitive. Each thread in the system car-
ries a processor isolation mask that denotes its primary scope for communication.
According to the mask’s restrictions, the kernel adjusts the lock primitive of the
thread. Following, I will give an overview of the relevant communication scenar-
ios in a microkernel-based system and their performance and latency requirements.
Afterward, I discuss two design alternatives for a cross-processorIPC primitive. I
describe the two alternative approaches to cross-processor IPC: (i) based on kernel
locks and (ii ) based on kernel messages. I conclude the section with a brief discus-
sion on the IPC primitive for multiprocessor systems with significantly different
cache migration overhead and IPI latencies.

5.3.1 Communication Scenarios

The microkernel’s IPC primitive is used for a variety of purposes. But twoscenar-
ios are most common and relevant: (i) client-server interaction and (ii ) IPC-based
signaling and notification.

The following discussion is based on two core assumptions. Firstly, I assume
that the programmer has detailed knowledge on application behavior and commu-
nication patterns of the workload. Design decisions always aim at maximizing
performance for thewell-designedapplication, rather than induce an overhead to
accommodate unoptimized applications.

Secondly, based on the structure of current multiprocessor architectures, I make
the assumption that the overhead for cache migration, synchronization, and signal-
ing is so high that frequent cross-processor interaction in the sense ofa remote-
procedure call is unfeasible. This assumption stems from (i) the overhead for asyn-
chronous inter-processor signaling, (ii ) the cost for cache-line migrations (even in
multi-core systems) relative to the frequency of remote invocations and the po-
tentially achievable speedup. New features in upcoming processor architectures,
however, may change the specific performance trade-offs. Furthermore, I do not
address resource interference between threads of SMT processors, but consider
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Figure 5.1: Client-server IPC model for OS services on a microkernel. Arrows
denote the execution paths for IPC.

them as independently executing.

Client-Server Communication

In a microkernel-based system, the operating system functionality is not executed
in privileged mode in the kernel, but unprivileged at application level. In order
to invoke an operating system service, applications send an IPC to an OS server.
Client-server communication is the most performance-critical operation, because
it replaces all simple kernel-invocations in a monolithic OS by two IPCs.

In most cases, the client depends on the results of the server invocation and
needs to block until completion of the remote operation. The IPC invocation thus
follows the instruction stream of the application similar to a normal system-call
invocation in a monolithic kernel. However, instead of stopping user-level activity
and entering kernel mode to execute the system function, the kernel switches to
the OS server’s address space instead (see Figure 5.1). The switch is initiated by
the client (by invoking the IPC primitive), authorized by the server (by accepting a
message from the client), and executed by the microkernel.

IPC in the client-server scenario is therefore a mechanism to (i) guarantee that
the remote server is in a consistent state (signaled by waiting for an incoming mes-
sage) and (ii ) to transfer control into the server’s address space. It is important to
note that client-server relations do not usually make use of the parallelism thread-
ing would provide, butexplicitly avoidit. In order to minimize the IPC overhead,
the scheduler is not invoked when switching from client to server thread and the
server executes on the client’s time slice instead. This scheme was first proposed
by Bershad et al. [19].

In multiprocessor systems the client request could theoretically be handled by
a server thread on a remote processor; the following reasons, however, make such
an approach unfeasible forblockingrequests:
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• A client that relies on the result of the server request will be preempted,
while the server needs to be activated. Performing such an operation across
processor boundaries requires (i) invocation of the scheduler on the client’s
processor and (ii ) activation of the server on the remote processor (which
may further lead to preemption of an active thread on the remote CPU).

• The server requires access to client data in order to handle a client request
(at least for the request parameters, but potentially more). For remote opera-
tions, such data have to be transferred via memory instead of the processor’s
register file. Hence, a remote invocation requires more instructions, and also
incurs overhead due to cache line migrations. Furthermore, operating on
memory that is shared between client and server incurs overhead for migra-
tion of the active cache working set between processors.1

• There is an inherently higher overhead for starting a remote operation com-
pared to a local operation (even if small on tightly-coupled systems). The
initiation of a remote operation either raises an interrupt or at least writes
into a shared memory location (resulting in cache line migration). In the
local case, the operation stays within the instruction stream of one processor.

Only in one case a remote operation may yieldbetterperformance, that is
if the overhead for context-switching from client to server is higher than
the overhead for remote processor signaling plus the working set migration.
Such scenario may occur, if the to-be-transferred cache working setis very
small, the remote processor already activated the address space of the target
server, the cache working set of the remote server is already loaded, and the
processor is idle (i.e., does not require interruption).2

• Dynamic migration of worker threads is unfeasible on multiprocessors due to
the cache migration overhead. Although, on well-designed SMT and tightly
integrated multicore systems this requirement may be of less importance.

Based on the previous analysis I made the design decision to strictly favor
the performance of processor-local IPC over cross-processor IPC. This decision
imposes a design discipline that minimizes cross-processor communication and
has general implications on the structure of the system.

Unrau’s first design rule (preserving parallelism) requires that independent ap-
plication requests can be served in parallel. When applied to a client-serverop-
erating system that rule requiresat leastone server handler thread per processor.
In order to scale, the server needs to be aware of the parallelism and provide a
sufficient number of worker threads. The threads have to be distributedacross all

1SMT systems often share the L1 cache for different threads. Thus, the working set remains in
the same cache if the processor supports L1 sharing.

2Each processor has a dedicated idle thread. Since it only executes in kernel mode there is no
reason to switch to a special address space. Upon activation the idle thread therefore remains in the
last active user address space.
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Figure 5.2: Example for client-server configuration with a multiprocessor-aware
server. The server provides processor-local threads to eliminate cross-processor
IPC. (The microkernel is omitted in the figure.)

processors such that clients can contact a local server thread and thus avoid the
described overhead for the remote invocation (see Figure 5.2).

Synchronization and Notification

Synchronization is a latency-sensitive operation. The time from the releaseoper-
ation of a synchronization primitive until a previously blocked thread starts exe-
cuting influences the responsiveness and increases the overall runtimeof a task.
The design goal is to minimize that latency. The cost for an IPC that unblocks
a thread on the same processor is low when comparing to alternative high-level
kernel synchronization primitives (such as semaphores or mutexes). Hence, IPC is
an sufficient mechanism for inter-thread synchronization. Furthermore, using one
general mechanism for a variety of purposes is advantageous because it reduces
kernel and application complexity, as well as overall cache footprint.

Signaling across processor boundaries requires three operations: (i) test and
modify the thread’s state from blocked to ready, (ii ) enqueue the thread into its
home-processor’s scheduling list, and (iii ) notify the remote processor to resched-
ule. These three steps can be realized in two different ways. Firstly, the data struc-
tures are manipulated directly and therefore require some form of synchronization
(e.g., locks). Secondly, the operation is initiated via an in-kernel message and per-
formed by the thread’s home processor itself. In that case no locks are required
because operations are serialized by the remote CPU.

Direct manipulation has a performance advantage because it allows a thread
to perform multiple remote notifications without being dependent on the execu-



5.3. INTER-PROCESS COMMUNICATION 71

Lock, test, transfer

reschedule

time

CPU A

CPU B

Message 
delivery lat.

Overall execution 
time for IPC send

(a) Lock-based IPC

send

test&lock

ack&transfer

release

time

CPU A

CPU B

Message delivery latency

Overall execution time for IPC send

(b) Message-based IPC

Figure 5.3: Comparison of the message-based and the lock-based cross-processor
IPC mechanism. Message-based IPC has a significantly higher latency.

tion of remote processors. It uses the parallelism of the memory subsystem that
operates independently from the processors. An in-kernel messagingscheme can
only achieve the same level of parallelism and overhead when the notificationis
asynchronous and without completion notification.

Such an approach moves the complexity of error handling to applications. The
number of potential usage cases that do not require completion notification isquite
limited. Moving this functionality to user-level results in significant code duplica-
tion because every user-level application would have to consider the case of lost
messages. Furthermore, the common method for detection of lost messages is
timeouts which should be avoided at all cost.

Waiting for completion of the remote operation can be achieved in two ways.
Either the sending processor polls for message arrival on the remote processor
(which adds the cross-processor signaling latency to the operation), orthe initiating
thread blocks until arrival of a confirmation message. The latter adds the overhead
of a context switch and a scheduler invocation to each cross-processor notification.
Figure 5.3 compares the alternatives and highlights the latency implications of each
approach.
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5.3.2 Performance Trade-offs

The design of the IPC mechanism on multiprocessor systems has to take a large
number of parameters into account. These are not limited to performance andla-
tency, but also user-level communication protocol complexity, transparent process
migration for load distribution, atomicity and non-interruptibility of operations. A
detailed reasoning is beyond the scope of this thesis and is discussed in [109].

Here, I only give the design parameters of the multiprocessor IPC primitive.

• Similar to the uniprocessor version, IPC addresses individual threads.
Thread locality is explicitly exposed to application level. Multi-threaded
servers need to expose the processor-specific thread IDs to communication
partners (i.e., clients). This design decision favors IPC performance over
locality transparency.

• For protocol transparency, the IPC primitive must work on the same proces-
sor as well as across processor boundaries. Limiting IPC to threads thatare
located on the same processor would require that all applications supporter-
ror handling in case they are migrated to a different processor while in the
middle of an IPC (e.g., waiting for a response of a thread that is suddenly on
a different processor).

• IPC should be a generic, low overhead, and low latency primitive such thatit
is applicable to a wide range of scenarios. Multiprocessor support must have
minimal impact on local communication.

As I argued in the previous section, cross-processor thread synchronization
is extremely latency sensitive and an in-kernel message-based synchronization
scheme performs less efficiently than a lock-based scheme. On the other hand,
the majority of all IPCs take place between threads that reside on the same pro-
cessor. Here, the locks required for efficient cross-processor IPC induce a constant
overhead in the local case and a messaging scheme would be preferable for the few
cases of thread migration.

When considering the most common communication relations of threads in a
system, one notices very specific patterns. For each thread it is possible toderive
a communication profile to partner threads that are either primarily on the same
processor or primarily on remote processors. For example, server threads that have
identical peers per processor communicate locally in almost all cases and only
in a very few exceptional cases to remote threads (usually as a result of athread
migration). Threads that frequently synchronize with remote threads havea higher
number of cross-processor communications relative to local IPC.

Fortunately, applications are aware of the specific communication patterns of
their threads. For example, a server spawns parallel handler threads for processor-
local communication, while a parallel program creates remote worker threads that
synchronize frequently. That application-specific knowledge can be used benefi-
cially to fine-tune the communication primitive.
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5.3.3 Adaptive IPC Operation

Instead of favoring one IPC primitive over the other, the kernel supports both IPC
variants — message-based and lock-based. Having two alternative codepaths in
the kernel only incurs a marginal overhead because (i) support for cross-processor
IPC was one of the fundamental design requirements and (ii ) to a large extent the
code is identical for both alternatives.

Based on its communication profile, each thread can derive a set ofpreferred
remote processorsthat are expressed in a processor isolation mask. Based on that
mask, the kernel fine-tunes the communication primitive; processors that are speci-
fied in the mask use a lock-based IPC scheme, while all others use a message-based
synchronization scheme for IPC. Depending on theorderspecified in the processor
mask, the kernel may further fine-tune the lock primitive itself (i.e., use spin locks
or MCS locks).

Accesses are restricted to a single processor if the isolation mask only specifies
the home processor of a thread (or alternatively no processor). In that case the
kerneldisablesthe lock on the IPC path using the dynamic lock demotion scheme
as described in Section 4.3.2. I want to emphasize that the processor isolation
mask performance-tunes the IPC primitive butdoes notenforce communication
restrictions. Hence, it is still possible to communicate with threads that are outside
the bounds of the mask, however, the primitive uses the more expensive message-
based code path.

Dynamic adaptation provides the optimal case for two scenarios: high-perfor-
mance lock-free communication in the local case, and low-latency communication
for the remote case. Adaptability eliminates the requirement for a special kernel
synchronization primitive. Figure 5.4 shows the state diagram of L4’s IPC primi-
tive. I specifically marked the multiprocessor extensions and dynamic locks.The
code path contains two locks that are acquired for the common client-servercom-
munication case: one for the send phase and a second for the receive path. A
complete round-trip IPC therefore requires a total of four locks.

