Scalability of Microkernel-Based Systems

Zur Erlangung des akademischen Grades eines
DOKTORS DERINGENIERWISSENSCHAFTEN

von der Fakubat fur Informatik
der Universiét Fridericiana zu Karlsruhe (TH)
genehmigte

DISSERTATION
von
Volkmar Uhlig

aus Dresden

Tag der niindlichen Piafung: 30.05.2005

Hauptreferent: Prof. Dr. rer. nat. Gerhard Goos
Universitat Fridericiana zu Karlsruhe (TH)
Korreferent: Prof. Dr. sc. tech. (ETH) Gernot Heiser

University of New South Wales, Sydney, Australia
Karlsruhe: 15.06.2005

Abstract

Microkernel-based systems divide the operating system functionality intddnad

ual and isolated components. The system components are subject totapplica
class protection and isolation. This structuring method has a number ofteenefi
such as fault isolation between system components, safe extensibilityisteree

of different policies, and isolation between mutually distrusting components: Ho
ever, such strictisolation limits the information flow between subsystems including
information that is essential for performance and scalability in multiproceyser
tems.

Semantically richer kernel abstractions scale at the cost of generalityiaird
mality—two desired properties of a microkernel. | propose an architectatelh
lows for dynamic adjustmeruf scalability-relevant parameters in a general, flex-
ible, and safe manner. | introduce isolation boundaries for microkeeselurces
and the system processors. The boundaries are controlled atwsei@perating
system components and applications can transform their semantic information in
three basic parameters relevant for scalability: the involved proce@@spsnding
on their relation and interconnect), degree of concurrency, anghgmfuresources.

| developed a set of mechanisms that allow a kernel to:

1. efficiently track processors on a per-resource basis with supmovery
large number of processors,

2. dynamically and safely adjust lock primitives at runtime, including full de-
activation of kernel locks in the case of no concurrency,

3. dynamically and safely adjust locking granularity at runtime,

4. provide a scalable translation-look-aside buffer (TLB) coheretggrithm
that uses versions to minimize interprocessor interference for conturre
memory resource re-allocations, and

5. efficiently track and communicate resource usage in a componentdased
erating system.

Based on my architecture, it is possible to efficiently co-host multiple isolated,
independent, and loosely coupled systems on larger multiprocessor syatems
also to fine-tune individual subsystems of a system that have diffeneinp@ten-
tially conflicting scalability and performance requirements.

| describe the application of my techniques to a real system: L4Ka::Pistachio,
the latest variant of an L4 microkernel. L4Ka::Pistachio is used in a variety of
research and industry projects. Introducing a new dimension to a systparal-
lelism of multiprocessors — naturally introduces new complexity and oveshead
| evaluate my solutions by comparing with the most challenging competitor: the
uniprocessor variant of the very same and highly optimized microkernel.

Zusammenfassung

Mikrokernbasierte Systeme teilen die Betriebssystemfunkti@nailit unabkn-

gige und isolierte Komponenten auf. Die Systemkomponenten unterliegen dabe
denselben Isolations- und Schutzbedingungen wie normale Nutzerdumgsn.
Solch eine Systemstruktur hat eine Vielzahl von Vorteilen, wie zum Beispiel
Fehlerisolation zwischen Systemkomponenten, sichere Erweiterbarkeiodie
existenz mehrerer unterschiedlicher Systemrichtlinien und die strikte Isolation
zwischen Komponenten, die sich gegenseitig mi3trauen. Gleichzeitig erzeugt
strikte Isolation auch Barriereriif den Informationsflufd zwischen den individu-
ellen Subsystemen; diese Informationen sind esseriietdlié Performanz und die
Skalierbarkeit in Multiprozessorsystemen.

Kernabstraktionen mit semantisciiiierem Gehalt skalieren auf Kosten der
Allgemeinheit und der Minimalit, zwei eniinschte Eigenschaften von Mikro-
kernen. In dieser Arbeit wird eine Architektur vorgestellt, die es erladibt fur
die Skalierbarkeit relevanten Parameter generisch, flexibel, und sighamisch
anzupassen. Es werden Isolationsschrankedie Mikrokernresourcen und Sys-
temprozessoren eingéfrt, welche unter der Kontrolle von Nutzerapplikationen
stehen. Die Betriebssystemkomponenten und Anwenduniyamek das ihnen zur
Verfugung stehende semantische Wissen in die folgenden drei skalierbakeits
levanten Basisparameter umwandeln: die involvierten Prozessoreinftvon
den Prozessorbeziehungen und dem Speichersubsystem), detleGRetalleliat
und Ressourcengruppierungen.

Es wurden die folgenden Methoden und Mechanismen entwickelt:

1. eine effiziente Methode zur Speicherung und Auswertung der zuRas
source zugebrigen und relevanten Prozessoren,

2. ein dynamisches und sicheres Synchronisationsprimitiv, welches zur
Laufzeit angepalRt werden kann (dies beinhaltet die itlige Deak-
tivierung von Kernsperreruf den Fall, daf3 keine Parallgittvorhanden ist),

3. die dynamische und sichere Anpassung der Granalariin Sperren zur
Laufzeit,

4. ein skalierbaretranslation-look-aside buffeTLB) Koharenzalgorithmus,
der zur Vermeidung von wechselseitigen Beeinflussungen von Paoeass
ein Versionsschema nutzt, sowie

5. ein Mechanismus zur effizienten Ermittlung und Weiterleitung von Ressour-
cennutzungsinformationen in einem komponentenbasierten Betriebssystem.

Basierend auf dieser Architektur ist esogtich, mehrere unaldmgige,
isolierte, und lose verbundene Systeme gleichzeitig auf einem Mehrpoyzgs-
tem zu betreiben. Desweiteren drglicht die Architektur, einzelne Subsysteme

individuell feinabzustimmen. Dies ist selbst danigtich, wenn Subsysteme un-
terschiedliche oder sogar widergphliche Skalierbarkeits- und Performancean-
forderungen haben.

Die Techniken werden an einem real existenten System exemplariscreevalu
dem L4Ka::Pistachio Mikrokern, der die neueste L4-Version darstellt.d-4¥s-
tachio wird aktiv in einer Reihe von Forschungs- und Industrieprojekitegesetzt.

Die Einfuhrung der neuen Dimensidtarallelitat von Prozessorearhtoht sowohl

die Komplexitit als auch die Kosten. Die Effizienz der vorgestelltégisingen
werden daher an demdjsten Konkurrenten gemessen: der Uniprozessorvariante
desselben hochoptimierten Mikrokerns.

Acknowledgements

First, | would like to thank my supervisor, Prof. Gerhard Goos. After tlss lof
Jochen Liedtke, he not only ensured the survival of our groupdiber its blos-
soming. It took me a while to realize the wisdom behind many of his demanding
requests and | am extremely thankful for his patience and guidancehm/émst
few years. | am particularly thankful for many of his advices in areatsvileee not
related to this work or even computer science.

Jochen Liedtke, who passed away in 2001, was most influential on mysnhtere
in research in general and operating systems in particular. | am graidfir in
many ways. he was a great researcher, excellent teacher, mewtdreaa. This
work would not exist without his groundbreaking achievements, the iaiog
intellect he had, and his ability to help all of the people around him thrive.

I want to specifically thank Joshua LeVasseur, who is a good frienccaiad
league. With him, it was not only possible to achieve excellent reseanchs;dzut
also to have a life in Karlsruhe. | hope we will continue to work together twer
coming years. Thanks also to Susanne for her endless supply of ex¢etid and
many fun hours.

Thanks to Jan 8f3 for his efforts in our joined projects, including but not
limited to multiprocessor L4. Andreas Haeberlen and Curt Cramer have beth b
influential in many ways; | enjoyed the constant technical and political d&ons.
| still owe Andy a two-lettered rubber stamp. | had endless hours of lioaiming
and discussions with Lars Reuther and many of my research ideas (ingthdse
in this thesis) were born with him on the other end of the phone line.

| am thankful to the people of the System Research Lab of Intel MTL, in pa
ticular Sebastian Sémberg and Rich Uhlig. It was a wonderful time working in
such an inspiring environment and getting deep insights into the hardwae ar
tecture. Rich is an excellent manager and good friend and was sugaartivany
ways. Intel supported this research with a generous researchghacit, financed
the required multiprocessor hardware and also supported me during tthierésss
months of my thesis. | really enjoyed the productive and intellectually challgngin
work with Sebastian, but also our regular Wednesday evenings at Habri

| thank Gernot Heiser for his support, for reading initial drafts of thisi$e
and coming over from Australia for the defense. Although we have hag fteane
wars on internal and external mailing lists, it is always a joy to work with him. |
also want to thank Gernot for offering me a PhD position in Sydney whegshin
got rough.

| want to thank Julie Fast for editing the final version of this thesis, andfalso
her support and encouragement. | also have to thank Monika Schleghsister,
and my parents for their constant support on this interesting journeyikslavas
probably most influential on the directions of my life including starting a resear
career. Jan Langert and Michaela Friedrich were of great sugponyg the hardest
years of my PhD studies in 2002. | want to thank them for their patience, the
uncountable hours on the phone, and their very helpful advice.

Vi

| have to thank the people of the System Architecture Group for making L4
and L4Ka::Pistachio such a great success. | want to specifically mentganEs
Skoglund and Uwe Dannowski who helped make V4 happen, James Mculle
the most amazing IT environment ever, and Gerd aredler for shouldering the
primary teaching load and thus enabling our research results (everhtiGerg
was always skeptical that | will finish on time). Without those people this work
would not have been possible. | also want to thank Frank Bellosa, whawighe
new head of our group. He has not only been very supportive in thit glriod
we have been working together, but also gave great advice during nnyi@weng
time.

Last, but not least | have to thank the whole L4 community for the insightful
discussions on microkernel design. We still have a long way to go andd top
will be as much fun in the upcoming years.

Contents

1 Introduction 1
2 Facts and Notation 5
3 Related Work 9
3.1 ScalableSystems 9
3.1.1 Operating System Scalability 10
3.1.2 Clustering. o 12
3.2 Locks and Synchronization 13
3.2.1 Locks: Software Approaches 14
3.2.2 Locks: Hardware Approaches 15
3.2.3 Lock-free Synchronization 16
3.2.4 Message-based Synchronization 16
3.25 Read-CopyUpdate 17
3.3 Partitioning 18
3.3.1 Hardware Partitioning 18
3.3.2 Software Partitioning and Virtual Machines 19
3.4 Microkernel-based Systems 20
3.4.1 The Microkernel Argument 20
3.4.2 Multiprocessor Microkernels 22
4 Microkernel Performance Adaptation 25
41 OVEeIVIEW e 26
4.2 Tracking Parallelism 29
421 ProcessorClusters 30
4.2.2 ProcessorClusterMask. 31
4.3 Kernel Synchronization 33
431 Trade-offs. 34
4.3.2 Dynamic Lock Primitive 37
4.3.3 LockGranularity 41
44 TLBCoherency 44
4.4.1 Independence of Coherency Updates. 46

442 NersionVector 47

viii

CONTENTS

4.5

4.6

Event Logging for Application Policies
451 Overview
45.2 DataAccumulation
453 EventSourcesand Groups
4.5.4 Log Entries and Log Configuration
455 LogAnalysis
summary ...

Application to the L4 Microkernel

5.1
5.2

5.3

5.4

5.5

5.6

OverviewoflL4
Requirements
521 DesignGoals
5.2.2 Multiprocessor ExtensionstoL4
Inter-process Communication
5.3.1 Communication Scenarios
5.3.2 Performance Trade-offs
5.3.3 Adaptive IPC Operation

5.3.4 Remote Scheduling for Lock-based IPC
5.3.5 Discussion on Tightly-coupled Systems

Address Space Management
5.4.1 User-level Memory Management
5.4.2 Scalability vs. Performance Trade-off . . .
5.4.3 Mapping Database
544 TLBCoherency.
User-level Policy Management
5.5.1 KernelEventLogging
5.5.2 Thread Scheduling (Load Balancing) . . .
5.5.3 Kernel Memory Management
Summary

Experimental Verification and Evaluation

6.1
6.2

6.3
6.4

6.5

Evaluation Platform

Inter-process Communication
6.2.1 Processor-locallPC.
6.2.2 Cross-processoriPC
6.2.3 Parallel Programming
6.2.4 Scalability and Independence
EventLogging
Memory Management.
6.4.1 LockingOverhead

6.4.2 Scalability
summary ...

CONTENTS
7 Conclusion 115
7.1 Contributionsof ThisWork 115
7.2 SuggestionsforFutureWork o oL 116
117

7.3 ConcludingRemarks

CONTENTS

Chapter 1

Introduction

In the last years two important trends are changing the systems areapéifet;
mance scaling by increasing processor frequency is reaching thevdwang fur-
ther frequency increases are uneconomical. The current leakdde ithfzerent in
small structure size of today’s high-frequency processors resultssaivezenergy
dissipation that is emitted as heat. In order to further increase compute, poorer
cessor development is switching the focus to increasing parallelism. All primar
processor vendors are providing or announcing systems with a largbemwf
tightly coupled processors, that have previously been only available irfneuaie-
class systems.

Second, the increasing variety of usage cases of computers as mutispurp
devices is setting new demands on operating systems which remain unfulfilled by
traditional operating systems, such as UNIX and Windows. These newndisma
require radical new system designs, and cannot be achieved by sirtghdig
the existing systems with new features. Examples of these requirementstsee hig
level of security and confidentiality of critical information, real-time suppaint
safe sharing of hardware resources in consolidated server emgrds of poten-
tially untrusted clients.

| argue, that microkernels present a viable alternative for structupegating
systems that fulfill these new system requiremdfrttsey scale on large multipro-
cessor systems

Scalability of operating systems for shared-memory multiprocessors is a com-
plex problem that requires careful design of the complete software. Sthekcom-
plexity stems from the structure of the underlying hardware architectuiti. aN
increasing number of processors resource access latencies anaifoym which
has to be considered by the operating systenivéNsynchronization and resource
allocation schemes that are efficient in smaller multiprocessor systems offen lea
resource contention, starvation, high overhead, and ultimately to systeratim
on more sophisticated hardware.

The operating system is an omnipotent software layer on top of the hadwar
and therefore a crucial contributor to overall scalability. It managesrastiplexes

CHAPTER 1. INTRODUCTION

all hardware resources and mediates them between the competing apicaten
pending on resource usage patterns, the degree of resourceyshoaiact scope,

and object granularity, the operating system selects the most appropribtdfia

cient synchronization algorithm, and thereby minimizes overhead and maximizes
scalability. The choice for the optimal algorithm requires detailed semantic in-
formation about system subjects and objects. For example, the relevaatuliger
differentiates between as many as ten different synchronization schemes

In microkernel-based systems, the microkernel is only a very thin software
layer that multiplexes the hardware between isolated or cooperating entities in a
secure, safe, and extensible manner. The managed resources arettinhisesit
memory pages, processor resources, and processor time. All higltefeerating
system abstractions, such as file systems, network stacks, and devars dre
implemented as unprivileged user-level servers.

This system structure drastically reduces the complexity of the kernel itaklf a
previous research validates that it is possible to construct real-time fBEBpex
cure systems [90] on a microkernel. However, moving operating systestroots
out of the kernel also eliminates detailed semantic information that is required to
achieve optimal scalability. The microkernel lacks the necessary informtation
make an educated decision on the most efficient strategy.

Previous research on multiprocessor microkernel systems therefoner@o
mised either on the scalability aspect (by choosing one specific synchtioniz
policy), or on the strict separation of mechanism and policy and blurretinthe
between kernel and applications. The latter approach looses the dasipsaities
of a microkernel.

In this thesis | present solutions that allow for an uncompromised microker-
nel design while achieving excellent scalability with low overhead. My solstion
comprise four areas: | developed a space and time efficient trackiagedor par-
allelism allowing every kernel object to be tagged with a processor maskgUs
the tracking mask, the kernel derives the potential concurrency oelkebjects
and adjust its synchronization scheme.

| developeddynamic lockghat can be safely enabled and disabled at runtime
thus eliminating synchronization overhead while still guaranteeing functooal
rectness in the kernel. Based on the dynamic locking scheme, | derivethadne
for dynamically adjusting théock granularityfor divisible objects. This provides
applications with control over lock granularity in the microkernel. Applications
can dynamically choose between coarse-grain locking for lower runtirdnesd
or fine-grain locking for a higher level of parallelism.

Memory is a primary resource managed at application level but enforced b
the microkernel. Besides synchronization on kernel meta data, the micedkars
to enforce coherency of the translation look-aside buffer (TLB)ekpnt an algo-
rithm that decouples memory permission updates from outstanding TLB gpdate
With this scheme, multiple processors can manipulate permissions to memory ob-
jects in parallel while still minimizing the overhead for TLB coherency updates.

Finally, 1 present a low-overhead event logging mechanism that tnansfe

scheduling-relevant resource usage data between system compadrtentaech-
anism uses memory as a high-bandwidth and low-overhead transporammsoh
and thereby only induces a marginal runtime overhead. It enables djmplitavel
schedulers to efficiently manage and allocate kernel resources, sadlo@ating
threads to processors and also managing the per-processor kemethnpools.

| describe the application of my techniques to a real system: L4Ka::Pistachio,
the latest variant of an L4 microkernel. | played a significant role in thiydesnd
development of L4Ka::Pistachio. At this time, it supports nine different\ward
architectures and is used in a number of industry and research prdjaoctsluc-
ing a new dimension to a system — parallelism of multiprocessors — naturally
introduces new complexity and overheads. | evaluate my solutions by cmgpar
with the most challenging competitor: the uniprocessor variant of the veng sa
and highly optimized microkernel.

| see my contribution as extending minimalistic microkernel design, epito-
mized by L4, to the important domain of multiprocessors. However, the solutions
are not restricted to microkernels, but are also applicable in the aredusdlvina-
chines, monolithic operating systems and even applications.

Organization

This thesis is structured as follows: In Chapter 2, | define common terms and
principles required for the following sections. In Chapter 3, | evaludédad work

on synchronization, scalability of multiprocessor operating systems ingleaad
microkernel-based systems in particular.

In Chapter 4, | develop my principles for adaptive synchronization prigstiv
for the kernel. In Section 4.1, | discuss the structural differences afokecnel-
based systems as compared to traditional operating systems for large mudtiproce
sor systems. Then, | develop my resource tracking scheme (Section i) w
forms the foundation for the dynamic locking scheme described in Sectioiré.3.
Section 4.4, 1 describe the TLB coherency tracking algorithms that déeoo@m-
ory permission management and TLB coherency updates. Finally, in Sdcfipn
| develop the event-logging mechanism that enables the microkernel dat&dso
system components to efficiently exchange resource usage informatids tha
quired for user-level scheduling and multiprocessor resource allogadiicies.

Chapter 5 shows how | applied my methodology to L4Ka::Pistachio, an L4
microkernel. In Section 5.1, | give a general overview of L4 primitivesuieed
for the later development. In Section 5.2, | specify functional and padoce
requirements and define design goals and non-goals. | then introduceuthe
tiprocessor extensions to the uniprocessor kernel abstractions. ctiorsé.3, |
describe the implications of parallelism to L4’s most performance-critical primi-
tive: interprocess communication (IPC). | use dynamic locks for IPC to elimina
the synchronization overhead for the most important common cases. Sgetion
details scalable user-level memory management applying dynamic locking and the

CHAPTER 1. INTRODUCTION

TLB coherency scheme to L4. Finally, in Section 5.5, | show how eveniafjac
can be used to manage kernel memory and threads via a user-levallsched

In Chapter 6, | evaluate the performance of my design for L4Ka::Pistachio.
After detailing the peculiarities of my evaluation platform in Section 6.1, | evaluate
the performance and scalability of the multiprocessor IPC primitive on the same
and different processor (Section 6.2), the event logging schemédiséc3), and
user-level memory management (Section 6.4).

Chapter 7 includes a summary and suggestions for future work.

Chapter 2

Facts and Notation

In this chapter | introduce common terminology and principles of operating sys
tems and multiprocessor hardware that is used throughout the later chaptes
dissertation.

Operating System and Microkernels

An operating system (OS) is a program (or a set of programs), whichatesdc-
cess to the basic computing resources provided by the underlying hardwast
operating systems create an environment in which an application can elyaad
without interference from other applications. In addition, many OSesgedhe
application with an abstract, machine independent interface to hardveangrces
that is portable across different platforms.

There are two popular views of an operating system: The operating sgstem
a resource manager or the operating system as an abstract virtual eachin

The view of a resource manager has the operating system acting astan arb
for system resources. These resources include disks, netwodkgspors, time
and others. The resources are shared among the various applicai@mslihg on
individual applications’ requirements, security demands, and priority.

An alternative view of operating systems is that of an abstract virtual machin
Each virtual machine provides a level of abstraction that hides most ofitsyid
crasies of lower-level machines. A virtual machine presents a completéatger
to the user of that machine. This principle can be applied recursively.

An operating system provides an interface to its applications to enhance the
underlying hardware capabilities. This interface is more portable, preyidsec-
tion among competing applications, and has a higher level of abstractiondran b
hardware. Briefly, operating systems typically provide services in thewoilp
areas: i) program creation,ii) program executionji{) access to 1/0O devicesy]
controlled access to devices) eérror detection and response, awij &ccounting.

A number of different architectural organizations are possible forparai-
ing system; the two most relevant structures rma@nolithicandclient-server In
the monolithic system, all OS functions are integrated into a single system image.

CHAPTER 2. FACTS AND NOTATION

The advantage is good performance with the disadvantage of high complexity
monolithic systems, all subsystems share the same protection domain and faults in
one subsystem can propagate into others. Client-server systems enmpiogpa
kernel that mediates resource access to the bare hardware. The OS subsyrste
implemented as applications that run in their own address space. The microker
nel provides inter-process communication for interaction between thgstabss.
Microkernels provide significantly better fault isolation because subsgstre
confined to their own protection domain.

Multiprocessor Systems

In multiprocessor systems, multiple connected processors operate inlpdale
pending on the processor interconnect, the systems are differentiatpdius{ers

(or multicomputers) and (ighared memory multiprocessots clusters, each pro-
cessor has its dedicated memory and is an autonomous computer; the computers
communicate via a network. Shared memory multiprocessors have common mem-
ory for code and data and communication between processors may takesiglac
shared memory.

One general classification of shared memory multiprocessors is basexvon h
processes are assigned to processors. The two fundamental s e@aenas-
ter/slaveandsymmetric For master/slave, the operating system always runs on a
particular processor and the other processors execute applicatioegminetric
multiprocessor systeniSMP), the operating system can execute on any processor.

For a small number of processors, multiprocessor systems commonly use a
shared memory buhat connects all processors and the memory. The shared bus
structure limits the overall memory bandwidth, because only one processace
cess the bus at a time. With an increasing number of processors, thd boare
becomes a performance bottleneck. Large scale systems therefoithasenail-
tiple interconnected buses or per-processor memory. The buses aternimected
via memory routers. These systems, however, exhibit different atatessies for
memory that is local to the accessing processor compared to remote memary. Th
non-uniform memory accepsoperty gave the systems their name: NUMA.

With the increasingly high integration, two other multiprocessor structures be-
come more commorsimultaneous multithreadingMT) andchip-level multipro-
cessingCMP). SMT uses the multiple-issue-per-instruction features of modern su
perscalar processors to hide latencies of resource stalls, suchhaswiases. SMT
processors [108] provide multiple threads of execution that share tiwtidoal
units of one processor. On resource stalls the processor automaticedleswto
another thread. The primary goal of SMT is to increase the utilization ofifumed
units of one processors.

CMP is an SMP implemented on a single chip. Multiple processor cores typ-
ically share a common second- or third-level cache and interconnect.s Gk&P
also often referred to as multicore processors.

Caches

Cache memory is intended to give memory speed approaching that of the faste
memory available, and at the same time provide a large memory size at the price
of less expensive memory. The cache contains a copy of portions of maiome
When the processor attempts to read a word of memory, a check is made to deter
mine whether the word is in the cache. If so, the word is delivered to thegsoc,
otherwise a block of memory is fetched from main memory into the cache.

A consistency problem arises in multiprocessor systems, where ea@dspooc
has its own cache. When one processor modifies a datum, the othersmrstes
caches may still contain the old value, which is now incorr&dche coherency
mechanismshat are implemented in hardware transparently update the processor
caches. In bus-based systems processorsmaopthe memory bus for addresses
that they have cached. When a write operation is observed to a locati@encéetie
has a copy of, the cache controller invalidates its own copy. Various meddls
protocols have been devised for maintaining cache coherency (e.gl, MES§
MOSI, and MOESI).

In cache-coherent NUMA systems (ccNUMA), processors haveanonmon
memory bus prohibiting cache snooping for cache coherency. InsteltlMA
systems use directory tables to keep track of which processors cagleifics
word. On modification, the hardware sends directed update and invalidate me
sages to the processors. This scheme has a significantly higher aledmepared
to snoopy caches and requires specific attention when designing a system.

Memory Management Unit

The memory management unit (MMU) of a processor is responsible fatlihgn
memory accesses requested by the CPU. Among others, the MMU trangtatals v
address to physical addresses (to implement virtual memory), it enforee®ry
protection, and controls the caching strategy. The virtual addrese g&pdivided

into pages of a size of"2 usually a few KBytes. When accessing memory, the
lower N bits remain unchanged while the upper bits select the (virtual) page num-
ber. The page number is used to index inpage tablethat contains the translation
from virtual address to the physical memory page.

To reduce the translation latency, processors cache page table entfies in
translation look-aside buffefTLB) [66]. TLBs work similarly to normal caches
and contain the page table entries most recently used. Given a virtuakadtire
processor will first inspect the TLB, and if the page table entry is ptgsen a
TLB hit) the physical address is retrieved. Otherwise, the processoniars the
page table and if a valid entry is found the entry is loaded into the TLB. If tige pa
table contains an invalid entry, the processor signals a page fault excéptioe
operating system.

Similar to memory caches, TLBs need to be kept coherent between multiple
processors. While cache coherence for memory is implemented in hardware

CHAPTER 2. FACTS AND NOTATION

forcement of TLB coherence is left to the operating system. When updapage
table entry, the operating system has to specifically isslieRinvalidationin-
struction. With very few exceptions, architectures require explicit invibideof
TLB entries on remote processors. The updating processor sendsraprincessor
interrupt (IPI) to the remote processors, which then invoke the TLB inatdid
instruction updating their respective TLB. This remote invalidation is commonly
referred to ag LB shoot-down

Chapter 3

Related Work

Related work to this thesis can be classified into the following four areas:

Scalable systemsMy thesis proposes a number of mechanisms that control and
adjust kernel algorithms for resource allocation and management. In Sec-
tion 3.1 | discuss the general problem of multiprocessor scalability. | review
previous work that addresses the problem of operating system scalability
discuss the relevant findings and relate them to my work.

Locks and synchronization. Locks are an important primitive for mutual exclu-
sion in multiprocessor systems but also a main source for limited scalability
and overhead. My thesis proposes an adaptable locking mechanisnt-In Se
tion 3.2 | describe the scalability problem of locks and other approaches tha
address lock overhead and lock contention in scalable systems.

Partitioning. | use resource partitioning to isolate independent subsystems and
thereby avoid potential interference. In Section 3.3 | review other @ohes
— software and hardware — that use resource partitioning to achieve bette
scalability.

Microkernel-based systems.This thesis investigates scalability of microkernels.
As the disappointing performance results of early approaches hawasho
microkernels require careful design and implementation. In Section 3.4 |
describe the state of the art in microkernel-based systems laying the ground
for many design decisions, but also discuss other related work in the field o
microkernels on multiprocessors.

3.1 Scalable Systems

Multiprocessor scalability is addressed at various levels of the systef steec
hardware level, the operating system, and the application and algorithmic level.

At the hardware level, a higher degree of circuit integration and the limitations
of frequency scaling puts a stronger focus on parallelism. Most mictepsor

10

CHAPTER 3. RELATED WORK

vendors ship now or have announced multicore versions of their poicesand
offer multiprocessors based on a single shared bus. Single bus sybtemeser,
are not scalable beyond a small number of processors. Because tifehisemory
bus becomes the system’s performance bottleneck.

The first scalable shared-memory machines are based on Omega 0 3etwork
[101], such as the NYU Ultra-Computer [3], the IBM RP3 [89], and theNBB
Butterfly [28]. In these systems, each processor has locally acceasdnt®ry,
but is able to access the memory of remote processors via the memory intercon-
nect. Accesses to remote memory have a higher latency than to local memery. Th
non-uniformity for memory accesses gives these machines their idtdA. Al-
ternative interconnect structures are ring or grid topologies, as ydbe Stanford
DASH [68] and KSR [24] architectures, and the HECTOR [118] multipssoe.

A critical design issue of all shared memory architectures is the cache co-
herency scheme. Each processor in a multiprocessor system has itacha) ¢
hence data can appear in multiple copies among the various caches. ©ache ¢
herence ensures that all processors have identical copies of a datushared
bus systems, snoopy caches [11] provide a very simple method for caehe
herence, whereas NUMA systems employ directory-based cachesockeap-
proaches [50]. In this scheme, a directory keeps track of which psocg have
cached a given memory block. When a processor wishes to write into thekt, blo
the directory sends point-to-point messages to processors with an difudegoty
thus invalidating all other copies.

Cache-coherency updates and cache-migration costs are the prime lingting fa

tors for scalability and need to be considered for software and systesiraction.
The overhead for cache-coherency updates has implications onasl @frenulti-
processor systems, including the selection of synchronization primitivet s
locks), the overhead for data sharing between processors, antefoory alloca-
tions in order to reduce the cost for memory accesses.

The metric for software scalability is speedup. According to Amdahl’s law [4]
the maximum speedup that parallelism can provide is bounded by the infénse o
fraction that represents the serial portion of the task. Theoreticdlglaramput-
ing models, such as PRAM [38, 87] and LogP [31], provide abstractibhsird-
ware machines in a portable high-level manner. For example, LogP inatego
four parameters into its model: communication latency, communication overhead,
the gap between consecutive messages, and the number of procéssvever,
LogP and PRAM assume that they can distribute the workload acrosssporse
and model a strategy for load distribution. This strategy is not applicableeic op
ating systems and therefore theoretical models consider the operating s\ste
given extension of the hardware platform.

3.1.1 Operating System Scalability

Unrau’s thesis [113] is probably the first that addresses operatatgrayscalability
in a new and systematic manner. Instead of addressing the algorithmic ppkedu

3.1. SCALABLE SYSTEMS 11

proposes the concept of the operating systemserzce centerHis work bases
the scalability evaluation on queuing theory [65] with the three fundamentairpe
mance metrics: throughput, utilization, and response time. Based on hisignalys
Unrau derives the following three fundamental design criteria for alsicatgerat-

ing system that are quantified as runtime overhead of an operating systetiof.

Preserving parallelism: The operating system must preserve the parallelism af-
forded by the applicationlf several threads of an executing application re-
guest independent operating system services, then they must besdérvic
parallel. Otherwise the OS becomes a bottleneck limiting scalability and
application speedup.

Bounded overhead: The overhead for each independent operating system service
call must be bounded by a constant, independent of the number adsro
sors. If the overhead of each service call increases with the number of pro-
cessors, the system will ultimately saturate.

Preserving locality: The operating system must preserve the locality of the appli-
cation. It is important to consider the memory access locality in large-scale
systems, because many large scale multiprocessors have non-uniform mem-
ory access times, where the cost of accessing memory is a function of the
distance among accessing processors, and because cache consisias
higher overhead in large systems.

While these three design principles are a necessary requirement fableca
systems, they are not sufficient for the following reason: Unrau’'sirements
only address the scalability ofgiven systemThis approach leaves two important
aspects unaddresseamierheadandisolation

According to Unrau’s first and second design rule, a system is stilliderel
scalable if the actual execution time of a function is significantly higher than the
achievable minimum. The problem thereby is to determine the minimally achiev-
able overhead, which depends on the specific system scenario anel muntiber
of processors.

In order to determine the minimal overhead, | propose to incorporate an add
tional aspect: thésolation propertyof an operation. This proposal is based on the
following observation from hardware partitioning: Hardware partitioniivipeés a
large multiprocessor system into a set of independent smaller systems diMid-in
ual subsystems are fully isolated and behave (almost) like a physically pagtition
multiprocessor system. Most importantly, the isolated subsysgeeservetheir
performance and scalability properties. Hence, the achievable minimurmeager
for an operation, which is executed on (or affects) only a subset qirtbreessors
of the system, should be identical to the overhead of a system of the size of th
subsystem.

The overhead of an operation is a function of its isolation boundaries; the
boundaries are represented by the processors affected by ttatiopet propose

12

CHAPTER 3. RELATED WORK

a fourth design rule that addresses the overhead of a system functiation to
its isolation boundaries:

Preserving isolation: The operating system must preserve the isolation properties
of an application.When applications are restricted to a subset of processors,
the overhead for a system operation should be identical to the overhaad o
system with the size of the processor subset.

An implication of that requirement is that the cost for operations which are
restricted to a single processor should also have the overhead of afsiagéssor
system.

A system with more processors has an inherently higher management over-
head. This overhead includes memory resources that need to be allacdtexre
complex algorithms in order to accommodate hardware peculiarities which do not
exist in smaller hardware configurations. Therefore, it is hard to stricligvi the
postulated isolation requirement. However, in some cases it is possible to trade
memory footprint against less performance for the uncommon case.

Unrau’s third design rule addresses the special case of NUMA aceedsad.

More generally, the operating system should use memory that is isolated forone
a subset) of the system'’s processors.

3.1.2 Clustering

Hierarchical clustering is a way to structure shared-memory multiprocegsof
ating systems for scalability [113,114]. The basic unit of structuring is stefuA
cluster provides the functionality of an efficient, small-scale SMP that corgoas
small number of processors only. On larger systems, multiple clusters saB-ins
tiated such that each cluster manages a group of neighboring processilodes.