5.3.4 Remote Scheduling for Lock-based IPC

After completion of a remote IPC operation, the partner thread becomes runnable
and has to be considered by the remote scheduler. If the priority of the currently
active thread on the remote processor is lower than the priority of the threadacti-
vated by the IPC, the remote processor should invoke the scheduler. Rescheduling
is achieved by sending an IPI to interrupt the current execution. Alternatively, if the
currently executing thread has a higher priority than the activated one, thethread
can simply be enqueued into the ready list and the normal scheduling mechanism
will activate it at some later point in time. That case requires no IPI and avoids the
accompanying overhead.

In order to scale, the kernel has per-processor structures for the scheduler.
These structures include one ready list per scheduling priority and a wakeup list to
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Figure 5.4: State diagram for multiprocessor IPC with support for dynamic locks
and kernel messages. Elements with a bold border denote multiprocessor addi-
tions to the uniprocessor state diagram. The locks can be dynamically enabledand
disabled. (Error handling is omitted for clarity.)

handle IPC timeouts. To lower the overhead for the processor-local case, schedul-
ing lists are unsynchronized and therefore cannot be accessed fromremote proces-
sors. Instead, each scheduler features one or more requeue lists thatenable remote
processors to use memory-based queues. When a thread is activated from remote, it
is enqueued into a requeue list of its home processor’s scheduler. Requeue lists are
protected by per-list locks; multiple lists per scheduler further reduce concurrency
from many remote processors and thus the potential for lock contention. Figure 5.5
depicts the structure for one processor in more detail.

Apparently, in order to support multiple requeue lists, each thread controlblock
needs to provide multiple list pointers. However, that is not the case for the follow-
ing reason: Threads only have to be enqueued into the ready list when their thread
state switches from blocked to ready. That switch is a controlled operation via ei-
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Figure 5.5: Requeue list for remote processors to avoid locks on the critical path
for the scheduling queues. One list exists for each processor in the system.

ther IPC, a timeout, and a few other operations (see [109]). All state switches from
a blocked to a ready state have to be synchronized via the IPC synchronization lock
of the thread. When a processor holds that lock, no other processor inthe system
can concurrently manipulate the threads state; but then also no other processor will
try to enqueue the thread into a requeue list and a single pointer is sufficient.

When the scheduler is invoked, it parses the requeue lists and requeuesthreads
according to their priority into the normal scheduling queues. First, the scheduler
checks the list head for valid entries and only then acquires the lock. Checking even
a larger number of requeue lists therefore only incurs a modest runtime overhead.

The requeue list is a singly-linked list of thread control blocks; the complexity
is O(1) for insertions. Remote processors can onlyadd members to the list and
only the home processor can remove members as part of the requeue operation.
Requeing threads therefore also has a complexity ofO(1) per list member, how-
ever, the latency for one specific thread with a total ofn threads in the requeue list
is O(n).

5.3.5 Discussion on Tightly-coupled Systems

At the beginning of this section I narrowed the design space to systems that have
noticeable cache-line migration overheads and relatively high IPI-signaling laten-
cies. However, embedded multicore and SMT processors may show different be-
haviors. Those processors often have IPI latencies as low as ten cycles and efficient
cache sharing with minimal cache migration overhead via on-chip direct cache-to-
cache transfers. A thread allocation model with hard processor affinitiesper thread
may be suboptimal. Following, I will discuss the implications of such system struc-
ture for the IPC primitive.

When the cache migration overhead between two processor threads reduces
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significantly (or even drops to zero), a fixed thread association may lead tosub-
optimal processor utilization. Multiple processor threads then better share one
scheduling queue. Yet, to achieve maximum parallelism still requires one handler
thread per processor thread in system servers. The direct IPC addressing scheme
may lead to bottlenecks if all clients contact the same server thread. I envisage two
alternative schemes to overcome the problem (without practically validating their
effectiveness). First, server threads could be grouped such that multiple threads can
be addressed with a single name. Alternatively, the kernel could append aprocessor
tag to thread IDs of servers. Both schemes, however, introduce an in-kernel policy
and the first scheme requires another lock on the critical path.

Specific lock primitives for such tightly coupled processors would providea
trade-off between shared data structures and high synchronization overhead (see
also Section 7.2).

5.4 Address Space Management

In L4, address spaces and system memory resources are managed at application
level. Address spaces are constructed by user-level servers. Initially, all physi-
cal memory is mapped to the root address spaceσ0; new address spaces are con-
structed recursively by mapping regions of virtual memory from one address space
to another.

The kernel’s abstraction to memory is apage mapping. L4 lacks any knowl-
edge on thesemanticsof the referenced page frames and treats all pages identically.
For example, L4 does not differentiate between physical page frames that are RAM
and others that are hardware devices. The advantage of such a scheme is a greatly
simplified kernel abstraction with one uniform resource type. However, such uni-
formity may require overly conservative kernel algorithms with significantly higher
overhead in runtime cost and memory footprint, or poor scalability.

I want to emphasize that the memory management mechanism in L4 only con-
trols the permissions to memory resources. The kernel thus solely operatesonmeta
data, such as page tables. In this section, I address the problem of significantly dif-
fering resource allocation patterns for memory resources in L4.

The section is structured as follows: First, I give a brief overview of memory
management models in L4-based systems and describe their specific allocation
patterns (refer to [12] for a more detailed description). Based on those patterns,
I discuss the cost vs. scalability trade-offs and derive a set of requirements for the
kernel mechanism. Then, I describe how these requirements are reflected in the
kernel mechanisms that track the recursive memory mappings. A limiting factor
for concurrency and thus scalability of the memory management mechanism is
TLB coherency on multiprocessor systems. I apply the TLB versioning scheme
described in Section 4.4 to the recursive address space model.

The recursive virtual address-space model enables user-level memory man-
agers to perform NUMA-aware memory allocations, such as transparentpage repli-



5.4. ADDRESS SPACE MANAGEMENT 77

cation using processor-local memory. A detailed description is beyond the scope
of this thesis and thus described in the accompanying technical report [109].

5.4.1 User-level Memory Management

User-level memory managers fall into two main categories: (i) managers that parti-
tion resources, and (ii ) managers that operate on resources. The hierarchical mem-
ory model allows for re- and sub-partitioning via an intermediate address space.
Partitioning is achieved by mapping pages into the intermediate address space,
which then applies the partitioning policy and maps on the resources to the next
level in the hierarchy. The relatively low kernel resource overhead for an address
space makes such a simple model feasible. The second class of resourcemanagers
operate on the resources themselves. For example, a file system would allocate
memory resources to cache files or a user-level server for anonymousmemory
would provide paged memory.

Memory allocations of applications also differ significantly depending on the
applications’ life span and level of parallelism. Applications allocate memory re-
sources in three phases. In the first phase, the application populates theaddress
space by faulting-in the active working set. Afterward, the application enters a
steady state phase where it may access files or share data with other applications
or servers. When the application finally exits, the kernel frees the address space
and removes established mappings all at once. Obviously, for short-lived applica-
tions the set-up and tear-down phases dominate the resource management patterns,
whereas for long-lived applications (and servers) the steady-state phase is more
relevant.

While the specific resource management pattern depend on the specifics of
application and memory resource manager, memory resource allocation follows
three primary allocation pattern:

• frequent manipulation of very few pages (map and unmap),

• frequent manipulation of many pages at once for (i) address space tear down,
and (ii ) restriction of page permissions (e.g., for copy-on-write for UNIX’s
fork.), and

• infrequent manipulation of large sets of pages or super pages for bulk re-
source reallocation.

These allocation patterns are most critical for performance and scalability since
they can result in long synchronization periods limiting scalability. Therefore, I
will specifically focus the following discussion on them.

Rooting all physical memory from one address space (σ0) is a very powerful
and flexible mechanism, however, it also introduces a dependency chain between
all address spaces in the system. Because intermediate memory managers (includ-
ing σ0) couldmodify or revoke mappings at any point in time, the kernel meta data
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requires explicit synchronization. In the vast majority of cases, however, manipu-
lations of the same permissions are restricted to a single processor. An overly fine-
granular synchronization scheme incurs a significant runtime overhead and cache
footprint. The overhead of a single taken lock is one to two orders of magnitude
higher than the actual operation of updating the page table. Hence, an overly con-
servative synchronization scheme that solely focuses on scalability wouldinduce a
massive overhead.

Based on the common resource manipulation patterns I identify four scenarios
that need special consideration for scalability as shown in Figure 5.6. Thefirst
scenario is where one page frame is mapped into two address spaces (Figure 5.6a).
Subsequent mappings should be possible without interference and serialization of
B andC.

The second scenario is the concurrent access or manipulation of mappings at
different levels in the map hierarchy (Figure 5.6b). This scenario occurs (i) when
the kernel restricts access rights and (ii ) when the kernel reads access information
to a page: the operation of the childC should be independent of other sub-mappings
of parentA. Complete page revocation is less critical, because it eliminates the
inter-dependency between parent and child.

The third scenario addresses mappings of differently-sized pages (Figure 5.6c).
The parentA operates on a super-set of pages of the childC. Similar to the previous
scenario, parent and child (and also siblingsB andC) should be independent of
each other.

The fourth scenario is the concurrent manipulation of partially overlappingsets
of mappings (Figure 5.6d). In the shown case, the parent manipulates mappings to
B andC. Operations performed by the child in address spaceC should be indepen-
dent of mappings toB.

A näıve solution that maximizes scalability for all four scenarios requires (i)
complete independence of individual mappings and (ii ) a TLB coherency scheme
that is strictly enforced aftereach individual permission update. The latter require-
ment stems from L4’s strict consistency model for page permissions. The invoked
operation can only complete when permission updates are propagated to all pro-
cessors and potentially stale TLB entries are updated (i.e., invalidated).

A simple cost analysis reveals that such a solution has a massive overheadthat
will eliminate and even reverse the benefits of improved scalability. For example,
the overhead for a TLB coherency update is often multiple orders of magnitude
higher than the cost for the actual in-kernel meta-data manipulation.

5.4.2 Scalability vs. Performance Trade-off

The scalability vs. performance trade-offs for the hierarchical memory manage-
ment scheme are the common design trade-offs for all multiprocessor structures.
Fine-granular locking results in better scalability while coarse-granular locking has
a lower overhead. The memory subsystem additionally requires consideration of
the overhead and latency for TLB coherency updates.
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Figure 5.6: Scenarios of concurrent page permission manipulation in L4.

The scalability limitations for shared memory buses put a natural limit on the
common degree of parallelism for memory pages. Common large-scale sharing
of memory pages will result in poor performance due to the NUMA overhead.
Instead, NUMA systems create replicas that are located in local memory with a
lower access penalty. Hence, a well-designed system will only share very few
pages across a large number of processors. Those shared pages are used for global
data in massively parallel applications that run concurrently on a large number of
processors. However, it is very unlikely that in those cases the page permissions
change at a high frequency.

User-level memory management in a microkernel-based system is based on
a mutual contract between two entities, one party that provides a resourceand a
second party that uses a resource. That contract includes access rights, availability,
and for example guarantees on the content (e.g., that data is not arbitrarilymodified
or leaked). I add another dimension to that contract:concurrency.

Applications and system servers that implement the higher-level system ab-
stractions have the required semantical information (which the microkernel lacks)
for an educated decision on the synchronization strategy of individual memory
mappings. Each partner in the resource contract has to express its preferable syn-
chronization granularity and the expected level of parallelism. The resource con-
tract is established when the resource permissions are transferred between both
partners. The kernel correspondingly reflects that contract in its internal data struc-
tures.

Based on my initially stated scalability goals for L4, I support the following
two scalability contracts:

• A new memory mapping can be created as dependent or independent from
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Figure 5.7: Memory subsystem boundaries; a boundary decouples the subsystem
inter-dependencies.

the parent mapping. All dependent mappings are protected by the same lock
while independent mappings can be manipulated concurrently.

• Sub-mappings of super pages can be synchronized either at the granularity of
the super page or at the granularity of an individual mapping. The granularity
can be dynamically readjusted by the owner of the super page at runtime.

These two potential contract types create subsystem boundaries that isolate
subsystems and break the dependency chain toσ0. Figure 5.7 illustrates this with
a sample configuration.

The initially stated performance goal — minimal achievable overhead for an
operation — focuses primarily on the overhead of the three common scenarios that
I listed in the previous section. I specifically focus on the frequent (performance
critical) operations, these are (i) frequent mapping and unmapping of only a few
pages, and (ii ) frequent manipulation of large sets of pages at once.

When manipulating the page permissions of a few pages only, fine granular
locking has a relatively low overhead. This is in contrast to the cost of the overall
operation, such as entering and exiting the kernel and potentially enforcing TLB
coherency across processors. When manipulating the permissions of large sets of
pages, the kernel should minimize the number of taken locks and even more impor-
tant minimize the number of TLB shoot-downs. For such large-scale operations, I
therefore use a delayed lock-release scheme. Before each release of a kernel lock,
the algorithm tests whether or not the same lock would be reacquired immediately
afterward. In that case, the algorithm avoids the overhead by skipping release and
reacquire operations altogether.

5.4.3 Mapping Database

The kernel keeps track of recursively delegated resource permissions in a data
structure calledmapping database. The mapping database is L4’s most complex
data structure. For each physical page frame the kernel maintains an n-ary tree
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that is rooted fromσ0. A variety of alternative data representations have been
proposed before; each structure thereby addresses a different kernel design ratio-
nale. V̈olp [116] and Hohmuth [57] focus on avoiding long interrupt latencies and
unbounded priority inversion. Haeberlen [51] proposes an encodingscheme that
allows for partial preemption of kernel resources that back the mapping database
structure. Szmajda [104] focuses primarily on optimizations for systems with
software-loaded TLBs.

I extend L4Ka::Pistachio’s uniprocessor implementation to accommodate the
initially stated scalability goals and subsystem isolation requirements. First, I give
a brief introduction on the general operations followed by a description ofthe mul-
tiprocessor extensions.

General Operations

The mapping database has a number of design requirements. The databasecon-
tains one entry per mapping that is stored in kernel memory, a scarce resource.
Therefore, a compact data representation for mapping entries is of paramount im-
portance. The restricted kernel stack space requires non-recursive algorithms. In-
sertions and deletions of entries need to be fast operations with a complexity of
O(1). Finally, a primary functional requirement is the support for different hard-
ware page sizes.

L4Ka::Pistachio’s mapping database realizes the n-ary tree via a sorted doubly-
linked list ofmap nodes. The order of map nodes in the list reflects the map hierar-
chy. Sub-mappings are placedafter their parent mappings and each node contains
a depthfield representing the level in the map hierarchy. When starting at an ar-
bitrary map node in the list, all map nodes that follow directly and have a larger
depth value are sub-mappings.

The mapping database is optimized for two performance critical operations: (i)
finding the map node for a given virtual address (via its page table entry),and (ii )
finding the page-table entry from a map node. For the first case, the kernel main-
tains a reference to the map node with the page table. For the second operation, the
kernel stores a reference to the page-table entry in a compressed format within the
map node.

The sorted list structure allows for an efficient insertion scheme. On map, the
algorithm allocates a new map node and inserts it after the parent node. Thenode
insertion into the doubly-linked list requires updating two pointers. On unmap,the
algorithm walks the node list until it finds a map node that has a depth-field thatis
less or equal to the depth field of the start map node. The algorithm is sketched in
the following listing.

1 StartDepth = Node.depth;
2 do {
3 Unmap(Node);
4 Node = next(Node);
5 } while (Node.depth > StartDepth)
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Figure 5.8: Mapping hierarchy and corresponding database structurefor pagesa
andb. The level in the mapping hierarchy is represented by the numerical value.
Pageb is split into sub-pages via an indirection array. Capitalized letters denote
address space IDs.

Super pages are realized via an intermediate array that has one start pointer
for each sub page. Figure 5.8 illustrates a typical mapping scenario and shows the
corresponding data structure of the mapping database.

Multiprocessor Extensions

The doubly-linked list is a space-conservative encoding, however, itrequires the
kernel to explicitly lock the list on insertions and deletions of nodes. The list
based structure of the mapping database violates independence of subsystems and
thereby contradicts one of Unrau’s core requirements for scalability: preserving
parallelism of independent applications. In the list structure, the last map node
of one map tree and the top node of the next subtree cross-reference each other.
Manipulation of entries in one subtree therefore requires locking of neighboring
subtrees. Such structure either requires an overly broad locking scheme(e.g., on a
per-subtree basis), or multiple locks for a simple list manipulation. Multiple locks
additionally introduce the danger of deadlocks, which then has to be addressed via
lock ordering or specific deadlock detection schemes. Although careful locking
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Figure 5.9: Mapping tree structure including split nodes. Concurrent operations
are possible within independent subtrees.

can guarantee structural integrity of the data structure, the doubly-linkedlist will
still require locks that cover independent nodes and subtrees. Because the selection
of neighboring nodes depends on the order of previous map and unmap operations,
applications can neither anticipate what other nodes an operation affects,nor what
nodes an operation depends on.

I address this problem by dynamic structural modification of the n-ary tree.
I introducesplit nodesthat structurally separate independent subtrees. The cre-
ation of split nodes is under control of both partnering applications at the timeof
mapping. Split nodes thereby serve two primary purposes. First, they structurally
separate the mapping tree into multiple independent subtrees. Second, split nodes
also serve as synchronization objects. Figure 5.9 depicts the kernel structure of the
previous example extended with the additional subsystem boundaries.

Split nodes are inserted into the normal doubly-linked list and contain a refer-
ence to the independent (split off) subtree. The lock within the split node serializes
accesses to all entries within one subtree, however, not across split-node bound-
aries (i.e., child split nodes). Each map node contains an additional reference to
its parent split node, such that the corresponding split node can be found without
requiring an intact list structure or a lock. The lock for a specific subtreecan be
derived by a double pointer indirection: the reference to the map node is stored
with the page table. The map node itself then references the corresponding split
node. The following listing shows a code sketch for a mapping database lookup
including the split-node lock.

1 MapNode = LookupPageTable(vaddr);
2 if (MapNode != NULL) {
3 SplitNode = MapNode->SplitNode;
4 SplitNode->Lock();
5 if IsValid(MapNode) {
6 /* perform operation */
7 }
8 SplitNode->Unlock();
9 }
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Super-page Locking

Applications can map sub-pages out of a larger super page. The mappingdatabase
reflects the division of a super page with an intermediate node array. The array has
one entry for each sub page, and the specific number of entries is determined by
the hardware-supported page sizes.

The mapping database is rooted from one top-level map node that coversσ0’s
complete address space. That super-node is then divided via an intermediate array
that covers a large set of super pages, which then gets further subdivided, and so
on. The topmost map node has an associated split node that protects the complete
mapping database with a giant lock.

When a memory manager splits a super page into multiple sub pages, the man-
ager has two alternative locking strategies. First, it can apply a giant lock on all
subtrees and thus minimize the lock overhead and lock footprint. Alternatively, it
can lock individual sub pages with a higher overall cost but increasedconcurrency.
The optimal locking strategy depends on a variety of parameters, such as the spe-
cific page frame (RAM vs. device memory), the frequency of remapping, level of
sharing, and others. However, for resource managers that have long resource hold
times (i.e., a root resource manager), the optimal locking strategy may changeover
time.

In absence of one general strategy, I provide dynamic adaptation of thelock
granularity for sub pages that are mapped out of one super page. Themap-node
array is protected by a cascade of dynamic locks, using the scheme I developed in
Section 4.3.3. In order to lock an entry within the array, the kernel first acquires a
primary lock that protects the complete array, followed by another lock for each in-
dividual entry. However, the adaptive scheme effectively disables one of the locks
— either the primary coarse grain lock or the fine grain locks. Switching between
either lock granularity is under control of the memory manager that maps the su-
per page. When establishing a new mapping, the memory manager can specify
whether the locking strategy for the super page should change or remain as is. The
memory that backs the fine-grain locks, is allocated and deallocated on demand.

5.4.4 TLB Coherency

L4’s page permission model uses a strict consistency model. After completionof
an unmapoperation, the kernel guarantees that permissions are revoked. For the
multiprocessor kernel I had two design choices: (i) restrict the consistency model
to a single processor only and push the consistency to user level, and (ii ) extend
the strict consistency model to all processors.

The first model is unfeasible for the following reasons: User-level enforced
consistency requires that a resource owner trusts the resource consumer to perform
the TLB invalidation cycle on all processors. Alternatively, the resourceowner
would need one thread on each processor on which the pagemaybe accessed. This
requirement applies throughout the whole map hierarchy. L4’s resource delegation
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model is integral part of IPC. Restricting the extent of resource accesspermissions
for processors via IPC restrictions is not only cumbersome but violates orthogonal-
ity of principles. I therefore chose the second model. Besides reduced complexity,
in many cases it is possible to beneficially use architecture-specific behavior, such
as IA-32’s forced TLB invalidation on context switches [29].

I defined the following design goals for the mapping database’s TLB coherency
scheme that are in line with the overall scalability and performance goals:

• Minimize number of remote TLB shoot-downs.TLB shoot-downs have high
startup and execution costs and the kernel should therefore try to avoid them.

• Minimize number of affected processors per TLB shoot-down.TLB shoot-
downs should only target processors that actually require a shoot-down, in-
stead of a global broadcast. This design goal is also a requirement for scala-
bility, because otherwise the overhead for TLB shoot-downs would increase
with the number of processors in the system (and thus violate Unrau’s second
design rule).

• Minimize dependency between parallel operations.The completion of an
operation must be isolated to the specific resource and not depend on the
completion of others.

In order to achieve these goals I introduced a number of kernel-internaltracking
mechanisms. Each address space object carries an additional processor tracking
mask as described in 4.2. The mask keeps track of potential pollution of TLBs
and is derived from the locality of all threads of the address space. When threads
migrate between processors the kernel accordingly updates the mask. The kernel
derives the overall set of processors that require a TLB shoot-down, by merging
the processor masks of modified address spaces upon permission revocation.3

For unmap operations that cover a large number of mappings, the kernel per-
forms a single combined TLB shoot-down at the end of the update. This opti-
mization, however, may lead to a consistency problem when multiple processors
operate on the same mappings. The modification or removal of a map entry by one
processor may make the other processor complete its operationbeforeall TLBs
are in a consistent state. This can happen if the state of the mapping databaseis
already in the expected state. For example, two processors concurrentlyreduce
page access permissions from read-write to read-only. The first processor updates
all page permissions but postpones the TLB shoot-down. The second processor
now also reduces the permissions, but only finds read-only permissions.No up-
dates are required and therefore no TLB shoot-downs. However, only until after
the first processor finishes its TLB coherency update is the operation safe. Hence,
the initially described scenario would show incorrect behavior that could lead to
data leakage or corruption.

3For a definition of the merge operation refer to Section 4.2.2.
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There are two critical cases that need special considerations. In the first case
the page permissions are reduced, however, the page itself remains mapped. In the
second case, the page permissions are revoked completely. The problemcan be
further divided into two parts, an existence problem of map nodes and the actual
TLB shoot-down. In the following I address both problems in detail.

Map-Node Existence

A thread that performs an unmap operation specifies an area of its own virtual
address space. The kernel uses the thread’s associated page table tofind the cor-
responding mapping node and all subsequent mappings. Hence, when the unmap
operation clears the page table entry, it also removes the evidence of the previous
mapping. Any other thread incorrectly considers the virtual memory area asclean.
In an alternative case, the thread still finds a reference to the map node, however,
until it actually manages to lookup the entry it is removed by another processor.