A processing module consists of a small number of processors, local pyeandr
the memory interconnect. Major system services are replicated to eaclr slste
that independent requests can be handled locally. In a later papera@aais[41]

list a number of problems with this approach, including poor locality, incaease
complexity, and difficulties to support customized policies.

Clustered objectf7,41] (as used in Tornado and K42) extend the idea of a clus-
tered system structure to the OS object granularity (i.e., a C++ object ie$takc
clustered object presents the illusion of a single object but is actually catpos
of multiple object instances. Each individual instance handles calls fronia s
set of the processors and the object instance presents the collectile fahall
processors. The specific implementation of clustered object instancefiearial
reflect the degree of parallelism and access patterns. The key to the impleme
tation is the use of a per-processor translation table that contains ancefdea
handling method. The indirection table allows the creation of object regeesen
tives on demand by installing a default fault handler in the table. When antabje
first referenced on a processor, the default handler catchesdbssaattempt and
instantiates a local representative.

3.2. LOCKS AND SYNCHRONIZATION 13

Clustered objects are a powerful method for runtime adaptation. In particula
it is possible to dynamically replace object code and the object’'s synchtmriz
models via the indirection table. The faulting scheme, however, createsahe pr
lem that it only supports a forward scheme. The per-processorseapegives are
established on access fault. There is no similar event for the destructiepref
sentatives and a fall-back to a less-scalable scheme that may incur a k@ver o
head. While the authors describe a garbage collection mechanism very samilar
read-copy-update, there is no equivalent for a down-sizing (qradalelization)
of a clustered object. While this may not impose a problem for short-lived ker
nel objects, it is critical for long-lived objects with significantly changingess
patterns, as seen in microkernels with user-level resource management.

3.2 Locks and Synchronization

Locks provide individual processors with exclusive access to didata and crit-

ical sections of code. The most common locks for in-kernel synchrihoizare

spin locks where a shared memory location stores the lock state (i.e., taken or
free). In order to acquire the lock, the processor atomically replacesottitent

of the lock variable with the value that denotes a taken state. If the prevabus v
wasfreg the lock was acquired successfully, or otherwise the processowsrigtiae
loop.

The overhead for locks falls into three different categorig¥:the runtime
overhead for the lock primitive itselfii§ the cache footprint for the lock, andi §
utilization of memory bus bandwidth.

Locks are implemented with atomic processor primitives. A variety of alter-
native atomic primitives have been proposed and implemented on shared mem-
ory architectures in order to minimize locking overheads. Many of thosaape
primitives support one particular synchronization operation [45, 59 A&ough
special-purpose primitives have advantages in certain scenarios, copnouas-
sor architectures support a set of general-purpose primitives,asuehTCH& ®
[46], COMPARE&SWAP [25], and the pair of IDADLINKED—STORECONDITION-

AL [61].

e The FETCH& @ primitive takes two parameters: the address of the destina-
tion and a value parameter. The primitive atomically reads the value from the
destination, computes the new valueda®riginal valueparametey, stores
it, and returns the original value.

Example primitives are #ST&SET, FETCH&A DD, and FETCH&STOREL.

e COMPARE&SWAP takes three parameters: the address of the destination,
an expected value and a new value. If the original value at the destination

IFETCH&STORE s also known as ECHANGE that atomically replaces a register value with a
memory location. It is the atomic operation with the lowest overhead fo2 A3

14

CHAPTER 3. RELATED WORK

address is identical to the expected value, it gets replaced atomically with
the new value. The return value indicates success or failure.

e The pair LOADLINKED—STORECONDITIONAL must be used together to
read, modify, and write a shared locationOADL INKED returns the value
stored at the shared location and at the same time sets a reservation associ-
ated with processor and location. The reservation remains valid until anothe
processor accesses the recorded cache lim@RBCONDITIONAL checks
the reservation; if valid it writes the new value and returns success,-other
wise failure. The reservation is commonly implemented in the processor
cache and invalidation can be easily embedded in the cache snooping proto-
col. When a SORECONDITIONAL fails it fails locally and does not cause
any bus traffic.

3.2.1 Locks: Software Approaches

The ndve use of atomic operations can induce significant overhead in larger mul-
tiprocessor systems. Processors that compete for a lock create meraargffic

due to the cache coherency protocol. Alternative locking schemesasudillor-
Crummey Scott locks (MCS locks) [82], reduce the overhead with lockiregigs

and employ spinning on local memory. Local spinning reduces the owtditiae
cache coherence protocol from all competing processors to one.

The optimal synchronization scheme depends on the peculiarities of the sce-
nario, such as the level of contention, the memory interconnect of comgeting
cessors, and access frequency and pattern. Less concurrahdgsa complex
memory interconnects (such as simple snoopy caches of SMP systemsgpaiise r
less complex lock mechanisms and code paths, thus reducing runtime avaritea
cache footprint.

Overhead and complexity increases when locks are contended andtiock a
tempts cross NUMA node boundaries. However, no single best lockimgnse
exists. Anderson [6] observed that the choice between spin-lock&@®iqueue
locks depends on the level of lock contention. Lim [76] proposes dynaummic
time adaptation between both lock protocols. Depending on the degree of lock
contention the code adapts the lock protocol. For low contention cases (ssth le
than four processors) the scheme uses spin locks with the significantly romwe
time overhead, whereas in high contention cases the more expensiJsgttart
scalable, MCS locks are used.

McKenney [79] argues that the choice for the best locking strateggraigpon
a large number of factors, such as duration of critical section, reaubttify ratio,
contention, and complexity. He differentiates as much as ten alternativendesig
patterns for choosing an optimal locking strategy.

Unrau et al. [115] address the problem of overhead vs. parallelisfiméogran-
ular locks. They propose a hybrid coarse-grain/fine-grain lockirsdegyy that has
the low latency and space overhead of a coarse grain locking stratéigyhating

3.2. LOCKS AND SYNCHRONIZATION 15

the high concurrency of fine-grain locks. The idea is to implement finetdga
locks using non-atomic memory operations and protect the lock data stucture
with a single coarse lock. The coarse lock must be held in order to acqaifim¢h
granular locks, which then can be implemented as a simple reserve bit. When sp
ning on the lock, only the reserve bit is tested and does not require arsiion

of the coarse lock.

The scheme has two limitations. First, the coarse lock still has to be taken
by all processorsand thus needs to be migrated between the different processor
caches. Real fine granular locks can eliminate that inter-dependethoyearnead.
Second, in order to reduce contention on the coarse lock, processnoren the
reserve bit of the object. Only when the reserve bit gets cleared dodbegsors
retry the lock acquisition via the coarse lock. That scheme puts restrictions o
object destruction and prohibits free memory reuse. A lock that is embedded
an object which is released and re-allocated may never be cleare@ésBoog that
are spinning on such a lock will spin infinitely. The authors solve this problem
by introducing object classes for memory in order to guarantee that thieybar
reserve bit reaches an unlocked state.

3.2.2 Locks: Hardware Approaches

In addition to software-based approaches, research proposisl sizedware sup-
port in order to minimize the lock overhead.

Goodman et al. proposed the Queue-On-Lock-Bit primitive(®) [45] that
was also the first proposal for a distributed, queue-based lockiregrech@LB
maintains a hardware queue of waiting processors in the cache so thas§ocs
can spin locally. On lock release the first processor in the queue escepecially
formed cache-coherency packet; the other processors remain gpii@igi et al.
[63] compares the throughput oEET&SET locks, TEST&T EST&SET locks [95],
MCS locks, LH locks [77], M locks [77], and Q.B locks. The @LB locks
outperform all other lock mechanisms, however, the locks rely on stippdine
special @LB primitive. The simple EST&SET and TEST&T EST&SET locks
performs well under low contention but throughput degenerates quickiynore
than four processors.

Rajwar et al. [92] reduce the runtime overhead for lockssygaculative lock
elision (SLE). SLE is a micro-architectural technique similar to speculative exe-
cution. The processor dynamically identifies synchronization operativedicts
them as unnecessary, and elides them. By removing these operationsgrap
behaves as if synchronization were not present in the program. Gsiflit would
violate the correctness due to the missing synchronization primitives, actatete
via the cache-coherency mechanisms and without executing the acteareyn
nization operations. Safe dynamic lock removal exploits the properties kd loc
and critical sections as they are commonly implemented. If data is not conttyrre
accessed between the lock acquisition and release operations, baitiarzecan
be elided. Data written within the critical section is buffered in an intermediate

16

CHAPTER 3. RELATED WORK

buffer while monitoring the lock variable. If the operation completes without a v
olation of atomicity, the buffer is written back. Otherwise the operation is testar
with a normal lock.

Speculative lock elision addresses the problem of the high overhedakfor
primitives in cases of no concurrency. While SLE is a generic and tramspa
solution it has limitations. SLE requires an extension of the hardware micro-
architecture and is thus not applicable to currently available hardwahéesrc
tures. The size of the critical section is further limited by the size of the write
buffer. Since the processor monitors the cache line of the lock, SLE ésdtache
and memory footprint for the lock variable. Furthermore, nesting of loegsires
multiple locks being monitored concurrently.

3.2.3 Lock-free Synchronization

An alternative to lock-based synchronization is lock-free synchrtinizaCritical

code sections are designed such that they prepare the results outofditieen try
to commit them using an atomic update instruction such@gEARE&SWAP. The

most prominent operating systems using lock-free synchronization afeaittee
kernel [48], Synthesis [78], and Fiasco [58], which is an L4 microkéwrariant.
(A more detailed discussion of Fiasco follows in Section 3.4.2.)

The Cache kernel and Synthesis run on architectures witto®PERE& -
SwAP2 instruction (Motorola 68K). The authors report lock-free synclration
as a viable alternative, however, they do not address the perfornmapteation
due to frequent atomic operations or lock contention. For example, ther&:-
sis kernel was only tested on a two-way machine with a shared memory bus and
the CacHE kernel on a four-way machine. The authors argue that the overhead
induced by lock-free synchronization in numberimdtructionsis minimal. How-
ever, the overhead of thedMPARE& SWAP2 operation is reported to be as high
as 114 cycles. The reported overhead for a variety of common kepeehiions
using lock-free synchronization vs. unsynchronized operationdugelea 50 up to
350 percent.

Lock-free synchronization via atomic operations further eliminates thd-poss
bility for critical-section fusind79], where multiple critical sections are protected
by a single lock. Hence, while a single lock may be highly sufficient, scalable,
and induce a very low overhead, the lock-free synchronization sclaelte the
overhead of an atomic @UPARE&SWAP2 to every critical section.

3.2.4 Message-based Synchronization

Chaves et al. [26] discuss alternative in-kernel synchronizatioenseh for large-
scale shared memory multiprocessors. The authors distinguish betweepiiare
mary synchronization mechanisms for kernel-kernel communication:

Remote memory accessThe operation executes on process@ading and writ-
ing processoj’s memory as necessary.

3.2. LOCKS AND SYNCHRONIZATION 17

Remote invocation: Remote invocation is based on sending a message from pro-
cessoli to processoj askingj to perform the operation on behalf iof

Bulk data transfer: The kernel moves the data required by the operation from
processoj toi, where it is inspected or modified and possibly copied back.

The work discusses the performance trade-offs for the differemthspniza-
tion schemes. The authors conclude that the choice between remote invecatio
remote access is highly dependent on the cost of the remote invocationmsacha
the cost of the atomic operations used for synchronization, and the ragmote
to local memory access time. Although, coming to this conclusion, the authors do
not discuss methods drowto resolve the open problem.

A number of operating systems use in-kernel messaging for synchtioniza
most prominent are the DragonFly BSD project [1], which bases mostrinek
synchronization on inter-processor interrupts, and Tornado [41].

| am not aware of any previous work which provides the choice foradyin
selection of messagndlock based synchronization in one kernel.

3.2.5 Read-Copy Update

For read-mostly data structures, performance can be greatly improvadityy
asymmetric locking primitives that provide reduced overhead for readeagide
cesses in exchange for more expensive write-side accesdead-copy update
(RCU) [80, 81] takes the idea to the extreme, permitting read-side acosihes
no locking or synchronization. This means that updates do not block, reatisat
a read-side access that completes shortly after an update can retuateold d

Data structures in parallel systems cannot be considered stable unbatis-a p
ular update policy is followed, such as holding locks to data. After the loaks a
released, the system cannot make any prior-knowledge assumptiandtabstate
of the data which was protected by the locks. Thus, if a thread does hddtko
it cannot make any assumption abauty data structure that is protected by any
lock. When a thread holds no locks, it is in a quiescent state with respeoyto a
lock-protected data.

The fundamental idea of read-copy update is the ability to determine when
all threads have passed through a quiescent state since a particulan foire.
Afterward, it is guaranteed that the threads see the effects of all eaamgde prior
to the interval. This guarantee significantly simplifies many locking algorithms and
eliminates many existence locks.

The processors signal the event of passing a quiescent state bhatoiga
token. When the processor that currently possesses the tokengeaghescent
state, it passes on the token to the next processor. ARTeW epochstarts with
completion of a full round trip of the token. By then itis guaranteed that aligs-
sors have passed a quiescent state; thus the effects of an operdtierpofvious
epoch are complete and globally visible.

18

CHAPTER 3. RELATED WORK

Operating systems have well-known code paths, where it is structuralty gua
anteed that the current thread does not hold locks and thus are in aeqiistate.
Examples of these code paths include when a thread exits from kerngdlicaap
tion level, as well as when the processor enters the idle loop, or on centiéshes.

Read-copy update is used in a variety of scenarios in operating systechs, s
as deferred deletion of list members or module existence locks for kelaxdite
modules. In this thesis | apply the core idea of RCU to a novel donkaimmel lock
primitives

3.3 Partitioning

Multiprocessor partitioning divides a large multiprocessor system into afset o
independent, smaller multiprocessor subsystems. Each subset actelsekativ
tonomously and independent of the others. The strict independencedrepar-
titions eliminates interference, information leakage as well as restricts theofevel
parallelism within each partition. The scalability requirements for an operating
system in a partition are therefore limited by the physical resources (i.eg$pro
sors) allocated to it.

Partitioning shares a subset of goals with scalable microkernel-bagethsys
The hard boundaries eliminate the overhead induced by a high degresabf p
lelism, such as cache and TLB coherency, and also restrict the defgpeeat
lelism and thus the possibility for contention. Hence, operating systems that ru
within the partition, can act as if they would run on a smaller overall system, even
though the hardware may have significantly more processors. The Q8dizre
overhead for precautions for processors that are not suppanttdise the best
synchronization scheme for the partition’s specific resource configara

3.3.1 Hardware Partitioning

Hardware partitioning is a well-known technique from mainframe class comput-
ers and was recently introduced on enterprise-class UNIX systemdwhlia re-
sources, including processors, memory and I/O devices, are allocatstiMidual
partitions. The partitions are strictly isolated from each other via specialenet h
ware support.

Brown Associates [32] compares the Sun E10000 and Unisys ES76@&0rsy
that both support hardware partitioning. The Sun E10000 [102] stpp@ to
sixteen domains that achieve complete isolation while sharing the interconnect.
Registers on the system boards define the domain per board. All conipaoen
trolled by the system board become part of the domain. Failures within a domain
do not affect other domains, except for failure of system-wide compusne

The Unisys ES7000 [112] supports up to eight partitions and the quantity of
processors, memory, and 1/O devices in a partition can be freely coafigire-
sources between partitions can be adjusted dynamically. The ES7000 n&rsory

3.3. PARTITIONING 19

tem supports private memory and memory to be shared among patrtitions. Similar
hardware partitioning is supported by IBM Sequent, and HP (nPar).

The limiting factors of hardware partitioning are tleatively static resource
allocationand thestrict partition boundaries Resources that are allocated to one
partition cannot be easily shared by another. In particular it is not gedsishare
processor resources between partitions, in case a processor fallditienother
system is overloaded.

An important feature of partitioning is fault containment. The two possible
failure types are hardware failures and software failures. While micnekéased
systems naturally achieve containment of software failures of applicatiorslvia
dress space protection, hardware fault containment requires sysegifiort in the
microkernel (hardware fault containment is not addressed in this work)

3.3.2 Software Partitioning and Virtual Machines

Similar to the hardware based partitioning approach, software partitioning multi-
plexes the hardware resources between different operating systtandas. Each
OS instance has a subset of the overall system resources.

Software partitioning is often used in the context of virtual machines (VM)
[43], where multiple concurrent operating systems compete for the sygtem r
sources. The virtual machines are under control of a privileged Vimaahine
monitor (VMM) that serves as the controlling entity and resource managds V
and microkernel-based systems are very similar in respect of the isolat&® go
They differ insofar that microkernel-based systems provide a setsifealions
that enable fine-granular resource isolation and recursive resgordrol for all
system services, whereas most VMMs solely target for monolithic capese-
hardware multiplexing [15]. As our group has shown, a microkernelseave as
the core platform for virtualization [69, 111], while the opposite is oftenthet
case because of the lack of high-performance communication primitives.

Besides our work on scalable virtual machines [111], the other most peoinin
research addressing VMs for multiprocessor systems is Cellular Dist6 [a&l-
lular Disco aims to provide the advantages of hardware partitioning ancbkeala
operating systems while avoiding the scalability bottlenecks. Cellular Disco uses
a small, privileged VMM that multiplexes resources of different virtual niaes
The system is divided into cells that act independently and interact vialearirel
RPC mechanism. A primary goal of the messaging system is to preserve inde-
pendence for fault containment and to ensure survival of cells in aassmote
failures.

While Cellular Disco shares some goals with my thesis, it differs in the way
these goals are achieved. Cellular Disco specifically targets VMs anddpsov
the core services, such as scheduling, page allocation, and dewieesgrithin
the privileged VMM. Thus, the VMM follows a traditional monolithic operating

2That does not include commercial systems, such as IBM’'s OS 390.

20

CHAPTER 3. RELATED WORK

system design paradigm, with in-kernel policies.

A key design decision of Cellular Disco is to assume that the code is correct.
The assumption is warranted by the fact that the size of the virtual machirisomon
is small. The authors report a prototype kernel of 50K lines of code (aoaajpto
13K for L4Ka::Pistachio), however, it iso-locatedwith an SGI IRIX 6.4 OS for
device accesses. Despite the inherent dependence on IRIX fectwss, such
co-location also has implications on scalability. The scalability of an important
aspect of the system — hardware device accesses — becomes depmantiee
overall scalability of IRIX. Also, the work does not specifically addresalability
of multiprocessor systems but has a stronger focus on general problefids,
such as eliminating double paging and memory balancing policies.

3.4 Microkernel-based Systems

3.4.1 The Microkernel Argument

A common method for structuring operating systemsrizagolithic systepwhich
integrates all OS functionality in a single system image (e.g. UNIX [93] and VMS
[44]). The main advantage of such a monolithic structure is good perfa®nan
and global visibility of system state. Monolithic systems, however, have a@umb
of disadvantages. Since all system services reside within the monolithiersyste
image, all subsystems share a single protection space and may interfefess Fa
within one subsystem can propagate to others with potentially fatal conszzgie
for the system.

In order to extend such systems with new functionality such as different
scheduling policies, file systems or device drivers, the extension hasitdebe
gratedwith the monolithic kernel. The extension is code that is injected in the ker-
nel and runs with full privileges. Thus, the injected code becomes glotatited,
however may neither be trustworthy nor error free. A variety of apgres ad-
dress trustworthiness, such as simple code signing [33,83], sandijbg®i, inter-
preted languages [84], type-safe languages [18], domain-specifjadges [40],
and proof-carrying code [85, 86].

In contrast to monolithic designs, in microkernel-based systems the operat-
ing system functionality is implemented aser-level serversThese servers run
in separate address spaces and communicate using inter-process caatiomnic
(IPC) built into the microkernel. Extensibility is achieved by replacing the syste
servers, similar to normal applications.

Microkernels isolate operating system components via address spaoes fr
each other and also provide them with separate resources. BothtEsmsable
multiple OS services with different resource policies to co-exist on oneersys
These include systems with different security requirements [90] or systétims
real-time and non-real-time demands [53, 97].

The second important property is the size and complexity of microkernels. Mi-
crokernels are tiny and thus can be used as a secure platform fomgugiplica-

3.4. MICROKERNEL-BASED SYSTEMS 21

tion specific operating systems [62, 75].

First-Generation Microkernels

First-generation microkernels failed to fulfill the promise for better strudtared
more flexible systems. The most prominent kernel is Mach [2] and it previde
a good example of the problems of first-generation microkernels. Machderas
signed to exploit modern hardware features such as multiprocessdrgnable
new application domains. At the same time, Mach was supposed to provide back
ward compatibility to existing operating systems such as UNIX [93]. As a result,
Mach was constructed by refactoring a UNIX kernel and introducing kernel
interfaces. The UNIX functionality was moved to application servers.

Mach lead to a number of important innovations, such as user-level pager
[123], with the result of a tremendous growth of the API surface aréaaanin-
crease of kernel complexity and size. The primary problem of Machehernwas
its opulent and extremely slow IPC mechanism that resulted in severerparfoe
problems for systems constructed on Mach.

Second Generation Microkernels

Second generation microkernels addressed the above problems withl raslic
designs. Liedtke [71] identified poor structuring and high cache fodtpfidach’s
IPC primitive as the main performance problems. By careful design of thee co
munication mechanism, second generation microkernels such as L4 [#§; Ex
ernef [34, 62], and EROS [98] exhibited the envisaged properties with superio
performance to other extension methods.

The fundamental design principles for most second generation miced&ern
are:

e The kernel provides aninimal set of abstractionsthreadsand address
spaces

e The kernel provides minimal set of mechanisnirs order to multiplex hard-
ware in a safe and secure manner. The key primitive is inter-process commu
nication which enables extensibility of the system via interacting user-level
servers [73].

e The kernel should beolicy free The policies should be provided by the
system servers using the kernel mechanisms.

SExokernels differ from microkernels insofar that exokernels avagihevel abstractions but
directly multiplex the hardware. 1 still discuss them with microkernels becaweny goals are very
similar.

4More general, each microkernel needs at least one abstractioxefzution (or an activity) and
one abstraction for a protection domain to permanently bind resources.

22

CHAPTER 3. RELATED WORK

Based on these design principles a number of microkernels were dedelope
that yielded excellent performance for both system software and ppkcations.
Hartig et al. [54] showed that L4 not only has excellent IPC performbutalso
incurs a minimal overhead when running a monolithic operating system (Larux)
top of the microkernel. The reported overhead for macrobenchmarkbetareen
5 to 10 percent compared to monolithic Linux. Still, microbenchmarks showed
overheads of a factor of three for short-running system calls. | altebgues [110]
further reduced the microkernel-induced communication overhead ffaota of
three to about thirty percent.

3.4.2 Multiprocessor Microkernels

One aspect of previous research in the area of microkernels is multgsrceys-
tems. The reduced complexity of microkernels as compared to monolithic systems
makes them a feasible system architecture.

The Hydra kernel [122] was designed with the goal of separating merha
and policy and thereby provides an exploration testbed for multiprocegstenss.

Mach targets large-scale multiprocessor systems and provides lightweight
threading in order to utilize the parallelism offered by the hardware [203- B
ing a first-generation microkernel, Mach employs a traditional scalabilityceair
comparable to many monolithic multiprocessor OS’s. The in-kernel subsystems
were optimized on a case-by-case basis [64] by first identifying andrémaving
scalability bottlenecks. However, Mach still exhibited its poor IPC perfoaean

The Raven microkernel [94] specifically targets multiprocessor systems with
a focus on minimizing the overhead for kernel invocations. Raven prsvider-
level scheduling with a kernel-based callback (similar to scheduler actig{td),
user-level interrupt handling, user-level interprocess communica#iod, user-
level synchronization primitives. While moving significant system parts to ap-
plication level, Raven uses a number of global data structures, thus limiting its
scalability. For example, the memory pool is protected by a global lock and ac-
cesses to task objects are serialized.

Chen [27] extended the uniprocessor Exokernel system to multiparcess
tems. The fundamental idea of Exokernel is to expose the hardwarerpesp
directly to application level thus avoiding the overhead introduced by higt-le
OS abstractions. The OS itself is implemented as a library at application level.
The multiprocessor Exokernel uses a variety of alternative synclatimizstrate-
gies. Similar to my approach described in this thesis, Exokernel localizeslker
resources and uses in-kernel messaging to manipulate remote resbloweser,
the choice for synchronization primitives is ad-hoc and static. The spéeific
nel implementation dictates the synchronization granularity and may result in high
overheads. This is, for example, reflected in the memory subsystem, tigere
reported cost for memory mappings is three times higher than on the unipooces
version of the kernel. Furthermore, the overhead for the kernel'spif@itive
(even for uniprocessor systems) is almost an order of magnitude moeesx@

3.4. MICROKERNEL-BASED SYSTEMS 23

than L4.

The most prominent work in the area of scalable microkernel systems is Tor-
nado [41] and its successor K42 [8]. K42 is a microkernel-basedraytstat em-
ploys many of the previously described techniques for scalability, includiad-r
copy update, clustered objects, and lock-free synchronization. &dlaswell to
a large number of processors, provides a Linux-compatible API, arsgtsd_inux
components in the kernel [9]. K42 differs from my approach insofakK42 blurs
the line between kernel and application level and allows the kernel to bedede
in order to overcome performance bottlenecks. For example, K42 allawofo
location of device drivers if performance requires. K42's underlyimigrokernel
provides access to kernel-internal data structures via a wide kererintsrface
(e.g., for scheduling information). K42 also achieves adaptability of sypmita-
tion mechanisms, however, via runtime code replacement and with the limitations
of the fault-based scheme described in Section 3.1.2.

L4

Besides the work presented in this thesis, there are at least two other Lakericr
nel variants that support multiprocessor systems. Liedtke [70] brieftysées the
implications of multiprocessor support and argues that locking will haverafsig
icant performance impact on all critical system operations including le@s et
al. [91] realized a multiprocessor version of L4 on the Alpha architectuttetive
primary focus on the performance of the local-case IPC. All inter-msmeopera-
tions use message-based synchronization schemes. The kernelehaoes not
support kernel memory pool management and also lacks a TLB colyerelmeme.
Hohmuth [58] describes Fiasco, an L4 kernel that focuses on real-tiopep
ties via non-blocking synchronization. Fiasco uses a locking-with-hegghgme
in order to minimize thread blocking time in real-time systems. If thik#&des to
acquire a lock that is held by a preempted thrBad donates its time t®. After
the lock is released immediately switches back #. Fiasco’s helping scheme is
also used across processor boundaries. The approach, hpiweyerstionable for
larger multiprocessor systems for the following reasons:
Helping may lead to temporary migration of threads between processors. The
overhead induced by the required cache migrations (in particular the aciiking
set of the thread’s kernel stack) is significant. Even small kernebtipes require
multiple cache lines to be migrated. The probability for a hot cache working set
of a preempted thread in L4 is extremely high due to the very short execution
time of kernel operations. Furthermore, the dynamic migration effectivglyires
all kernel objects to be protected with atomic lock operations. Hohmuth regorts
increase in cost for thieernel thread loclon multiprocessor systems of 209 percent
for a Pentium 4. The reported overhead for the lock-with-helping prim{tivat
is acquired on the critical path) fsur times highethan a complete IPC operation
in L4Ka::Pistachio. The work does not discuss scalability aspects, sudrrel
memory management, scheduling, TLB coherency, or the implications of helping

24

CHAPTER 3. RELATED WORK

on overall scalability.

Hohmuth argues that a helping scheme is more general, because it is not limited
to microkernels, where operations are in most cases very short. My spedf-
ically targetsmicrokernels and the trade-off of generality vs. performance clearly
favors performance. My goal is to achieve maximal performance ardbslis
without requiring extensibility of the kernel. The base-line is thereby theranip
cessor version of L4Ka::Pistachio with its unrivaled IPC performance onsdlatio
existing hardware platforms.

Chapter 4

Microkernel Performance
Adaptation

In this chapter | present an approach for controlling and adjustingesaince-
and scalability-relevant parameters of multiprocessor systems. My apprea
based on efficient tracking of parallelism and dynamic adaptation of multiproce
sor synchronization mechanisms (i.e., locks). My goal was to develop af set
general mechanisms that lead to a system construction methodology with eicelle
scalability properties and low overhead while preserving strict orthogoreaiitly
isolation between independent subsystems.

The mechanisms and methodologies target microkernels, component-based
systems, and virtual machines on small and large scale multiprocessor systems
with up to about one hundred processors. Some mechanisms are usabid be
this specific domain. The dynamic locking scheme | developed can serve as a
drop-in replacement for standard spin locks and clustered locks. Muegsor
tracking scheme is a drop-in replacement for processor sets as wigelynuscal-
able UNIX variants.

This chapter is organized as follows: Section 4.1 defines the problem that my
approach intends to solve, states the general scalability and perforgmalseand
narrows the target hardware architecture. Afterward, | derivé afsequirements
to achieve the performance goals, which | will discuss in the remaining seaifon
this chapter. In Section 4.2, | describe a mechanism to efficiently trackesiritt
resource usage to a subset of processors. Section 4.3 then cornhgameer-
head of kernel synchronization mechanisms and | propose a scherred| ot
for safe runtime adaptation depending on the most efficient algorithm. Sdction
describes a TLB coherency tracking scheme that decouples permigsiates
from TLB shoot-downs thereby reducing TLB coherency overhewbminimiz-
ing inter-processor dependencies. Finally, Section 4.5 describesesigenent
logging mechanism that enables user-level components to efficiently monitor an
evaluate events across component boundaries.

26

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

4.1 Overview

The design guidelines for scalable operating systems, as defined by [1A:3]
(preserving parallelism, bounded overhead, processor locality), peaf@mance

and overhead aspects of multiprocessor algorithms unaddressedjuasd aefore,

by strictly following these three guidelines, a system is still considered dealab
even if the overhead is multiple orders of magnitude higher than the achievable
minimum.

Minimal overhead and maximum performance for a particular algorithm de-
pends on a variety of parameters, most importantly the degree of parallelsm a
concurrency and the (memory) interconnect between the involvedgsose The
decision for one or the other alternative depends on the specifics of/stes
(both, software and hardware), access pattern, access frggamemcso on. It is
possible to optimize on a case-by-case basis when incorposingntic knowl-
edgeon resource usage. In operating systems, such semantic knowledgd-is av
able for many high-level abstractions, such as the degree of sharmdjlef the
number of threads in an address space, physical memory that backea aed
therefore is reallocated infrequently, and many others.

In microkernel systems such high-level system abstractions are implemented
as user-level services. Hence, detailed semantic knowledge is nobéwadahe
microkernel itself. Instead it operates on the bare hardware resoumemory,
time, and the processor resources (e.g., caches and TLB). Thesecessare all
treated identically, independent of the specific usage case. The lack détailed
high-level information either leads to an overly conservative design twtr$
scalability over performance, or a well-performing but less scalable raysts-
troducing more semantic knowledge via high-level abstractions, howsdefeats
the minimality principles of microkernels.

From that starting point | define the following primary design goals:

e The overhead for kernel operations in a multiprocessor has to reflect th
degree of parallelism and concurrency. Semantic knowledge abauirces
usage that is available at tlplication levelneeds to be considered at the
kernel level

e The microkernel abstractions and mechanisms should remain minimal with
a strict focus on orthogonality and independence. The microkernel it-
self should not be extended by multiprocessor-spepibiiciesin order to
achieve better scalability or less overhead. Instead, the kernel mugigro
mechanims such that applications can adjust and fine tune the kernel's be-
havior.

e All optimizations and adaptations must be safe and enforce protection and
isolation.

4.1. OVERVIEW 27

Furthermore, | define a set of secondary design goals:

e A scalable OS design has to honor Unrau’s design principles: pregarve
allelism, bounded overhead, and memory locality in NUMA systems. That
requirement is for the microkernel and also for OS components at appticatio
level.

e The design must be efficient on a variety of multiprocessor systems, from
small-scale shared memory to large-scale NUMA architectures. The sup-
ported number of processors must be independent of architectecfisg,
such as the number of bits per register.

e The architecture should target contemporary hardware with high memory
access latencies, high cache-coherency overhead for NUMA coatfigys,
and potentially long IPI latencies. My specific target hardware architctur
is IA-32.

e The performance baseline is the uniprocessor kernel. Operationsr¢hat a
restricted to a single processor should have the same overhead asitbeixec
on a single processor system.

Approach

The separation of operating system functionality into isolated componetristes
information availability and information flow and thus limits microkernel-based
systems in their optimization potential. Figure 4.1 gives a schematic comparison
of information flow in a monolithic OS versus a microkernel-based system. To
achieve the same flexibility and optimization potential for the microkernel-based
system requiresi) an efficient information flow between the kernel and compo-
nents, andi{) mechanisms to control and adjust a system’s behavior.

While these are general requirements, | will now narrow them to the specific
problem domain of multiprocessor systems and scalability. In order to achieve
optimal performance, the kernel has to adapt alternative synchromizitategies
and synchronization granularity. They depend ondibgree of parallelisnthefre-
guency of operationgnd thegranularity at which individual objects are modified.
The information has to be provided to the kernel by applications and OS compo
nents and furthermore need to reflect in the kernel’s algorithms and dattusés.

By breaking high-level semantic information on resources down to a ggtraric
attributes, it is possible to provide those to the kernel in a unified manner.

| developed the following four mechanisms to counteract the limitations that
are inherent to the microkernel's system structure:

Tracking of parallelism. Applications can explicitly specify the expected paral-
lelism for a kernel object and the kernel keeps track of it. Based orirthat
formation, the kernel can make an informed decision on the synchronization

28

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

App || App || App || App App || App || App || App
oS oS
corggone component
Operating system Microkernel
Hardware Hardware
(a) Monolithic system (b) Microkernel system

Figure 4.1: Schematic comparison of information flow in (a) monolithic systems
and (b) microkernel-based systems. In a monolithic system all informatiomris co
bined in a single system image. A microkernel-based system requires nguban
to control and adapt the behavior of components and mechanisms fardftion-

trol flow.

strategy. Explicit specification overcomes the lack of semantic information
about parallelism of kernel resources.

| developed a fixed-size data structure that enables efficient trackivey-o
allelism and locality for every kernel object and forms the basis for agapti
locking.