I address both problems via a read-copy-update release scheme. Manipulations
of map nodes are always protected by a lock on their superseding split nodes. When
a map node is removed, the kernel leaves the reference to its split node alive, how-
ever, it marks the node as invalid. Invalidating the map nodes enables the algorithm
to detect the described race condition.

In order to preserve references to completely unmapped nodes requires special
handling in the mapping database. When the kernel revokes the page permissions
in the page table, it marks the page table entry as invalid but leaves the reference
to the mapping node intact. Subsequent map and unmap operations not only check
for a valid page table entry but also for still active map nodes. The map node
references serve as an indicator for potentially still ongoing parallel operations.

All freed map nodes are enqueued into an RCU free list with their split-node
and page table reference pointers still intact. When the RCU epoch expires, the
kernel finally clears the map-node references from the page tables before the map
nodes are put back into the free memory pool. Clearing the map-node reference or
overwriting it with a new mapping requires an atomic compare-exchange to detect
potentially concurrent map attempts.4

Figure 5.10 illustrates the described scenario for two address spaces.

TLB Shoot-down

The kernel synchronizes outstanding TLB coherency updates on splitnodes. With
the described map-node tracking scheme, the kernel can always safelyderive the
associated map node for a particular page mapping. The map node then references
the corresponding split node.

TLB updates are parallelized with the TLB versioning algorithm I described
in Section 4.4. The kernel allocates one TLB version vector per processor. The

4Unmap and over-mapping (one map entry is replaced by another) havea few corner cases that
require special care. However, a detailed discussion is beyond the scope of this work.
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Figure 5.10: Read-copy-update map-node release. A page is mapped in address
spacesA andB and has corresponding map nodes. Both map nodes hold references
to a common split node (a). After an unmap of the page inB, the map node is
unlinked from the mapping tree and enqueued into the RCU stand-by list (b).The
references between the page table, map node, and split node remain intact.

split nodes contain three fields for TLB tracking: (i) a cluster mask for tracking the
affected processors, (ii ) a TLB version vector epoch counter, and (iii ) a reference
to the TLB version vector. After a modification of page permissions but before the
release of the split node lock, the kernel updates all three fields as follows:

When iterating over a mapping tree, the kernel computes a logical OR of all
cluster masks of modified address spaces. The kernel then stores the computed
cluster mask within the split node thereby denoting which processors require a
TLB shoot-down in order to achieve a consistent state. Then, the kernelupdates
its TLB version vector and merges in the old version vector (see Section 4.4 for
details). If there is an update in progress (i.e., the mapping tree was modified but
the TLB shoot-down is not yet finished), the old and new cluster masks getmerged.
The TLB epoch counter stored with the split node enables the kernel to detect such
an outstanding update. If the epoch counter is still identical to the processor’s
current epoch, the TLB shoot-down is not yet completed and requires special care.
The kernel then updates the reference to the current processor’s TLB version vector
as well as the version vector epoch counter. After completion of all these updates,
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the kernel releases the split node lock.
Map and unmap operations achieve a consistent state by performing the out-

standing remote TLB shoot-downs themselves. Based on the processor’sversion
vector and the calculated processor-cluster dirty bitfield, the kernel derives the re-
mote processors that require a TLB shoot-down. However, instead of doing a brute-
force shoot-down based on the dirty bitfield, the kernel checks the remoteversions
first and only forces invalidation for those processors, where the TLBversion did
not advance yet. Hence, if two processors operate on a set of pagesand one opera-
tion completes earlier and triggers the TLB invalidation, the second operation may
not even require another TLB invalidation. Furthermore, on architectures where
the TLB is automatically invalidated on context switches, normal context switch
activities may eliminate the necessity for a TLB shoot-down altogether.

5.5 User-level Policy Management

Policy-free kernel primitives is one of the primary design goals for L4, and also
applies to the multiprocessor extensions. Per-processor resource allocation and
scheduling requires explicit mechanisms that allow user-level servers to perform
dynamic re-allocation and resource balancing. The two primary resources are
threads (for load balancing) and per-processor kernel memory.

Efficient allocation of kernel resources from application level requires runtime
feedback and safe mechanisms for resource re-allocation. In this section I describe
the application of event logging and user-controlled resource management for in-
dividual processors in the multiprocessor configuration.

5.5.1 Kernel Event Logging

The information on resource utilization is distributed across a number of compo-
nents, including the microkernel and also multiple application-level system servers.
While in the majority of cases many servers can trivially provide usage data to a
user-level scheduler (such as access information for certain resources via the IPC
interface) some information is solely available in the kernel.

In order to expose microkernel-specific runtime information, I extend the ker-
nel with the event logging mechanism as described in Section 4.5. The two cen-
tral design goals arescalability andminimal performance impactfor the overall
system. A per-processor log buffer with unsynchronized access preserves inde-
pendence between the system processors. For minimal overhead I instrument the
kernel with a set of hand-optimized assembler macros. Furthermore, I useruntime
code adaptation for the very few events that are on the critical path for IPC. In
case event logs are disabled, the kernel can remove the logging code via binary
rewriting [105].

The kernel events that are relevant to the scheduler are specific to the individual
scheduling policies. As argued before, a one-fits-all solution is unfeasible because
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of the significant overhead for cache footprint and execution time. For example,
the overhead for a simple performance counter read (rdpmc) on a Pentium 4 ac-
counts for 141 cycles and a time stamp counter read (rdtsc) costs 88 cycles. An
unconditional execution on the critical IPC path would induce a 14 and 9 percent
overhead (or 23 percent when logging both counters).

The kernel instrumentation consists of three components: the event logging
instrumentation for kernel events, a set of log control registers, and thelog buffer.
Log control registers and log buffers are located in user-readable memory, such
that a user-level scheduler has fast access to the logged data.5 Access to the log
can be restricted to avoid leakage of security-relevant information.

The kernel uses a double indirection for logging. Each kernel event isasso-
ciated with a specific control register. The control register contains a reference to
the event log, a counter, and a start value for the counter on overflow.On every
event the kernel decrements the counter; when it reaches zero the kernel logs an
event. Afterward, the counter gets reinitialized with the start value. The log buffer
is described by a 64-bit data structure that contains a reference to the buffer, the
buffer size (encoded in a mask), and flags that specify the log format. Schedulers
have the following per-log configuration flags:

• Current principal.Logs the current resource principal.

• Event parameter.Events have an associated event parameter that is specific
to the event type. When enabled, the kernel writes the parameter into the
log.

• Time stamp.The kernel supports four alternative time-stamp modes: (i) no
time stamp (i.e., off), (ii ) hardware time stamp counter (rdtsc on IA32),
(iii ) the kernel-internal time (via a periodic interval timer), and (iv) a per-
processor counter, that is incremented on each log event (for a causal order
of events).

• Event counter.The counter contains the delta of entry–exit events or the
number of occurrences of a counted event. A separate flag denotes whether
the new value overwrites the previous entry in the log or gets added. The
special case enables a scheduler to either accumulate events or log the last
event.

• Event type.Each kernel event has a unique event ID. By logging the event
ID, it is possible to merge the events from multiple event sources into one
combined log buffer.

5The system uses kernel-provided memory that is allocated at system start time. Dynamic kernel
memory allocation schemes, as proposed by Haeberlen [52], are a viable alternative to avoid the
limitations of static allocation. However, safe kernel resource management was of less importance
for this work and is not further discussed.
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The kernel provides two configuration interfaces, one for the event control
(event counters and the associated log) and a second for the log itself. The as-
sociation between kernel event sources and logs can be freely configured by the
scheduler. Hence, it is possible to combine multiple events in a single log and
also distribute the events into individual and independent logs. The log memory
itself is a linear unstructured memory buffer and is managed by privileged applica-
tions. The kernel does not apply any consistency checks (besides simple boundary
checks) and incorrect configuration will lead to log corruption, however, without
endangering the kernel’s consistency.

Event Sources

The most important kernel events are those that either cannot be derived without
specific kernel support or require trustworthy applications. The latter isan as-
sumption that does not hold for most scenarios. The kernel exports the following
per-processorevent sources:

1. Change of number of runnable threads.L4’s in-kernel scheduler hides the
number of runnable threads in the system. Previous research [14,96] identi-
fies the run-queue length as an important indicator for load imbalances and
balancing decisions. This event source exposes the run-queue lengthof the
current processor.

Note that the common case of client-server IPC doesnot change the number
of runnable threads in the system. Hence, the event is off of the critical IPC
path.

2. Idle time. When a processor falls idle the kernel enters a low power state
for that processor. The processor gets reactivated by a hardware, timer, or
interprocessor interrupt. The overall per-processor idle time is relevant for
a scheduler in order to re-allocate the load from highly loaded processors
to underutilized processors. Idle-time logging is obviously less performance
critical since the processor is idle anyway.

3. Kernel memory pool.The kernel maintains a per-processor memory pool that
serves the main kernel memory consumers: thread control blocks, address
space objects, page tables, and the mapping database. In order to scale,each
processor has an individual memory pool. In case a pool falls short, memory
has to be reallocated between processors.

In order to keep the kernel policy-free (as stated in the initial design goals),
pool re-balancing is a policy implemented at application level. The ker-
nel mechanism is detailed in Section 5.5.3. The in-kernel memory allocator
keeps track of the available memory in the free pool. Memory allocations
and deallocations create log entries such that the memory manager is aware
of each processor’s current pool status.
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Additionally to the per-processor events, the kernel has a number of perre-
source-principal events. L4’s resource principals are threads andthe most impor-
tant system event is IPC. Previous research identifies communication patterns as
an important indicator for process inter-relations. Scheduling policies consider
those relations for more efficient thread placement. However, logging IPCon a
per-thread basis is unfeasible due to the extremely high frequency of IPCin a
component-based system and the large number of threads. On the other hand, many
communication relations between threads are well-known, static, and irrelevant for
a scheduler.

Based on the fundamental idea of resource containers, I introduce an additional
logical accounting level on top of the kernel’s resource principals:thread domains.
Each thread is associated with exactly one domain and its association is managed
by a privileged user-level server. Only switches betweendifferentthread domains
trigger a kernel event. The domain ID is stored within the kernel’s thread control
block. For threads within the same domain the additional event logging runtime
overhead is reduced to a simple comparison and a conditional, non-taken jump.

Domains have a configuration register that associates a log file to the domain.
The association can be changed from application level and multiple domains may
share a single log buffer. Furthermore, the kernel has one special domain — do-
main zero — that does not lead to event recording. Initially, all threads areallocated
to that domain. By co-locating the domain ID with other frequently read data on
the critical path, the execution overhead is negligible.

5.5.2 Thread Scheduling (Load Balancing)

L4 threads are bound to their specific home processor and the kernel does not ap-
ply a thread migration policy (a design decision detailed in Section 5.2.2). Thread
migration is solely initiated by user-level load balancers. The core migration oper-
ation ismigrate thread T to processor Pdest.

The frequency of thread migrations is bounded by the cost for migrating a
thread’s active cache working set. The primary thread migration scenarios areini-
tial placementand load balancing. The kernel places newly created threads on
the home processor of the creator; thus, thread creation is a processor-local op-
eration that does not require interaction or synchronization with other processors.
Thread creation is a privileged operation and can only be executed by a restricted
set of (privileged) threads [49]. The design scales because the privileged server can
spawn multiple, processor-local worker threads that can operate in parallel.

Thread migration is initiated via a system call that initiates thread relocation
to the new home processor. Migration may be initiated from any of the proces-
sors, independent of the current home location of the to-be-migrated thread. Such
flexibility is required to support a wide variety of load balancing and placement
schemes such as work stealing [21] and push-based policies. There are three po-
tential migration scenarios: (i) from the current to a remote processor, (ii ) from a
remote to the current processor, and (iii ) between two remote processors.
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Figure 5.11: Concurrent migration attempts from CPU 0 and CPU 2. The thread on
CPU 0 successfully completes the migration before the second migration request
is started.

The lock-free per-processor scheduler structures force an in-kernel message-
based scheme for migration requests. Because remote queues must not beaccessed,
a scheduler needs to send a request message to the migrated thread’s homeproces-
sor in order to dequeue it from all scheduling queues, update the home processor,
and potentially update the thread’s processor isolation mask. The migration is fi-
nalized by enqueuing the thread into the new home processor’s requeue list. With
the next scheduling interval the thread gets integrated into the normal scheduling
queue and the migration completes.

Since thread migration can be initiated from all processors, the design may
lead to a race condition. When two processors concurrently try to migrate thesame
thread, then both processors will initiate a migration request to the home proces-
sor. Global ordering of message-based kernel synchronization guarantees that one
of the migration requests completes successfully while the other one fails (seeFig-
ure 5.11). The request that comes second will find that the to-be-migratedthread
is not located on the home processor anymore. However, simplistic forwarding of
the migration request to the thread’s new home processor may result in starvation,
since the thread may be already migrated.

I eliminate the race condition via kernel-user interface design. The solution is
generically applicable to other user–kernel race scenarios and here exemplified for
the thread migration case.

Concurrent migration requests (as described in the scenario above) represent an
unsynchronized resource allocation scheme. Enforcing a strict orderof operations
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in the kernel requires additional synchronization. Such synchronization, however,
moves synchronization from application level to the kernel and contradictsthe ini-
tial design constraint: maximizing performance for the well designed application.
Careful interface design can achieve the same result without the additional over-
head.

Thread scheduling is based on thecurrent system stateand anintended system
state. Thread migration is the operation that initiates the transition between both
states. Two concurrent migration requests express one of the following four cases:
(i) the first migration request did not complete yet and a new migration requestis
already initiated, (ii ) the second migration request started after the first but arrived
earlier due to message processing delays, (iii ) the user-level scheduler did not syn-
chronize migration at all (which effectively is a bug), and (iv) two schedulers run
an attack against the kernel. Only the first and second case require correct han-
dling by the kernel. In both cases the race condition manifests a timing problem of
concurrently issued migration requests on different processors.

I enable applications to detect the race via an additional temporal parameter
and thereby move the request ordering out of the kernel to the application. For
thread migrations, the scheduler has to specify an additional parameter thatidenti-
fies theexpectedsystem state (i.e., the scheduler’s view on the current system state)
expressed by the current home processor of the thread. Hence, a thread migration
operation has three parameters: the threadT, the source processorPsource, and the
destination processorPdest. A race condition occurres ifPsource6= Thomeand the ker-
nel operation fails completely. In that case, the scheduler can recover gracefully
and restart the operation.

The kernel supports migration of groups of threads, which minimizes the per-
thread migration overhead and also preserves scheduling inter-dependencies.6 The
operation is still safe and bounded by requiring that all threads have to reside on the
same source processor and are migrated to the same destination processor. Since
thread migration requires execution on the threads’ home processor (which is iden-
tical for all) the migration is race free once started and guaranteed to either com-
plete successfully or fail.

5.5.3 Kernel Memory Management

The recursive virtual address space model is a flexible mechanism that decouples
memory management and memory allocation policies from the kernel. Yet, the
kernel consumes memory for kernel meta data, such as thread control blocks, page
tables, and the mapping database. In order to scale, each processor has a separate
in-kernel memory pool.

Since control over the physical memory resources is at application level, the
kernel depends on user-level applications to manage the kernel pools.Similar to

6Some synchronization constructs assume, that high priority threads always preempt low priority
threads. When threads are migrated one-by-one, threads that have been mutually exclusive may run
concurrently during the migration phase.
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the solution proposed by Liedtke et al. [74], I use a cooperative memory resource
allocation scheme between the kernel and a user-level memory manager. The ker-
nel has one system thread per processor that handles memory allocation and deal-
locations. The root memory server,σ0, can grant memory to the system threads
which then place the memory into the per-processor pool. The operation is safe,
because the kernel enforces that no user application has access rights to the page.

Per-processor pools incur a balancing and locality problem. The memory pool
for allocation and deallocation depends on the resource principal (i.e., thethread)
that performs the respective operation. Depending on thread locality andsystem
structure, kernel memory may only be allocated on one processor and onlyre-
leased on another. Hence, the memory pool of one processor depletes while the
other processor’s pool is overfull. Furthermore, to preserve memory locality in
NUMA systems, memory has to be local to individual processors. Mixing memory
from different memory pools may result in poor performance when using remote
memory for critical kernel meta data (such as thread control blocks).

I address both problems via strictly preserving pool locality for memory. Ker-
nel memory is allocated at page granularity and free pages are maintained in a
linked list. In addition to the primary free list, the kernel maintains two further
memory lists, aremote standby listand arequeue list. When a page is granted
to the kernel, the kernel records ahomeprocessor for the page in the mapping
database. On page deallocation the kernel validates whether or not the page is
freed on the home processor and either enqueues the page back into the normal
memory pool or in the remote standby list. When the RCU token arrives at the pro-
cessor, the kernel walks the standby list and relocates the pages from the standby
list into the requeue lists of the pages’ home processors. Furthermore, theproces-
sor places all pages from its own requeue list back into the free pool. Figure 5.12
illustrates the scheme for a configuration with three processors.

On processors that share one memory bus I enable an allocation optimization.
Instead of assigning memory pages to one individual home processor, pages are
assigned to a home processor cluster. The kernel directly places a pageinto the
free list if it is released byany processor specified in the processor cluster. That
optimization still preserves NUMA locality but reduces some overhead for requeu-
ing.

Each processor logs the free pages in the kernel-provided event log.The user-
level memory managers monitor the event log and rebalance memory between the
memory pools. Rebalancing is realized by first revoking memory from the kernel
and granting it back to the kernel on another processor (as shown in Figure 5.13).

5.6 Summary

In this section I described the application of dynamic locks, TLB coherencytrack-
ing, and event logging to L4Ka::Pistachio, an L4 microkernel. The fundamental
design paradigms of L4 are minimalism, strict orthogonality of abstractions, and
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Figure 5.12: Per-processor kernel memory pools with processor localmemory.
CPU 2 holds the RCU token and moves the pages from the requeue list into the
free list. Furthermore, CPU 2 empties its standby list and places the pages into the
page owner’s requeue list. Requeue operations require the possession of the RCU
token. Since there is a single token in the system, no concurrent requeue operations
can take place and list synchronization is not required.

user-level policies.

In microkernel-based systems, operating system invocations are replaced by
inter-process communications. Hence, the performance of the IPC primitiveis of
paramount importance for the overall system performance. The additional over-
head of multiprocessor synchronization primitives induces unnecessaryoverhead
on the IPC mechanism. A second communication primitive that is specifically tai-
lored for cross-processor communication would increase the kernel’s cache foot-
print and also lead to higher application complexity. The cluster mask combined
with dynamic locks provide a flexible and efficient solution to accommodate both
communication scenarios with a single kernel IPC primitive (Section 5.3).

Section 5.4 described the multiprocessor extensions to L4’s virtual address
space model. L4 maintains a kernel data structure that tracks memory permissions
of the address spaces on a per-page basis. I extended the kernel data structures
in a way that applications can adapt data structures for coarse-grain orfine-grain
locking. Furthermore, the developed tracking scheme for TLB coherency updates
decouples parallel page permission updates.

Finally, in Section 5.5 I presented the application of the event logging scheme
for user-level resource scheduling. In monolithic kernels, resourcebalancing poli-
cies are implemented as a kernel policy. A kernel policy contradicts L4’s design
principles. The presented event-logging mechanism provides runtime feedback
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Figure 5.13: Memory balancing between kernel memory pools. In (1) the page is
reclaimed on CPU 1, in (2) the managing thread on CPU 3 is notified, which then
(3) places it into the local memory pool on CPU 3.

to a user-level load balancer which then can reallocate resources as needed. The
scheme was used for two important kernel resources: threads and kernel memory.

The following chapter evaluates performance and scalability of the described
design for the L4Ka::Pistachio kernel.



Chapter 6

Experimental Verification and
Evaluation

In this chapter, I evaluate the performance of my kernel design implemented in
L4Ka::Pistachio. I then evaluate the overhead and scalability of all individual ker-
nel operations in a set of microbenchmarks. I compare the costs of individual
kernel operations for different multiprocessor workload configurations, intra- vs.
inter-processor operations and low vs. high concurrency. The scalability is evalu-
ated according to Unrau’s design requirements for scalable operating systems (pre-
served parallelism of operations, bounded operations independent ofthe number
of processors, and memory locality). Furthermore, the benchmarks evaluate the
overheadof multiprocessor primitives to the baseline performance given by the
uniprocessor kernel.

Section 6.1 describes the hardware details of the evaluation platform that were
used for the different benchmarks. Section 6.2 discusses the performance and scal-
ability of the IPC primitive. Section 6.3 then evaluates the performance and scala-
bility of the event-logging facility, followed by an evaluation of the kernel memory
management subsystem in Section 6.4. Finally, I summarize the evaluation in Sec-
tion 6.5.

6.1 Evaluation Platform

All performance evaluations were performed on IA-32 systems. The main test
system was an IBM xSeries 445 server with eight 2.2 GHz Intel Xeon processors
based on the Pentium 4 (P4) micro-architecture. Each physical processor had an
8KB L1 data cache, a 12KBµop trace cache, a shared 512 KB L2 cache, and
a shared 2 MB L3 cache. It further featured a 64 entry data TLB and a 64 entry
instruction TLB.1 Each processor had two logical threads (HyperThreads) enabled.
The system consisted of two processor boards with four processors each. Each

1Intel family 15, model 2, stepping 6
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Operation Overhead (cycles)
atomic exchange (xchg) 125
atomic compare-exchange 136
(lock cmpxchg)
atomic decrement (lock dec) 123
address space switch (mov %r, CR3) 827
entering and exiting kernel 135
(sysenter, sysexit)
entering and exiting kernel 839
(int, iret)
L1 hit 2
L1 cache miss, L2 hit 19
L2 cache miss, L3 hit 43
memory access latency 206

Table 6.1: Individual overhead for operations for the test system.

board had separate memory (2 GB each) and both boards were interconnected via
a proprietary NUMA memory interconnect developed by IBM.

The Pentium 4’s micro-architecture has some specifics that I want to highlight.
The P4 features atrace cachethat caches instruction as translatedµops instead
of the normal instructions as read from memory. The cache is virtually tagged
and the P4 does not support address space identifiers. On an address space switch
the processor not only invalidates its 64 I-TLB and 64 D-TLB entries, butalso
flushes the trace cache and L1 D-cache. Hence, on every address space switch
the processor invalidates a significant amount of its active working set resulting
in a higher context switch overhead than other IA-32 micro-architectures, such as
Intel’s Pentium III and AMD’s Opteron.

IA-32 has a relatively strong memory ordering model, defined aswrite ordered
with store-buffer forwarding[29]. The highlights include: (1) reads can be car-
ried out speculatively and in any order, (2) reads can pass buffered writes, but the
processor is self-consistent, and (3) writes to memory are always carried out in pro-
gram order (with some exceptions). Such a strong ordering model has implications
on speculative execution and creates a high overhead on atomic instructions be-
cause the processor has to honor the ordering model and looses some optimization
potential via speculative execution.

Table 6.1 lists the measured costs for a set of important operations of the test
system including the costs for atomic memory operations, the costs for entering
and exiting the kernel, and the costs for switching address spaces.

The test system had eight processors with a total of sixteen processor contexts.
Literature suggests that scalability problems in many cases only become visible
for systems of more than 32 processors. I was limited by the hardware constraints,
however, I argue that the results are still relevant and expressive. As argued in 3.1.1,
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scalability of operating systems isnotevaluated by the speedup of an operation but
by its response time. An operating system is considered scalable if the response
time is independent of the number of processors in the system. In the following, I
evaluate the overhead for individual kernel operations and their response time with
increasing parallelism. I assumed that the hardware architecture of the testsystem
sufficiently scaled.

The number of processors also limited the evaluation of the effectiveness of
the cluster mask. While the reference implementation was able to handle the full
cluster mask, the processors of the test system always fitted into the provided 16
bits of the bitmap.