Adaptive locking. The usage pattern of resources may change over time. Appli-
cations need to be able to readjust the system’s behavior and need to adapt
the synchronization scheme, such as lock granularity and the synconiz
tion primitive.

TLB coherency tracking. Memory is a primary resource that is managed by the
microkernel and is the basis for isolation of components. Memory permis-
sions are stored in page tables and cached in the processor’'s TLBréfte
vocation of memory permissions, the kernel has to enforce TLB cohgrenc
which is an expensive operation. By combining multiple TLB updates into
one when manipulating a set of page table entries, the shoot-down oderhea
can be reduced. However, the combined update has similar negative im-
plications on parallelism as critical section fusing. | developed a tracking
algorithm that decouples permission updates and TLB shoot-downsI-The a
gorithm uses a TLB version that allows for combining multiple TLB shoot-
downs in one. The inter-dependencies between processors is elimiyated b
bypassing outstanding shoot-downs.

Event tracing. Feedback-based policies incorporate runtime information that is

4.2. TRACKING PARALLELISM 29

derived from monitoring system behavior. In multiprocessor systems, many
resource allocation policies — including thread balancing and memory poo-
ling — are based on monitoring the system’s behavior and predicting the
future. In a component-based system, the information is distributed and thus
unavailable to schedulers. Event tracing provides an efficient mechanis
monitor and transfer relevant data between the kernel and components but
also across components.

Having relevant kernel information at hand, avoids the necessity otintro

ing multiprocessor kernel policies and leaves such decisions to applications
A prerequisite of such an approach is minimal overhead for data collection,
transport, and evaluation.

In the following sections | describe these four mechanisms in detail.

4.2 Tracking Parallelism

Multiprocessor optimizations depend on specific knowledge oflidggee of par-
allelismon data structures and theeality of operations. Based on both properties,
the operating system and applications can select the most suitable (e.gpebest
forming) algorithm for a specific task. In monolithic systems, in many cases it is
either possible to derive or imply the degree of parallelism from the syste: str
ture. For example, it is unlikely that the data structure representing a filehugh
opened by a single-threaded application, will experience high contentiorahy
processors; the most likely processor that accesses the data stischagdrome
processor of the thread. In this example, the relevant information is eddod
directly by () the locality of the thread(s) and) the number of threads that may
manipulate the file.

If such indirect knowledge on parallelism and locality is unavailable it can
alternatively be explicitly expressed withhitmap Each bit in the bitmap denotes
one processor in the system. The degree of parallelism is encoded byrntiten
of bits set and locality is expressed by the specific bit position. This engodin
scheme is efficient and accurate, howeitetpes not scaleThe size of the bitmap
grows linearly with the number of processors in the system. For kernettsbje
(e.g., the previously mentioned file structure) that contain a processor bitheap
memory footprint and cache footprint depends on the number of prarsessthe
system. Also the runtime overhead for deriving the number of bits set depen
the size of the bitmap and thus the total number of processors. Both preiieetie
unbounded size and unbounded runtime) violate Unrau’s scalability ezqeirt of
bounded overhead.

Tracking processor affinity and processor permissions requiredfiaierd,
fixed size encoding. Processor sets (as used by many UNIX kerodg) the
space problem by a level of indirection; the bitmap is replaced by a pointer to the
bitmap. However, such an indirection scheme not only increases the runtéme o

30

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

head but has also the disadvantage that it is non-trivial to derive wimthet the
bitmap is still referenced.

| developed an encoding scheme that has both desired propertiesaifiked
size and is independent of the number of processors. Similar to floating poin
encoding, | trade accuracy for space. The trade-off limits the freddarombine
arbitrary processors in the mask, which is no limiting factor in the common céses o
resource allocations for the following reasons. Non-uniform memorgasas the
cost for remote accesses. Awgll designedystem should therefore decrease the
frequency of accesses to remote resources with increasing cost. Bheanomon
and relevant approaches for reducing the remote access frequengy ta ex-
plicitly favor local over remote resources (and reallocate resourcesignation),

(if) minimize resources that are shared across many processors (e.gplibg-r
tion), and {ii) co-locate tasks that have a high degree of sharing on neighboring
processors.

In order to minimize overheads, a well-designed operating system for mdltipro
cessor architectures will therefore try to minimize the degree of sharinysigal
resources with increasing access costs. One can conclude thatystetns will
preferably limit resource sharing to nearby processors, that is ggorewith low
access latencies to the same memory.

4.2.1 Processor Clusters

The specific resource access costs depend on the memory intercamhéstphys-
ical limitations. Shared bus interconnect do not scale due to bandwidth limitations
while point-to-point connections do not scale because of the quadratibaruof
interconnects between processors. The commonly used topologiegssiigper-
cubes [55, 56] and fat trees [67], trade performance againstvaaedcomplexity
and have only very few neighboring processors. The specific nuddpEnds on
a variety of hardware factors. For example, most NUMA systems combiew a f
processors via a shared memory bus which then connects via a memonmtooute
other processors. In multi-core and multi-threaded systems, processwesone
memory subsystem and in some cases processors even share the sese cac
Based on the limits of the memory subsystems one can conclude thayin
well-designednultiprocessor system:

1. most resources will be accessed by only a very small subset iz,

2. the processors that share the resources will be located relativedytoleach
other.

Based on that observation, | developed an encoding scheme that hetiids
scalability problems stated before. | use an encoding scheme that is spigcific
tailored towards the common scenario of neighboring processors. Fgsiup
processors in clusters of neighboring processors. The clusteceastucted by
considering the access latencies to shared resources. Each prdwests unique

4.2. TRACKING PARALLELISM 31

001! 213! 4! 56, 7,8 9! A B C D E F

|1515 1002 102 210400 O 0 {JOrdero,lcPUperbh

2011} 1] 1] 0} o} 0| Order1 2CPUspert

| 1 1 1 0 | Order 2, 4 CPUs per t

| 1 ; 1 | Order 3, 8 CPUS per t

Figure 4.2: Cluster-mask encoding for different cluster orders. @hegpte values
show the reduction of accuracy with increasing order.

numerical ID in the system. | assign the IDs in a way that neighboring psoces
have neighboring IDs. The organization of the memory interconnect ntakes
ordering process straight forward: first sort processors ofdheescore, then same
node, and so on.

Similar to the normal bitmap encoding, where one processor is expressed by
one bit, | encodene clustemper bit. The scheme can be applied recursively result-
ing in a cluster hierarchy. Multiple clusters are then covered by a single bé&. T
number of processors per bit is encoded indluster orderfield as a power of two.

Obviously, when grouping state about multiple processors into a single bit, the
encoding looses on accuracy. Figure 4.2 shows an example encodinyates-
sor set with different cluster orders. The example has alternativedemgofor a
bitmap covering 16 processors. Starting with a cluster order of 0, eaclegsor
has an individually assigned bit. The encoding is accurate and reqgimesiay
bits as processors. For the cluster order of 1, 2 processors aésehger bit. The
encoding requires half the number of bits but also reduces accurdgy pgrcent.
While in the initial encoding the bitmap selects 8 processors, the order liagcod
is less accurate and selects 10 processors (respectively, 12 qmscts order 2
and 16 processors for order 3).

4.2.2 Processor Cluster Mask

Processor clustering reduces the number of bits required to coverearlangber
of processors at the cost of accuracy. As argued before, fiorpegnce reasons
many operations on resources are restricted to only a subset of the 'systeces-
sors. The specific processors depend on the resource accessTdwsdescribed
assignment of processor IDs for physically neighboring procesawesably en-
codes them in neighboring bits in the bitmap.

Instead of encodingll processors in the bitmap, | restrict the bitmap to cover
a subset of the processors only. The subset of processor IDseddeshby a start
ID (or offset) and the cluster order. The number of bits in the bitmap give the

32 CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

Offset Order Bitmap
N A N— _J
Y Y g
8/16 bit 8/16 bit 16/32 bit

Figure 4.3: Cluster mask encoding for 32 and 64 bit systems (left for 3@ddit,
for 64 bit). The structure size is identical to natural word width of the pssce

upper bound of the subset. For example, a bitmap with 16 bits and an ordler of
covers a total of 1621 = 32 neighboringprocessors. In comparison, the same-size
bitmap but with an order of 5 covers 18° = 512 neighboring processors. The
start processor ID enablesaifsetthe covered range of the bitmap. The processor
IDs that are covered by a bitmap wittbits are in the interval2°™@e". offset, 20rder.
(offset+ b))t

The cluster bitmap can encode very large numbers of processors inda fixe
size data structure. For the binary representation | defined the followingfs
requirements:

1. The data structure must have a size that is identical to the procesabr's n
ural register width, such that it can be efficiently stored, efficiently gss
around (i.e., from application to kernel in a register), and used with atomic
operations (such as compare-exchange).

2. Testing for a processor must have very low overhead, becaokeopera-
tions are in many cases performance critical.

3. The data structure has to provide identical accuracglfgrocessors in the
system (i.e., there should be no penalty for processors with a particylar ID

4. The runtime overhead of operations on the data structure (e.g., loeistip,
or merge) must be bounded independent of the number of procesdbes in
system.

These four goals are fulfilled by the data structure depicted in Figure 4.3. |
contains three partsj)(a bitmap for encoding individual processors) & field
that denotes the processor order, aiiigl &n offset field that specifies the starting
processor ID of the bitmap.

A processomp in a system with a maximum Qimnax = 2K (k € Np) processors
is selected by the cluster mask= (bitmap order, offset), if f(m, p) > 0 with

f(m, p) = bitmap mod HLP+Pma)/ 27 -offset mod | prax/2]

INote that the interval ignores wrap-arounds.

4.3. KERNEL SYNCHRONIZATION 33

The equation expresses a bit test using the cluster encoding of Figurd 4.2
can be efficiently implemented via simple rotate and logical bit operations.

Furthermore, | define a set of operations for the cluster mask, most impor-
tantly themergeoperation for two cluster masks. Merge is similar to a logical OR
operation insofar that it combines the bits of two bitmaps into a new bitmap. Addi-
tionally, it adjusts the order and offset such that all previously spegifiecessors
are still selected by the new mask. The cluster maskhat is merged fronmy
andnmy must hold the conditiotvi € (0,1,...,n—1) : f(m,i)+ f(mp,i) > 0=
f(m,i) > 0. For cluster masks that have identical orders and offsets, the merge
operation is a simple logical OR operation of both bitmaps.

The number of processors specified by the cluster mask is the number of se
bits in the bitmap multiplied by 29€". Furthermore, the order field serves as an
indicator for optimizing the locking strategy. A higher value for the ordeioers
more processors (thus a higher probability for contention) and alsotjatever-
head and unfairness in the memory subsystem. The next section coversphis
in more detail.

4.3 Kernel Synchronization

The kernel uses synchronizationdnsure consistenayf data in the kernel and to
order operations The two primary synchronization schemes available in shared-
memory multiprocessors are memory-based locks (and atomic operatioriga} and
kernel messages. Both schemes have advantages and disadvamdafeseais no
single optimal solution.

| propose to provide multiple alternative synchronization schemes for the sa
data structures. Applications can then choose the optimal strategy batiegiron
specific local knowledge on access and usage patterns. The deffieseiom of
the locking strategy is thieck primitive(i.e., memory- or message-based) and the
locking granularity for divisible kernel objects. In case of no parallelism, the lock
primitive is unnecessary and only induces runtime overhead and additiaciad
footprint and could be disabled altogether.

The cluster mask described in 4.2.2 enables the kernel to efficiently stbre an
evaluate the degree of parallelism on a per kernel-object basis. By tpggah
kernel object with such a mask, applications have detailed control overstu
synchronization primitives for each individual object. Processorsateaspecified
in the cluster mask can manipulate kernel objects directly using memory-based
synchronization; all other processors need to use message-basbdosyzation.
The cluster mask provides the required information for an informed decision
alsoenforceghat only those processors specified in the mask have direct memory
access to the object. For a mask that specifies a single processor thenhoitike
can be safelylisabled

In this section | first discuss the performance trade-offs of the alteensyin-
chronization schemes. The better-performing scheme thereby depetits spe-

34

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

cific access pattern. The choice for one of three synchronizatiomsshe—
coarse-grain locking, fine-grain locking and kernel messages — hias tade
on a case-hy-case basis and may change over time. A static selection become
suboptimal when locking pattern and parallelism significantly changes over time

| propose a synchronization scheme that eliminates this deficiency by incor-
porating the additional knowledge provided via the processor cluster. iésn
the cluster mask changes, the kermadjuststhe synchronization primitive between
normal locks and message-based primitives. A problem of this approdbhtis
updates to the mask are not propagated instantaneously to all releveesgs.
Thus, during a transition period some processors may use the previoiles piin-
ers the new synchronization primitive.

However, incorrect (or inconsistent) synchronization could lead toatatap-
tion in the kernel and erroneous behavior. | describe a new locking pramiti
dynamic locks— that can be safely adjusted at runtime and guarantees correctness
during the transition period from one locking scheme to another. Dynamis lock
can be enabled and disabled at runtime and allow the kernel to dynamically elim-
inate locking overhead for unshared resources. Built upon the basiiye of
dynamic locks | develop a scheme that cascades multiple dynamic locks irt@rder
dynamically and safely adjust theck granularityaddressing the cost—concurrency
trade-off.

4.3.1 Trade-offs

The performance trade-off for in-kernel synchronization is basethee param-
eters: () ratio of local vs. remote accesdi,)(the overhead of the lock primitive,
and (ii) the degree of concurrency. Based on these parameters, one dhéne o
synchronization method is more efficient.

Message-based synchronizationln message-based synchronization a datum has
an associated home processor. Only the home processor can manipulate the
datum, thereby achieving mutual exclusion and strict ordering. Message-
based synchronization incurs no overhead for manipulations on the home
processor, however, a significantly higher overhead for accdésmmsre-
mote processors. Hence, the overall cost depends on the frafgdigie
constituting remote operations of the overall operations, with the total syn-
chronization costiotal = fremote tmessage

The overhead for message-based synchronization can be dividethénto
cost for message setup and signaling cost, the delivery latency of the mes-
sage, and the overhead for processing. Signaling cost may requiiteean
processor interrupt that induces cost on the sender side and alse o th
ceiver side (for the interruption itself and interrupt acknowledgment en th
hardware).

After sending a message, the sender can either actively wait for completion
or block and invoke the scheduler. In the latter case the latency of thallover

4.3. KERNEL SYNCHRONIZATION

35

operation increases, but the initiator of the message does not busyntiiait u

the message gets delivered to the remote processor. Busy-waiting adds the
message delivery latency to the overall cost of the operation. Whenimyok

the scheduler, the processor is freed for other tasks that can heecedile

the in-kernel message is in transit. However, the context switch may induce a
performance penalty later on for replacements of the preempted taskis acti
cache working set (memory and TLB).

Lock-based synchronization. Locks provide mutual exclusion based on memory
ordering that is enforced in the memory subsystem. The overall ovefbead
locks can be divided into the cost for the lock operation (instruction execu
tion and cache footprintyck, and the wait timéy,it Wwhen the lock is already
taken. The average lock wait time depends on the number of competing pro-
cessorp and the average lock holding timigiq and istwait = thoid: (P—1)/2.

The cache coherency updates additionally induce indirect costs in the mem-
ory subsystem.

More sophisticated synchronization primitives, such as semaphoresg-can
lease the processor to other runnable tasks. Such primitives, hoasyer,
most cases too heavyweight for the short critical section of microkeanels
the overhead outweighs the potential benefits.

The choice between one or the other synchronization scheme depettts on
specifics of the workload. Following, | compare the costs and derivecisida
metric. The metric is based on the previous simplistic cost analysis. Hence, it
leaves many aspects of algorithms and hardware unaddressed, hatieauffi-
cient to reflect the general performance and overhead tendencies.

Message-based synchronizatioriavors local operations over remote. It elimi-
nates the locking overhead in the local case. Hence, message-based sy
chronization has a lower overhead if the overall cost for locks (foidbal
and the remote case) is higher than the cost for sending and processing th
message including all additional costs (e.g., interrupt handling, interrupting
processing on the remote processor, etc.). Message-based s\nation
is therefore preferable for infrequent remote operations or when muléple
mote operations can be combined in a single remote request for minimizing
the startup overhead.

Lock-based synchronization yields better overall performance compared to mes-
sage-based synchronization, if the cost for locks on processalrdata is
less than the message overhead from remote processors.

Another performance aspect is the lock granularitydieisible objects. De-
pending on the degree of concurrency, the lock overhead, the nurintmmr-0
currently manipulated parts, and the overall lock holding time, either coarse
or fine grain locks may result in better overall performance.

36

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

Instruction | Opteron 1.6GHZ P3, 800MHz| P4 Prescott 2.8GHz

xchg 16 cycles 19 cycles 121 cycles
lock cmpxchg 18 cycles 26 cycles 139 cycles
lock decb 18 cycles 22 cycles 131 cycles

Table 4.1: Cost for atomic instructions for different IA-32 processors

Let’s consider an object that can be divided intondependent parts (e.g.,
a hash table). The runtime overhead for a lock acquisitidgdsand the
lock hold time isthoig. The average wait time fqu competing processors is
twait = (P—1)/2-thoig- The total synchronization overheggly to modify
m out of n parts withp processors evenly competing for all partsiig) =
twait/N+M-tiock = (P—1)/(2N) - thoid + M- tioek

The following two common cases are of particular relevance:

e Noorlow concurrencyFor p= 1 the overall cost iota = M-tiock. The
synchronization overhead depends on the number of modifiedrparts
m can be reduced by decreasing the granularity (i.e., by using coarse-
grain locks).

e High concurrency¥or p>> 1 the overall cost is dominated by the wait
time tiora = (P—1)/(2n) - thoig- It can be reduced via fine granular
locking (i.e., increasing) or by reducing the lock holding time.

Please note that this analysis is very simplistic. In particular it does not in-
clude cache effects, such as multiple acquisitions of the same lock, or the
additional overhead induced by cache coherency overhead in NUMA s
tems. It also assumes an equal distribution of lock acquisitions between all
locks.

For today’s architectures the cost fpfx is increasingly high and for short
critical sections even more expensive than the actual operation thatéstea by
the lock. Table 4.1 compares tih@inimal overhead for atomic instructions on a
variety of IA-32 processors.

The fundamental idea is to use the available application-specific knowledge
on the degree of concurrency and access pattern (local or remate)dapt the
kernel's synchronization mechanisms. The adjustable parameters axethean
of the lock primitivet,,cx and the lock granularity. The lock primitive can be
adjusted in two ways. First, it can be eliminated by switching from lock-based
synchronization to message based synchronization. Message-lyasbdogiza-
tion has a lower runtime overhead f@emote tmessage< tiock.> Alternatively, the
locking scheme can be adapted, for example by switching from spin lock€® M
locks as proposed by Lim [76].

2Note that the inequality does not address the implication of higher latenciegeoall perfor-
mance.

4.3. KERNEL SYNCHRONIZATION

37

—

Send
message

Acquire
lock

Manipulate
object

A
Release
lock

(End)<

Figure 4.4: Flow chart of dynamic kernel synchronization. If the atrpgoces-
sor is not specified in the cluster mask, the algorithm can either use anniatker
messaging scheme or fail (not shown).

Adjustment of the synchronization scheme is based on explicit application
feedback. As opposed to applications, the kernel cannot trust gulicaton
claims of non-existing parallelism but needs to enforce correctnessveémn -
source access the kernel explicitly validates correctness. Figure gigtsdthe
general control flow for adaptive in-kernel synchronization. kémbjects are
tagged with a cluster mask. If a processor is not specified in the mask, jéwt ob
can not be manipulated directly but requires a message to a remote protfesso
application specifies an incorrect cluster mask for a kernel object, leaton
either pays a performance penalty or the operation fails altogether. Im eitbe
the application is unable to corrupt the internal kernel state.

When changing the synchronization scheme (e.g., between lock-baded an
message-based), the kernel has to guarantee correctness duriransit@n pe-
riod. Switching between synchronization primitives takes place in two stages.
First, the new synchronization primitive is enabled while the previous remains a
tive. Second, the previous primitive is deactivated, but only after it ictrally
guaranteed that the new scheme is honored by all processors.

4.3.2 Dynamic Lock Primitive

In order to accomplish dynamic adaptability, | extend the memory-based lmak pr
itives by anenable stateThe enable state denotes whether or not the lock primitive
is active. In disabled state, the lock operation (e.g., an atomic operatiort)ég-no
ecuted thus incurring no (or only marginal) overhead.

38

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

One problem is that switching between enabled and disabled states has-a tran
tion period, where processors of a multiprocessor system have arsisigor view
on the enabled-state of the lock primitive. Until the transition period is completed,
the kernel must preserve tbé semanti®of the synchronization primitive.

When a lock is to become disabled, the lock primitive must remain active until
no processors try to acquire the lock. Similarly, when a lock is to becoméezhab
for a critical section that was dedicated to a single processor befomthaopro-
cessor can enter the critical section until the previous owner is aware ofetlr
lock semantic.

For common kernel lock primitives it is impossible to derive whether remote
processors actively try to acquire the lock. For example, spin locks are-imp
mented via a shared memory location. A processor acquires the lock by dtgmica
replacing the memory content with the value that denotes a locked state. If the
previously stored value was locked, the processor retries the operétiznnot
possible to directly derive when an update of the lock state will have patpdg
to all processors. A time-based scheme — disable the lock anckwailes — is
unfeasible, because it is not possible to prerideEven by adopting the spin loop
such that it explicitly checks for a state change, it is not possible to predinbinye
access latencies in large multiprocessor systems. Furthermore, hardecina-
nisms, such as IA-32’s system management mode, eliminate any predictability.

Read-copy update successfully addresses the same problem with its epoc
scheme [80]. RCU passes a token between the processors; passiokethen-
sures that the processor executesfBecode path (within the kernel) that is guar-
anteed to hold no data references. Obviously, the RCU token thus alsantpes
that a processor is not actively trying to acquire a lock. Hence, a fuliderip of
the token guarantees that all outstanding lock attempts have completed aaldl that
processors are aware of the update of the lock primitive.

RCU delays the destruction of data objects as long as references may still be
held. Freed objects are explicitly tracked in a separate list; the list is pextass
expiration of an RCU epoch. Such explicit tracking is unfeasible for latlesto
the required memory footprint and also because locks are in most caseddadb
in objects and those may get released.

Instead of externally tracking outstanding lock state updates, | integrate the
state updates with the lock primitive. This scheme eliminates the need for ex-
plicit tracking and the existence problem of the object the lock is embedded in.
Furthermore, only those locks that are actively used get modified. Eacndy
lock carries an RCU epoch counter that denotes when the state switch.i baf
lock code tests whether the lock is in a transition period. If the stored RCthepo
counter denotes that the epoch expired, the locking code finalizes thesitatie.

In addition to theenabledanddisabledstate, the lock has two intermediate states:

3System management mode is activated by a non-maskable interruptprddessor enters a
special system mode that is not under control of the operating systéma.cdde is provided by
the platform vendor and loaded at system boot time. There are no tirmel®othatsoever and the
platform vendor only guarantees that the system gets reactivated atsomn.

4.3. KERNEL SYNCHRONIZATION 39

enable
(local processor

RCU epoch
exceeded

disabled

enable
(remote

RCU epoch
processor)

exceeded

Figure 4.5: State diagram for promotion and demotion of spin locks

CPUC

CPUD

enabled : demoting ' disabled

Figure 4.6: Delayed lock demotion based on RCU epoch. After disabling tke lo
it has to remain active for one complete RCU epoch to ensure no more olrtgfand
lock attempts by other processors.

promotinganddemoting(see Figure 4.5). Only when the lock is in the disabled
state, can the locking code be skipped safely.

Figure 4.6 depicts the transition from an enabled to a disabled lock state includ-
ing the required transition period for the RCU epoch. When enabling aldiab
lock | distinguish two cases: If the lock is disabled because the proteciect b
only accessible from its home processor, the algorithm must ensure tipaotees-
sor is not within the critical section. If the lock is promoted on the home process
itself, it is sufficient to change the lock’s state from disabled to enabledRgge
ure 4.7b). However, when another processor initiates the lock promttieigck
cannot be taken until completion of a complete RCU epoch cycle (see Figiae 4

The additional functionality induces a higher overhead on the lock primitive
as the lock has a higher cache footprint to encode the lock state and R, ep
and also a higher execution overhead for the additional checks. @mainanize
the overhead by carefully locating the state and RCU epoch data and lgyaimsin
efficient data encoding of the lock state.

The lock state is accessed on each lock acquisition and is thus performance

40

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

1

© 00 N O o0 WN

o g
CPUA crual | wf
cPUB crus | [[N

cruc| [1] H cruc| [N
crup | [T H crup | [[

> L >

: time : time
disabled promoting i enabled disabled ; enabled

(a) Remote (b) Local

Figure 4.7: Lock promotion for a disabled lock from (a) a remote processb(b)

a local processor. The lock is restricted to CRUWhen CPUB enables the lock
(a), it cannot be taken until after at least one RCU epoch ifihe lock promotion
therefore requires two RCU epochsBiy When the lock is directly enabled on
CPUA the lock can be immediately enabled because érdguld potentially hold
the lock (which it does not).

critical. The cache footprint for the state is a few bits that are mostly read and
only modified when the state of the lock changes. Co-locating those bits with
other accessed read-only data minimizes the cache footprint and oyethedo
cache-coherency updates. Testing the state can be used to prefetctiatéh The
RCU epoch counter is only accessed during the state transition periodsuarid th
general is less performance critical.

The four states can be efficiently encoded in two bits. The encoding sheuld
optimized for the two performance critical cases, that is when the lockdisdled
or enabledstate. | specifically chose a zero value for the disabled state, since in all
other states the lock operation has to be performed. On many architectiests a
for zero is particularly optimized.

The following listing shows sample code for a normal spin-lock primitive. A
value of zero in the lock variable (lock) denotes that the lock is free, wikerthe
lock is taken. The overhead for a disabled lock using the specific engdslia
single jump instruction.

if (state !'= disabled) {
whil e test&set (spinlock)
{ I wait =/ }
if (state !'= enabl ed & LockEpoch+1l < d obal Epoch)
{

}
}

[+ performlock state mani pul ation =/

10
11
12

© 00 N O Ol W N P

=
o

4.3. KERNEL SYNCHRONIZATION 41

[+ critical section =/

spinlock = 0; /+ lock release */

The corresponding (hand-optimized) assembler spin-lock code or2 i&-8s
follows. (For clarity reasons, the listing only shows the code for the uecaed
case and lacks the code for the spin loop and promotion/demotion.)

nov state, %ecx

jecxz critical _section ;junmp if ecx=0 (lock disabl ed)
xchg %ecx, spinlock

test % ecx, %ecx

jnz spin_|loop ;lock taken -> spin
test $2, state
jnz pronote_denote ; handl e RCU epoch

critical section:

mov $0, spinl ock ;rel ease | ock

The lock code has theame register footprinas a normal spin lock and one
more data reference for the lock state. The additionally introduced codeeon
critical path is line 2, 6, and 7. For normal spin locks, line 1 would not need a
explicit memory reference, however, the register has to be preinitializedawith
non-zero value. The specific state encoding combines the state testgistdrre
initialization in a single instruction. In a disabled state the code requires one take
jump (line 2) and in an enabled (and unlocked) state three non-taken jurogs. N
that the code assumes a state encoding of disabled=0 and enabled2] 3ind
the two other states).

On architectures with a more relaxed memory consistency model (e.g., Pow-
erPC and Itanium), the unlock operation additionally requires a memaory bafrie
the overhead of a test of the lock state is lower than the cost of the memoey fenc
the unlock operation should be executed conditionally.

4.3.3 Lock Granularity

With a foundation of dynamic locks as the base primitive | derive a method for
dynamically adjusting lock granularity. As discussed in 4.3.1, the optimal lock
granularity depends on the specific workload characteristics andsagatern to
an object. Fine-grained locking induces a high overhead in non-conesdses,
whereas coarse-grained locking may introduce bottlenecks and limit Bitgalab

The decision for a coarse-grained vs. a fine-grained locking strakeggnds
on the specifics of the algorithm, thatvidereto lock andwhatgets protected by
locks. A detailed discussion of locking strategies is beyond the scope ofdhis
and thus | only address the general principles.

Fine-granular locking requires a divisible data structure where eathgrabe
individually locked without compromising the overall structural integrity. Théa

42

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

@) R
State Lﬂ)
Lock Epoch @

central lock

fine-grain locks hash table
clustered

Figure 4.8: Cascaded spin locks to control locking granularity. Only dribeo
locks — coarse or fine — is enabled at a time. Reconfiguration at run time ad-
dresses contention vs. overhead.

structure is divided into multiple parts and each part is protected by an individ
lock. The lock granularity depends on the number of independent patte o
overall data structure.

I make the lock granularity adjustable by introducingltiple lockgo the same
object — one for each locking granularity. In order to lock an objatitjocks
have to be acquired, while some locks can be disabled. Acquiring all loskses
that processors synchronize on the same locks, whichever lock mastibe at
the time. Deadlocks can be avoided by simple lock ordering [106], for eleamp
coarse-grain locks are always acquired before fine-grain locke. Idck release
has to take place in reverse order of the acquisition. Figure 4.8 showaarmpk
of multiple cascaded locks protecting a hash table and individual clustehe of
table.

Switching the lock granularity for an object takes place in multiple stages. To
preserve correctness, at no point in time should two processors iffererd lock
granularity (i.e., one uses coarse grain, the other fine grain locksfeAraasition
between the lock modes therefore requires an intermediate step, dibtecks
— coarse and fine grain — are active. After that transition period, whemwa
cessors are aware of the new lock strategy, the previous lock canaixedis The
completion is tracked with the RCU epoch counter, similar to the dynamic locks.

At first, the cascade may appear overly expensive due to the additional me
ory footprint for the fine granular locks. However, efficient encgdamd dynamic
memory allocation reduces the overhead. Instead of maintaining a lock state fo
each individual fine-grain lock, it is sufficient to maintain the overall loc&rg
ularity for all locks in a single field. The memory overhead for a two-level lock
cascade is therefore identical to dynamic locks: two bits for the state andXtle R

© 00 N O Ol W N P

NNNRPRERRRERERIERRR
N kP O © N U »MWNR O

© 00 N O O W N P

[EnY
o

4.3. KERNEL SYNCHRONIZATION

43

epoch counter.

Since dynamic locks only access the lock variables when the locks areénab
the memory required for the lock variable can be dynamically allocated (i.en whe
first switching to fine-grain locking). The following listing shows pseuddetor
a two-level lock cascade including code that handles dynamic adjustment.

enum State = {Coarse, Fine, ToCoarse, ToFine};
if (State !'= Fine) {
| ock (CoarselLock);
if (State != Coarse AND LockEpoch+1l < d obal Epoch) {
if (State == ToCoarse) {
State = Coarse;
[+ potentially release fine | ock nenory =*/
}
el se
State = Fine;
}
}
for index = 0 to Nunber Obj ects {

if (State != Coarse) |ock (FineLock[index]);
[+ critical section */

if (State != Coarse) unlock (FineLock[index]);
}

unl ock (CoarselLock);

A special case of the scheme occurs when the fine-granular objectstliems
are not locked but modified with an atomic operation (e.g., atomic compare-and-
swap). In coarse-grain lock mode, all objects are protected by a sirtiealud

the data members can be modified with normal (non-atomic) memory operations.

In fine-granular synchronization mode, manipulations are performed wittr- mu
processor safe atomic operations. The following pseudo code shavex#mario.

enum State = {Coarse, Fine, ToCoarse, ToFine};
if (State !'= Fine) {
| ock (CoarselLock);
if (State !'= Coarse && LockEpoch+l < {d obal Epoch) {
if (State == ToCoarse)
State = Coarse;
el se
State

Fi ne;

44

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

11
12
13
14
15
16
17

if (State == Coarse)
obj ect = newal ue;
el se
Conpar eAndSwap(obj ect, newal ue, ol dval ue);

unl ock (CoarselLock);

The overhead for the special handling is minor on most architectures. For
example, 1A32'scmpxchg instruction requires an additional instruction prefix to
differentiate between the synchronized multiprocessor and the unsyrioéa ver-
sion of the instruction. A conditional jump over the one-byte instruction prefix
depending on the lock state, induces only marginal overhead and cogsdecn
ity, while reducing the cost from 136 to 12 cycles (Pentium 4 2.2GHz). Itaisiu
predicates allow for a similarly efficient implementation.

4.4 TLB Coherency

In the previous section | addressed the performance aspects oé-coardine-
granular synchronization in the kernel. TLB coherency updates hmiksper-
formance trade-offs that are addressed in this section.

Operating systems store memory address translations and permissions in page
tables. The translations are cached in the processors’ TLBs. After catiifis to
page tables, processors may still have old values of the modified pagentids e
cached in their TLB; page tables and TLBs are thus inconsistent. Cortgisten
recreated by invalidating the affected TLB entries. All processor aithites offer
specific TLB invalidation instructions for that purpose.

When page tables are shared between multiple processors, a page table en
may be cached in TLBs of multiple processors. On most architectures,ape st
a TLB invalidation operation is limited to the executing processor. The modifica-
tion of page permissions thus requires a remote TLB invalidation that is execute
on the remote processor.

A shoot-down requires an IPIl and interrupts the active operation orethete
processor. Remote TLB shoot-downs have a high overhead similar to geessa
based synchronization. The changed permissions in the page table beffecre
tive only after all remote processors invalidate the respective TLB entries.