6.2 Inter-process Communication

I evaluated the overhead of the IPC primitive for the most important communi-
cation scenarios: client-server communication and cross-processor communica-
tion. In the client-server scenario, I further differentiated between two cases: (1)
inter-address space where both communicating partners resided in different address
spaces and (2) intra-address space where both communicating threads resided in
the same address space. The intra-address space IPC is relevant forworker-thread
scenarios where a central distributor hands off requests to the workerbut also for
in-address space synchronization threads or memory pagers [12]. Allmicrobench-
marks measured the overhead of the kernel operation by sending messages in a
tight loop that was executed one thousand times. Afterward, I calculated theaver-
age cost for one IPC operation.

6.2.1 Processor-local IPC

Inter-address-space IPC is the common case for client-server interaction and is
used to transfer request and response payloads for user-level IPC protocols; the
operation is completely executed on one processor. The cost is dominated by the
previously mentioned overhead due to TLB and cache invalidations.

I used the uniprocessor IPC primitive as the base-line performance and com-
pared it against the multiprocessor IPC with disabled and enabled locks. The re-
sults showed that the performance for the lock-free version on multiprocessor sys-
tems was almost identical to the uniprocessor variant. The overhead accounted
for a few additional checks that were required to differentiate between local and
remote threads. These extra instructions increased the overhead by 30 additional
cycles (or about 3 percent).

The overhead for IPC on the P4 microarchitecture was dominated by the cost of
kernel entry and exit and the overhead due to cache and TLB invalidations on each
context switch. The primary costs were due to entering and exiting the kernel (135
cycles) and the overhead for switching address spaces by reloadingCR3. The cost
of an address space switch including its follow-on cost accounted for 629 cycles.
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Figure 6.1: Inter-address-space IPC performance on the same processor for unipro-
cessor and multiprocessor with enabled and disabled lock primitives. The overhead
is dominated by TLB and L1 cache flushes on the Pentium 4 architecture. Theini-
tial jump in the curve reflects startup costs for the message copy loop.

The remaining costs for the IPC and the benchmark code is 226 cycles. A more
detailed break-down was not possible because of secondary effectsin the microar-
chitecture. In some cases, the insertion of additional no-ops lead to performance
improvements.

The IPC variant that had spin locks enabled showed an overhead between 16
to 20 percent, depending on the message size. The two required locks induced an
overhead of 190 cycles, which was below the predicted 250 cycles. I partially at-
tributed the difference to additional wrapper code and partially to secondary effects
such as pipeline stalls and serialization (more details follow).

Figure 6.1 shows a detailed graph that compares IPC on a uniprocessor kernel
against IPC on a multiprocessor kernel. The graph shows the performance of both
multiprocessor IPC variants with enabled locks and disabled locks.

Figure 6.2 shows the same microbenchmark as before, except for intra-address-
space IPC. The overhead between the uniprocessor and the multiprocessor variant
with disabled locks was between 30 to 80 cycles depending on the message length.
However, the cost for uniprocessor IPC did not show the linear increase of runtime
relative to message length and even dropped significantly for longer messages. I
was able to confirm the effect in multiple experiments and I attributed it to specifics
of the P4 microarchitecture. The copy loop used an optimized copy mechanism
that favors complete cache line transfers. There were no serializing instructions on
the critical path allowing the processor to perform heavy speculation. Thecurve
showed the expected constant increase with introduction of the additional multi-
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Figure 6.2: Intra-address-space IPC performance on same processor with enabled
and disabled lock primitives. The cost of the lock primitive is dominant when
compared to inter-address-space IPC where the highest overhead is due to TLB
and cache flush.

processor support code. The lower overall cost of intra-address-space IPC resulted
in a higher relative increase due to spin locks. The two additional locks added
between 35 to 64 percent overhead to each IPC.

6.2.2 Cross-processor IPC

In the next experiment, I evaluated the performance of cross-processor IPC. The
experiment used the same microbenchmark with two threads that repeatedly sent a
message to each other. However, this time both threads were located on different
physical processors, however on the same NUMA node. Neither processors ran
any other workload aside and therefore did not have to preempt other threads or
switch between address spaces.

The microbenchmark evaluated the round-trip latency of cross-processor IPC
of lock-based versus message-based synchronization. The lock-based synchro-
nization acquired a spin lock on the remote processor, transfered the message, and
released the lock. Then, the receiver thread was enqueued into the remote requeue
list and an IPI was sent in order to trigger a rescheduling cycle on the remote pro-
cessor. The message-based synchronization required two in-kernelmessages: one
for initiating the IPC, and a second that the message-delivery could be started. An
additional IPI may have been required to trigger the remote rescheduling cycle (see
also Figure 5.3).

As expected, the latency for a message-based scheme was significantly higher
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Figure 6.3: Cross-processor IPC performance between two independent processors
on the same memory bus. The lock-based version used a spin-lock on the remote
thread and signaled a rescheduling cycle. The lock-free version required two in-
kernel RPCs per message.

than for a lock-based scheme. The latency increased between 153 to 170percent
depending on the message length. Figure 6.3 shows a detailed graph comparing
the latency for both primitives.

6.2.3 Parallel Programming

An important workload for large multiprocessor systems is parallel programs. A
parallel program splits one task into a set of subtasks. The subtasks canbe solved
on different processors in parallel and a finalization step combines the partial re-
sults. Common parallel programming environments are MPI [39] and OpenMP
[10]. MPI distributes the workload via messages to workers which then compute
autonomously and do not require shared memory. In contrast OpenMP fundamen-
tally depends on shared memory between workers and uses compiler support for
automated parallelizations (e.g., for loops).

A performance requirement for all parallel programming models is a low-
latency and low-overhead communication mechanism across processor boundaries.
I put the primary focus on the OpenMP fork-join programming model, since MPI
is unlikely to base message passing on the microkernel’s IPC primitive.2 OpenMP

2MPI is commonly used for large scientific computations that are long running and often dis-
tributed over multiple physical machines. The workloads are explicitly parallelized and hand-
optimized with the goal to maximize parallelism and minimize overall computation time. Therefore,
MPI applications are unlikely to run in shared-workload environments buthave complete control
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Figure 6.4: OpenMP fork-join programming model for parallel programs. CPU C
executes the master thread that distributes the load and waits for completion at join
points.

uses one master thread that controls the general flow of the program anda set of
worker threads that execute the parallelizable subtasks. The execution model can
be summarized as frequent fork–join sequences initiated by the master thread (as
illustrated in Figure 6.4).

Literature suggest a variety of schemes for synchronization and workload dis-
tribution for the fork-join model. In time-sharing environments, it is generally
unfeasible to have idle threads spin until new work is available, since doing somay
significantly degrade the overall system performance. The significant overhead for
on-demand creation of worker threads favors a model with a pool of pre-allocated
worker threads. The threads are started but block if there are no outstanding re-
quests. When new requests become available, the master unblocks the workers.
Obviously, the latency of the wakeup operation is extremely performance critical.

I evaluated the latency of the IPC in the context of an OpenMP microbench-
mark as proposed by Bull [23]: thePARALLEL directive. This particular bench-
mark evaluates the overhead of the synchronization primitives of the underlying
OpenMP framework including the operating system’s scheduling and signaling
mechanisms. The actual executed operation is a simple mathematical computation
which is irrelevant for the benchmark (but is there to avoid dead-code elimination
by the compiler).

Support of a fully-fledged OpenMP suite was beyond the scope of this work.
Therefore, I evaluated the performance-critical operations by a manual implemen-
tation of the test cases. The benchmark created one worker thread per processor.
The worker threads entered a blocked state and waited for IPC deliveryfrom the
master thread. In order to distribute workload among the workers, the masterthread
sent an IPC to each of the worker threads. Afterward, the master threadwaited for
a notification message. The last completing thread sent a notification back to the

over the system and the scheduling regime. Simple spin-wait on a shared memory location at user
level has a lower latency and is significantly more efficient than using a blocking IPC primitive. The
compute time wasted for spinning is irrelevant since there are no other runnable jobs in the system.
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master. The thread was determined via a shared memory variable that is decre-
mented atomically. The following is a code sketch of the benchmark in C:

1 int CompletionCount;
2

3 void MasterThread()
4 {
5 CompletionCount = NumWorkers + 1;
6 for (idx=1; idx<NumWorkers; idx++) {
7 SendMessage (WorkerThreadIdOfCPU(idx));
8 }
9 DoWork();

10 if (AtomicDecrement (CompletionCount) > 0) {
11 WaitForMessage (AnyThread);
12 }
13 }
14

15 void WorkerThread()
16 {
17 while(true) {
18 WaitForMessage (MasterThreadId);
19 DoWork();
20 if (AtomicDecrement (CompletionCount) == 0) {
21 SendMessage (MasterThreadId);
22 }
23 }

I measured the performance of the lock-based and message-based IPCprimi-
tive for an increasing number of processors. Figure 6.5 compares the latency for
both IPC types. As expected, the lock-based IPC primitive had a significant per-
formance advantage over the message-based model. The latency increased by a
factor of 2.5 for two processors up to 3.6 for sixteen processors. Notethat the
knee in the curve was induced by the higher memory and signaling latency when
communicating over NUMA node boundaries.

The high overhead for message-based IPC can be explained by two factors.
First, message-based IPC required multiple in-kernel messages and thus had a
longer overall latency. Second, the lock-based IPC scheme was able to operate
in parallel to the re-scheduling IPI. The master thread enqueued the worker into
the requeue list and signaled the IPI. During the IPI delivery it could already start
sending a message to the next worker. In the message-based IPC, the master thread
was blocked for the duration of two in-kernel message deliveries (fromthe master’s
to the worker’s CPU and back).

The benchmark showed the significant benefit of a lock-based IPC forlatency-
sensitive cross-processor signaling.
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Figure 6.5: Signaling latency for fork-join programming model as used in
OpenMP. The signaling latency is directly related to the overall execution time
and therefore limits the speedup that can be achieved via a parallelized workload.

6.2.4 Scalability and Independence

In this benchmark, I evaluated the scalability of the IPC primitive following Un-
rau’s design principles: (1)preserving parallelismin the kernel and (2)bounded
overheadof operations independent of the number of processors. The qualitative
analysis follows my extended construction principle:preserving isolation.

The benchmark was identical to the previously described IPC benchmark:two
threads on the same processor that repeatedly sent a message to each other. This
time I ran the benchmark onmultiple processorsin parallel in order to evaluate
potential interference, serialization, and thus limits of scalability. The benchmark
created a pair of two threads on each processor. The processors allstarted the
benchmark synchronized. After completion of the benchmark, each thread pair
reported the execution time into a processor-local log. The benchmark code was
located in CPU-local memory and thus avoided interference at application level.

Figure 6.6 shows the IPC overhead for different message sizes. In addition,
I varied the number of processors that run the benchmark in parallel. I started
with one processor and increased up to eight. The reported execution time isthe
average execution time forall active processors. There wasno interferenceand
the operation scaled optimally according to Unrau’s scalability requirements. The
benchmark was limited to one processor context (hyperthread) per physical pro-
cessor in order to avoid interference in the instruction units in SMT processors.
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Figure 6.6: Parallel inter-address space IPC with increasing number of processors.
The overhead per IPC was averaged over all processors. The curve shows no inter-
ference between the processors.

6.3 Event Logging

I evaluated the overhead and scalability of the event logging facility as described
in Section 5.5.1. The benchmark addressed two aspects, the overhead ofthe event
logging instrumentation on the kernel performance and the scalability of the oper-
ation (following Unrau’s scalability requirements).

I measured the overhead of event logging on the critical IPC path. The bench-
mark is similar to the previous with two threads that sent a message to each other.
Each thread in the system was associated with alog domain. The domain ID was
stored in the thread control block. IPC events were only logged for communicating
threads of different domains. The baseline performance was a kernelwith the event
logging instrumentation disabled (i.e., no logging code in the kernel).

The test for equal domains requires three additional assembler instructions on
the critical code path. The actual logging code is moved off of the critical code path
under the assumption that in the common case IPC will take place between threads
within the same domain. Each domain has an associated counter and a reference
to a log control field. The log control field specifies which values are logged and
contains a reference to the log buffer. The log buffer size was 128 Bytes.