In one special case — when the permissions to a page get extended — the
page fault handler can avoid the necessity for the TLB shoot-downn\Wieepage
access raises a fault because of a stale TLB entry, the fault hanttatea the
page permissions and if correct only reloads the entry and restarts.

If completion of a system function depends on the completion of permission
updates, then the remote TLB shoot-down latency directly adds to the fusction
cost and latency. Typical examples for such scenarios are permigsiaes for

4.4. TLB COHERENCY 45

Combined
update

Latencyof [LA | TLB
individual -“ """""""" TLB

updates| @~ b—t---------------

Figure 4.9: Implication of combined TLB shoot-down on latency for individua
entries. The first row shows the combined operation for updating faye teble
entries (A-D) followed by a combined TLB shoot-down. The rows beloamsh
the latency for each individual update.

copy-on-write (as used for fork) and page swapping to disk. Bothatipes de-
pend on the completion of the permission update for their semantic correctness

| define the following two design goals for the kernel’s TLB coherency-alg
rithm:

1. The overhead for TLB shoot-downs — and thus the absolute number of
shoot-downs — should be minimal. The kernel has to combine as many
TLB shoot-downs as possible into a single remote invocation. Shoot-downs
should be reduced to only those processors that require an updatadi.e.,
global TLB shoot-down).

2. The latency of independent memory updates and therefore the latency o
TLB shoot-downs should be minimal.

The first design goal is achieved by combining multiple TLB coherency up-
dates into one single shoot-down cycle after all page tables are up-toHiate
ever, a combined shoot-down violates the second design goal: low |latéthen
multiple processors concurrently manipulate memory permissions for the same
memory object, the operations of those processors become inter-dapehaep-
date of page permissions is completed after the completion of the TLB colgerenc
cycle (i.e., when all remote TLBs are valid). By combining multiple TLB shoot-
downs in one, the duration of the permission update is the length afvibell
operationfor all updates (see Figure 4.9).

In order to ensure correctness, permission updates have to be ayizelr
between all processors. When one processor changes the memariggians

46

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

cPuo|[Ta [[[e

CPU1 L A A TLB

Figure 4.10: Concurrent permission update on two processors. CRiddlas

the permissions for multiple pages includiAg In order to guarantee consistency

it locks A and releases the lock after the TLBs are coherent. When CPU 1 tries
to manipulateA shortly after the lock acquisition by CPU 0, it has to wait until
completion of the operation on CPU 0.

but postpones the shoot-down, a second permission update by anaibessor
must not complete before the first shoot-down is completed. Otherwises¢bed
processor incorrectly assumes active page permissions (e.g., agdequicopy-
on-write) that are not yet enforced. The inter-dependency is ampeaince problem
because inexpensive permission updates that only require a simple manesyg a
suddenly become long-running operations that also include the latenmnfiote
TLB shoot-downs. Figure 4.10 depicts the delay for a concurrentatiparthat
depends on the completion of another processor’'s update. The iptendiEncy
is also a scalability problem, because operations that are independemagriuke
processed in parallel are now serialized.

4.4.1 Independence of Coherency Updates

The delayed TLB shoot-down dynamically creates coarse-grain memgegtep
although individual memory objects may have fine granular locks. Theegmob
is the tight coupling of modification of memory permissions with the TLB shoot-
down. The necessary TLB shoot-downs are derived and accumwhatdupdat-
ing the page table. That information is only available to the processor that prodifi
the page permissions creating the aforementioned inter-dependencyteR&mo
cessors become dependent on the completion of the operation, be cuseetiot
awarewhat TLB shoot-downs are still outstanding.

To counteract the scalability limitations induced by the combined TLB updates,
| propose an algorithm that eliminates inter-dependencies between pagsyen
updates and TLB shoot-downs. The previously described TLB consisgsheme
is based on a strict causal order; operations are globally orderethasdafe. |

4.4. TLB COHERENCY a7

relax the ordering model by separating page table updates from the TicBamy
updates. The algorithm works as follows:

The modification of memory permissions requires a corresponding TLB up-
date. Only after the update completes are the permissions active and glabally e
forced. When all required TLB shoot-downs have completed, an tiperthat
relies on the page permissions stored in the page table is safe. Howevee-tha
quirement isndependent of a specific processthre TLB shoot-down operation
can be initiated by any processor in the system.

In order to detect still outstanding TLB updates, | introduce a per-gsme
TLB update epoch. When a processor updates memory permissions to aymemor
object, it tags the object with the processor ID and the processor'srturiB
epoch. Furthermore, the processor records the necessary Tlaesgpd- thus
includes all remote processors and TLB entries that need to be invalidiztzdg
follow in 4.4.2). A new TLB epoch starts after all shoot-downs are completed

When a second processor updates the memory permissions to the same object,
it compares the stored epoch counter with the corresponding prosessoent
TLB epoch. When they are different, the TLB shoot-down cycle is comalete
the page table permissions are authoritative. However, when the stareld isp
identical to the stored processor’s current epoch, the TLB update isig8lianding
and the TLB shoot-down is initiated by the second processor.

To preserve the ordering of operations, the second processaegyitia pro-
cessor ID and epoch counter stored with the memory object. Furthermare, it
cludes the recorded TLB entries into its own shoot-down list and updatdisthe
according to the performed updates. Thus, if a third processor uptatpsrmis-
sions of the memory object, it now becomes dependent on the secondsooise
TLB epoch. The formal presentation of the algorithm is as follows:

Let D be the set of TLB entrigsthat need to be invalidated, with= (v, p,a). v
denotes the virtual address of the entry that is invalidgiéde processor that may
cache the entry, arg@the address space identifier for the particular processor. Let
o be the memory object for which the permissions are changedowitliD, e, p).

o.e denotes the TLB epocp.e of processop stored ino, ando.D denotes the set
of dirty TLB entries, witho.D = {t}. When changing the memory permissions for
objecto that requires to invalidat® TLB entries, thero.D’ = D if o.e # p.e or
0.D’ = DUo0.D otherwise.

4.4.2 \ersion Vector

The described algorithm stores the TLB entries that need to be invalidated with
the object. The required storage memory depends on the number of dffdde
entries, the number of processors that concurrently manipulate the abddhe
frequency of updates (i.e., whether updates complete or many TLB sbawisd
are outstanding).

A naive tracking algorithm that only records the dirty TLB entries, has an un-
bounded memory consumption and is therefore unfeasible. | reduce therynemo

48

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

requirements by incorporating architectural knowledge about the MMhilethe
TLB epoch tracking is a general mechanism and applicable to all harcgweine
tectures, the tracking of outstanding TLB shoot-downs depends onspegific
details of the MMU, cache, and TLB. The influential properties includetidreor

not the TLB is tagged, the TLB shoot-down primitives and their cost, thehexaet

for TLB refills and also the cache line transfer costs and the latency d?larl
detailed analysis for a wide variety of MMUs is beyond the scope of this work
and thus | only provide an exemplary validation and discussion for myerder
architecture: Intel’s IA-32.

IA-32's MMU has dedicated data and instruction TLBs with a hardware-
walked two-level page tabfe.An address-space switch is realized by loading a
different page-table base pointer into the procesORS8 control register. The
architecture does not define address-space identifiers and alyj(olos) TLB en-
tries are automatically flushed on eveZir3 reload. An update o€R3 therefore
serves two purposesi) (o switch between virtual address spaces andd in-
validate the TLB. The architecture additionally providesitihdpg instruction for
selective invalidation of individual TLB entries.

A TLB shoot-down can be either performed by multiple invocationsalpg
or via a complete invalidation. A complete invalidation has the disadvantage that
it also invalidates entries that are still in use and thus need to be reloaddtie On
other hand, individual invalidations have a significant overhead (apgg, invipg
is not optimized). In Figure 4.11 | compare the overhead for individuabsh
downs against a complete invalidation plus the cost for the re-populatioreof th
TLB. The break-even point for the used test environment (a 2.2 GiiuPe 4
Xeon) is at eight TLB entries. Starting with nine entries it is more efficient to
invalidate the complete TLB rather than invalidating individual entries. Oblgpus
the specific break-even point depends on the architecture’s TLB isizeverhead
for shoot-downs.

The lack of address-space identifiers reduces the amount of dataedu to
be tracked. The dirty TLB entries are represented by(v, p). On modification
of permissions of a pagein a page table that is shared across a set of processors
Po; ..., Pj—1, the set of dirty TLB entries i® = {(v, po), (V, P1), ..., (V, pj-1)}. The
memory footprint of a simple encoding of the setl¥ - sizeoft) which does not
scale for many processors. Thus, the algorithm requires a more corapeesen-
tation.

The TLB shoot-downs ensure that no stale entries are cached in remBte TL
Most TLB replacement algorithms are indeterministic and a TLB shoot-down may
target a TLB entry that is not in the TLB anymore or even never was. Atstiown
strategy still preserves functional correctness if it targeiseprocessors. All stale
TLB entries will definitely be evicted, however, the additional (and unssaey)

4At the time of writing, I1A-32 defines four different page table formatsr Ehis work | only
consider the standard 32-bit virtual and physical addressing modewyftort for 4AMB super pages
and the global tag [29].

4.4. TLB COHERENCY

49

30000 T T T

T T T T
Entry-wise shoot-down——-
Complete shoot-down with repopulation-----

25000

20000

15000

10000

Execution time in cycles

5000

invalidated TLB entries

Figure 4.11: Comparison of TLB shoot-down costs with complete re-population
against an entry-by-entry shoot-down for a Xeon Pentium 4 2.2 GHz vidéh 1
TLB entries. The costs include the overhead for the invalidation instruchiah (
cycles) and required cache line transfers (about 80 cycles). Hak{aven point

is at eight entries. The negative slope of the repopulation cost cuiteetesthe
decreasing number of repopulated entries for an increasing numbsosafdown
values. Note that the overhead for the required IPI is not shown.

shot-downs may incur a higher cost.

Based on that observation, the 8et= {(V, po), (V; p1),...,(V, pj—1)} can also
be encoded as the tuple m), wherebym denotes the processor cluster mask (as
defined in Section 4.2.2). The shoot-down is correct if the following conditio
holds: Vi: (3t e D:t = (v,pi)) = f(m,i) > 0. The cluster mask’s fixed size
reduces the memory footprint for tracking of an updated page table ewoiry f
ID| - sizeoft) to sizeof(m,v)) where|D| < n. Note that the limitations of the
memory bus (such as NUMA) make highly shared memory resources unbikely,
therefore the encoding via the cluster mask is accurate for the vast majarétyas
(see Section 4.9.

The manipulation of memory permissions of an object may require a TLB
shoot-down ofn entriesD = {(vo,mo), (V1,M),..., (Va—1,M—1)}. The memory
footprint depends on the maximum size of the object (and thus the maximum num-
ber of potential dirty TLB entries). The overhead of the by-entry shiwetn op-
eration of the processor architecture limits the number of entries that need to b
recorded. As shown in Figure 4.11, the cost for an entry-by-entg iflzalidation
exceeds the cost for a complete invalidation for more than eight entrieselHie

5Note that accuracy addresses the encoding of processors, notthia@y of the algorithm itself.

50

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

hardware limits the memory footprint tnax|D|) = 8 entries. Afterward, a com-
plete TLB invalidation becomes more efficient.

The number of remote shoot-downs can be further reduced by testirthavhe
or not the currently active remote page table (i.e., cur@R8 value) corresponds
to the address space of the tracked TLB entry. If the processor loaels salue
into CR3 it implicitly invalidates all TLB entries and the explicit shoot-down can
be omitted. However, the test misses the scenario wbB&is reloaded multiple
times and matches the recorded value. The simple equality test delivers a false
positive and indicates a required TLB shoot-down although the TLB isdjrea
up-to-date.

Instead, | introduce @LB versionthat increases on eveGR3 reload (includ-
ing context switches and TLB invalidations). The version significantly elses
the probability for a false positive. After modification of memory permissions in
page tables, the algorithm stores the TLB versions for all affected ggocein
a vectorw = (Wop,ws,...,Wn_1). If the remote TLB version already increased at
shoot-down time, the shoot-down is superfluous and can be omitted. The max-
imum size of the vector depends on the number of processors and eqoie
vector per memory object.

The last optimization is to reduce the number of vectors to one per processor
at the cost of some additional TLB shoot-downs. At system startup time the ke
nel preallocates a version vector per processor. The version \astocontains
the storage space for the individual entry-by-entry shoot-downgndg objects
contain (1) a reference to the version vector of proceps¢2) a processor clus-
ter masko.m, and (3) the TLB epocl.e — an overall memory footprint of three
processor words per memory object.

After modification of page tables, the version vector needs to reflect the re
quired TLB shoot-downs (including those still outstanding from othergssors).
If the TLB epoch that is stored with the object is still actizee(= p.€), the shoot-
downs of the previous processor did not yet complete. In that casdgibétiam
updates the current processor’s version vector by incorporatirggithmutstanding
shoot-downsw' = (W),w,,..., W, ;) with w = maxw,w?)vi € (0,1,...,n—1) |
f(o.m,i) > 0. Additionally, the algorithm updatese with the current processor’s

TLB epochp.g, the reference to the processop = p, and the cluster maskm.

The described optimizations drastically reduce the memory footprint making
TLB tracking feasible. The reduced memory footprint is at the cost dfiracy
and potentially results in a higher overhead compared to the optimal case. How
ever, the TLB version vector can eliminate many unnecessary remote rtaifeca
via IPIs, if the remote processor already performedRB reload — either due
to a concurrent TLB shoot-down from another processor or by nlocoreext
switch activities. As initially emphasized, the solution is specifically optimized
for 1A-32’'s MMU and because of this other architectures may havereifitecost-
performance trade-offs.

4.5. EVENT LOGGING FOR APPLICATION POLICIES 51

4.5 Event Logging for Application Policies

In uniprocessor systems, scheduling is the activity of deciding which dhoéa
control gets to run on the CPU. In multiprocessor systems, schedulinghbteea
dimension, not only deciding when a thread will run but aldeereit will run, (i.e.

on which processor). In order to make informed resource schedwdirigidns (not
limited to thread allocation), dynamic scheduleneeds to combine information
from a variety of sources. The vast majority of scheduling algorithms Kal&ty
assume data availability of a monolithic system structure; a single entity maintains
all system states and provides full accessibility and visibility.

The common definition of scheduling includes two dimensions: time and lo-
cality. Although time and locality are inter-dependent they can be handled au-
tonomously. In the following, | will primarily focus on the aspect that is spe¢dfi
multiprocessor system: the allocation of threads to processors.

Fundamental to microkernel-based systems is a divided system structure with
highly distributed information that is required for resource scheduling:h&duler
needs to evaluate runtime information and therefore needs access to rustiine d
the first place. Strict isolation and independence creates a boundappbgtaicts
the free information flow available in monolithic systems.

The major challenge is that resource scheduling takes place sporadiwhity a
frequently, however, the scheduling decision requires up-to-datenaton. Effi-
cient scheduling requires sufficiently accurate data that — in most casesever
evaluated by the scheduler. Direct access to system-internal data resuctini-
mizes the overhead in monolithic systems, whereas a microkernel systeinesequ
additional action to extract, accumulate, and provide that data. Hencejdeola
increases constant runtime overhead for system components as welllasribl
and therefore decreases the overall system performance.

To address this problem, | developed an efficient mechanism for runtitae da
aggregation with a high-bandwidth interface to a resource schedugedshem-
ory. A primary design goal is to have a single mechanism that is applicable to the
microkernel as well as to system components.

The section is structured as follows: First, | discuss the properties oflukta
are the basis for scheduling decisions. Afterward, | describe mechsitdscollect
and deliver scheduling-relevant data to a scheduling component. Wisilensy
level components can be freely adapted (and potentially replaced at rintirme
microkernel is static. The wide variety of existing resource schedulingitigts
requires a flexible mechanism that covers as many usage scenarioss#depo
While very detailed event logging can most likely fulfill that requirement, it iscu
a prohibitively high runtime overhead on performance-critical code pathere-
fore develop an adaptable event logging scheme that can be dynamicaiiye@n
and adjusted minimizing the overall performance impact on the system.

52

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

451 Overview

Resource scheduling policies base their decision on system runtime infanmatio
such as the current load situation [37] derived from the run-queugHdh4, 96],

and communication pattern between tasks [36, 88, 99]. An important pefue
aspect for scheduling is the resource affinity of processes, suabtias cache
working sets or NUMA memory [16,17,107].

Efficient resource allocation and scheduling in multiprocessor systems is a
widely researched area. A detailed discussion of individual res@aieeduling
policies or comparison is beyond the scope of this work. For a detailedsdiscu
| refer to an excellent survey of parallel job scheduling strategies fitipracessor
systems by Feitelson [35]. In this work, | solely focus onibguired mechanisms
for information gathering in order to realize scheduling algorithms.

Dynamic schedulers try to extrapolate future system behavior from phatb
ior. Hence, they require statistical data on system events in relation to théusch
lable principals and system resources. Aveecall-back on event occurrence can
provide very detailed and timely information to the scheduler. In a monolithic sys-
tem, a callback is a simple function call, whereas in a microkernel-based sgstem
callback may require multiple privilege level changes and address spéches.
Thus, callbacks induce an unacceptable runtime overhead for freenestts.

The acceptable overheafbr runtime data collection has to be considered for
two scenarios. First, the overhead of a scheduling algorithm is obvioosiyded
by the maximum achievable benefit. If the potential performance benefitss les
than the overall cost for data aggregation for deriving a schedulicgsida, a
random allocation policy is preferable. The second relevant perfarenaetric is
the cost for steady state after an optimal resource allocation is reaclkegl. the
algorithm should only incur a minor runtime overhead.

The upper bound of the frequency for scheduling decisions is giyémgover-
head induced by the resource reallocation. The costs fall into two caegtire
cost of the operation and the follow-on costs. Applications benefit frenmtigra-
tion only after the overhead for both categories are amortized. In todayt§oro-
cessor architectures, the follow-on costs induced by cache workimgigeations
are the dominating performance factor. The time spans between re-bglamncin
migration decisions are therefore often in the order of multiple millisecénds.

45.2 Data Accumulation

Event recording is an effective method for offline or postponed systeatysis.
On event occurrence, the system writes a log entry that sufficiently icentife
event source, event reason, relevant system state, and point in tiater, the
system behavior and causal dependencies can be reconstruatetiértmgged in-

5The load balancer of Linux 2.6.10, for example, makes re-balardémgndent on the cache
migration overhead. The minimal re-balancing period for SMP prareds 2.5ms whereas it is
10ms for NUMA nodes.

4.5. EVENT LOGGING FOR APPLICATION POLICIES 53

formation. Event logging is primarily used for debugging purposes attteheck
elimination [121].

| apply the fundamental idea of event recording, but as a methodriiime
data collectiorfor user-level schedulers. The microkernel and system components
record system events as log entries into a memory-backed log spaced &fen-
ory provides a low overhead access method to system events for theikatvehile
preserving strict separation between the individual components (i.e.rabdaqer
and consumer) [42].

The sheer amount of events and event sources renders a simplistieeper-
logging scheme unfeasible. However, with increasing frequency oft exszur-
rence, the carried information per event decreases. Schedulingodscise in
many cases based on a quantitative analysis (such as humber of evetitisepe
interval [35]). In those cases the cost can be reduced via datagadjgre for
example only counting the number of events instead of logging individualteve
instances.

The overhead for logging falls into three primary categori@soyerhead for
the event recording coddij) overhead for data analysis by the scheduler, &nd (
overhead induced by higher cache footprint for the logged informalibe.over-
head of event recording can be reduced by the following three agijpagneth-
ods:

Less frequent logging of the same eventCombining multiple event occurences
in a single log entry reduces the frequency of logging and thus the runtime
overhead. The minimal execution overhead induced by event logging is an
arithmetic add (for event counting) followed by a conditional branch into the
event logging code. With more events combined in a single log entry, the
lower becomes the overhead for logging. The overhead for eventiogu
itself is minimal (the cache footprint of the counter and two instructions).

Logging of less event sourcesThe second method is to reduce the event sources,
which can be achieved by conditional logging and filtering. Depending on
the scheduling policy, not all system events are relevant and get &a@lua
Conditionally logging of only the relevant events reduces the static runtime
overhead. Filtering allows more flexibility for event selection than a simple
on/off scheme, however, a complex filtering scheme may induce a higher
runtime cost.

Logging of less information per event. Finally, the overhead can be reduced by
limiting the amount of log data and thus the overhead to generate the log
entry itself.

Event aggregation automatically reduces the overhead for data analysés in
scheduler. The scheduler handles already compacted and presachtes entries.
Similarly, filtering eliminates irrelevant data from the log file and thus reduces the
runtime overhead for data analysis. Using alternative log buffers it @ource

54

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

reduces the event parsing overhead and also the memory and caghimfoblere,
the scheduler can implicitly derive data from knowledge about the logibuffe

The memory and cache footprint for event logging depends on theenegju
of events, frequency of log entries, and the log entry size. In mang csisgistical
analysis considers only a single or very few entries that happened |astcuar
log buffer, which is exactly sized for its required back log, can minimize tleeaiv
cache footprint.

4.5.3 Event Sources and Groups

Event sources differ in their expressiveness and potentially requidlié@nal con-
text information to become useful for a scheduler. | identified the followingeth
primary event types:

Access, modification, or occurrence.This event type denotes the occurrence of

one specific event, such as the access to a resource or the execusion of
specific function. Itis unrelated to other events in the system. Event logging
may either log the particular occurrence or simply increase an event counte

The event has four parameters) & resource identifierjij an identifier of
the resource principalji) the number of accesses, and) @ time stamp.
The resource identifier uniquely identifies the accessed resourceansl th
source principal identifies the subject that performed the accessd Base
the logged resource principal, a scheduler can account resowage tsa
system’s accounted subjects, such as threads or tasks.

Entry and exit. In time sharing systems, resource utilization is accounted to re-

source principals during the time of activity. The relevant information for
counted events, such as resource usage, time, and hardwaremnaeréer
counters, is the number of events from activation until preemption. It can
be derived by recording the absolute value of an event counter abthe p
of activation and at the point of preemption. The difference of both galue
provides the number of events during the time of activity.

Compared to on-access logging, entry—exit logs have a significantly lower
log footprint and additionally cover asynchronous event counters) as
hardware-provided performance counters. Entry—exit logging caslilme
preemption event of a principal with the system information (i.e., counters
and time).

An entry—exit event has four parameteii$:a(resource principaliij an event
counter, {ii) the new value, and\) a time stamp.

Asynchronous events.Asynchronous events are independent from a resource

principal and execution. On event occurrence, the system logs ttensys
state and point in time. A typical example for this event class is a periodic

4.5. EVENT LOGGING FOR APPLICATION POLICIES 55

interval timer or a hardware event counter. Asynchronous events thav
same parameters as on-access events.

Events can be grouped together if at least one event parameter is ileintica
that case the specific parameter can be omitted in the log. Specific evepingrou
depends on the event type and what values are useful for a partschieduling
policy. For example, time stamps may not be required for a scheduler tfiatmsr
periodic sampling.

Entry—exit events are bound to resource principals. The primary respun-
cipals in systems (e.g., threads or tasks) may not sufficiently representite
pendencies, such as client-server relations or act-on-behalf. Wtalgfanular
resource principals allow for a detailed analysis, they also increase thieemwof
entry—exit events and thus log entries.

Banga et al. [13] propose resource containers for separating tradifiost-
class resource principals from resource accounting. Insteadiroesosage is ac-
counted to a shared container with multiple associated threads or tasksori-he ¢
cept of grouping resource principals in orthogonal resource aticgudomains is
an efficient method for event filtering as well.

4.5.4 Log Entries and Log Configuration

Event logging is on the critical code path and low overhead is therefoparaf
mount importance. While at application level the application designer hasie fr
dom to tune the log structure and log values toward one or a few specifidgaty
policies, the microkernel lacks such freedom. The kernel’s static caerbguires
runtime configuration of the log facility that is flexible but still incurs a marginal
overhead.

Runtime configuration for performance and event tracing is well-known fo
microprocessors. Most modern microprocessors support hargwesfemance
monitors (HPM) that provide statistical information on hardware events3[29,
HPMs are used primarily for performance and bottleneck analysis [&2, bQOt
have also been proposed as a data source for scheduling decis0hs HPMs
are configured via control registers and count hardware eventrecces. More
sophisticated performance monitoring facilities, such as Intel's Pentiumef, ev
provide event logs.

Similar to HPMs, | introduce kernedvent-log control fields Kernel events
are associated to control field that allow for precise control of the géegevent
log entries including deactivation of the log facility altogether. The contrtd fee
constructed for maximum flexibility of statistical analysis with low overheadhEac
control field consists of the following set of parameters:

Log pointer and log size. The log is a circular ring buffer denoted by a log pointer
and a fixed size. The size is encoded as a bit mask that is logically AND-ed
to the log pointer. By using a mask it is possible to arithmetically derive the

56

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

start and the size of the log buffer. This way buffer start, buffer sind,the
current log index is encoded in only two fields.

The encoding restricts the possible log buffer alignment but simplifies over-
flow checks. Each entry has a fixed size that depends on the loggex valu
per event. A simple offset calculation delivers the next entry. A log bbuffe
with asingle entryserves as an event counter.

Overwrite or count. The scheduler can specify if event occurrence should over-
write the log event counter or add the counter to the previous value in the
log. This selector enables event tracing (like the time of the last event) or
event counting.

Time stamp and time source. A system may provide multiple time sources and
the cost for recording a time stamp may differ. While the processor cycle
counter provides a highly accurate time source, the overhead is sighifican
on some architecturésAlternatively, the system may use a less accurate in-
terval timer, or a simple counter if the time stamp is solely required to derive
causal dependencies. For many events the time of the event is irrelervant (
known) and logging the time stamp can be avoided altogether.

Threshold. For very frequent events a per-event log is too expensive. Tdreref
each control register additionally contains an event counter that is incre-
mented per event. A counter overflow leads to recording of the event and
a reload of the counter with the programmed threshold value.

For higher flexibility, event sources and thresholds are decoupledtfie log
buffer. Multiple event sources can be freely associated to either cerg-tg
control registers or alternatively to individual logs. Per-processatrol regis-
ters preserve independence between processors. In order totlseedeis no syn-
chronization between processors and the log buffers are locateddegsar-local
memory.

Figure 4.12 depicts two alternative log configurations, one combined log and
second configuration using the event log as a counter.

4.5.5 Log Analysis

Having a detailed log of resource information, schedulers further needhtoate

the logged data. The structure with a shared memory log makes the logging facil-
ity a classical producer—consumer problem, with the logger being the ggodad

the scheduler being the consumer (as shown in Figure 4.13). When dutathe
processes a log file, new entries may be written concurrently, potentialiy¢etod

a scheduler evaluating inaccurate data. | discuss possible countarraseagainst
evaluation of inaccurate data, with a focus on minimal runtime overhead fbr bo

"The Intel Pentium 4 architecture has an overhead of 125 cycles for st counter read.

4.5. EVENT LOGGING FOR APPLICATION POLICIES 57

(a) Combined event logging (b) Event counting

Figure 4.12: Event log control. Events refer to a log control structurteréfiers to

a log buffer, log entry count, and the logged values. Multiple events céogbed
into the same log buffer (a). A single-entry log provides a simple counter et mo
recent event value (b).

Scheduler User-level server

‘;’ Process log E

A
\ log Microkernel

Figure 4.13: Log analysis via shared memory. The microkernel and davstr
server log events into memory that is shared with the scheduler. The $shedu
processes the logged entries and derives its scheduling logic.

producer and consumer. The runtime overhead of atomic operationsrsesxt
plicit synchronization via locks unfeasible.

One can differentiate between two event typeB: irfffrequently occurring
events andii) frequently occurring events. For infrequent events, the probabil-
ity of concurrent logging and analysis is low. Either a repeated analysisra
copy-out strategy into a separate buffer eliminate the race condition.

Frequently occurring events are the basis for statistical analysis anitlimadi
event occurrence is of less importance. Missing one of the frequentsthere-
fore will have insignificant implications on the overall scheduling policy. fdep
to avoid explicit locking, the analysis algorithm repeats the log analysis russie ¢
the log file changed during the run. However, repetitive analysis is aowntbop-
eration and thus may lead to a lifelock where the consumer constantly updates th
log and the consumer never completes its operation. The lifelock can besdvoid

58

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

© 00 NOoO OO~ WN PP

=
(AN

by careful system construction.

| derived the following lock analysis strategy for frequent events. Thgdo
first writes the log values and afterward updates the index pointer into tHiédog
The analysis code ignores the current entry field because updatedilinag -
flight and the data may be invalid. At the end of the analysis the code validates
whether the index into the log file remained constant and if a wrap-arouikd too
place. The following listing shows sample code for the analysis algorithm.

int Adlndex, QO dTinmeStanp;
do {
ad dl ndex = LogCtrl . I ndex;
A dTi meSt anp = Log[A dl ndex] . Ti meSt anp;

for (int Index=1; |Index<LogCirl.Entries; |ndex++)
Anal yze(Log[(I ndex + O dlndex) % LogCtrl.Entries]);

} while(Adindex !'= LogCtrl.Index ||
Log[A dIl ndex] . Ti neStanp != A dTi meSt anp) ;
Reschedul e() ;

The lifelock occurs in case the runtime of the analysis is longer than the time
difference between two log entries. This is critical when events oandrget
logged at a high rate. Since event logging is triggered by code execiitiein,
ther requiregpreemption of the analysis coda the same processor parallel
execution of analysis and log coda different processors. In order to avoid cache
migration overhead, processor-local log analysis is preferable eneate analysis.

Due to the inherent performance degradation of long-running analgises-
gued in Section 4.5.1), log analysis that requires a full time slice is impractical. In
the unlikely case of a preemption during the analysis run which additionaly cre
ates new log entries, a simple retry is sufficient and the next run will most likely
complete. Additionally, preemption precautions that inform the kernel otiaar
section (e.g., provided by L4, K42, and Raven) can further redudi#iidiood of
an undesired preemption. This scheme is sufficient, as long as eventabzecd
on the same processor on which the events occur and are logged.

When using a scheduler that accesses logs of a remote processogltheditt
of a analysis-log conflict increases. For logs with only very few entrieghen the
event frequency is sufficiently low, a simple retry method is sufficient. hewe
when the time interval between two events on the remote processor is sharter th
the runtime of the log analysis, the algorithm needs to take further precautions
One possibility is to perform a partial analysis and to combine the differetg gt
the end. Alternatively, event logging can be explicitly deactivated until tiadyais
completes. This approach avoids corruption of log data at the cost ofeayc A
more detailed discussion on the design alternatives and trade-offditiergflog
analysis is given in [100].

4.6. SUMMARY 59

4.6 Summary

In this Chapter | described four mechanisms for adjusting kernel sgnidation
primitives in order to reflect the degree of parallelism of resource ghatinis
founded on an efficient tracking scheme for parallelism (Section 4.2) prtues-

sor cluster mask— which allows every object to be tagged with a space-efficient
processor bitmap. The cluster mask uses an encoding scheme that tedesy
for space with increasing number of encoded processors, similar to §qadint
encodings.

| presented dynamic locks, which can be enabled and disabled at runtime in a
safe manner (Section 4.3). Dynamic locks overcome the overhead ofla symg
chronization strategy (lock vs. message based) in the kernel. Using dtnmatfon
on parallelism encoded in the cluster mask, the lock primitives can be dynamically
adjusted. Dynamic locks further allow for safe and dynamic adjustment td¢hke
ing granularity (Section 4.3.3). In case of no concurrency, coarse-grain locking
yields better performance and reduces the cache footprint for the éoEdble. In
case of high concurrency, fine-granular locking reduces lock atinte increases
parallelism, and thus yields better performance. The best strategy deqetide
specific workload, and a static common-case selection can result in subloptima
performance. By cascading multiple dynamic locks, the synchronizaticegyra
— coarse-grain or fine-grain locking — can be dynamically chosen apptted at
runtime.

In Section 4.4 | presented a TLB coherency scheme that enables & tkerne
batch expensive TLB shoot-downs for multiple memory permission updates. |
stead of updating TLBs on a per-entry basis, multiple updates are combirnéie. W
this scheme reduces the remote-processor signaling overhead, it atshuoats
inter-dependencies of independent and parallel operations in the memusys-
tem. | developed a TLB epoch mechanism that allows processors to sgfelgd
outstanding TLB updates kgetectingnon-completed shoot-downs and initiating
the shoot-down themselves.

Finally, in Section 4.5 | presented an event-logging mechanism for system
components including the microkernel itself. Different to monolithic systems,
where resource usage information is directly available to the OS, aredicigece-
levant information distributed and isolated between the system componentd: Eve
logging with shared memory provides a high-bandwidth and low overheatheh
between resource managers and the scheduler, thereby efficienttpiomeg the
additional isolation restrictions.

In the next chapter | describe the application of those mechanisms to aspecifi
microkernel.

60

CHAPTER 4. MICROKERNEL PERFORMANCE ADAPTATION

Chapter 5

Application to the L4
Microkernel

In this chapter | describe the application of multiprocessor performaragattbn

to L4Ka::Pistachio, an L4 microkernel. L4Ka::Pistachio is the basis for a variety
of research projects, including the development of multi-server systezhsadd
para-virtualization efforts [69]. | and colleagues [111] have showh tAKa::Pis-
tachio is able to efficiently run multiple instances of a multiprocessor Linux kerne
on a single multiprocessor system.

L4 is an ongoing research effort and therefore a moving target. In théssth
refer to the general concepts of the latest L4 specification, Version /26349,
which | co-authored. Furthermore, | extended the specification to ssldoalabil-
ity aspects. L4Ka::Pistachio is a group effort by a number of people, vewe
implemented a significant part of the main kernel and maintain the 1A-32 specific
part of the kernel.

In this chapter, | concentrate on aspects of L4Ka::Pistachio that relate to the
main subject of this thesis: scalability of microkernel-based systems. | lave d
scribed other aspects — including reasoning for individual designidasis— in
a technical report that accompanies this thesis [109].

The chapter is organized as follows. In Section 5.1, | give a genesaView of
the core L4 concepts that are required in later sections. In Section ®fnéany
requirements and general goals for a scalable kernel. This is followtadyy sec-
tions that describe the specific application of the ideas of performangtatidoa
to L4Ka::Pistachio. In Section 5.3, | detail the construction of the inter-goce
communication primitive. Section 5.4 describes the application of dynamic lock
granularity (developed in Section 4.3.3) and the TLB coherency via trg¢sec-
tion 4.4) to L4’s memory management mechanisms. In Section 5.5, | describe
the mechanisms for efficient resource tracking that provide the badiséoilevel
resource managers.

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

5.1 Overview of L4

L4 provides two abstractions in addition to bare hardwdheeadsand address
spaces

Threads are the abstraction for an activity; processor time is multiplexed be-
tween threads. A thread is represented by processor state (regrgexta
unique global identifier, and an association to an address space. Ezath th
belongs to exactly one address space at any time. In L4, threads atkealso
fundamental abstraction for controlled transfer of execution betwetar-dif
ent protection domains (i.e., address spaces).

Address spacesprovide the abstraction for protection and isolation; resource per-
missions are bound to address spaces. Address spaces are pbgsite
that are manipulated by threads. Address spaces have no explicit fmmes,
are named via a thread associated to the particular space.

Permissions in L4 are bound to address spaces; all threads within an ad-
dress space have the same rights and can freely manipulate each other. This
model has implications and significant limitations on multiprocessors dis-
cussed later in more detail.

In L4, the address-space concept is used for different resgureduding
memory and I/O ports.

Furthermore, L4 features two mechanisms for permission contR: and
resource mapping

IPC is the mechanism for controlled transfer of data, resource permissiods, a
control of execution between exactly two threads. If the threads reside in
different address spaces, IPC implicitly crosses protection domain bound
aries and transfers data between them.

IPC is a synchronous message transfer and requires mutual agrdsment
tween both communication parties in the form of a rendezvous. During the
rendezvous, the message content is transfered from the senderdodiver.

Resource mappingis the mechanism for resource durable permission delegation.
Resource permissions are granted viarttapoperation, that is part of IPC
and thus also requires mutual agreement. Map transfers the resouris-pe
sions from the sender’s address space to the receiver's adgeess sThe
permissions to the resource are either identical to the sender’s permission o
maore restrictive.

The map operation can be applied recursively. Permission revocation is pe
formed via theunmapprimitive and is involuntary for the receiver of a mem-
ory mapping. Unmap is a recursive operation which revokes all depende
mappings as well. A more detailed description follows in Section 5.4.

5.2. REQUIREMENTS 63

Permissions are associated with an address space; any thread ofessadd
space can manipulate (and potentially revoke) resource permissions.

L4 features an in-kernel priority-based round-robin scheduler dilatates
time to individual threads. When the time slice of a thread expires, the kernel
preempts the thread and chooses the next runnable thread within the sanitye pr
level. When a priority level becomes empty, the kernel considers the igherh
level. If no more runnable threads remain in the system, the kernel switabes th
processor into a low-power state.

5.2 Requirements

In this section | describe the design goals (and non-goals) for a multgsoce
version of the L4 microkernel. The description has a specific focus omthi-
processor aspects. Afterward, | describe the extensions and mbdifccbmake
to the original uniprocessor kernel design.

The intricate interdependencies between nearly all kernel subsystquiese
a good understanding and detailed discussion of many individual asjéesel
components. | discuss them in more detail in a separate report [109].

5.2.1 Design Goals

| define four major design goals for L4Ka::Pistachio: scalability, perfocean
policy freedom of new mechanisms, and compatibility and transparencytiéwd
ally, I define the following set of non-goals (i.e., aspects that were of tevast
even though addressed by important related L4 work): real time [58}dianular
user-level memory management [52, 74], and requirements of highlyesegs-
tems [60]. For all design decisions | clearly favored goals over naisgo

Scalability

Scalability is the primary goal of this work. Following Unrau’s design princi-
ples [113] for scalable operating systems, the microkernel has to fulfithitee
construction principles:

1. Preserve parallelism.The parallelism of applications must be preserved
throughout the microkernel; requests from independent applicatiomstbav
be served independently and in parallel.

2. Bounded overheadl'he overhead of operations must be bounded and inde-
pendent of the number of processors.

3. Preserve localityThe kernel has to preserve the locality of the applications.
From this requirement | derive thaj the kernel code and data need to be
local to the processorsj)Y upon application migration the kernel meta data

64

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

has to be relocatediji) applications and OS services that manage memory
resources need to be aware of processor locality,ighteuire mechanisms
to explicitly manage it.

Performance

The performance of microkernel primitives is paramount, with a particuleuso
on the IPC primitive. | closely follow the design principle for microkernels as
postulated by Liedtkelpc performance is the Master. Anything which may lead to
higher ipc performance has to be discussed. [7(].

| evaluate the achievable performance based on two factors. First,ifre-un
cessor version of the kernel gives the upper performance boumgéoations that
are local to one processor. For all critical operations | choose asteuicentical
(or almost identical) to the single processor kernel. Second, for opesai@t
are either cross-processor or require concurrency precautiensacking) | target
for the achievable minimal overhead of thheicro operations A macro operation
thereby combines multiple smaller and potentially independent operations into one
larger operation.

The optimization at the macro-operation level allows the kernel to redute cos
by combining the startup overhead of multiple micro-operations, for example via
critical-section fusing [79], or by performing bulk operations on a remotegs-
sor. Instead of initiating remote operations one by one, the kernel comaliines
operations and initiates a single inter-processor request. In cases thlhdernel
has to repeatedly acquire locks, the fusing of multiple micro-operationsesait r
in reduced concurrency, longer over-all waiting time for a lock, and ity
unfairness and starvation. Here, | explicitly move the policy decision via fa hin
to application level. Applications can then choose between coarse-glaokeag
with lower overhead or fine-grained locking but with a higher overhead.

Policy Freedom Of New Primitives

A primary design goal of L4 is to have no policies in the kernel. To a largenéexte
that goal is achieved, with some exceptions such as the in-kernel dictggoiniicy.

In this work | add nevkernel mechanisits achieve scalability. A primary design
goal is to not introduce additional kernel policies.

Compatibility and Transparency

Developing an operating system from scratch is a tremendous multi-pgeson-
effort. Therefore, | set a primary design goal that enabled me to lgeedtze
numerous previous and ongoing system development projects for therbélk
[42,54,69,72,111]. | favored compatible kernel interfaces, mashas, and ab-
stractions to the uniprocessor version over significantly different.dr@sopera-
tions that violate isolation restrictions, | favor transparent completion withfape
mance penalty rather than explicit failure with notification. Transparent kiirop

5.2. REQUIREMENTS

65

preserves compatibility to existing uniprocessor software and algorithneseah
explicit failure notification requires that applications be extended with multipro-
cessor error-handling code.

5.2.2 Multiprocessor Extensions to L4

Based on the design goals described in the previous section, | extendipie-u
cessor L4 microkernel as follows:

Threads. The abstraction for execution is the thread. | extend the thread with
an additional attribute that denotes a threddisne processorThe kernel
does not automatically migrate threads, instead they are bound to their home
processor. Thread migration (e.g., for load balancing purposes) isra us
level policy and only takes place upon explicit application request.

Address spacesin L4, address spaces serve two primary purposes. First, an ad-
dress space is a kernel object that associates virtual addressgsitmapte-
sources. Second, the address space provides protection boandareads
which are associated with the same address space have the same rights to
objects, including the right to manipulate peer threads in the same address
space.

NUMA systems require processor-local memory (see previous section) a
therefore different address translations depending on a threads pices-

sor. | separate virtual-memory address translation from thread perngission
A thread belongs to a permission domain that specifies the peer threads, and
to a memory address space for the virtual-to-physical memory translations.
An active thread can migrate between memory address spaces which pro-
vides a mechanism for implementing processor-local memory. The memory
manager of the address spaces the thread migrates from and to needs to en
sure that both address spaces have the saemory contentnapped. The
migration only changes the association to physical resources that is the mem-
ory access latency, but preserves the memory semantics (also sée [109]

Per-processor resourcesScalability requires parallel execution of independent
application requests (see previous section). | replicate all centradliaaia
structures and provide per-processor instances. That inchahesiuling
gueuesthekernel memory pooband themapping database memory pool

Processor-local resources require an indirection that referéheesurrent
processor’s instance. | minimize the overhead induced by the indirection
via the virtual memory subsystem. The per-processor kernel data sesictu
are located in a specific area of the kernel's address space. Eadsgoo

has different memory mappings in that area, such that all accessessddr
the corresponding processor-specific instance of kernel data. razes
sors with software-loaded TLBs, the TLB-miss handler treats that ama sp
cially. On processors with hardware-walked page tables, the kemmtiesr

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

per-processor instances of the top-level page table. Each instamizénso
specific translations for its processor. For identical page mappingls ésuc
user space and common kernel mappings) processors may share ttsesame
of page tables.

One implication of the scheme is that data stored in the per-processor area
cannot (easily) be accessed remotely, because it is only directly daeess
by the specific processor.

Kernel messaging.| provide an in-kernel messaging mechanism for remote ex-
ecution. The kernel uses a preallocated number of request buéerr@
cessor to initiate a remote execution. The kernel sends an inter-processo
interrupt in case the remote processor is actively running. If a procesass
out of free request buffers it busy-waits until a request bufferded up; the
scheme avoids kernel deadlocks by continuously serving remote tegues
All request handlers are constructed in such a way that the kernakdter
deadlock nor lifelock [117].

Read-copy-update epochFor dynamic lock adaptation and also to avoid exis-
tence locks, the kernel uses read-copy-update epochs. At boot énkerth
nel forms the processor clusters (see Section 4.2.1). Based on thescluste
it creates a ring of processors that circulate a token. The token isdoagse
writing a value into a dedicated per-processor memory field. Each proces-
sor regularly tests its associated field and when set, passes the token to its
successor processor in the ring. The test for the token is at two locations
in the kernel’s code path: on user—kernel crossings and on timer tidles. T
timer tick t;ick limits the maximum time for a round trip of a tok&gung in a
system withn processors tgound < 2N - tiick.

User-kernel crossings include the performance-sensitive IPC pranifikie

ring scheme generates two cache misses every time the token passes a pro-
cessor. The first cache miss occurs when the token is read after it get mo
ified by the predecessor in the processor ring. The second cacheaniss o
curs when the token is passed on to the successor in the ring. Thus, in an
n-processor system the scheme has an overhead of 2 cache misges ever
system calls. Considering the high cache miss penalty relative to the overall
cost of system calls, a strict token passing scheme incurs too much aglerhe

in particular whem is small. Based on the number of processors in the sys-
tem, | reduce the cache-miss frequency by only testing evérgystem call.

The required counter is local to each processor and thus remains isiggclu
state in each processor’s cache. Note that this optimization does ndt affec
the maximum latency of a token round trip. In very large systems it is possi-
ble to form multiple sub-rings that include a subset of the processors in the
system.

5.3. INTER-PROCESS COMMUNICATION 67

5.3 Inter-process Communication

Inter-process communication is the central mechanism for thread interaction
thread synchronization, controlled protection-domain crossing, amndiness del-
egation. IPC performance is of paramount importance in a microkernglnsys
Operations which require two simple changes of privilege-level in a monolithic
operating system require two IPC invocations in a microkernel. Thus, H6 a
an immediate overhead on all invoked system operations. Due to carsfghde
L4's IPC primitive has a very low overhead on uniprocessor systemsetéildd
analysis of individual design decisions and principles was given bytkéeld@Q].

In that paper, Liedtke briefly addresses multiprocessor systems goaiseroa lock

on the critical path. Such a locking scheme, however, would impose apenfce
penalty of up to 20 percent (see Section 6.2).

In this section, | describe the most performance-relevant usagerscéoma
dynamic lock adaptation for L4: the IPC primitive. Each thread in the system ca
ries a processor isolation mask that denotes its primary scope for commumicatio
According to the mask’s restrictions, the kernel adjusts the lock primitive ef th
thread. Following, | will give an overview of the relevant communicatiomace
ios in a microkernel-based system and their performance and latenéseraguts.
Afterward, | discuss two design alternatives for a cross-procéBsdprimitive. |
describe the two alternative approaches to cross-processori)P@séd on kernel
locks and i{) based on kernel messages. | conclude the section with a brief discus-
sion on the IPC primitive for multiprocessor systems with significantly different
cache migration overhead and IPI latencies.

5.3.1 Communication Scenarios

The microkernel’s IPC primitive is used for a variety of purposes. Butseenar-
ios are most common and relevani: dlient-server interaction andi Y IPC-based
signaling and notification.

The following discussion is based on two core assumptions. Firstly, | assume
that the programmer has detailed knowledge on application behavior and eommu
nication patterns of the workload. Design decisions always aim at maximizing
performance for thevell-designedapplication, rather than induce an overhead to
accommodate unoptimized applications.

Secondly, based on the structure of current multiprocessor archéectunake
the assumption that the overhead for cache migration, synchronizatsigaal-
ing is so high that frequent cross-processor interaction in the serseenhote-
procedure call is unfeasible. This assumption stems fipth¢ overhead for asyn-
chronous inter-processor signalin@) (he cost for cache-line migrations (even in
multi-core systems) relative to the frequency of remote invocations and the po
tentially achievable speedup. New features in upcoming processor argfetc
however, may change the specific performance trade-offs. Furtherindo not
address resource interference between threads of SMT progebsbrconsider

68

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

File Disk
App)
system driver | yser
mode
Kernel
mode

Figure 5.1: Client-server IPC model for OS services on a microkernelowsr
denote the execution paths for IPC.

them as independently executing.

Client-Server Communication

In a microkernel-based system, the operating system functionality is nciitexe
in privileged mode in the kernel, but unprivileged at application level. bepr
to invoke an operating system service, applications send an IPC to anr@% se
Client-server communication is the most performance-critical operatiomubsec
it replaces all simple kernel-invocations in a monolithic OS by two IPCs.

In most cases, the client depends on the results of the server invocaton a
needs to block until completion of the remote operation. The IPC invocation thus
follows the instruction stream of the application similar to a normal system-call
invocation in a monolithic kernel. However, instead of stopping user-letisfity
and entering kernel mode to execute the system function, the kernel sgvitzh
the OS server's address space instead (see Figure 5.1). The swititlaiedrby
the client (by invoking the IPC primitive), authorized by the server (bypting a
message from the client), and executed by the microkernel.

IPC in the client-server scenario is therefore a mechanisin tuérantee that
the remote server is in a consistent state (signaled by waiting for an incoming mes
sage) andii) to transfer control into the server’'s address space. It is important to
note that client-server relations do not usually make use of the parallelisaxithr
ing would provide, buexplicitly avoidit. In order to minimize the IPC overhead,
the scheduler is not invoked when switching from client to server thraddte
server executes on the client’s time slice instead. This scheme was firssptbp
by Bershad et al. [19].

In multiprocessor systems the client request could theoretically be hangled b
a server thread on a remote processor; the following reasons, howeie such
an approach unfeasible fbtockingrequests:

5.3. INTER-PROCESS COMMUNICATION

e A client that relies on the result of the server request will be preempted,
while the server needs to be activated. Performing such an operatmssacr
processor boundaries requirésifivocation of the scheduler on the client’s
processor andiij activation of the server on the remote processor (which
may further lead to preemption of an active thread on the remote CPU).

e The server requires access to client data in order to handle a cliemtstequ
(at least for the request parameters, but potentially more). For remeta-op
tions, such data have to be transferred via memory instead of the prosesso
register file. Hence, a remote invocation requires more instructions, and als
incurs overhead due to cache line migrations. Furthermore, operating on
memory that is shared between client and server incurs overhead fa-migr
tion of the active cache working set between processors.

e There is an inherently higher overhead for starting a remote operation com-
pared to a local operation (even if small on tightly-coupled systems). The
initiation of a remote operation either raises an interrupt or at least writes
into a shared memory location (resulting in cache line migration). In the
local case, the operation stays within the instruction stream of one poocess

Only in one case a remote operation may yie&tter performance, that is

if the overhead for context-switching from client to server is higher than
the overhead for remote processor signaling plus the working set migration
Such scenario may occur, if the to-be-transferred cache workirig gety
small, the remote processor already activated the address space ofjéte tar
server, the cache working set of the remote server is already loattthe
processor is idle (i.e., does not require interruptin).

e Dynamic migration of worker threads is unfeasible on multiprocessors due to
the cache migration overhead. Although, on well-designed SMT and tightly
integrated multicore systems this requirement may be of less importance.

Based on the previous analysis | made the design decision to strictly favor
the performance of processor-local IPC over cross-proceBsor This decision
imposes a design discipline that minimizes cross-processor communication and
has general implications on the structure of the system.

Unrau'’s first design rule (preserving parallelism) requires that inaldgat ap-
plication requests can be served in parallel. When applied to a client-smgrver
erating system that rule requirasleastone server handler thread per processor.

In order to scale, the server needs to be aware of the parallelism avidepeo
sufficient number of worker threads. The threads have to be distrilbereds all

1SMT systems often share the L1 cache for different threads. Theisydrking set remains in
the same cache if the processor supports L1 sharing.

2Each processor has a dedicated idle thread. Since it only executesiél kerde there is no
reason to switch to a special address space. Upon activation the idld thezafore remains in the
last active user address space.

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

CIienti CIienti CIienti Client !
e N1 /S,\ ,S'\ AN
(e i e ()
T A T T A i AT ! A7 :
i S . §$ervér S . S |
i CPUO| [CPU1} {CPU2| |CPUS|

Figure 5.2: Example for client-server configuration with a multiprocessare
server. The server provides processor-local threads to eliminags-processor
IPC. (The microkernel is omitted in the figure.)

processors such that clients can contact a local server thread andvibid the
described overhead for the remote invocation (see Figure 5.2).

Synchronization and Notification

Synchronization is a latency-sensitive operation. The time from the retgmse
ation of a synchronization primitive until a previously blocked thread stxds e
cuting influences the responsiveness and increases the overall ruftanask.

The design goal is to minimize that latency. The cost for an IPC that unblocks
a thread on the same processor is low when comparing to alternative hajh-lev
kernel synchronization primitives (such as semaphores or mutexes3eH®C is

an sufficient mechanism for inter-thread synchronization. Furthermsneg one
general mechanism for a variety of purposes is advantageous bdtaeduces
kernel and application complexity, as well as overall cache footprint.

Signaling across processor boundaries requires three operatipmesst (and
modify the thread’s state from blocked to ready) énqueue the thread into its
home-processor’s scheduling list, ariid)(notify the remote processor to resched-
ule. These three steps can be realized in two different ways. Firstlyathesttuc-
tures are manipulated directly and therefore require some form of symzhtion
(e.g., locks). Secondly, the operation is initiated via an in-kernel messageca-
formed by the thread’s home processor itself. In that case no lockequéed
because operations are serialized by the remote CPU.

Direct manipulation has a performance advantage because it allows d threa
to perform multiple remote notifications without being dependent on the execu-

5.3. INTER-PROCESS COMMUNICATION

71

CPUB

CPUA Lock, test, transfer

i
Overall execution Message
time for IPC send delivery lat.

release

CPUB

CPUA send 777 7/ M ackatransfe

v

: —» '« Message delivery latency time

Overall execution time for IPC send

(b) Message-based IPC

Figure 5.3: Comparison of the message-based and the lock-basegyosssor
IPC mechanism. Message-based IPC has a significantly higher latency.

tion of remote processors. It uses the parallelism of the memory subsysiém th
operates independently from the processors. An in-kernel messsafiegne can
only achieve the same level of parallelism and overhead when the notifi¢ation
asynchronous and without completion notification.

Such an approach moves the complexity of error handling to applicatioes. Th
number of potential usage cases that do not require completion notificatjoités
limited. Moving this functionality to user-level results in significant code duplica
tion because every user-level application would have to consider tieeoféast
messages. Furthermore, the common method for detection of lost messages is
timeouts which should be avoided at all cost.

Waiting for completion of the remote operation can be achieved in two ways.
Either the sending processor polls for message arrival on the rematesgay
(which adds the cross-processor signaling latency to the operatidhg imitiating
thread blocks until arrival of a confirmation message. The latter addvérbead
of a context switch and a scheduler invocation to each cross-procesgaation.
Figure 5.3 compares the alternatives and highlights the latency implicationstof ea
approach.

72

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

5.3.2 Performance Trade-offs

The design of the IPC mechanism on multiprocessor systems has to take a large
number of parameters into account. These are not limited to performanda-and
tency, but also user-level communication protocol complexity, transpprecess
migration for load distribution, atomicity and non-interruptibility of operations. A
detailed reasoning is beyond the scope of this thesis and is discusse@]in [10

Here, | only give the design parameters of the multiprocessor IPC primitive.

e Similar to the uniprocessor version, IPC addresses individual threads.
Thread locality is explicitly exposed to application level. Multi-threaded
servers need to expose the processor-specific thread IDs to comtiamica
partners (i.e., clients). This design decision favors IPC performanee ov
locality transparency.

e For protocol transparency, the IPC primitive must work on the same groce
sor as well as across processor boundaries. Limiting IPC to threads éhat
located on the same processor would require that all applications sgpport
ror handling in case they are migrated to a different processor while in the
middle of an IPC (e.g., waiting for a response of a thread that is suddenly on
a different processor).

e IPC should be a generic, low overhead, and low latency primitive sucit that
is applicable to a wide range of scenarios. Multiprocessor support raust h
minimal impact on local communication.

As | argued in the previous section, cross-processor thread symzhtion
is extremely latency sensitive and an in-kernel message-based syizettian
scheme performs less efficiently than a lock-based scheme. On the ottter ha
the majority of all IPCs take place between threads that reside on the same pro
cessor. Here, the locks required for efficient cross-proceB¥dinduce a constant
overhead in the local case and a messaging scheme would be preferabéeféw
cases of thread migration.

When considering the most common communication relations of threads in a
system, one notices very specific patterns. For each thread it is possitdeve
a communication profile to partner threads that are either primarily on the same
processor or primarily on remote processors. For example, servadthtigat have
identical peers per processor communicate locally in almost all cases &nd on
in a very few exceptional cases to remote threads (usually as a resuthifaal
migration). Threads that frequently synchronize with remote threadsehlaiggner
number of cross-processor communications relative to local IPC.

Fortunately, applications are aware of the specific communication patterns of
their threads. For example, a server spawns parallel handler thrga®tessor-
local communication, while a parallel program creates remote worker thtbat
synchronize frequently. That application-specific knowledge canskd benefi-
cially to fine-tune the communication primitive.

5.3. INTER-PROCESS COMMUNICATION 73

5.3.3 Adaptive IPC Operation

Instead of favoring one IPC primitive over the other, the kernel supgmmth [PC
variants — message-based and lock-based. Having two alternativgpatigein
the kernel only incurs a marginal overhead becai)ssupport for cross-processor
IPC was one of the fundamental design requirements igntb (@ large extent the
code is identical for both alternatives.

Based on its communication profile, each thread can derive a petfefrred
remote processorthat are expressed in a processor isolation mask. Based on that
mask, the kernel fine-tunes the communication primitive; processors éhgpeci-
fied in the mask use a lock-based IPC scheme, while all others use a mbasade
synchronization scheme for IPC. Depending ondftker specified in the processor
mask, the kernel may further fine-tune the lock primitive itself (i.e., use spksloc
or MCS locks).

Accesses are restricted to a single processor if the isolation mask oniffespec
the home processor of a thread (or alternatively no processor). tircdlsa the
kerneldisablesthe lock on the IPC path using the dynamic lock demotion scheme
as described in Section 4.3.2. | want to emphasize that the processor solatio
mask performance-tunes the IPC primitive blaies notenforce communication
restrictions. Hence, it is still possible to communicate with threads that are eutsid
the bounds of the mask, however, the primitive uses the more expensigagees
based code path.

Dynamic adaptation provides the optimal case for two scenarios: higbrperf
mance lock-free communication in the local case, and low-latency communication
for the remote case. Adaptability eliminates the requirement for a specialkern
synchronization primitive. Figure 5.4 shows the state diagram of L4’s i@ip
tive. | specifically marked the multiprocessor extensions and dynamic Iddles.
code path contains two locks that are acquired for the common client-senver
munication case: one for the send phase and a second for the rea#live 4
complete round-trip IPC therefore requires a total of four locks.

5.3.4 Remote Scheduling for Lock-based IPC

After completion of a remote IPC operation, the partner thread becomeahienn
and has to be considered by the remote scheduler. If the priority of thentiyr
active thread on the remote processor is lower than the priority of the thaad
vated by the IPC, the remote processor should invoke the schedulehdriesng
is achieved by sending an IPI to interrupt the current execution. Aligehg if the
currently executing thread has a higher priority than the activated oné)rneed
can simply be enqueued into the ready list and the normal scheduling meohanis
will activate it at some later point in time. That case requires no IPl and so&
accompanying overhead.

In order to scale, the kernel has per-processor structures forctrezlgler.
These structures include one ready list per scheduling priority and eupdist to

74

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

Send kernel Send kernel
message, message,
block block

Block and
switch to
receiver

Block and
reschedule

Switch to
sender or
receiver based
on priority
Signal error .
condition
Remote v
reschedule Ve
> End

Figure 5.4: State diagram for multiprocessor IPC with support for dynarokslo
and kernel messages. Elements with a bold border denote multiprocesgsor ad
tions to the uniprocessor state diagram. The locks can be dynamically eaalled
disabled. (Error handling is omitted for clarity.)

handle IPC timeouts. To lower the overhead for the processor-loaal selsedul-
ing lists are unsynchronized and therefore cannot be accesseddnuote proces-
sors. Instead, each scheduler features one or more requeue ligisdhk remote
processors to use memory-based queues. When a thread is activatedrote, it
is enqueued into a requeue list of its home processor’s schedulerelReligts are
protected by per-list locks; multiple lists per scheduler further reduceuwrogncy

from many remote processors and thus the potential for lock contenticureFsgs

depicts the structure for one processor in more detail.

Apparently, in order to support multiple requeue lists, each thread cdudak
needs to provide multiple list pointers. However, that is not the case foollog/f
ing reason: Threads only have to be enqueued into the ready list whethtead
state switches from blocked to ready. That switch is a controlled operatagi-v

5.3. INTER-PROCESS COMMUNICATION 75

Lock-free scheduler Lock-protected
priority list requeue list
A M™ .
prio a+2 +— —> s s) S%s\i prioa
™~ \{ prio a+2
A
prio a+l—1+— —> S S S s
AN S N7
Requeuing before
prioa 1 —> S next scheduling
decision

Figure 5.5: Requeue list for remote processors to avoid locks on the kcpéta
for the scheduling queues. One list exists for each processor in ttearsys

ther IPC, a timeout, and a few other operations (see [109]). All state ssgifchm
a blocked to a ready state have to be synchronized via the IPC syndtionitock
of the thread. When a processor holds that lock, no other procest@ gystem
can concurrently manipulate the threads state; but then also no othessoosll
try to enqueue the thread into a requeue list and a single pointer is sufficient.
When the scheduler is invoked, it parses the requeue lists and redhezsts
according to their priority into the normal scheduling queues. First, thedsitdre
checks the list head for valid entries and only then acquires the lock kDigezven
a larger number of requeue lists therefore only incurs a modest runtimieeagk
The requeue list is a singly-linked list of thread control blocks; the conitglex
is O(1) for insertions. Remote processors can oatid members to the list and
only the home processor can remove members as part of the requeagasper
Requeing threads therefore also has a complexi®(@f) per list member, how-
ever, the latency for one specific thread with a totah ¢ireads in the requeue list
isO(n).

5.3.5 Discussion on Tightly-coupled Systems

At the beginning of this section | narrowed the design space to systemsatreat h
noticeable cache-line migration overheads and relatively high IPI-signiaian-
cies. However, embedded multicore and SMT processors may showediffees-
haviors. Those processors often have IP| latencies as low as tes apdefficient
cache sharing with minimal cache migration overhead via on-chip direcedaeh
cache transfers. A thread allocation model with hard processor affipégrabread
may be suboptimal. Following, | will discuss the implications of such system struc-
ture for the IPC primitive.

When the cache migration overhead between two processor threadesedu

76

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

significantly (or even drops to zero), a fixed thread association may lesubto
optimal processor utilization. Multiple processor threads then better sinare o
scheduling queue. Yet, to achieve maximum parallelism still requires ondenand
thread per processor thread in system servers. The direct IP€saddy scheme
may lead to bottlenecks if all clients contact the same server thread. | emwigag
alternative schemes to overcome the problem (without practically validatiirg the
effectiveness). First, server threads could be grouped such tltgilethreads can
be addressed with a single name. Alternatively, the kernel could apgendessor
tag to thread IDs of servers. Both schemes, however, introduce armellpolicy
and the first scheme requires another lock on the critical path.

Specific lock primitives for such tightly coupled processors would progide
trade-off between shared data structures and high synchronizasohead (see
also Section 7.2).

5.4 Address Space Management

In L4, address spaces and system memory resources are manageticatian
level. Address spaces are constructed by user-level servers.llynaié physi-
cal memory is mapped to the root address sprgaew address spaces are con-
structed recursively by mapping regions of virtual memory from oneesdspace
to another.

The kernel's abstraction to memory ipage mapping L4 lacks any knowl-
edge on theemantic®f the referenced page frames and treats all pages identically.
For example, L4 does not differentiate between physical page frames¢iRAM
and others that are hardware devices. The advantage of suchnaesishe greatly
simplified kernel abstraction with one uniform resource type. Howeveh sni-
formity may require overly conservative kernel algorithms with significaritijpér
overhead in runtime cost and memory footprint, or poor scalability.

| want to emphasize that the memory management mechanism in L4 only con-
trols the permissions to memory resources. The kernel thus solely opemabeta
data, such as page tables. In this section, | address the problem of sigthfidiin
fering resource allocation patterns for memory resources in L4.

The section is structured as follows: First, | give a brief overview of mgmor
management models in L4-based systems and describe their specific allocation
patterns (refer to [12] for a more detailed description). Based on thatserps,
| discuss the cost vs. scalability trade-offs and derive a set of emeints for the
kernel mechanism. Then, | describe how these requirements are cfiedte
kernel mechanisms that track the recursive memory mappings. A limiting factor
for concurrency and thus scalability of the memory management mechanism is
TLB coherency on multiprocessor systems. | apply the TLB versioningraeh
described in Section 4.4 to the recursive address space model.

The recursive virtual address-space model enables user-level menam-
agers to perform NUMA-aware memory allocations, such as transgzagatrepli-

5.4. ADDRESS SPACE MANAGEMENT 77

cation using processor-local memory. A detailed description is beyond:tpe s
of this thesis and thus described in the accompanying technical rep6jt [10

5.4.1 User-level Memory Management

User-level memory managers fall into two main categorigsnénagers that parti-

tion resources, andi} managers that operate on resources. The hierarchical mem-
ory model allows for re- and sub-partitioning via an intermediate addressesp
Partitioning is achieved by mapping pages into the intermediate address space,
which then applies the partitioning policy and maps on the resources to the next
level in the hierarchy. The relatively low kernel resource overheadm address
space makes such a simple model feasible. The second class of reranagers
operate on the resources themselves. For example, a file system wouldealloc
memory resources to cache files or a user-level server for anonymenmry
would provide paged memory.

Memory allocations of applications also differ significantly depending on the
applications’ life span and level of parallelism. Applications allocate memory re-
sources in three phases. In the first phase, the application populataddiess
space by faulting-in the active working set. Afterward, the applicationrgrate
steady state phase where it may access files or share data with othertepgica
or servers. When the application finally exits, the kernel frees the ssldmace
and removes established mappings all at once. Obviously, for shattdwelica-
tions the set-up and tear-down phases dominate the resource manageaiteens p
whereas for long-lived applications (and servers) the steady-state ph more
relevant.

While the specific resource management pattern depend on the specifics of
application and memory resource manager, memory resource allocation follows
three primary allocation pattern:

¢ frequent manipulation of very few pages (map and unmap),

¢ frequent manipulation of many pages at once fpaddress space tear down,
and (i) restriction of page permissions (e.g., for copy-on-write for UNIX’s
fork.), and

¢ infrequent manipulation of large sets of pages or super pages for &ulk r
source reallocation.

These allocation patterns are most critical for performance and scalaipitiy s
they can result in long synchronization periods limiting scalability. Therefore
will specifically focus the following discussion on them.
Rooting all physical memory from one address spaxg is a very powerful
and flexible mechanism, however, it also introduces a dependency cttaiadn
all address spaces in the system. Because intermediate memory managers (includ
ing 0p) could modify or revoke mappings at any point in time, the kernel meta data

78

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

requires explicit synchronization. In the vast majority of cases, howevanipu-
lations of the same permissions are restricted to a single processor. Anfower
granular synchronization scheme incurs a significant runtime overhehdaghe
footprint. The overhead of a single taken lock is one to two orders of mafmitu
higher than the actual operation of updating the page table. Hence, iy cme-
servative synchronization scheme that solely focuses on scalability wilude a
massive overhead.

Based on the common resource manipulation patterns | identify four scenario
that need special consideration for scalability as shown in Figure 5.6.fifBhe
scenario is where one page frame is mapped into two address spaces G-&g).
Subsequent mappings should be possible without interference anlizatda of
B andC.

The second scenario is the concurrent access or manipulation of magping
different levels in the map hierarchy (Figure 5.6b). This scenario saguwvhen
the kernel restricts access rights aidl\yhen the kernel reads access information
to a page: the operation of the childshould be independent of other sub-mappings
of parentA. Complete page revocation is less critical, because it eliminates the
inter-dependency between parent and child.