Figure 6.7 and Figure 6.8 show the overhead for different logging configura-
tions on the 8way Xeon 2.2 GHz. The additional domain test for the common case
incurred a negligible overhead and for the inter-address space even outperformed
the non-instrumented code path. In order to achieve comparable results I replaced
the logging test with two 6-byte no-op instruction; otherwise, the kernel binaries
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Figure 6.7: Logging overhead for Intel Xeon 2.2GHz for inter-address space IPC.
(a) base-line performance, kernel contains no logging code, (b) common case, ker-
nel contains logging code, but threads belong to the same domain and no log is
recorded, (c) execute accounting code but without writing data into the logfile,
(d) log of the one entry (4 bytes), (e) log of four entries (16 bytes), (f) log of five
entries (20 bytes) including the processor’s time-stamp counter usingrdtsc.

were identical.
I further evaluated the scalability of the logging facility. Similar to the IPC

scalability benchmark in Section 6.2.4, I ran multiple parallel threads to evaluate
the independence and potential interference. The reported values arethe average
cost per IPC for messages with increasing size starting at 0 bytes to 252 bytes. As
expected, the logging code did not influence scalability and the overhead remained
constant for all processors and was identical to the overhead for a single processor
(see Figure 6.9).

6.4 Memory Management

I evaluated the overhead of the unmap primitive using coarse-grain vs. fine-grain
locks as described in Section 5.4. I created a test task with one thread in an address
space that mapped 1024 4KByte pages out of one 4MByte page. In the first case,
each mapping was protected by an individual lock while in the second case all
mappings were protected by one coarse lock. In the benchmark I evaluated the
latency for repeatedly removing the write permissions from the page usingunmap.
The unmap operation walks the page table and performs a lookup of the associated
map node, acquires the lock and then clears the permissions.
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Figure 6.8: Logging overhead for Intel Xeon 2.2GHz for intra-address space IPC.
(legend see Figure 6.7.) The benchmarks for (a) native and (b) disabled logs show
an anomaly for the zero-byte message that I attributed to trace-cache rebuilding on
the Pentium 4 [29].

I choose this operation as a general representative for unmap because it allowed
the benchmark to repeatedly perform the same operation on the mapping database
thereby avoided side effects such as cache effects or different map node allocations.
When revoking write permissions, the kernel performs exactly the same operations
as a normal unmap except for finally freeing the map node. Freeing the map node
only adds a static runtime overhead; using local memory pools makes the operation
independent of other processors.

6.4.1 Locking Overhead

The benchmark repeatedly revoked write permissions via the unmap operation with
a varying number of pages (power of two). The benchmark repeated theoperation
200 times and calculated the average cycles per mapping and the 95% confidence
interval. The overhead for entering and exiting was the dominating cost of the
operation when modifying only a few pages.3 When the benchmark unmapped
a larger number of pages (e.g., required for implementing copy-on-write for fork

3IA-32 supports two different methods for entering and exiting the kernel: sysenter andint. The
sysenter operation is highly optimized and almost an order of magnitude faster thanint. In the
current implementation of L4Ka::Pistachiosysenter is only used for the IPC primitive. All other
system calls — including unmap — use the slowerint operation. The main reason for this design
decision was to maximize the available registers for the IPC operation. An alternative and already
considered system-call encoding would drastically reduce the base overhead for unmap.
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Figure 6.9: Average execution time of parallel inter-address-space IPCwith event
logging for increased number of processors. The reported values are the average
costs for messages of 0 bytes to 252 bytes.

Application Apache 2 MySQL sshd Emacs bash
Pages 2661 4453 1043 1513 185

Table 6.2: Page working sets for a set of common Linux applications. The values
are derived from a standard Suse 9.1 Linux system.

or deletion of an address space) the lock overhead accounted for 185cycles per
mapping, which is a 41% runtime overhead. Figure 6.10 depicts the measured
overhead for coarse-grain and fine-grain locking for the differentnumber of pages.

The benchmark showed, that for moderately populated address spaceswith
only 64 pages (identical to 256KByte memory), the runtime overhead was 15 per-
cent, 24 percent for 128 pages and 32 percent for 256 pages. Forcomparison, Ta-
ble 6.2 lists the number of mappings for some common Linux applications. Even
the smallest application — the shell — has a memory working set of 185 pages.

Additionally, the individual locks incur a higher cache footprint with one cache
line per lock (in order to avoid false sharing) increasing the cache footprint of the
data cache.

6.4.2 Scalability

In another benchmark, I evaluated the scalability of the two locking schemes.Par-
allel to the previously described task, I created additional tasks on each processor
that maps one of the memory pages into its address space. In the first case,the
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Figure 6.10: Runtime overhead for unmap per page for varying number ofpages
using coarse-grain and fine-grain locks.

memory was mapped with an individual lock per mapping. In the second case,all
page mappings were protected by one coarse lock. I evaluated the scalability of the
mechanism when manipulating permissions to the same memory page in parallel
on multiple processors.

In the benchmark I derived two sets of performance results. First, I evaluated
the runtime overhead per mapping for multiple mappings. Different to the previous
benchmark, I batched 32 unmaps in a single system call reducing the runtime over-
head for entering and exiting the kernel and also the runtime deviation. I compared
the costs per mapping for an increasing number of parallel operating unmaps with
coarse-grain and fine-grain locks, shown in Figure 6.11.

With fine-grain locks, the cost per mapping remained almost constant, inde-
pendent of the number of processors (see Figure 6.11a). The graphshows two
anomalies, one between 4 and 5 processors and a second between 8 and9 pro-
cessors. In the benchmark I placed the parallel unmap operations first on physical
processors (1 to 8) followed by logical processors (9 to 16). The first knee at 5 pro-
cessors is when the unmap operation hit the first NUMA processor (5 to 8). The
overhead reduced with an increased number of unmapped pages, sincethe cache-
line transfer was only necessary for one page out of the overall set of pages. The
second, more drastic overhead increase was incurred by parallel execution of mul-
tiple processor threads of the same physical processor (SMT). The twoprocessor
threads competed for execution resources and interfered with each other. While the
overhead per mapping increased by a factor of two, the cost per mappingremained
constant for 9 to 16 parallel operating unmaps. Figure 6.11(c) shows anenlarged
graph for the first 8 (physical) processors.
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Figure 6.11: Unmap performance for one processor repeatedly unmapping a set of
pages. (a) and (c) show the overhead with fine granular mapping while (b) and (d)
show the same benchmark with coarse granular locking.

The same benchmark with coarse-grain locking showed very different results.
The per-mapping overhead increased steeply with the number of parallel operating
processors. As described, the microkernel’s unmap algorithm performscritical
section fusing if two consecutive mappings are protected by the same lock. Thus,
with an increasing number of pages, the overall number of acquired locksdecreases
and thus thewaiting timefor the lock. Figure 6.11(b) depicts the cost per mapping
for an increasing number of processors. Compared to the single processor case, the
overhead for a single page unmap increased by a factor of 3.8 for two processors,
13.2 for three processors, and up to a factor of 537.3 for sixteen parallel processors.
For 64 pages, the overhead increased by a factor of 1.93 for two processors, 1.96
for three processors, up to a factor of 20.4 for sixteen processors.

In the same benchmark, I also measured the overhead for each individual pro-
cessor unmapping a page. Each processor ran a task that repeatedly tried to unmap
one page from its address space that is shared with the primary task. In thefirst
case, the page mapping was protected by a separate lock and in the secondcase all
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page mappings were protected by the same lock.
Figure 6.12 compares the overheads for the single-page unmap for an increas-

ing number of parallel operations with coarse-grain and fine-grain locking. The
x axes denote the number of processors. The figures show individual graphs for
different number of unmapped pagesof the primary task. Since the primary task
performed critical section fusing, the average lock holding time increased.For
coarse locking, the longer lock holding time reflected in a longer lock waiting time
for the parallely operating single page unmaps. The overall cost for the operation
was determined by having all processors time the latency of 200 unmap operations.
Afterward, the total execution time for all processors was summed up and divided
by the total number of unmap invocations.

Figure 6.12(a) shows that the cost for unmaps remained almost constant for up
to eight processors. With nine processors, the cost per mapping increased which
has to be attributed to interference of processor threads in the same processor. Fig-
ure 6.12(c) shows the enlarged version of the graph for the first eightprocessors.

In the case of coarse locking, the overhead for unmapping increased signifi-
cantly for five processors. A more detailed analysis of the overhead forindividual
processors revealed that the reason for the drastic increase was unfairness in the
memory subsystem of the NUMA configuration. At first, it appeared that thefifth
processor starved on the lock and the other four processors (that were located on
the same NUMA node) had a higher probability to acquire the lock. However,this
would not explain the significant decrease of the six processor configuration. Actu-
ally, in the configuration with five processors, the average lock acquisitionlatency
was almost identical for all processors but twice as high as in the configuration
with four processors (40K cycles vs. 78K cycles).

With six processors the situation changed; the configuration had four active
processors on one NUMA node and two on the second node. The two processors on
the second NUMA node had a significantly higher probability for lock acquisitions
due to the lower lock competition. After the lock was released by CPU 5 there
was a high chance CPU 6 would immediately acquire it. While the average unmap
time per mapping increased to 123K cycles for CPU 2 to 4, it decreased to 52Kfor
CPU 5 and 6. The lock effectively ping-ponged between processor 5 and 6. With
the significantly lower cost for those two processors, the overall cost per mapping
decreased compared to the five CPU configuration.

6.5 Summary

In this section, I evaluated the performance of dynamic lock adaptation and track-
ing of parallelism applied to the L4Ka::Pistachio microkernel. Dynamic locks are
used on the critical IPC path and for the virtual memory subsystem. The bench-
marks confirmed the initial hypothesis that a single synchronization mechanismis
insufficient for the microkernel and an adaptive scheme is required instead.

Summarizing, the following performance has been observed:
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Figure 6.12: Average unmap cost for parallel unmaps of independent pages on
different processors. Fine granular locks [(a) and (c)] show linear speedup, while
for coarse locking the overhead increases drastically [(b) and (d)].

• The runtime overhead of locks for inter-address space IPC accountedfor
16 to 20 percent compared to a lock-free variant. For intra-address space
IPC the lock overhead was between 35 to 64 percent. The overhead was
eliminated by dynamic lock elimination.

• The overhead of message-based synchronization for cross-processor IPC
compared to the lock-based solution was 153 to 170 percent depending on
the message length.

• The cost of IPC on the same processor remained constant with an increasing
number of processors in the system and thus scales. All accessed kernel data
structures are local to the processor.

• The event logging scheme provided kernel resource information to applica-
tions. The additional runtime overhead when logging was disabled (i.e., a
test for a configuration register) induced negligible overhead. In some cases,
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the Pentium 4 microarchitecture even provided better performance than with-
out the additional logging instrumentation. The overhead for the operation
was constant and independent of other processors and thus scales.

• Benchmarks of the virtual memory subsystem showed a runtime overhead
for fine-grain locks between 15 and 37 percent as compared to coarse-
grained locks (not accounting the higher cache footprint for locks). Dynamic
adaptation of the lock granularity was able to eliminate that overhead.

• When multiple threads concurrently revoked page permissions, fine granular
locks combined with the TLB invalidation mechanism scaled linearly up to
the number of availablephysicalprocessors. For SMT threads the overhead
increased due to instruction interference but with a constant overhead.With
coarse locks, the average costs per page mapping increased between afactor
of two up to three orders of magnitude.

In the following chapter, I summarize my work and address future work.



Chapter 7

Conclusion

This chapter concludes the dissertation with a summary of its contributions fol-
lowed by suggestions for future work. Finally, I give some concluding remarks.

7.1 Contributions of This Work

In this dissertation, I addressed multiprocessor scalability of microkernel-based
systems. I developed methodologies to strictly separate scalability and perfor-
mance-relevant synchronization and coherency schemes from the resource man-
agement policies. Such strict separation is a novel approach and has not been
considered in previous work.