The third scenario addresses mappings of differently-sized pages€Rdsc).
The pareni operates on a super-set of pages of the ahil8imilar to the previous
scenario, parent and child (and also sibligyandC) should be independent of
each other.

The fourth scenario is the concurrent manipulation of partially overlapgeis
of mappings (Figure 5.6d). In the shown case, the parent manipulatesngspp
B andC. Operations performed by the child in address sggaskould be indepen-
dent of mappings t@&.

A naive solution that maximizes scalability for all four scenarios requires (
complete independence of individual mappings dnda(TLB coherency scheme
that is strictly enforced aftezach individual permission updat&he latter require-
ment stems from L4's strict consistency model for page permissions. Volked
operation can only complete when permission updates are propagated tto-all p
cessors and potentially stale TLB entries are updated (i.e., invalidated).

A simple cost analysis reveals that such a solution has a massive ovérhead
will eliminate and even reverse the benefits of improved scalability. For example
the overhead for a TLB coherency update is often multiple orders of maignitu
higher than the cost for the actual in-kernel meta-data manipulation.

5.4.2 Scalability vs. Performance Trade-off

The scalability vs. performance trade-offs for the hierarchical memonyagex
ment scheme are the common design trade-offs for all multiprocessor stsictu
Fine-granular locking results in better scalability while coarse-granul&irighas

a lower overhead. The memory subsystem additionally requires cortgideod
the overhead and latency for TLB coherency updates.

5.4. ADDRESS SPACE MANAGEMENT 79

CPU 1

A A
~—
CPU 2 CPU 2
s I 1 [(B)e || s [1 | c
CPU CPU
(e |
N———" N
(c) Super pages and sub pages (d) Multiple combined pages

Figure 5.6: Scenarios of concurrent page permission manipulation in L4.

The scalability limitations for shared memory buses put a natural limit on the
common degree of parallelism for memory pages. Common large-scale sharing
of memory pages will result in poor performance due to the NUMA overhead
Instead, NUMA systems create replicas that are located in local memory with a
lower access penalty. Hence, a well-designed system will only shayefeier
pages across a large number of processors. Those shared pagssdfor global
data in massively parallel applications that run concurrently on a large enofib
processors. However, it is very unlikely that in those cases the pagegseons
change at a high frequency.

User-level memory management in a microkernel-based system is based on
a mutual contract between two entities, one party that provides a resanuca
second party that uses a resource. That contract includes aigtessavailability,
and for example guarantees on the content (e.g., that data is not arbitradiffed
or leaked). | add another dimension to that contracticurrency

Applications and system servers that implement the higher-level system ab-
stractions have the required semantical information (which the microkeial)la
for an educated decision on the synchronization strategy of individuaiame
mappings. Each partner in the resource contract has to express ésaptefsyn-
chronization granularity and the expected level of parallelism. The resaan-
tract is established when the resource permissions are transferregehebwth
partners. The kernel correspondingly reflects that contract in its\itdata struc-
tures.

Based on my initially stated scalability goals for L4, | support the following
two scalability contracts:

e A new memory mapping can be created as dependent or independent from

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

! Y,

Figure 5.7: Memory subsystem boundaries; a boundary decoupleslibgstem
inter-dependencies.

the parent mapping. All dependent mappings are protected by the same lock
while independent mappings can be manipulated concurrently.

e Sub-mappings of super pages can be synchronized either at théagitsirai
the super page or at the granularity of an individual mapping. The Gnaiyu
can be dynamically readjusted by the owner of the super page at runtime.

These two potential contract types create subsystem boundaries tlhéd iso
subsystems and break the dependency chain.td-igure 5.7 illustrates this with
a sample configuration.

The initially stated performance goal — minimal achievable overhead for an
operation — focuses primarily on the overhead of the three common scetfato
| listed in the previous section. | specifically focus on the frequent ¢perdnce
critical) operations, these arg frequent mapping and unmapping of only a few
pages, andii() frequent manipulation of large sets of pages at once.

When manipulating the page permissions of a few pages only, fine granular
locking has a relatively low overhead. This is in contrast to the cost ofwbeat
operation, such as entering and exiting the kernel and potentially erjortiB
coherency across processors. When manipulating the permissiongef&s of
pages, the kernel should minimize the number of taken locks and even more impo
tant minimize the number of TLB shoot-downs. For such large-scale opesatio
therefore use a delayed lock-release scheme. Before each releaseroel lock,
the algorithm tests whether or not the same lock would be reacquired immediately
afterward. In that case, the algorithm avoids the overhead by skippiegse and
reacquire operations altogether.

5.4.3 Mapping Database

The kernel keeps track of recursively delegated resource permgssioa data
structure callednapping databaseThe mapping database is L4’s most complex
data structure. For each physical page frame the kernel maintains gntnee

a b~ W N -

5.4. ADDRESS SPACE MANAGEMENT

81

that is rooted fromog. A variety of alternative data representations have been
proposed before; each structure thereby addresses a differset klesign ratio-
nale. WIp [116] and Hohmuth [57] focus on avoiding long interrupt latencies and
unbounded priority inversion. Haeberlen [51] proposes an encatihgme that
allows for partial preemption of kernel resources that back the mappgitadpdse
structure. Szmajda [104] focuses primarily on optimizations for systems with
software-loaded TLBs.

| extend L4Ka::Pistachio’s uniprocessor implementation to accommodate the
initially stated scalability goals and subsystem isolation requirements. Firsg | giv
a brief introduction on the general operations followed by a descriptitmeainul-
tiprocessor extensions.

General Operations

The mapping database has a number of design requirements. The daiabase
tains one entry per mapping that is stored in kernel memory, a scarcagesou
Therefore, a compact data representation for mapping entries is on@anaim-
portance. The restricted kernel stack space requires non-neeaigbrithms. In-
sertions and deletions of entries need to be fast operations with a complexity o
O(1). Finally, a primary functional requirement is the support for differeardh
ware page sizes.

L4Ka::Pistachio’s mapping database realizes the n-ary tree via a sortely-dou
linked list of map nodesThe order of map nodes in the list reflects the map hierar-
chy. Sub-mappings are placatter their parent mappings and each node contains
a depthfield representing the level in the map hierarchy. When starting at an ar-
bitrary map node in the list, all map nodes that follow directly and have a larger
depth value are sub-mappings.

The mapping database is optimized for two performance critical operatipns: (
finding the map node for a given virtual address (via its page table eatrgl){i)
finding the page-table entry from a map node. For the first case, thelkeain-
tains a reference to the map node with the page table. For the second apéhatio
kernel stores a reference to the page-table entry in a compressed ¥athia the
map node.

The sorted list structure allows for an efficient insertion scheme. On map, th
algorithm allocates a new map node and inserts it after the parent nodeodiae
insertion into the doubly-linked list requires updating two pointers. On unthap,
algorithm walks the node list until it finds a map node that has a depth-fieltsthat
less or equal to the depth field of the start map node. The algorithm is sédetche
the following listing.

Start Dept h = Node. dept h;
do {
Unmap(Node) ;
Node = next (Node);
} while (Node.depth > Start Depth)

82

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

Lo\ AMAmmnimm limmalae .

Page a:
(o) a1y, (82), (09) Ye2), (rs). (o5
w/ w/ w/ w/ w/ w/
Page b: .
~ -
(o) (m). -
~ REISCONCY
w/ w/
(b) Mapping database structure

Figure 5.8: Mapping hierarchy and corresponding database strdotupagesa
andb. The level in the mapping hierarchy is represented by the numerical value.
Pageb is split into sub-pages via an indirection array. Capitalized letters denote
address space IDs.

Super pages are realized via an intermediate array that has one stéet poin
for each sub page. Figure 5.8 illustrates a typical mapping scenario awd te
corresponding data structure of the mapping database.

Multiprocessor Extensions

The doubly-linked list is a space-conservative encoding, howevegqiiires the
kernel to explicitly lock the list on insertions and deletions of nodes. The list
based structure of the mapping database violates independence afteaisgnd
thereby contradicts one of Unrau’s core requirements for scalabiliggsepring
parallelism of independent applications. In the list structure, the last md@ no
of one map tree and the top node of the next subtree cross-referecitother.
Manipulation of entries in one subtree therefore requires locking of herggy
subtrees. Such structure either requires an overly broad locking s¢kegmeon a
per-subtree basis), or multiple locks for a simple list manipulation. Multiple locks
additionally introduce the danger of deadlocks, which then has to bessddigia
lock ordering or specific deadlock detection schemes. Although carefkinip

2

© 00 N o O bs

5.4. ADDRESS SPACE MANAGEMENT

83

Q. :.::

\\“x _______ +*
S 6 6
- Lock reference "y "y -y
@& Map node
<> Split node

Figure 5.9: Mapping tree structure including split nodes. Concurreettabipns
are possible within independent subtrees.

can guarantee structural integrity of the data structure, the doubly-lireulill
still require locks that cover independent nodes and subtrees. ettaiselection
of neighboring nodes depends on the order of previous map and urpaegiions,
applications can neither anticipate what other nodes an operation affectshat
nodes an operation depends on.

| address this problem by dynamic structural modification of the n-ary tree.
| introducesplit nodesthat structurally separate independent subtrees. The cre-
ation of split nodes is under control of both partnering applications at thedfme
mapping. Split nodes thereby serve two primary purposes. First, theyustlly
separate the mapping tree into multiple independent subtrees. Secondpdetit n
also serve as synchronization objects. Figure 5.9 depicts the kerretuistrof the
previous example extended with the additional subsystem boundaries.

Split nodes are inserted into the normal doubly-linked list and contain & refe
ence to the independent (split off) subtree. The lock within the split nedalizes
accesses to all entries within one subtree, however, not across giditaooind-
aries (i.e., child split nodes). Each map node contains an additionalmeéete
its parent split node, such that the corresponding split node can hd feithout
requiring an intact list structure or a lock. The lock for a specific suliteaebe
derived by a double pointer indirection: the reference to the map noderéexisto
with the page table. The map node itself then references the correspoptiing s
node. The following listing shows a code sketch for a mapping databasepook
including the split-node lock.

MapNode = LookupPageTabl e(vaddr);
i f (MapNode != NULL) {
Spl it Node = MapNode- >Spl it Node;
Spl i t Node- >Lock();
if Isvalid(MapNode) {
[+ perform operation =/

}
Spl i t Node- >Unl ock();

84

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

Super-page Locking

Applications can map sub-pages out of a larger super page. The malapaiase
reflects the division of a super page with an intermediate node array.riigyetas

one entry for each sub page, and the specific number of entries is detdrhyin
the hardware-supported page sizes.

The mapping database is rooted from one top-level map node that ay'&ers
complete address space. That super-node is then divided via an ini@ersrday
that covers a large set of super pages, which then gets furthevsdajiand so
on. The topmost map node has an associated split node that protects theteomp
mapping database with a giant lock.

When a memory manager splits a super page into multiple sub pages, the man-
ager has two alternative locking strategies. First, it can apply a giant locklo
subtrees and thus minimize the lock overhead and lock footprint. Alternatitely
can lock individual sub pages with a higher overall cost but increesedurrency.

The optimal locking strategy depends on a variety of parameters, such sgeh
cific page frame (RAM vs. device memory), the frequency of remapping| &
sharing, and others. However, for resource managers that hayedsource hold
times (i.e., a root resource manager), the optimal locking strategy may chesge
time.

In absence of one general strategy, | provide dynamic adaptation tdake
granularity for sub pages that are mapped out of one super pagendp@ode
array is protected by a cascade of dynamic locks, using the schemdd pledén
Section 4.3.3. In order to lock an entry within the array, the kernel filptiaes a
primary lock that protects the complete array, followed by another lockaich -
dividual entry. However, the adaptive scheme effectively disablesobthe locks
— either the primary coarse grain lock or the fine grain locks. Switching kegtwe
either lock granularity is under control of the memory manager that maps the su
per page. When establishing a new mapping, the memory manager can specify
whether the locking strategy for the super page should change or resainTde
memory that backs the fine-grain locks, is allocated and deallocated ondeman

5.4.4 TLB Coherency

L4’s page permission model uses a strict consistency model. After comptgtion
anunmapoperation, the kernel guarantees that permissions are revoked. e~or th
multiprocessor kernel | had two design choica}réstrict the consistency model
to a single processor only and push the consistency to user levelii pedténd
the strict consistency model to all processors.

The first model is unfeasible for the following reasons: User-levebresfl
consistency requires that a resource owner trusts the resouragmants perform
the TLB invalidation cycle on all processors. Alternatively, the resooreaer
would need one thread on each processor on which therpaygee accessed. This
requirement applies throughout the whole map hierarchy. L4's resa@egation

5.4. ADDRESS SPACE MANAGEMENT 85

model is integral part of IPC. Restricting the extent of resource agpEFssssions
for processors via IPC restrictions is not only cumbersome but violatiesgonal-
ity of principles. | therefore chose the second model. Besides redoceplexity,
in many cases it is possible to beneficially use architecture-specific belswih
as IA-32's forced TLB invalidation on context switches [29].

| defined the following design goals for the mapping database’s TLB eologr
scheme that are in line with the overall scalability and performance goals:

e Minimize number of remote TLB shoot-dowm&B shoot-downs have high
startup and execution costs and the kernel should therefore try to aeaid th

e Minimize number of affected processors per TLB shoot-doWB shoot-
downs should only target processors that actually require a shoat;diow
stead of a global broadcast. This design goal is also a requiremetfar s
bility, because otherwise the overhead for TLB shoot-downs wouldasere
with the number of processors in the system (and thus violate Unrauséeco
design rule).

e Minimize dependency between parallel operatiofifie completion of an
operation must be isolated to the specific resource and not depend on the
completion of others.

In order to achieve these goals | introduced a number of kernel-inteac&lng
mechanisms. Each address space object carries an additional pracasking
mask as described in 4.2. The mask keeps track of potential pollution of TLBs
and is derived from the locality of all threads of the address spacen\tiineads
migrate between processors the kernel accordingly updates the maskefTiel
derives the overall set of processors that require a TLB shootxdbwmerging
the processor masks of modified address spaces upon permissioati@vic

For unmap operations that cover a large number of mappings, the kemel p
forms a single combined TLB shoot-down at the end of the update. This opti-
mization, however, may lead to a consistency problem when multiple prosessor
operate on the same mappings. The modification or removal of a map entrg by on
processor may make the other processor complete its opetaforeall TLBs
are in a consistent state. This can happen if the state of the mapping ddsabase
already in the expected state. For example, two processors concumeshilye
page access permissions from read-write to read-only. The firségsocupdates
all page permissions but postpones the TLB shoot-down. The secondssor
now also reduces the permissions, but only finds read-only permissNmsip-
dates are required and therefore no TLB shoot-downs. Howevigruaiil after
the first processor finishes its TLB coherency update is the operafentsence,
the initially described scenario would show incorrect behavior that coald te
data leakage or corruption.

3For a definition of the merge operation refer to Section 4.2.2.

86

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

There are two critical cases that need special considerations. Inghed#e
the page permissions are reduced, however, the page itself remainsdmbpibe
second case, the page permissions are revoked completely. The pzbidne
further divided into two parts, an existence problem of map nodes andthal a
TLB shoot-down. In the following | address both problems in detail.

Map-Node Existence

A thread that performs an unmap operation specifies an area of its owal virtu
address space. The kernel uses the thread’s associated page faduletie cor-
responding mapping node and all subsequent mappings. Hence, vehenntiap
operation clears the page table entry, it also removes the evidence ottheusr
mapping. Any other thread incorrectly considers the virtual memory arelaas.

In an alternative case, the thread still finds a reference to the map rmdeydr,
until it actually manages to lookup the entry it is removed by another processo

| address both problems via a read-copy-update release scheme ulHairs
of map nodes are always protected by a lock on their superseding s .Nd/hen
a map node is removed, the kernel leaves the reference to its split noslchaliv-
ever, it marks the node as invalid. Invalidating the map nodes enables thighadgo
to detect the described race condition.

In order to preserve references to completely unmapped nodes sespéaeal
handling in the mapping database. When the kernel revokes the pagegiensiis
in the page table, it marks the page table entry as invalid but leaves thenefere
to the mapping node intact. Subsequent map and unmap operations notexkty ch
for a valid page table entry but also for still active map nodes. The map node
references serve as an indicator for potentially still ongoing parallehtipes.

All freed map nodes are enqueued into an RCU free list with their split-node
and page table reference pointers still intact. When the RCU epoch exhiees
kernel finally clears the map-node references from the page tablelibé map
nodes are put back into the free memory pool. Clearing the map-nodemedeor
overwriting it with a new mapping requires an atomic compare-exchange tctdete
potentially concurrent map attemts.

Figure 5.10 illustrates the described scenario for two address spaces.

TLB Shoot-down

The kernel synchronizes outstanding TLB coherency updates omegkis. With
the described map-node tracking scheme, the kernel can always dafsly the
associated map node for a particular page mapping. The map node threncefe
the corresponding split node.

TLB updates are parallelized with the TLB versioning algorithm | described
in Section 4.4. The kernel allocates one TLB version vector per proce$se

4Unmap and over-mapping (one map entry is replaced by another)shive corner cases that
require special care. However, a detailed discussion is beyond the etthis work.

5.4. ADDRESS SPACE MANAGEMENT

87

Page table A Page table B

RCU
free list

Page table A Page table B
I
- —,I \ \

RCU
free list

(b) After unmap

Figure 5.10: Read-copy-update map-node release. A page is mappadré@sa
spaced andB and has corresponding map nodes. Both map nodes hold references
to a common split node (a). After an unmap of the pag8,ithe map node is
unlinked from the mapping tree and enqueued into the RCU stand-by listl{b).
references between the page table, map node, and split node remain intact.

split nodes contain three fields for TLB trackind} 4 cluster mask for tracking the
affected processorsijY a TLB version vector epoch counter, ariii)(a reference
to the TLB version vector. After a modification of page permissions butrbefee
release of the split node lock, the kernel updates all three fields as $ollow

When iterating over a mapping tree, the kernel computes a logical OR of all
cluster masks of modified address spaces. The kernel then storemtpated
cluster mask within the split node thereby denoting which processors eeguir
TLB shoot-down in order to achieve a consistent state. Then, the kgpdakes
its TLB version vector and merges in the old version vector (see Section 4.4 fo
details). If there is an update in progress (i.e., the mapping tree was modified bu
the TLB shoot-down is not yet finished), the old and new cluster maskaergied.

The TLB epoch counter stored with the split node enables the kernel tct detsh
an outstanding update. If the epoch counter is still identical to the pratesso
current epoch, the TLB shoot-down is not yet completed and requpeesas care.
The kernel then updates the reference to the current procest@ gefsion vector
as well as the version vector epoch counter. After completion of all thedates,

88

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

the kernel releases the split node lock.

Map and unmap operations achieve a consistent state by performing the out-
standing remote TLB shoot-downs themselves. Based on the processsitn
vector and the calculated processor-cluster dirty bitfield, the kernigedehe re-
mote processors that require a TLB shoot-down. However, insteauiraj d brute-
force shoot-down based on the dirty bitfield, the kernel checks the rerati®ns
first and only forces invalidation for those processors, where the VidrBion did
not advance yet. Hence, if two processors operate on a set of pagese opera-
tion completes earlier and triggers the TLB invalidation, the second operatipn ma
not even require another TLB invalidation. Furthermore, on architestwtere
the TLB is automatically invalidated on context switches, normal context switch
activities may eliminate the necessity for a TLB shoot-down altogether.

5.5 User-level Policy Management

Policy-free kernel primitives is one of the primary design goals for L4l also
applies to the multiprocessor extensions. Per-processor resourcatiatioand
scheduling requires explicit mechanisms that allow user-level serversrtorim
dynamic re-allocation and resource balancing. The two primary resoamee
threads (for load balancing) and per-processor kernel memory.

Efficient allocation of kernel resources from application level reguitatime
feedback and safe mechanisms for resource re-allocation. In thisrskedéecribe
the application of event logging and user-controlled resource managjéoném-
dividual processors in the multiprocessor configuration.

5.5.1 Kernel Event Logging

The information on resource utilization is distributed across a number of compo
nents, including the microkernel and also multiple application-level systerarser
While in the majority of cases many servers can trivially provide usage data to a
user-level scheduler (such as access information for certain cesovia the IPC
interface) some information is solely available in the kernel.

In order to expose microkernel-specific runtime information, | extend the ke
nel with the event logging mechanism as described in Section 4.5. The two cen-
tral design goals arscalability and minimal performance impadbr the overall
system. A per-processor log buffer with unsynchronized accesemwes inde-
pendence between the system processors. For minimal overhead tniestrine
kernel with a set of hand-optimized assembler macros. Furthermoreruniime
code adaptation for the very few events that are on the critical path @r P
case event logs are disabled, the kernel can remove the logging codmatig b
rewriting [105].

The kernel events that are relevant to the scheduler are specific talividiral
scheduling policies. As argued before, a one-fits-all solution is uitleasecause

5.5. USER-LEVEL POLICY MANAGEMENT 89

of the significant overhead for cache footprint and execution time. ¥ample,
the overhead for a simple performance counter redpingc) on a Pentium 4 ac-
counts for 141 cycles and a time stamp counter redid¢) costs 88 cycles. An
unconditional execution on the critical IPC path would induce a 14 and&ptr
overhead (or 23 percent when logging both counters).

The kernel instrumentation consists of three components: the event logging
instrumentation for kernel events, a set of log control registers, andghauffer.
Log control registers and log buffers are located in user-readable ngemuxh
that a user-level scheduler has fast access to the logged deteess to the log
can be restricted to avoid leakage of security-relevant information.

The kernel uses a double indirection for logging. Each kernel eveadse-
ciated with a specific control register. The control register containseaemede to
the event log, a counter, and a start value for the counter on over@owevery
event the kernel decrements the counter; when it reaches zero tied kags an
event. Afterward, the counter gets reinitialized with the start value. Theul&igrb
is described by a 64-bit data structure that contains a reference toftee the
buffer size (encoded in a mask), and flags that specify the log formbhedaters
have the following per-log configuration flags:

e Current principal.Logs the current resource principal.

e Event parameterEvents have an associated event parameter that is specific
to the event type. When enabled, the kernel writes the parameter into the

log.

e Time stamp.The kernel supports four alternative time-stamp modgsd
time stamp (i.e., off), () hardware time stamp counterd{sc on 1A32),
(iii) the kernel-internal time (via a periodic interval timer), ang @ per-
processor counter, that is incremented on each log event (for al cadsa
of events).

e Event counter. The counter contains the delta of entry—exit events or the
number of occurrences of a counted event. A separate flag denatéisawh
the new value overwrites the previous entry in the log or gets added. The
special case enables a scheduler to either accumulate events or log the last
event.

e Event type.Each kernel event has a unique event ID. By logging the event
ID, it is possible to merge the events from multiple event sources into one
combined log buffer.

5The system uses kernel-provided memory that is allocated at systerinsearDynamic kernel
memory allocation schemes, as proposed by Haeberlen [52], ardla widernative to avoid the
limitations of static allocation. However, safe kernel resource managenas of less importance
for this work and is not further discussed.

90

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

The kernel provides two configuration interfaces, one for the eventral
(event counters and the associated log) and a second for the log itelfasrk
sociation between kernel event sources and logs can be freely wadfigy the
scheduler. Hence, it is possible to combine multiple events in a single log and
also distribute the events into individual and independent logs. The log rgemor
itself is a linear unstructured memory buffer and is managed by privilegatcap
tions. The kernel does not apply any consistency checks (besidele fimmdary
checks) and incorrect configuration will lead to log corruption, howewéhout
endangering the kernel’s consistency.

Event Sources

The most important kernel events are those that either cannot bedlevitreut
specific kernel support or require trustworthy applications. The lattanias-
sumption that does not hold for most scenarios. The kernel exportsltbeihg
per-processoevent sources:

1. Change of number of runnable threads4’s in-kernel scheduler hides the
number of runnable threads in the system. Previous research [14e9@} id
fies the run-queue length as an important indicator for load imbalances and
balancing decisions. This event source exposes the run-queue tdrigth
current processor.

Note that the common case of client-server IPC da#ghange the number
of runnable threads in the system. Hence, the event is off of the critiCal IP
path.

2. Idle time. When a processor falls idle the kernel enters a low power state
for that processor. The processor gets reactivated by a hardtivaes, or
interprocessor interrupt. The overall per-processor idle time is reléoan
a scheduler in order to re-allocate the load from highly loaded processor
to underutilized processors. Idle-time logging is obviously less performance
critical since the processor is idle anyway.

3. Kernel memory poolThe kernel maintains a per-processor memory pool that
serves the main kernel memory consumers: thread control blocks,saddre
space objects, page tables, and the mapping database. In order teachale,
processor has an individual memory pool. In case a pool falls short, gemo
has to be reallocated between processors.

In order to keep the kernel policy-free (as stated in the initial design)goals
pool re-balancing is a policy implemented at application level. The ker-
nel mechanism is detailed in Section 5.5.3. The in-kernel memory allocator
keeps track of the available memory in the free pool. Memory allocations
and deallocations create log entries such that the memory manager is aware
of each processor’s current pool status.

5.5. USER-LEVEL POLICY MANAGEMENT

91

Additionally to the per-processor events, the kernel has a number atper
source-principal events. L4’s resource principals are threadshenahost impor-
tant system event is IPC. Previous research identifies communicatiompadker
an important indicator for process inter-relations. Scheduling policiesiden
those relations for more efficient thread placement. However, loggingotP&
per-thread basis is unfeasible due to the extremely high frequency omiRC
component-based system and the large number of threads. On the oithemnlaay
communication relations between threads are well-known, static, and iméefeva
a scheduler.

Based on the fundamental idea of resource containers, | introducklgioaal
logical accounting level on top of the kernel’s resource princighlgad domains

Each thread is associated with exactly one domain and its association is managed

by a privileged user-level server. Only switches betweifierentthread domains

trigger a kernel event. The domain ID is stored within the kernel's threatrao

block. For threads within the same domain the additional event logging runtime

overhead is reduced to a simple comparison and a conditional, non-taken jump
Domains have a configuration register that associates a log file to the domain.

The association can be changed from application level and multiple domains may

share a single log buffer. Furthermore, the kernel has one speamaide— do-

main zero — that does not lead to event recording. Initially, all threadslaeated

to that domain. By co-locating the domain ID with other frequently read data on

the critical path, the execution overhead is negligible.

5.5.2 Thread Scheduling (Load Balancing)

L4 threads are bound to their specific home processor and the keewehdbap-
ply a thread migration policy (a design decision detailed in Section 5.2.2). @hrea
migration is solely initiated by user-level load balancers. The core migratier op
ation ismigrate thread T to processog&:

The frequency of thread migrations is bounded by the cost for migrating a
thread’s active cache working set. The primary thread migration sceraemi-
tial placementandload balancing The kernel places newly created threads on
the home processor of the creator; thus, thread creation is a protesaioop-
eration that does not require interaction or synchronization with otheepsors.
Thread creation is a privileged operation and can only be executeddstracted
set of (privileged) threads [49]. The design scales because thieged server can
spawn multiple, processor-local worker threads that can operatedigbar

Thread migration is initiated via a system call that initiates thread relocation
to the new home processor. Migration may be initiated from any of the proces-
sors, independent of the current home location of the to-be-migrateatithBeich
flexibility is required to support a wide variety of load balancing and placémen
schemes such as work stealing [21] and push-based policies. Tedtees po-
tential migration scenariosi)(from the current to a remote processar) from a
remote to the current processor, aiiig petween two remote processors.

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

mO\(/)e mo;e] Migration
\to\‘ to operation
L

Figure 5.11: Concurrent migration attempts from CPU 0 and CPU 2. Theatthrea
CPU 0 successfully completes the migration before the second migratiorsteque
is started.

The lock-free per-processor scheduler structures force anrirekemessage-
based scheme for migration requests. Because remote queues mustcumdsed,
a scheduler needs to send a request message to the migrated thread’sdwene
sor in order to dequeue it from all scheduling queues, update the haoessor,
and potentially update the thread’s processor isolation mask. The migratien is fi
nalized by enqueuing the thread into the new home processor’s reque\W¥itls
the next scheduling interval the thread gets integrated into the normaluictged
gueue and the migration completes.

Since thread migration can be initiated from all processors, the design may
lead to a race condition. When two processors concurrently try to migrasathe
thread, then both processors will initiate a migration request to the homesproce
sor. Global ordering of message-based kernel synchronizatioargeas that one
of the migration requests completes successfully while the other one failSi¢see
ure 5.11). The request that comes second will find that the to-be-migtatsat
is not located on the home processor anymore. However, simplistic fangawél
the migration request to the thread’s new home processor may result iat&tarv
since the thread may be already migrated.

I eliminate the race condition via kernel-user interface design. The solution is
generically applicable to other user—kernel race scenarios andxwmmpkfied for
the thread migration case.

Concurrent migration requests (as described in the scenario abpveleat an
unsynchronized resource allocation scheme. Enforcing a strict ofdgerations

5.5. USER-LEVEL POLICY MANAGEMENT 93

in the kernel requires additional synchronization. Such synchronigzdimvever,
moves synchronization from application level to the kernel and contratieigi-

tial design constraint: maximizing performance for the well designed applicatio
Careful interface design can achieve the same result without the adtiiaera
head.

Thread scheduling is based on therent system statend anintended system
state Thread migration is the operation that initiates the transition between both
states. Two concurrent migration requests express one of the folloaimg#ses:

(i) the first migration request did not complete yet and a new migration reguest
already initiated,i{) the second migration request started after the first but arrived
earlier due to message processing deldiy$ tkie user-level scheduler did not syn-
chronize migration at all (which effectively is a bug), ard) two schedulers run

an attack against the kernel. Only the first and second case requieetcloan-
dling by the kernel. In both cases the race condition manifests a timing prolblem o
concurrently issued migration requests on different processors.

| enable applications to detect the race via an additional temporal parameter
and thereby move the request ordering out of the kernel to the applicafian
thread migrations, the scheduler has to specify an additional parametielethigt
fies theexpectedystem state (i.e., the scheduler’s view on the current system state)
expressed by the current home processor of the thread. Hencegad thigration
operation has three parameters: the thfeathe source process%ource and the
destination process®es: A race condition occurres Bsource Thomeand the ker-
nel operation fails completely. In that case, the scheduler can recoaezfglly
and restart the operation.

The kernel supports migration of groups of threads, which minimizes the per
thread migration overhead and also preserves scheduling inter-aepées! The
operation is still safe and bounded by requiring that all threads havsitteren the
same source processor and are migrated to the same destination proSewsor
thread migration requires execution on the threads’ home processoh(islen-
tical for all) the migration is race free once started and guaranteed to edimer ¢
plete successfully or fail.

5.5.3 Kernel Memory Management

The recursive virtual address space model is a flexible mechanismetadples
memory management and memory allocation policies from the kernel. Yet, the
kernel consumes memory for kernel meta data, such as thread contkd hage
tables, and the mapping database. In order to scale, each processosdparate
in-kernel memory pool.

Since control over the physical memory resources is at application leeel, th
kernel depends on user-level applications to manage the kernel [®ioidar to

6Some synchronization constructs assume, that high priority threadgsajweempt low priority
threads. When threads are migrated one-by-one, threads thatdmvenitually exclusive may run
concurrently during the migration phase.

94

CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

the solution proposed by Liedtke et al. [74], | use a cooperative menesnpurce
allocation scheme between the kernel and a user-level memory managewerfh
nel has one system thread per processor that handles memory allocatidead-
locations. The root memory server, can grant memory to the system threads
which then place the memory into the per-processor pool. The operatiofejs sa
because the kernel enforces that no user application has accésgaitite page.

Per-processor pools incur a balancing and locality problem. The memoty po
for allocation and deallocation depends on the resource principal (i.ehrisd)
that performs the respective operation. Depending on thread localitgyesteim
structure, kernel memory may only be allocated on one processor andesnly
leased on another. Hence, the memory pool of one processor depléteshe
other processor’s pool is overfull. Furthermore, to preserve memaslity in
NUMA systems, memory has to be local to individual processors. Mixing mgmor
from different memory pools may result in poor performance when usngte
memory for critical kernel meta data (such as thread control blocks).

| address both problems via strictly preserving pool locality for memory- Ker
nel memory is allocated at page granularity and free pages are maintained in a
linked list. In addition to the primary free list, the kernel maintains two further
memory lists, aemote standby lisand arequeue list When a page is granted
to the kernel, the kernel recordsh@meprocessor for the page in the mapping
database. On page deallocation the kernel validates whether or notgbéaspa
freed on the home processor and either enqueues the page back intortia n
memory pool or in the remote standby list. When the RCU token arrives atdhe pr
cessor, the kernel walks the standby list and relocates the pages &atatitby
list into the requeue lists of the pages’ home processors. Furthermoprpottes-
sor places all pages from its own requeue list back into the free poolre=gl2
illustrates the scheme for a configuration with three processors.

On processors that share one memory bus | enable an allocation optimization.
Instead of assigning memory pages to one individual home procesg@s pee
assigned to a home processor cluster. The kernel directly places anpaglee
free list if it is released byany processor specified in the processor cluster. That
optimization still preserves NUMA locality but reduces some overhead fprae-
ing.

Each processor logs the free pages in the kernel-provided everthegiser-
level memory managers monitor the event log and rebalance memory between the
memory pools. Rebalancing is realized by first revoking memory from theeker
and granting it back to the kernel on another processor (as showntreFglL3).

5.6 Summary

In this section | described the application of dynamic locks, TLB cohertack-
ing, and event logging to L4Ka::Pistachio, an L4 microkernel. The fund&hen
design paradigms of L4 are minimalism, strict orthogonality of abstractions, and

5.6. SUMMARY

95

* RCU token
|:| Memory page

- % Enqueue operatiorn

—» Linked list

--+ RCU token ring

CPU1 CPU3

Figure 5.12: Per-processor kernel memory pools with processor toeaiory.