My solutions comprise four main contributions:

Tracking of parallelism. (Section 4.2)

I developed a tracking scheme for resource usage: theprocessor cluster
mask. The cluster mask uses a space-efficient encoding that is independent
of the number of processors in the system. It is used for permission and
TLB dirty tracking and is the fundamental building block for the remaining
contributions.

Adaptive lock primitive. (Section 4.3)

I developed adynamic lockprimitive that—depending on the degree of pa-
rallelism—can be dynamically and safely enabled and disabled at runtime.
I apply the fundamental principle of read-copy update epochs to a new do-
main: dynamic instruction adaptation.

By cascading multiple dynamic locks, applications can safely adjust thelock
granularity of kernel objects. Hereby, dynamic locks enablecritical section
fusingandcritical section splittingat runtime.
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TLB Coherency Epoch. (Section 4.4)

I developed a TLB coherency tracking scheme that decouples page permis-
sion updates from the outstanding TLB shoot-downs of remote processors.
Parallel page-permission updates can be completed by initiating the TLB up-
date from remote. My approach allows the combination of expensive TLB
coherency updates in a single remote shoot-down while still providing fine
granular synchronization on memory objects. In Section 4.4.2, I propose a
specific variant for IA-32, theTLB version vector.

Event Logging. (Section 4.5)

In order to efficiently transport resource-usage information between the ker-
nel and a user-level scheduler and also between isolated operating system
components, I developed a configurable event logging scheme. By using
per-processor logs and providing fine-granular control over the logged data,
it is possible to provide detailed resoure usage information to schedulers in
an efficient and scalable manner.

I validated my proposed design with the L4Ka::Pistachio microkernel. The
primary directions and results of this work have been influenced by research I un-
dertook, that has not been specifically addressed in this dissertation. Because of
this, I want to briefly mention it here.

In order to validate the general design of a multiprocessor microkernel, I devel-
oped a multiprocessor para-virtualization environment based on the Linux kernel.
Multiple Linux instances serve as a complex application workload on L4Ka::Pista-
chio that stresses the kernel’s primitives and is extremely performance sensitive. In
the context of VMs, I developed an efficient method to avoid excessive lock spin-
ning times due to preemption of virtual processors of a multiprocessor environ-
ment. Furthermore, I developed a scheme to load-balance the per-VM workload
considering the overall load situation. The load-balancing scheme compensates
for differing processor allocations for one VM and is an important application of
the event-logging scheme described in Section 4.5. The results of this work are
detailed in [111].

7.2 Suggestions for Future Work

I see four major areas for future work:
First, I primarily focused on one architecture with specific performance prop-

erties: IA-32. The trade-offs for other hardware architectures aresubstantially
different and need a further investigation. In particular, IA-32’s strong memory
ordering model results in a very high synchronization penalty which may be less
substantial on other processor architectures.

Second, current developments in the area of SMT and multicore systems are
changing the hardware properties. In particular tight integration of caches and im-
proved IPI delivery latency reduce overheads for inter-processor interaction. These
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new architectural properties also need to be reflected in the microkernel interface.
For example, the strict separation of processor threads in SMT systems could turn
out to be overly restrictive and a granularity that addresses processor cores may be
more appropriate.

Third, the fundamental idea of alternative lock primitives that depends on
the degree of parallelism is currently implemented as a software solution. The
software-based approach requires additional code and thus incurs runtime over-
head. The overhead could be eliminated by having explicit architectural support
by processors. The architectural support could include optimized operations on the
cluster mask (such as simple tests and merge) and support for dynamic locks. For
example, a lock primitive or memory operation could carry a coherency identifier
that, depending on the processor isolation mask, serves as a filter for coherency
traffic in the memory (or cache) subsystem.

Fourth, the new microkernel primitives require extensive testing and evalua-
tion in a variety of real-world scenarios including large-scale databases.While I
showed low overhead and independence for individual kernel primitive it remains
open how the kernel behaves in more complex environments. The camouflage of
microkernels asvirtual machine monitorsor hypervisorsbring many prevalent mi-
crokernel issues to industry today. The construction methodologies differ insofar,
that fine-granular decomposition of a monolithic system is of less importance. Nev-
ertheless, the general mechanisms for controlling scalability from applicationlevel
is as relevant and applicable to a wide range of resource management problems.

7.3 Concluding Remarks

In this thesis I have described a methodology for adjusting scalability-relevant pa-
rameters of multiprocessor microkernels. The shift towards highly parallelproces-
sor architectures is at its beginning and one can expect more drastic increases of
processor contexts. This change includes all areas of computing startingfrom em-
bedded devices to large-scale servers. Furthermore, the increasing complexity of
operating systems and different business demands requires for radically differing
OS structures. Virtual machines and highly customized appliance-like systemswill
be common place.

Such systems require a flexible and efficient microkernel that shows excellent
performance and scalability. I developed a set of mechanisms that lay the ground
for construction of scalable systems on top of a microkernel. I validated andeval-
uated it with L4Ka::Pistachio, a widely used and versatile microkernel developed
at the University of Karlsruhe.
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[54] Hermann Ḧartig, Michael Hohmuth, Jochen Liedtke, Sebastian Schönberg,
and Jean Wolter. The performance of microkernel-based systems. In
16th ACM Symposium on Operating System Principles (SOSP), SaintMalo,
France, October 1997.

[55] C.-T. Ho. Optimal communication primitive and graph embeddings on hy-
percubes. PhD thesis, Yale University, 1990.



124 BIBLIOGRAPHY

[56] C.-T. Ho and L. Johnsson. Distributed routing algorithm for broadcasting
and personalized communication in hypercubes. InProc. 1986 Int. Conf.
Par. Proc., pages 640–648, 1986.

[57] Michael Hohmuth. The Fiasco kernel: System architecture. Technical Re-
port TUD-FI02-06-Juli-2002, TU Dresden, 2002.

[58] Michael Hohmuth.Pragmatic Nonblocking Synchronization for Real-Time
Systems. PhD thesis, Technische Universität Dresden, October 2002.

[59] IEEE. IEEE Std 1596–1992: IEEE Standard for Scalable Coherent Inter-
face. IEEE, Inc., August 1993.

[60] Trent Jaeger, Kevin Elphinstone, Jochen Liedtke, Vsevolod Panteleenko,
and Yoonho Park. Flexible access control using IPC redirection. InPro-
ceedings of the Seventh Workshop on Hot Topics in Operating Systems, Rio
Rico, AZ, March 29–30 1999.

[61] E. H. Jensen, G. W Hagensen, and J. M. Broughton. A new approach to
exclusive data access in shared memory multiprocessors. Technical Report
212–157, Lawrence Livermore Laboratory, 1987.

[62] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Héctor Bricẽno,
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[97] Sebastian Scḧonberg.Using PCI-Bus Systems in Real-Time Environments.
PhD thesis, University of Technology, Dresden, 2002.

[98] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: a fast
capability system. In17th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 170–185, Kiawah Island, SC, 1999.

[99] Patrick G. Sobalvarro and William E. Weihl. Demand-based coscheduling of
parallel jobs on multiprogrammed multiprocessors. In Dror G. Feitelson and
Larry Rudolph, editors,Job Scheduling Strategies for Parallel Processing,
pages 106–126. Springer-Verlag, 1995.

[100] Jan Stoess. Using operating system instrumentation and event logging to
support user-level multiprocessor scheduler. Master’s thesis, University of
Karlsruhe, Germany, April 2005.

[101] Harold S. Stone. High-Performance Computer Architecture. Addison-
Wesley, 2nd edition, 1990.

[102] Sun, Inc. Sun enterprise 10000 server.http://www.sun.com/
servers/highend/e10000, (accessed March 2005).

[103] Peter F. Sweeney, Matthias Hauswirth, Brendon Cahoon, PerryCheng,
Amer Diwan, David Grove, and Michael Hind. Using hardware perfor-
mance monitors to understand the behavior of java applications. InPro-
ceedings of the 3rd Virtual Machine Research and Technology Symposium,
San Jose, CA, May 2004.



128 BIBLIOGRAPHY

[104] Cristan Szmajda. Calypso: A portable translation layer. In2nd Workshop
on Microkernel-based Systems, http://www.disy.cse.unsw.edu.
au/publications.pml, Lake Luise, Canada, October 2001.

[105] Ariel Tamches and Barton P. Miller. Fine-grained dynamic instrumentation
of commodity operating system kernels. In3rd Symposium on Operating
Systems Design and Implementation (OSDI), New Orleans, Louisiana, 1999.

[106] Andrew S. Tanenbaum.Modern Operating Systems. Prentice Hall, 2nd
edition, 2001.

[107] Josep Torrellas, Andrew Tucker, and Anoop Gupta. Benefits of cache-
affinity scheduling in shared-memory multiprocessors. InACM Sigmet-
rics Conference on Measurement and Modeling of Computer Systems, pages
272–274, May 1993.

[108] Dean Tullsen, Susan Eggers, and Henry Levy. Simultanious multithreading:
Maximizing on-chip parallelism. InProceedings of the 22nd Annual Inter-
national Symposium on Computer Architecture, Santa Margherita Ligure,
Italy, June 1995.

[109] Volkmar Uhlig. Design rationale for L4 on multiprocessors. Technical re-
port, University of Karlsruhe, Germany, May 2005.

[110] Volkmar Uhlig, Uwe Dannowski, Espen Skoglund, Andreas Haeberlen, and
Gernot Heiser. Performance of address-space multiplexing on the Pentium.
Technical Report 2002-01, University of Karlsruhe, 2002.

[111] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund, and Uwe Dannowski.
Towards scalable multiprocessor virtual machines. InProceedings of the
3rd Virtual Machine Research and Technology Symposium, pages 43–56,
San Jose, CA, May 6–7 2004.

[112] Unisys, Inc. ES7000 Servers. http://www.unisys.com/
products/es7000 linux, (accessed March 2005).

[113] Ronald Unrau.Scalable Memory Management through Hierarchical Sym-
metric Multiprocessing. Ph.D. thesis, University of Toronto, Toronto, On-
tario, January 1993.

[114] Ronald Unrau, Michael Stumm, and Orran Krieger. Hierarchical clustering:
A structure for scalable multiprocessor operating system design. Technical
Report CSRI-268, University of Toronto, March 1992.

[115] Ronald C. Unrau, Orran Krieger, Benjamin Gamsa, and Michael Stumm.
Experiences with locking in a NUMA multiprocessor operating system
kernel. InSymposium on Operating Systems Design and Implementation
(OSDI), pages 139–152, Berkeley, CA, USA, November 1994. USENIX
Association.



BIBLIOGRAPHY 129

[116] Marcus V̈olp. Design and implementation of the recursive virtual ad-
dress space model for small scale multiprocessor systems. Master’s thesis,
University of Karlsruhe,http://i30www.ira.uka.de/teaching/
theses/pastthesis, 2002.

[117] T. H. von Eicken.Active Messages: an Efficient Communication Architec-
ture for Multiprocessors. Ph.D. thesis, Computer Science, Graduate Divi-
sion, University of California, Berkeley, CA, 1993.

[118] Zvonko Vranesic, Michael Stumm, Ron White, and David Lewis. The Hec-
tor multiprocessor.IEEE Computer Magazin, 24(1), January 1991.

[119] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.
Efficient software-based fault isolation.ACM SIGOPS Operating Systems
Review, 27(5):203–216, December 1993.

[120] Boris Weissman. Performance counters and state sharing annotations: A
unified approach to thread locality. In8th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), San Jose, CA, October 3–7, 1998.

[121] Robert W. Wisniewski and Bryan Rosenburg. Efficient, unified, and scalable
performance monitoring for multiprocessor operating systems. InSC2003:
Igniting Innovation, Phoenix, AZ, November 2003.

[122] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson,and F. Pol-
lack. HYDRA: The kernel of a multiprocessor operating system.Commu-
nications of the ACM, 17(6):337–345, June 1974.

[123] Michael Wayne Young.Exporting a User Interface to Memory Management
from a Communication-Oriented Operating System. PhD thesis, Carnegie-
Mellon University, 1989.