CPU 2 holds the RCU token and moves the pages from the requeue list into the
free list. Furthermore, CPU 2 empties its standby list and places the pagessinto th
page owner’s requeue list. Requeue operations require the possekgie RCU
token. Since there is a single token in the system, no concurrent reqoeragions

can take place and list synchronization is not required.

user-level policies.

In microkernel-based systems, operating system invocations are mfigce
inter-process communications. Hence, the performance of the IPC priiisitbfe
paramount importance for the overall system performance. The addlitoea
head of multiprocessor synchronization primitives induces unnecesgargead
on the IPC mechanism. A second communication primitive that is specifically tai-
lored for cross-processor communication would increase the kerrelfedoot-
print and also lead to higher application complexity. The cluster mask combined
with dynamic locks provide a flexible and efficient solution to accommodate both
communication scenarios with a single kernel IPC primitive (Section 5.3).

Section 5.4 described the multiprocessor extensions to L4's virtual addres
space model. L4 maintains a kernel data structure that tracks memory pensiissio
of the address spaces on a per-page basis. | extended the kdmstrdatures
in a way that applications can adapt data structures for coarse-gréiireegrain
locking. Furthermore, the developed tracking scheme for TLB cohgngpdates
decouples parallel page permission updates.

Finally, in Section 5.5 | presented the application of the event logging scheme
for user-level resource scheduling. In monolithic kernels, rescumtzancing poli-
cies are implemented as a kernel policy. A kernel policy contradicts L4&gde
principles. The presented event-logging mechanism provides runtimbaeed

96 CHAPTER 5. APPLICATION TO THE L4 MICROKERNEL

: 2 i : 2 i@: ‘2 i Memory

: ’ T o g ' Manager
Q9

i Oi i > i i i Kernel
' CPU, | ! CPU, | ! CPU, |

Figure 5.13: Memory balancing between kernel memory pools. In (1) the isa
reclaimed on CPU 1, in (2) the managing thread on CPU 3 is notified, which then
(3) places it into the local memory pool on CPU 3.

to a user-level load balancer which then can reallocate resourceg@esdnelhe
scheme was used for two important kernel resources: threads arel kesmory.

The following chapter evaluates performance and scalability of the describ
design for the L4Ka::Pistachio kernel.

Chapter 6

Experimental Verification and
Evaluation

In this chapter, | evaluate the performance of my kernel design implemented in
L4Ka::Pistachio. | then evaluate the overhead and scalability of all individira

nel operations in a set of microbenchmarks. | compare the costs of indlvid
kernel operations for different multiprocessor workload configunationtra- vs.
inter-processor operations and low vs. high concurrency. Thelsltgias evalu-

ated according to Unrau’s design requirements for scalable operatitensy(pre-
served parallelism of operations, bounded operations independérd alimber

of processors, and memory locality). Furthermore, the benchmarksaévahe
overheadof multiprocessor primitives to the baseline performance given by the
uniprocessor kernel.

Section 6.1 describes the hardware details of the evaluation platform tret we
used for the different benchmarks. Section 6.2 discusses the perfoeraad scal-
ability of the IPC primitive. Section 6.3 then evaluates the performance atad sca
bility of the event-logging facility, followed by an evaluation of the kernel meymnor
management subsystem in Section 6.4. Finally, | summarize the evaluation in Sec-
tion 6.5.

6.1 Evaluation Platform

All performance evaluations were performed on 1A-32 systems. The msin te
system was an IBM xSeries 445 server with eight 2.2 GHz Intel Xeonegsmrs
based on the Pentium 4 (P4) micro-architecture. Each physical poodess an

8KB L1 data cache, a 12KBop trace cache, a shared 512KB L2 cache, and
a shared 2 MB L3 cache. It further featured a 64 entry data TLB andl enGy
instruction TLB! Each processor had two logical threads (HyperThreads) enabled.
The system consisted of two processor boards with four procesaohs é&ach

Lintel family 15, model 2, stepping 6

98

CHAPTER 6. EXPERIMENTAL VERIFICATION AND EVALUATION

Operation Overhead (cycles)
atomic exchangex¢€hg) 125
atomic compare-exchange 136
(lock cmpxchg)

atomic decrementdck dec) 123
address space switcimbv %r, CR3) 827
entering and exiting kernel 135
(sysenter, sysexit)

entering and exiting kernel 839
(int, iret)

L1 hit 2
L1 cache miss, L2 hit 19
L2 cache miss, L3 hit 43
memory access latency 206

Table 6.1: Individual overhead for operations for the test system.

board had separate memory (2 GB each) and both boards were intecteshria
a proprietary NUMA memory interconnect developed by IBM.

The Pentium 4’s micro-architecture has some specifics that | want to highligh
The P4 features frace cachethat caches instruction as translajgps instead
of the normal instructions as read from memory. The cache is virtually tagged
and the P4 does not support address space identifiers. On ansasioies switch
the processor not only invalidates its 64 I-TLB and 64 D-TLB entries, abs
flushes the trace cache and L1 D-cache. Hence, on every adgeess switch
the processor invalidates a significant amount of its active working sattireg
in a higher context switch overhead than other IA-32 micro-architectateh as
Intel’'s Pentium 11l and AMD’s Opteron.

IA-32 has a relatively strong memory ordering model, definedritse ordered
with store-buffer forwarding29]. The highlights include: (1) reads can be car-
ried out speculatively and in any order, (2) reads can pass bdfferiges, but the
processor is self-consistent, and (3) writes to memory are alwayscatrién pro-
gram order (with some exceptions). Such a strong ordering model has itigpiga
on speculative execution and creates a high overhead on atomic instsuic&on
cause the processor has to honor the ordering model and looses somizatjon
potential via speculative execution.

Table 6.1 lists the measured costs for a set of important operations of the test
system including the costs for atomic memory operations, the costs for entering
and exiting the kernel, and the costs for switching address spaces.

The test system had eight processors with a total of sixteen procesgexts.
Literature suggests that scalability problems in many cases only become visible
for systems of more than 32 processors. | was limited by the hardwareaiors
however, | argue that the results are still relevant and expresssvargied in 3.1.1,

6.2. INTER-PROCESS COMMUNICATION 99

scalability of operating systemsnist evaluated by the speedup of an operation but
by its response time. An operating system is considered scalable if thensespo
time is independent of the number of processors in the system. In the following
evaluate the overhead for individual kernel operations and theionsggtime with
increasing parallelism. | assumed that the hardware architecture of thsgdéesmn
sufficiently scaled.

The number of processors also limited the evaluation of the effectiveriess o
the cluster mask. While the reference implementation was able to handle the full
cluster mask, the processors of the test system always fitted into the gutdiéd
bits of the bitmap.

6.2 Inter-process Communication

| evaluated the overhead of the IPC primitive for the most important communi-
cation scenarios: client-server communication and cross-processuniatica-
tion. In the client-server scenario, | further differentiated between tges. (1)
inter-address space where both communicating partners resided iemlifieidress
spaces and (2) intra-address space where both communicating thesatigirin
the same address space. The intra-address space IPC is releweotiderthread
scenarios where a central distributor hands off requests to the wawketso for
in-address space synchronization threads or memory pagers [12jickibench-
marks measured the overhead of the kernel operation by sending eessay
tight loop that was executed one thousand times. Afterward, | calculate¢ne
age cost for one IPC operation.

6.2.1 Processor-local IPC

Inter-address-space IPC is the common case for client-server interacttbis
used to transfer request and response payloads for user-l&girtRocols; the
operation is completely executed on one processor. The cost is domiryatieel b
previously mentioned overhead due to TLB and cache invalidations.

| used the uniprocessor IPC primitive as the base-line performanceoamd c
pared it against the multiprocessor IPC with disabled and enabled loclesreTh
sults showed that the performance for the lock-free version on multipsocsys-
tems was almost identical to the uniprocessor variant. The overheadnéedou
for a few additional checks that were required to differentiate betwesal bnd
remote threads. These extra instructions increased the overhead dyliB0rel
cycles (or about 3 percent).

The overhead for IPC on the P4 microarchitecture was dominated by thefcos
kernel entry and exit and the overhead due to cache and TLB invalidaiioeach
context switch. The primary costs were due to entering and exiting thelKé8te
cycles) and the overhead for switching address spaces by reldaiiBgThe cost
of an address space switch including its follow-on cost accounted fbcg@es.

100

CHAPTER 6. EXPERIMENTAL VERIFICATION AND EVALUATION

0.8 T T T T 1750
g O7r 4 1500
5
S 06})
o T 4 1250 o
@ ox-¥ o
o] ey T TRTR >
S 05 —/,&fiiﬁi?i‘»@?-’-‘—iéf-'@é ------ $IHER ;
c ¥ 4 1000 ©
£ E
g 04 r S

c

S 470 8
s 03f 3
g - 500 %
L o02F
w

0.1} With locks —— - 250

No lock ---x---
Uniprocessor--- - --
0 1 1 1 1 0
0 50 100 150 200 250

Message size (bytes)

Figure 6.1: Inter-address-space IPC performance on the samagooéar unipro-
cessor and multiprocessor with enabled and disabled lock primitives. Enleead
is dominated by TLB and L1 cache flushes on the Pentium 4 architecturénithe
tial jump in the curve reflects startup costs for the message copy loop.

The remaining costs for the IPC and the benchmark code is 226 cycles. & mor
detailed break-down was not possible because of secondary éffdioesmicroar-
chitecture. In some cases, the insertion of additional no-ops lead tapearioe
improvements.

The IPC variant that had spin locks enabled showed an overheaddrefge
to 20 percent, depending on the message size. The two required locksdnaiu
overhead of 190 cycles, which was below the predicted 250 cyclestidlpaat-
tributed the difference to additional wrapper code and partially to secpeffacts
such as pipeline stalls and serialization (more details follow).

Figure 6.1 shows a detailed graph that compares IPC on a uniprocessel k
against IPC on a multiprocessor kernel. The graph shows the perfoeno&both
multiprocessor IPC variants with enabled locks and disabled locks.

Figure 6.2 shows the same microbenchmark as before, except for dturasa-
space IPC. The overhead between the uniprocessor and the multgznoeasant
with disabled locks was between 30 to 80 cycles depending on the messgihe len
However, the cost for uniprocessor IPC did not show the linear iserefruntime
relative to message length and even dropped significantly for longer gesssh
was able to confirm the effect in multiple experiments and | attributed it to specific
of the P4 microarchitecture. The copy loop used an optimized copy mechanism
that favors complete cache line transfers. There were no serializinggtistrs on
the critical path allowing the processor to perform heavy speculation.clihe
showed the expected constant increase with introduction of the additior@ mu

6.2. INTER-PROCESS COMMUNICATION

101

0.4 T T T T
g 035 4 750
g 0.3} %
o >
2 ozsp § s XXX c
X R KK | =
§ o01s5% 3
g g
g 01k 4 250 W
i
0.05 With locks ——
No lock ---x---
| | IUniprocesslor———%———
0 0
0 50 100 150 200 250

Message size (bytes)

Figure 6.2: Intra-address-space IPC performance on same progassenabled
and disabled lock primitives. The cost of the lock primitive is dominant when
compared to inter-address-space IPC where the highest overhead is @LB
and cache flush.

processor support code. The lower overall cost of intra-addygsse IPC resulted
in a higher relative increase due to spin locks. The two additional lockedadd
between 35 to 64 percent overhead to each IPC.

6.2.2 Cross-processor IPC

In the next experiment, | evaluated the performance of cross-pacls. The
experiment used the same microbenchmark with two threads that repeatdadly se
message to each other. However, this time both threads were located oentiffe
physical processors, however on the same NUMA node. Neither ggoreran
any other workload aside and therefore did not have to preempt otleadhior
switch between address spaces.

The microbenchmark evaluated the round-trip latency of cross-pracH3s
of lock-based versus message-based synchronization. The Isek-lsgnchro-
nization acquired a spin lock on the remote processor, transfered thageeasd
released the lock. Then, the receiver thread was enqueued into thie remoeue
list and an IPl was sent in order to trigger a rescheduling cycle on thetegono-
cessor. The message-based synchronization required two in-keesshges: one
for initiating the IPC, and a second that the message-delivery could bedstAn
additional IPI may have been required to trigger the remote reschedubifey(ege
also Figure 5.3).

As expected, the latency for a message-based scheme was significaindlly hig

102

CHAPTER 6. EXPERIMENTAL VERIFICATION AND EVALUATION

8 T T T T 17500
9 T - 15000
5 5 ASIVEEVERVENVEIVERVEIVIS S S e "
8 £
g 4 12500 §
S 5
S 5f =
E -4 10000 o
£ E
2 4r =

c

= 4 7500 8
s 3r 3
3 e e e L
S LT 4 5000 i
X
i

1L 4 2500

Lock-based—+—
Message-based--x---
0 | | | | 0
0 50 100 150 200 250

Message size (bytes)

Figure 6.3: Cross-processor IPC performance between two indepgmebcessors
on the same memory bus. The lock-based version used a spin-lock omribie re
thread and signaled a rescheduling cycle. The lock-free versioiredgwo in-
kernel RPCs per message.

than for a lock-based scheme. The latency increased between 153 pertent
depending on the message length. Figure 6.3 shows a detailed graph iogmpar
the latency for both primitives.

6.2.3 Parallel Programming

An important workload for large multiprocessor systems is parallel progr#&ms
parallel program splits one task into a set of subtasks. The subtaske caftved
on different processors in parallel and a finalization step combines ttialpa-
sults. Common parallel programming environments are MPI [39] and OpenMP
[10]. MPI distributes the workload via messages to workers which then gtamp
autonomously and do not require shared memory. In contrast OpeniBriven-
tally depends on shared memory between workers and uses compilertsigppo
automated parallelizations (e.g., for loops).

A performance requirement for all parallel programming models is a low-
latency and low-overhead communication mechanism across processalaies.
| put the primary focus on the OpenMP fork-join programming model, sincé MP
is unlikely to base message passing on the microkernel’s IPC pririiteenMP

2MPI is commonly used for large scientific computations that are long rgnaim often dis-
tributed over multiple physical machines. The workloads are explicitly liedizeed and hand-
optimized with the goal to maximize parallelism and minimize overall computatioa titherefore,
MPI applications are unlikely to run in shared-workload environmentshbue complete control

6.2. INTER-PROCESS COMMUNICATION 103

CPUA

CPUB

CPUC

CPUD

I 4

Figure 6.4: OpenMP fork-join programming model for parallel progranBUC
executes the master thread that distributes the load and waits for completion at jo
points.

uses one master thread that controls the general flow of the program setdf
worker threads that execute the parallelizable subtasks. The executits cam
be summarized as frequent fork—join sequences initiated by the mastet (asea
illustrated in Figure 6.4).

Literature suggest a variety of schemes for synchronization and veatklis-
tribution for the fork-join model. In time-sharing environments, it is generally
unfeasible to have idle threads spin until new work is available, since doimgago
significantly degrade the overall system performance. The signifivenbhead for
on-demand creation of worker threads favors a model with a pool edlfpeated
worker threads. The threads are started but block if there are no ruditsjere-
guests. When new requests become available, the master unblocks tlegswork
Obviously, the latency of the wakeup operation is extremely performaitemtr

| evaluated the latency of the IPC in the context of an OpenMP microbench-
mark as proposed by Bull [23]: tHRARALLEL directive. This particular bench-
mark evaluates the overhead of the synchronization primitives of the lyimder
OpenMP framework including the operating system’s scheduling and signalin
mechanisms. The actual executed operation is a simple mathematical computation
which is irrelevant for the benchmark (but is there to avoid dead-code elifnim
by the compiler).

Support of a fully-fledged OpenMP suite was beyond the scope of this. wo
Therefore, | evaluated the performance-critical operations by a rhempiemen-
tation of the test cases. The benchmark created one worker threatbpes$or.
The worker threads entered a blocked state and waited for IPC defioenythe
master thread. In order to distribute workload among the workers, the ntastad
sent an IPC to each of the worker threads. Afterward, the master tivastatl for
a notification message. The last completing thread sent a notification back to the

over the system and the scheduling regime. Simple spin-wait on a sharadmnlocation at user
level has a lower latency and is significantly more efficient than using &ibig¢PC primitive. The
compute time wasted for spinning is irrelevant since there are no otheablejobs in the system.

104

CHAPTER 6. EXPERIMENTAL VERIFICATION AND EVALUATION

© 00 NOoO OO WN PP

NN NNR R R RRRRRR R
W NEFPOOO®WNOOUAMWNIERO

master. The thread was determined via a shared memory variable that is decre
mented atomically. The following is a code sketch of the benchmark in C:

i nt Conpl eti onCount;

voi d Mast er Thr ead()

{
Compl eti onCount = Numor kers + 1;
for (idx=1; idx<Numrkers; idx++) {
SendMessage (Wor ker Threadl dOF CPU(i dx)) ;
}
DoWor k() ;
if (Atonmi cDecrement (ConpletionCount) > 0) {
Wi t For Message (AnyThread);
}
}
voi d Wor ker Thr ead()
{

whil e(true) ({
Wi t For Message (Master Threadl d);
DoWor k() ;
if (Atom cDecrenment (ConpletionCount) == 0) {
SendMessage (Master Threadl d);
}
}

I measured the performance of the lock-based and message-baspdnirC
tive for an increasing number of processors. Figure 6.5 comparestémeyafor
both IPC types. As expected, the lock-based IPC primitive had a sigriifiesn
formance advantage over the message-based model. The latencydddrges
factor of 2.5 for two processors up to 3.6 for sixteen processors. tHatethe
knee in the curve was induced by the higher memory and signaling latenay whe
communicating over NUMA node boundaries.

The high overhead for message-based IPC can be explained by timcsfac
First, message-based IPC required multiple in-kernel messages andathws h
longer overall latency. Second, the lock-based IPC scheme was abfetate
in parallel to the re-scheduling IPI. The master thread enqueued themiotk
the requeue list and signaled the IPI. During the IPI delivery it couldhdirestart
sending a message to the next worker. In the message-based IPC, tiethmaad
was blocked for the duration of two in-kernel message deliveries (fnr@master’s
to the worker's CPU and back).

The benchmark showed the significant benefit of a lock-based IP@&térrcy-
sensitive cross-processor signaling.

6.2. INTER-PROCESS COMMUNICATION 105

200 T T T T T T T
Lock-based——
Message-based--x---
3 x
c //
8 150 X .
3 X
o ></
1S . ~
£ X
g ~ ‘
c /,X/
g x’
=} /
3 ,
& 50 -]
i
0

2 4 6 8 10 12 14 16
Number of processors

Figure 6.5: Signaling latency for fork-join programming model as used in
OpenMP. The signaling latency is directly related to the overall execution time
and therefore limits the speedup that can be achieved via a parallelizeldadrk

6.2.4 Scalability and Independence

In this benchmark, | evaluated the scalability of the IPC primitive following Un-
rau’s design principles: (1preserving parallelismin the kernel and (2pbounded
overheadof operations independent of the number of processors. The qualitativ
analysis follows my extended construction princigteeserving isolation

The benchmark was identical to the previously described IPC benchimark:
threads on the same processor that repeatedly sent a message to eachiosh
time | ran the benchmark omultiple processor@n parallel in order to evaluate
potential interference, serialization, and thus limits of scalability. The benghma
created a pair of two threads on each processor. The processatartdd the
benchmark synchronized. After completion of the benchmark, eachdtipaia
reported the execution time into a processor-local log. The benchmaekveas!
located in CPU-local memory and thus avoided interference at applicatidn leve

Figure 6.6 shows the IPC overhead for different message sizes.dltioad
| varied the number of processors that run the benchmark in parallel.rtédta
with one processor and increased up to eight. The reported execution ftihee is
average execution time fall active processors. There wam interferenceand
the operation scaled optimally according to Unrau’s scalability requiremehts. T
benchmark was limited to one processor context (hyperthread) peicphpso-
cessor in order to avoid interference in the instruction units in SMT process

106

CHAPTER 6. EXPERIMENTAL VERIFICATION AND EVALUATION

1400 T T T T
1200
3
2 1000
o
£
(0] - .
£ 800
c
2 600} .
2
[8]
(0]
>
w400+ -
1CPU
200 - 2 CPUs --——---- .
4 CPUs--------
8 CPUs
0 1 1 1 1
0 50 100 150 200 250

Message size (bytes)

Figure 6.6: Parallel inter-address space IPC with increasing numbeoc#gsors.
The overhead per IPC was averaged over all processors. Tvesturws no inter-
ference between the processors.

6.3 Event Logging

| evaluated the overhead and scalability of the event logging facility asibdedc
in Section 5.5.1. The benchmark addressed two aspects, the overiibackeént
logging instrumentation on the kernel performance and the scalability of #re op
ation (following Unrau’s scalability requirements).

| measured the overhead of event logging on the critical IPC path. Tiehbe
mark is similar to the previous with two threads that sent a message to each other.
Each thread in the system was associated witdtgalomain The domain ID was
stored in the thread control block. IPC events were only logged for corimating
threads of different domains. The baseline performance was a kéth¢he event
logging instrumentation disabled (i.e., no logging code in the kernel).

The test for equal domains requires three additional assembler instgiotion
the critical code path. The actual logging code is moved off of the critiaie path
under the assumption that in the common case IPC will take place betweersthread
within the same domain. Each domain has an associated counter and aceferen
to a log control field. The log control field specifies which values are |dggel
contains a reference to the log buffer. The log buffer size was 12&Byte

Figure 6.7 and Figure 6.8 show the overhead for different logging ganafi
tions on the 8way Xeon 2.2 GHz. The additional domain test for the common case
incurred a negligible overhead and for the inter-address space atygerformed
the non-instrumented code path. In order to achieve comparable reepladed
the logging test with two 6-byte no-op instruction; otherwise, the kernerieisa

6.4. MEMORY MANAGEMENT 107

1600 - A
14007
QA
S 1200F
> "
3 :
Q
E 1000
IS 800 |- -
3
9] 600 |- -
w (a) native
400 (b) disabled------- E
(c) O-entry --------
B (d) 1-entry e |
200 (e) 4-entry —-———
gf) 5-entry (rdtsc)------
O | | |
0 50 100 150 200 250

Message size (bytes)

Figure 6.7: Logging overhead for Intel Xeon 2.2GHz for inter-adsisgsace IPC.

(a) base-line performance, kernel contains no logging code, (b) cormmase, ker-

nel contains logging code, but threads belong to the same domain and no log is
recorded, (c) execute accounting code but without writing data into thélég

(d) log of the one entry (4 bytes), (e) log of four entries (16 byte3)off of five
entries (20 bytes) including the processor’s time-stamp counter tisg

were identical.

| further evaluated the scalability of the logging facility. Similar to the IPC
scalability benchmark in Section 6.2.4, | ran multiple parallel threads to evaluate
the independence and potential interference. The reported valudsaaeerage
cost per IPC for messages with increasing size starting at 0 bytes to 52 Byg
expected, the logging code did not influence scalability and the overbeained
constant for all processors and was identical to the overhead fogle girocessor
(see Figure 6.9).

6.4 Memory Management

| evaluated the overhead of the unmap primitive using coarse-grain gsgfain
locks as described in Section 5.4. | created a test task with one threadddrass
space that mapped 1024 4KByte pages out of one 4MByte page. Inghedfie,
each mapping was protected by an individual lock while in the second dlase a
mappings were protected by one coarse lock. In the benchmark | ehlinate
latency for repeatedly removing the write permissions from the page usmap

The unmap operation walks the page table and performs a lookup of tresstiedo
map node, acquires the lock and then clears the permissions.

108 CHAPTER 6. EXPERIMENTAL VERIFICATION AND EVALUATION

800 | : | |
700
& 600F
K}
S 500 K-
(] i
1S i
S 400 F |
c
RS
3 300 |
L
N (a) native
“or (b) disabled------- 1
(c) O-entry --------
100+ @ 2oty
(e) 4-entry ————
(f) 5-entry (rdtsc)-------
0 | . | |
0 50 100 150 200 250

Message size (bytes)

Figure 6.8: Logging overhead for Intel Xeon 2.2GHz for intra-adsisgsce IPC.
(legend see Figure 6.7.) The benchmarks for (a) native and (b) disialgie show
an anomaly for the zero-byte message that | attributed to trace-caclidirepan
the Pentium 4 [29].

| choose this operation as a general representative for unmap beétcallsved
the benchmark to repeatedly perform the same operation on the mappingsgatab
thereby avoided side effects such as cache effects or differentoa@mtiocations.
When revoking write permissions, the kernel performs exactly the samatupes
as a normal unmap except for finally freeing the map node. Freeing the odlap n
only adds a static runtime overhead; using local memory pools makes théopera
independent of other processors.

6.4.1 Locking Overhead

The benchmark repeatedly revoked write permissions via the unmap opewitio

a varying number of pages (power of two). The benchmark repeategptration
200 times and calculated the average cycles per mapping and the 95% woafide
interval. The overhead for entering and exiting was the dominating costeof th
operation when modifying only a few pagéswWhen the benchmark unmapped
a larger number of pages (e.g., required for implementing copy-on-writi®ifio

3|A-32 supports two different methods for entering and exiting the Kesysenter andint. The
sysenter operation is highly optimized and almost an order of magnitude fasterittarin the
current implementation of L4Ka::Pistachsysenter is only used for the IPC primitive. All other
system calls — including unmap — use the slowdroperation. The main reason for this design
decision was to maximize the available registers for the IPC operation. Anatites and already
considered system-call encoding would drastically reduce the badseagtfor unmap.

6.4. MEMORY MANAGEMENT

109

1600 T T T T T T T T
[©-— == Q- mimm o O mm - O —m o e S Q-——=-0
1400 =---- S vt R T mmees - .
¥---ooooo Keommmmo - Kommmmoo o ¥---oo--- Komomm-o- Hommmmmoe Hemmmmoo- *
% 12001 *— * * * * |
<o
2
S 1000 F —
[}
IS
b= 800 | —
c
9
3 600 |- .
£
w (a) native ——
400 (b) disabled--—<--- T
(c) O-entry ---*---
200 - (d) 1-entry - |
(e) 4-entry ——=—
0 1 1 1 1 1 1 (f) 5-enltry 77707;
1 2 3 4 5 6 7 8

Number processors

Figure 6.9: Average execution time of parallel inter-address-spacavifP@&vent
logging for increased number of processors. The reported valedbamverage
costs for messages of 0 bytes to 252 bytes.

Application | Apache 2| MySQL | sshd | Emacs| bash
Pages | 2661 | 4453 |1043| 1513 | 185

Table 6.2: Page working sets for a set of common Linux applications. Tlhesva
are derived from a standard Suse 9.1 Linux system.

or deletion of an address space) the lock overhead accounted fayti®s per

mapping, which is a 41% runtime overhead. Figure 6.10 depicts the measured

overhead for coarse-grain and fine-grain locking for the diffeneimber of pages.
The benchmark showed, that for moderately populated address spitices

only 64 pages (identical to 256KByte memory), the runtime overhead waeri5 p

cent, 24 percent for 128 pages and 32 percent for 256 pagesoffgarison, Ta-

ble 6.2 lists the number of mappings for some common Linux applications. Even

the smallest application — the shell — has a memory working set of 185 pages.
Additionally, the individual locks incur a higher cache footprint with onelea

line per lock (in order to avoid false sharing) increasing the cache fiootgfrthe

data cache.

6.4.2 Scalability

In another benchmark, | evaluated the scalability of the two locking schdPaes.
allel to the previously described task, | created additional tasks on eacégsor
that maps one of the memory pages into its address space. In the firsthease,

110

CHAPTER 6. EXPERIMENTAL VERIFICATION AND EVALUATION

3000 T T T T T T T T T T T
Coarse lock—+—
Fine lock ---x--+
2500 - _
2
£ 2000 E
Q.
©
S
& 1500 _
o
[}
Q
>
O 1000 E
DA SV VERVI,
500 - -
0 1 1 1 1 1 1 1 1 1 1 1

1 2 4 8 16 32 64 128 256 512 10242048
Unmapped pages

Figure 6.10: Runtime overhead for unmap per page for varying numkmages
using coarse-grain and fine-grain locks.

memory was mapped with an individual lock per mapping. In the secondase,
page mappings were protected by one coarse lock. | evaluated thelggalathe
mechanism when manipulating permissions to the same memory page in parallel
on multiple processors.

In the benchmark | derived two sets of performance results. First,|uatea
the runtime overhead per mapping for multiple mappings. Different to the previo
benchmark, | batched 32 unmaps in a single system call reducing the rungéme o
head for entering and exiting the kernel and also the runtime deviation. larechp
the costs per mapping for an increasing number of parallel operating gnritp
coarse-grain and fine-grain locks, shown in Figure 6.11.

With fine-grain locks, the cost per mapping remained almost constant, inde-
pendent of the number of processors (see Figure 6.11a). The gnaps two
anomalies, one between 4 and 5 processors and a second betwee® ®rand
cessors. In the benchmark | placed the parallel unmap operationgtfipstysical
processors (1 to 8) followed by logical processors (9 to 16). Thiekfiiese at 5 pro-
cessors is when the unmap operation hit the first NUMA processor (5 toH
overhead reduced with an increased number of unmapped pageshsirnaehe-
line transfer was only necessary for one page out of the overalf getges. The
second, more drastic overhead increase was incurred by paralteitexeof mul-
tiple processor threads of the same physical processor (SMT). Thprogessor
threads competed for execution resources and interfered with each\fhi&e the
overhead per mapping increased by a factor of two, the cost per magpiagned
constant for 9 to 16 parallel operating unmaps. Figure 6.11(c) showslarged
graph for the first 8 (physical) processors.

6.4. MEMORY MANAGEMENT 111

2000 500000 T T T T T T T
450000F 5 RS T .
400000~ 4 pages---=--- b
1500 |- B VSR 8 pages——=--
350000 16 pages——= - -
L 32 pages---—o-- 4
3 300000 5 pages- - -
S 1000} g 250000} s
© 200000} e
150000} g
500 |- g -
100000} e X -
50000 | moma e
0 1 1 1 1 1 1 1 1 0 St St il S
2 4 6 8 10 12 14 16 12 14 16
Number processors Number processors
(a) Fine locks (b) Coarse lock
2000 T T T T T T T T 140000 T T T T T
1 page 1 page
2 pages------ 120000} 2 pages--—--- _
4 pages---*--- 4 pages---*---)
1500 8 pages-——=-- 1 L 8 pages =~ !
16 pages——=- 100000 16 pages——=- /]
32 pages- 32 pages--—o--- /
3 256 pages- -~ 80000 256 pages- - /4
S 1000}
o 60000 4
500 1 | 40000 s
20000} <
0 I I I I L L L L 0 N et it g Ctts Sl - -
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number processors Number processors
(c) Fine locks (8 processors) (d) Coarse lock (8 processors)

Figure 6.11: Unmap performance for one processor repeatedly uimgappet of
pages. (a) and (c) show the overhead with fine granular mapping whige¢o(d)
show the same benchmark with coarse granular locking.

The same benchmark with coarse-grain locking showed very diffeesntts.
The per-mapping overhead increased steeply with the number of papaleiting
processors. As described, the microkernel’s unmap algorithm perforitical
section fusing if two consecutive mappings are protected by the same Ibak, T
with an increasing number of pages, the overall number of acquireddeckeases
and thus thevaiting timefor the lock. Figure 6.11(b) depicts the cost per mapping
for an increasing number of processors. Compared to the single poocese, the
overhead for a single page unmap increased by a factor of 3.8 for tveegsors,
13.2 for three processors, and up to a factor of 537.3 for sixteetligdgmracessors.
For 64 pages, the overhead increased by a factor of 1.93 for twegsors, 1.96
for three processors, up to a factor of 20.4 for sixteen processors.

In the same benchmark, | also measured the overhead for each intwidua
cessor unmapping a page. Each processor ran a task that repeaedly anmap
one page from its address space that is shared with the primary task. firsthe
case, the page mapping was protected by a separate lock and in the cas®adl

112

CHAPTER 6. EXPERIMENTAL VERIFICATION AND EVALUATION

page mappings were protected by the same lock.

Figure 6.12 compares the overheads for the single-page unmap foreasnc
ing number of parallel operations with coarse-grain and fine-grain IgcKirhe
x axes denote the number of processors. The figures show indivicaathgfor
different number of unmapped pagafsthe primary task Since the primary task
performed critical section fusing, the average lock holding time increabed.
coarse locking, the longer lock holding time reflected in a longer lock waiting time
for the parallely operating single page unmaps. The overall cost forpbeaton
was determined by having all processors time the latency of 200 unmaytiopsra
Afterward, the total execution time for all processors was summed up sitzdi
by the total number of unmap invocations.

Figure 6.12(a) shows that the cost for unmaps remained almost corwstapt f
to eight processors. With nine processors, the cost per mappingsedradiich
has to be attributed to interference of processor threads in the samegmodég-
ure 6.12(c) shows the enlarged version of the graph for the first pighessors.

In the case of coarse locking, the overhead for unmapping increagdt-s
cantly for five processors. A more detailed analysis of the overhedaddmdual
processors revealed that the reason for the drastic increase veasess in the
memory subsystem of the NUMA configuration. At first, it appeared thatiftine
processor starved on the lock and the other four processors (thatiezated on
the same NUMA node) had a higher probability to acquire the lock. Howtsr,
would not explain the significant decrease of the six processor coafign. Actu-
ally, in the configuration with five processors, the average lock acquisitency
was almost identical for all processors but twice as high as in the coafigar
with four processors (40K cycles vs. 78K cycles).

With six processors the situation changed; the configuration had foweacti
processors on one NUMA node and two on the second node. The teegsars on
the second NUMA node had a significantly higher probability for lock actons
due to the lower lock competition. After the lock was released by CPU 5 there
was a high chance CPU 6 would immediately acquire it. While the average unmap
time per mapping increased to 123K cycles for CPU 2 to 4, it decreased ti52K
CPU 5 and 6. The lock effectively ping-ponged between processod ®aWith
the significantly lower cost for those two processors, the overall @sapping
decreased compared to the five CPU configuration.

6.5 Summary

In this section, | evaluated the performance of dynamic lock adaptationacid tr

ing of parallelism applied to the L4Ka::Pistachio microkernel. Dynamic locks are

used on the critical IPC path and for the virtual memory subsystem. Thdibenc

marks confirmed the initial hypothesis that a single synchronization mechanism

insufficient for the microkernel and an adaptive scheme is requiredathste
Summarizing, the following performance has been observed:

6.5. SUMMARY

113

Cycles

Cycles

3500 T T T T T T T T 800000 T T T T T T k)
1 page
3000 | 700000 4 pages--—--- e
8 pages---*--- o
| 600000 16 pages——=-- P
2500 32 pages-—=-- S
500000 64 pages------ e =
2000 128 pages L
4000001
1500 | 1 page —— ‘
g pages---x-- 300000 7
L pages---=-- i
1000 16 pages = 200000} g
32 pages——-
500 |- 64 pages—-o- - | 100000 :
128 pages--+---
0 1 1 1 1 1 1 1 1 O
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number processors Number processors
(a) Fine locks (b) Coarse lock
2500 T T T T T T T 450000
~__ 4000001
2000 1 350000
300000}
1500 i 250000}
1 page —— 200000}
1000 4 pages——~—- |
8 pages---=--- 1500001
16 pages-e--
500 | o Sag e o 100000}
64 pages--—--- 50000 -
128 pages--+---
0 1 1 1 1 1 1 1 O
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number processors Number processors
(c) Fine locks (8 processors) (d) Coarse lock (8 processors)

Figure 6.12: Average unmap cost for parallel unmaps of independagspon
different processors. Fine granular locks [(a) and (c)] show tispaedup, while
for coarse locking the overhead increases drastically [(b) and (d)].

The runtime overhead of locks for inter-address space IPC accoforted

16 to 20 percent compared to a lock-free variant. For intra-addrese sp
IPC the lock overhead was between 35 to 64 percent. The overhead was
eliminated by dynamic lock elimination.

The overhead of message-based synchronization for crosssporcd’C
compared to the lock-based solution was 153 to 170 percent depending on
the message length.

The cost of IPC on the same processor remained constant with an ingreas
number of processors in the system and thus scales. All accessetidatm
structures are local to the processor.

The event logging scheme provided kernel resource information to applic
tions. The additional runtime overhead when logging was disabled (i.e., a
test for a configuration register) induced negligible overhead. In saisesc

114 CHAPTER 6. EXPERIMENTAL VERIFICATION AND EVALUATION

the Pentium 4 microarchitecture even provided better performance than with-
out the additional logging instrumentation. The overhead for the operation
was constant and independent of other processors and thus scales.

e Benchmarks of the virtual memory subsystem showed a runtime overhead
for fine-grain locks between 15 and 37 percent as compared to eoarse
grained locks (not accounting the higher cache footprint for lockghanic
adaptation of the lock granularity was able to eliminate that overhead.

e When multiple threads concurrently revoked page permissions, finelgranu
locks combined with the TLB invalidation mechanism scaled linearly up to
the number of availablphysicalprocessors. For SMT threads the overhead
increased due to instruction interference but with a constant overkiéitu.
coarse locks, the average costs per page mapping increased befaeten a
of two up to three orders of magnitude.

In the following chapter, | summarize my work and address future work.

Chapter 7

Conclusion

This chapter concludes the dissertation with a summary of its contributions fol-
lowed by suggestions for future work. Finally, | give some concludimgenes.

7.1 Contributions of This Work

In this dissertation, | addressed multiprocessor scalability of microkeasseb
systems. | developed methodologies to strictly separate scalability and-perfor
mance-relevant synchronization and coherency schemes from thecesnan-
agement policies. Such strict separation is a novel approach and hagearo
considered in previous work.

My solutions comprise four main contributions:

Tracking of parallelism. (Section 4.2)

| developed a tracking scheme for resource usage:ptbeessor cluster
mask The cluster mask uses a space-efficient encoding that is independent
of the number of processors in the system. It is used for permission and
TLB dirty tracking and is the fundamental building block for the remaining
contributions.

Adaptive lock primitive. (Section 4.3)

| developed alynamic lockprimitive that—depending on the degree of pa-
rallelism—can be dynamically and safely enabled and disabled at runtime.
| apply the fundamental principle of read-copy update epochs to a new do
main: dynamic instruction adaptation.

By cascading multiple dynamic locks, applications can safely adjusbtke
granularity of kernel objects. Hereby, dynamic locks enatriéical section
fusingandcritical section splittingat runtime.

116 CHAPTER 7. CONCLUSION

TLB Coherency Epoch. (Section 4.4)

| developed a TLB coherency tracking scheme that decouples pagésper
sion updates from the outstanding TLB shoot-downs of remote processor
Parallel page-permission updates can be completed by initiating the TLB up-
date from remote. My approach allows the combination of expensive TLB
coherency updates in a single remote shoot-down while still providing fine
granular synchronization on memory objects. In Section 4.4.2, | propose a
specific variant for 1A-32, th@LB version vectar

Event Logging. (Section 4.5)

In order to efficiently transport resource-usage information betweekeh

nel and a user-level scheduler and also between isolated operattegisys
components, | developed a configurable event logging scheme. By using
per-processor logs and providing fine-granular control over thgeldglata,

it is possible to provide detailed resoure usage information to schedulers in
an efficient and scalable manner.

| validated my proposed design with the L4Ka::Pistachio microkernel. The
primary directions and results of this work have been influenced byndséan-
dertook, that has not been specifically addressed in this dissertati@mau®eof
this, | want to briefly mention it here.

In order to validate the general design of a multiprocessor microkerneleld
oped a multiprocessor para-virtualization environment based on the Leraelk
Multiple Linux instances serve as a complex application workload on L4Ka::Pista
chio that stresses the kernel’s primitives and is extremely performandéseria
the context of VMs, | developed an efficient method to avoid excessakedpin-
ning times due to preemption of virtual processors of a multiprocessor anviro
ment. Furthermore, | developed a scheme to load-balance the per-VMoadrk
considering the overall load situation. The load-balancing scheme coaipens
for differing processor allocations for one VM and is an important applinatio
the event-logging scheme described in Section 4.5. The results of this work a
detailed in [111].

7.2 Suggestions for Future Work

| see four major areas for future work:

First, | primarily focused on one architecture with specific performanop-pr
erties: IA-32. The trade-offs for other hardware architecturessatestantially
different and need a further investigation. In particular, 1A-32’s regronemory
ordering model results in a very high synchronization penalty which maydse le
substantial on other processor architectures.

Second, current developments in the area of SMT and multicore systems are
changing the hardware properties. In particular tight integration ofesaahd im-
proved IPI delivery latency reduce overheads for inter-procaéstraction. These

7.3. CONCLUDING REMARKS 117

new architectural properties also need to be reflected in the microketedhe.
For example, the strict separation of processor threads in SMT systeidstamn

out to be overly restrictive and a granularity that addresses praces®s may be
more appropriate.

Third, the fundamental idea of alternative lock primitives that depends on
the degree of parallelism is currently implemented as a software solution. The
software-based approach requires additional code and thus inmte over-
head. The overhead could be eliminated by having explicit architectuppbsiu
by processors. The architectural support could include optimizedbpes on the
cluster mask (such as simple tests and merge) and support for dynamicHocks
example, a lock primitive or memory operation could carry a coherency idemtifi
that, depending on the processor isolation mask, serves as a filter feneock
traffic in the memory (or cache) subsystem.

Fourth, the new microkernel primitives require extensive testing and avalu
tion in a variety of real-world scenarios including large-scale databasde |
showed low overhead and independence for individual kernel prinitiskemains
open how the kernel behaves in more complex environments. The caneoaflag
microkernels agirtual machine monitorsr hypervisordring many prevalent mi-
crokernel issues to industry today. The construction methodologies iiffefar,
that fine-granular decomposition of a monolithic system is of less importaree. N
ertheless, the general mechanisms for controlling scalability from applidatieh
is as relevant and applicable to a wide range of resource managemeleinpso

7.3 Concluding Remarks

In this thesis | have described a methodology for adjusting scalability-releza
rameters of multiprocessor microkernels. The shift towards highly papatieks-
sor architectures is at its beginning and one can expect more drastiasasref
processor contexts. This change includes all areas of computing sfaotimgm-
bedded devices to large-scale servers. Furthermore, the increasipdegity of
operating systems and different business demands requires forllsadiffaring
OS structures. Virtual machines and highly customized appliance-like systiéms
be common place.

Such systems require a flexible and efficient microkernel that shovedlext
performance and scalability. | developed a set of mechanisms that laydiedgyr
for construction of scalable systems on top of a microkernel. | validatee\eade
uated it with L4Ka::Pistachio, a widely used and versatile microkernel desdlop
at the University of Karlsruhe.

118 CHAPTER 7. CONCLUSION

Bibliography

[1]

[2]

[3]

[4]

[5]

The DragonFly BSD Projectit t p: / / www. dr agonf | ybsd. or g, (ac-
cessed March 2005).

M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and Mung.
Mach: A new kernel foundation for UNIX development. Pnoceedings of
the Summer 1986 USENIX Technical Conference and Exhibitiore 1986.

George S. Almasi and Allan GottliebHighly Parallel Computing Ben-
jamin/Cummings division of Addison Wesley Inc., Redwood City, CA, 2nd
edition, 1994.

Gene M. Amdahl. Validity of the single processor approach to achiev-
ing large scale computing capabilitieAFIPS Proceedings of the SJICC
31:483-485, 1967.

E. Anderson, B. N. Bershard, E. D. Lazowska, and H. M. LeBched-
uler activation: Effective kernel support for the user-level managyg of
parallelism.ACM Transactions on Computer Systef(1), 1993.

[6] T. E. Anderson. The performance implications of spin-waiting alteveati

for shared-memory multiprocessors. Pmoceedings of the 1989 Interna-
tional Conference on Parallel Processingplume Il - Software, University
Park, Penn, August 1989.

[7] Jonathan AppavooClustered ObjectsPhD thesis, University of Toronto,

2005.

[8] Jonathan Appavoo, Marc Auslander, Dima DaSilva, David EdelsOhran

Krieger, Michal Ostrowski, et al. K42 overview. Whitepaper, Augu3d2.

[9] Jonathan Appavoo, Marc Auslander, Dima DaSilva, David EdelsOnran

Krieger, Michal Ostrowski, et al. Providing a Linux APl on the scalable
K42 kernel. InFreenix 2003.

[10] The OpenMP ARB. OpenMPt t p: // www. opennp. or g.

120

BIBLIOGRAPHY

[11] J. Archibald and J-L. Baer. Cache coherence protocols: Btialuusing a
multiprocessor simulation modehCM Transactions on Computer Systems
4(4):273-298, November 1986.

[12] Mohit Aron, Luke Deller, Kevin Elphinstone, Trent Jaeger, Jathiedtke,
and Yoonho Park. The SawMill framework for virtual memory diversity. |
8th Asia-Pacific Computer Systems Architecture ConferdBord Univer-
sity, Gold Coast, QLD, Australia, January 29—February 2 2001.

[13] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resarontainers:
A new facility for resource management in server systemsQOperating
Systems Design and Implementatipages 45-58, 1999.

[14] A. Barak and A. Shiloh. A distributed load-balancing policy for a multi-
computer.Software Practice & Experien¢é&5(9):901, September 1985.

[15] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Eioal. Xen
and the art of virtualization. 169th ACM Symposium on Operating Systems
Principles (SOSR)pages 164-177, Bolton Landing, NY, October 2003.

[16] James M. Barton and Nawaf Bitar. A scalable multi-discipline, multiple-
processor scheduling framework for IRIX. In Dror G. Feitelson aady
Rudolph, editorsJob Scheduling Strategies for Parallel Processipgges
45-69. Springer-Verlag, 1995.

[17] F. Bellosa and M. Steckermeier. The performance implications of locality
information usage in shared-memory multiprocessdurnal of Parallel
and Distributed Computing37(1):1-2, August 1996.

[18] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. FnskiyD. Becker,

S. Eggers, and C. Chambers. Extensibility, safety and performance in the

SPIN operating system. [b5th ACM Symposium on Operating Systems
Principles (SOSR)pages 267—-284, Copper Mountain Resort, CO, Decem-
ber 1995.

[19] Brian N. Bershad, Thomas E. Anderson, Lazowska Lazowskad
Henry M. Levy. Lightweight remote procedure call. 1@th ACM Sympo-
sium on Operating Systems Principles (SQSBlume 23, pages 102-113,
October 3—6 1989.

[20] David L. Black. Scheduling support for concurrency and faliam in the
Mach operating systemlEEE Computer Magazir23(5):35, May 1990.

[21] Robert D. Blumofe and Charles E. Leiserson. Scheduling multiteccad
computations by work stealing. 185th Annual Symposium on Founda-
tions of Computer Sciencpages 356—368, Santa Fe, New Mexico, 20-22
November 1994. |IEEE.

BIBLIOGRAPHY

121

[22] Bryan R. Buck and Jeffrey K. Hollingsworth. Using hardwarefpenance
monitors to isolate memory bottlenecks. Pnoceedings of Supercomput-
ing’2000, Dallas, TX, November 2000. UMCP.

[23] J. Mark Bull and Darragh O’Neill. A microbenchmark suite for opddM
2.0. In3rd European Workshop on OpeniM&eptember 2001.

[24] Henry Burkhardt, Ill, S. Frank, B. Knobe, and James Rothrdeerview
of the KSR1 computer system introduction to the KSR1. Technical Report
KSR-TR-9202001, Kendall Square Research, Boston, Febr@&3. 1

[25] Richard P. Case and Andris Padegs. Architecture of the IBM Syst@m/3
Communications of the ACN1(1):73-96, January 1978.

[26] Eliseu M. Chaves, Jr., Thomas J. LeBlanc, Brian D. Marsh, andh&&tL.
Scott. Kernel-kernel communication in a shared-memory multiprocessor. In
The Symposium on Experiences with Distributed and Multiprocessor Sys-
tems Atlanta, GA, March 1991.

[27] Benjie Chen. Multiprocessing with the Exokernel operating systems-Ma
ter's thesis, Massachusetts Institute of Technology, Dept. of Electngt E
neering and Computer Science, 2000.

[28] BBN Advanced Computersinside the Butterfly-Plus Cambridge, MA,
October 1987.

[29] Intel Corp. IA-32 Intel Architecture Software Developer's Manual, Volume
1-3 2004.

[30] Intel Corp.Intel XScale Core, Developer's Many&i004.

[31] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klauik E
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten ven.Eick
LogP: Towards a realistic model of parallel computationPtaceedings of
the Fourth ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming San Diego, CA, May 1993.

[32] D. H. Brown Associates, Inc. Unisys ES7000 challenges Sun
E10000. Whitepapermtt p://waw. m cr osof t - sap. com docs/
br own_whi t e_paper . pdf , September 2000.

[33] L. Van Doorn, P. Homburg, and A. S. Tanenbaum. Paramecium: xAn e
tensible object-based kernel. Fifth Workshop on Hot Topics in Operating
Systems (HotOS-\Wages 86—-89, Orcas Island, WA, May 1995.

[34] Dawson R. Engler, M. Frans Kaashoek, and James W. O'Tool&- E
okernel: An operating system architecture for application-level resour
management. I15th ACM Symposium on Operating Systems Principles

122 BIBLIOGRAPHY

(SOSP) pages 251-266, Copper Mountain Resort, CO, December 1995.
ACM SIGOPS.

[35] Dror G. Feitelson. Job scheduling in multiprogrammed parallel systems.
IBM Research Report RC 19790 (87657), August 1997.

[36] Dror G. Feitelson and Larry Rudolph. Coscheduling Based onRuonme
Identification of Activity Working Sets.International Journal of Parallel
Programming 23(2):136—-160, April 1995.

[37] Dror G. Feitelson, Larry Rudolph, Schwiegelshohn Schwiegéish&en-
neth C. Sevcik, and Parkson Wong. Theory and practice in parallel job
scheduling. In Dror G. Feitelson and Larry Rudolph, editdofy Schedul-
ing Strategies for Parallel Processingages 1-34. Springer Verlag, 1997.
Lect. Notes Comput. Sci. vol. 1291.

[38] Steven Fortune and James Wyllie. Parallelism in random access m&chine
In Conference Record of the Tenth Annual ACM Symposium on Theory of
Computing pages 114-118, San Diego, California, 1-3 May 1978.

[39] MPI Forum. MPI: A message-passing interface standahe international
Journal of Supercomputing and High Performance Computiages 159—
416, feb 1994.

[40] Eran Gabber, Christopher Small, John BrunogJsustoloni, and Avi Sil-
berschatz. The Pebble component-based operating systdPnodeedings
of the 1999 USENIX Annual Technical Conferenignterey, CA, USA,
June 1999.

[41] Benjamin Gamsa, Orran Krieger, Jonathan Appavoo, and MichaetrS.
Tornado: Maximizing locality and concurrency in a shared memory multi-
processor operating system. 3rd Symposium on Operating Systems De-
sign and Implementation (OSDNQ999.

[42] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke/jirKEIphin-
stone, Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller, and Lars Reuther
The SawMill Multiserver Approach. 18th SIGOPS European Workshop
Kolding, Denmark, September 2000.

[43] Robert P. Goldberg. Survey of virtual machine resealffEE Computer
Magazine 7(6):34-45, 1974.

[44] Ruth E. Goldenberg and Saro SaravanavMS for Alpha Platforms—
Internals and Data Structures/olume 1. DEC Press, Burlington, MA,
preliminary edition, 1992.

BIBLIOGRAPHY 123

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient symization
primitives for large-scale cache-coherent multiprocessors3rdrinterna-
tional Conference on Architectural Support for Programming Langsag
and Operating Systems (ASPLO®)lume 24, Boston, MA, April 1989.

Allan Gottlieb and Clyde P. Kruskal. Coordinating parallel processér
partial unification. ACM Computer Architecture New®ctober 1981.

Kinshuk Govil, Dan Teodosiu, Yonggiang Huang, and MendeleRbtum.
Cellular Disco: resource management using virtual clusters on shared-
memory multiprocessors. Ih7th ACM Symposium on Operating Systems
Principles (SOSRXiawah Island, SC, 1999.

Michael Greenwald and David Cheriton. The synergy betweerahaeking
synchronization and operating system structure2rid Symposium on Op-
erating Systems Design and Implementation (OSiges 123-136, Berke-
ley, October 28—-31 1996. USENIX Association.

System Architecture Group.4 X.2 Reference ManuaUniversity of Karl-
sruhe, Germany, 6 edition, June 2004.

Anoop Gupta, Wolf-Dietrich Weber, and Todd Mowry. Reducing mem-
ory and traffic requirements for scalable directory-based cacheaute
schemes. Technical Report CSL-TR-90-417, Computer Systems tab, S
ford, University, Stanford, CA, March 1990.

Andreas Haeberlen. Managing kernel memory resources figen lavel.
Master’s thesis, University of Karlsruhbt t p: //i 30www. i ra. uka.
de/ t eachi ng/ t heses/ pastt hesi s, 2003.

Andreas Haeberlen and Kevin Elphinstone. User-level managesh&ar-

nel memory. InProceedings of the 8th Asia-Pacific Computer Systems
Architecture ConferengeAizu-Wakamatsu City, Japan, September 24-26
2003.

Claude-Joachim Hamann, Frank Mehnert, Hermaidmtigl, Jean Wolter,
Lars Reuther, Martin Borriss, Michael Hohmuth, Robert Baumgartl, and
Sebastian S@nberg. DROPS OS support for distributed multimedia appli-
cations. In8th SIGOPS European Worksh@intra, Portugal, December 11
2001.

Hermann Hrtig, Michael Hohmuth, Jochen Liedtke, Sebastiandbblerg,

and Jean Wolter. The performance of microkernel-based systems. In
16th ACM Symposium on Operating System Principles (SC&i)tMalo,
France, October 1997.

C.-T. Ho. Optimal communication primitive and graph embeddings on hy-
percubes PhD thesis, Yale University, 1990.

124

BIBLIOGRAPHY

[56] C.-T. Ho and L. Johnsson. Distributed routing algorithm for breatiog
and personalized communication in hypercubesPioc. 1986 Int. Conf.
Par. Proc, pages 640-648, 1986.

[57] Michael Hohmuth. The Fiasco kernel: System architecture. TeahRie-
port TUD-FI102-06-Juli-2002, TU Dresden, 2002.

[58] Michael Hohmuth.Pragmatic Nonblocking Synchronization for Real-Time
SystemsPhD thesis, Technische Unive&iDresden, October 2002.

[59] IEEE. IEEE Std 1596-1992: IEEE Standard for Scalable Coherent Inter-
face IEEE, Inc., August 1993.

[60] Trent Jaeger, Kevin Elphinstone, Jochen Liedtke, VsevolodeRaanko,
and Yoonho Park. Flexible access control using IPC redirectiorPrdn
ceedings of the Seventh Workshop on Hot Topics in Operating Sy&ams
Rico, AZ, March 29-30 1999.

[61] E. H. Jensen, G. W Hagensen, and J. M. Broughton. A newoapgprto
exclusive data access in shared memory multiprocessors. Technicat Repo
212-157, Lawrence Livermore Laboratory, 1987.

[62] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Gangeatdi Bricéio,
Russell Hunt, David Magires, Thomas Pinckney, Robert Grimm, John Jan-
notti, and Kenneth Mackenzie. Application performance and flexibility on
Exokernel systems. 1h6th ACM Symposium on Operating Systems Princi-
ples (SOSR)Saint-Malo, France, October 5-8 1997.

[63] Alain Kagi, Doug Burger, and James R. Goodman. Efficient synchroniza-
tion: Let them eat QOLB. IfProceedings of the 24th Annual International
Symposium on Computer Architecture (ISCA;98)Jume 25,2 ofComputer
Architecture Newspages 170-180, New York, June 2—4 1997. ACM Press.

[64] A. Langerman, J. Boykin, S. LoVerso, and S. Mangalat. A highly-
parallelized Mach-based Vnode filesystedSENIX pages 297-312, Win-
ter 1990.

[65] Edward D. LazowskaQuantitative System Performance, Computer System
Analysis Using Queuing Network Model#rentice-Hall Inc, Englewood
Cliffs, NJ 07632, 1984.

[66] F. Lee. Study of 'look aside’ memornyEEE Transactions on Computers
C-18(11), November 1969.

[67] C. E. Leierson. Fat-trees: Universal networks for hardvedfieient su-
percomputing. IEEE Transactions on Computers-34:892—-901, October
1985.

BIBLIOGRAPHY 125

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Daniel Lenoski, James Laudon, Gharachorloo Gharachorlotf;Bietrich

Weber, Anoop Gupta, John Hennessy, Mark Horowitz, and Monica®. L
The Stanford Dash multiprocessolEEE Computer 25(3):63—-79, March

1992.

Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefén GJnmodi-

fied device driver reuse and improved system dependability via virtual ma-
chines. In6th Symposium on Operating Systems Design and Implementation
(OSDI), San Francisco, CA, December 2004.

Jochen Liedtke. Improving IPC by kernel design.1¥th ACM Symposium
on Operating System Principles (SOSR3heville, NC, December 1993.

Jochen Liedtke. Op-kernel construction. 1d5th ACM Symposium on Op-
erating System Principles (SOSEppper Mountain Resort, CO, December
1995.

Jochen Liedtke, Uwe Dannowski, Kevin Elphinstone, Gerd harader, Es-
pen Skoglund, Volkmar Uhlig, Christian Ceelen, Andreas Haeberlen, and
Marcus \WWIp. The L4Ka vision, April 2001.

Jochen Liedtke, Kevin Elphinstone, Sebastianddterg, Hermann &ttig,
Gernot Heiser, Nayeem Islam, and Trent Jaeger. Achieved IPGrpeice
(still the foundation for extensibility). I®6th Workshop on Hot Topics in
Operating Systems (HotOQ3BM, May 1997.

Jochen Liedtke, Nayeem Islam, and Yoonho Park. Preventinigldrser-
vice attacks on a microkernel for WebOSes6th Workshop on Hot Topics
in Operating Systems (HotQ3Yfay 1997.

Jochen Liedtke, Vsevolod Panteleenko, Trent Jaeger, andedayslam.
High-performance caching with the Lava Hit-Server. USENIX 1998 An-
nual Technical Conferencdune 1998.

Beng-Hong Lim.Reactive synchronization algorithms for multiprocessors
PhD thesis, Massachusetts Institute of Technology, Dept. of Electriggd En
neering and Computer Science, 1995.

Peter Magnusson, Anders Landin, and Erik Hagersten. Efficieftware
synchronization on large cache coherent multiprocessors. TeclRepairt
ISRN SICS-R-94-07-SE, Swedish Institute of Computer Science, 1994.

H. Massalin and C. Pu. A lock-free multiprocessor OS kernel. fiech
Report CUCS—-005-91, Columbia University, 1991.

Paul E. McKenney. Selecting locking primitives for parallel pragnaing.
Communications of the ACN9(10):75-82, 1996.

126

BIBLIOGRAPHY

[80] Paul E. McKenney, Dipankar Sarma, Andrea Arcangeli, AndiekleOr-
ran Krieger, and Rusty Russell. Read-copy updateTHa Ottawa Linux
SymposiumJune 2002.

[81] Paul E. McKenney and John D. Slingwine. Read-copy updatégbsxe-
cution history to solve concurrency problems. Rarallel and Distributed
Computing and Systenlsas Vegas, NV, October 1998.

[82] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocess8sM Transactions on
Computer System9(1):21-65, February 1991.

[83] Microsoft. Authenticode technology. Microsoft's Developer Netihi-
brary, October 1996.

[84] J. Mogul, R. Rashid, and M. Accetta. The packet filter: An efficimech-
anism for user-level network code. Irith ACM Symposium on Operating
Systems Principles (SOSRdlume 21, pages 39-51, 1987.

[85] George C. Necula. Proof-carrying code. 2#th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Langauges (POPL, 'Bajis,
January 1997.

[86] George C. Necula and Peter Lee. Safe kernel extensions withioinne
checking. In2nd Symposium on Operating Systems Design and Implemen-
tation (OSDI) Seattle, WA, October 1996.

[87] D. Nussbaum and A. Agarwal. Scalability of parallel machi@smmuni-
cations of the ACM34(3):56, March 1991.

[88] John K. Ousterhout. Scheduling techniques for concurretgisyss InThird
International Conference on Distributed Computing Systerages 22—-30,
May 1982.

[89] G. Pfister, W. Brantley, D. George, S. Harvey, W. KleinfelderMCAuUliffe,
E. Melton, V. Norton, and J. Weiss. The IBM research parallel preomes
prototype (RP3): Introduction and architecture. Pimceedings of the 1985
International Conference on Parallel Processjrgt. Charles, IL, August
1985.

[90] Birgit Pfitzmann, James Riordan, Christianilsle, Michael Waidner, and
Arnd Weber. The PERSEUS system architecture. Technical Report RZ
3335 (#93381), IBM Research Division, Zurich Laboratory, Ap€iD2.

[91] Daniel Potts, Simon Winwood, and Gernot Heiser. Design and implemen-
tation of the L4 microkernel for Alpha multiprocessors. Technical Report
UNSW-CSE-TR-0201, University of New South Wales, Australia, Febru
ary 10 2002.

BIBLIOGRAPHY 127

[92] Ravi Rajwar and James R. Goodman. Speculative lock elision: Egablin
highly concurrent multithreaded execution. Broceedings of the 34th
Annual International Symposium on Microarchitecturgages 294-305,
Austin, Texas, December 1-5, 2001. IEEE Computer Society TC-MICRO
and ACM SIGMICRO.

[93] D. M. Ritchie and K. Thompson. The UNIX time-sharing systédemmu-
nications of the ACM17(7):365-375, July 1974.

[94] Stuart Ritchie. The Raven kernel: a microkernel for shared memaory
tiprocessors. Technical Report TR-93-36, University of British Guiia,
Department of Computer Science, 30 April 1993.

[95] Larry Rudolph and Zary Segall. Dynamic decentralized cachensebidor
MIMD parallel processors. IRroceedings of the 11th Annual International
Symposium on Computer Architectupages 340-347, Ann Arbor, Michi-
gan, June 5-7, 1984. IEEE Computer Society and ACM SIGARCH.

[96] Larry Rudolph, Miriam Slivkin-Allalouf, and Eli Upfal. A simple load ba
ancing scheme for task allocation in parallel machineA@GM Symposium
on Parallel Algorithms and Architecturepages 237-245, 1991.

[97] Sebastian Sdénberg. Using PCI-Bus Systems in Real-Time Environments
PhD thesis, University of Technology, Dresden, 2002.

[98] Jonathan S. Shapiro, Jonathan M. Smith, and David J. FarberSERfast
capability system. 1i17th ACM Symposium on Operating Systems Princi-
ples (SOSR)ages 170-185, Kiawah Island, SC, 1999.

[99] Patrick G. Sobalvarro and William E. Weihl. Demand-based cosdimepiof
parallel jobs on multiprogrammed multiprocessors. In Dror G. Feitelson and
Larry Rudolph, editorsJob Scheduling Strategies for Parallel Processing
pages 106-126. Springer-Verlag, 1995.

[100] Jan Stoess. Using operating system instrumentation and eventdaggin
support user-level multiprocessor scheduler. Master’s thesisgtsitly of
Karlsruhe, Germany, April 2005.

[101] Harold S. Stone. High-Performance Computer ArchitectureAddison-
Wesley, 2nd edition, 1990.

[102] Sun, Inc. Sun enterprise 10000 servehttp://ww. sun. com
server s/ hi ghend/ e10000, (accessed March 2005).

[103] Peter F. Sweeney, Matthias Hauswirth, Brendon Cahoon, R&mgng,
Amer Diwan, David Grove, and Michael Hind. Using hardware perfor-
mance monitors to understand the behavior of java application®2rdn
ceedings of the 3rd Virtual Machine Research and Technology Syumpos
San Jose, CA, May 2004.

128

BIBLIOGRAPHY

[104] Cristan Szmajda. Calypso: A portable translation layer2nd Workshop
on Microkernel-based Systenig t p: / / www. di sy. cse. unsw. edu.
au/ publi cati ons. pm , Lake Luise, Canada, October 2001.

[105] Ariel Tamches and Barton P. Miller. Fine-grained dynamic instruntiemta
of commodity operating system kernels. 3rd Symposium on Operating
Systems Design and Implementation (OSR8w Orleans, Louisiana, 1999.

[106] Andrew S. TanenbaumModern Operating SystemsPrentice Hall, 2nd
edition, 2001.

[107] Josep Torrellas, Andrew Tucker, and Anoop Gupta. Benefitsaohe-
affinity scheduling in shared-memory multiprocessors. AlBM Sigmet-
rics Conference on Measurement and Modeling of Computer Sygtages
272-274, May 1993.

[108] Dean Tullsen, Susan Eggers, and Henry Levy. Simultanious mugthrg:
Maximizing on-chip parallelism. IProceedings of the 22nd Annual Inter-
national Symposium on Computer Architectiuanta Margherita Ligure,
Italy, June 1995.

[109] Volkmar Uhlig. Design rationale for L4 on multiprocessors. TecHniea
port, University of Karlsruhe, Germany, May 2005.

[110] Volkmar Uhlig, Uwe Dannowski, Espen Skoglund, Andreas Hdeheand
Gernot Heiser. Performance of address-space multiplexing on the ientiu
Technical Report 2002-01, University of Karlsruhe, 2002.

[111] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund, and Uwe®aski.
Towards scalable multiprocessor virtual machines.Ptaceedings of the
3rd Virtual Machine Research and Technology Symposipages 43-56,
San Jose, CA, May 6—7 2004.

[112] Unisys, Inc. ES7000 Servers. http://ww. uni sys. conl
product s/ es7000_1I i nux, (accessed March 2005).

[113] Ronald Unrau.Scalable Memory Management through Hierarchical Sym-
metric Multiprocessing Ph.D. thesis, University of Toronto, Toronto, On-
tario, January 1993.

[114] Ronald Unrau, Michael Stumm, and Orran Krieger. Hierarchiceitering:
A structure for scalable multiprocessor operating system design. Tethnic
Report CSRI-268, University of Toronto, March 1992.

[115] Ronald C. Unrau, Orran Krieger, Benjamin Gamsa, and Michaeh®tu
Experiences with locking in a NUMA multiprocessor operating system
kernel. InSymposium on Operating Systems Design and Implementation
(OSDI), pages 139-152, Berkeley, CA, USA, November 1994. USENIX
Association.

BIBLIOGRAPHY 129

[116] Marcus \Wlp. Design and implementation of the recursive virtual ad-
dress space model for small scale multiprocessor systems. Master’s thesis
University of Karlsruheht t p: / /i 30www. i r a. uka. de/ t eachi ng/

t heses/ pastt hesi s, 2002.

[117] T. H. von Eicken.Active Messages: an Efficient Communication Architec-
ture for Multiprocessors Ph.D. thesis, Computer Science, Graduate Divi-
sion, University of California, Berkeley, CA, 1993.

[118] Zvonko Vranesic, Michael Stumm, Ron White, and David Lewis. Tke-H
tor multiprocessorlEEE Computer Magazir24(1), January 1991.

[119] Robert Wahbe, Steven Lucco, Thomas E. Anderson, anch3usaraham.
Efficient software-based fault isolatioACM SIGOPS Operating Systems
Review 27(5):203-216, December 1993.

[120] Boris Weissman. Performance counters and state sharing annsta#io
unified approach to thread locality. Bth International Conference on
Architectural Support for Programming Languages and Operatingeays
(ASPLOS)San Jose, CA, October 3—7, 1998.

[121] Robert W. Wisniewski and Bryan Rosenburg. Efficient, unjfeed scalable
performance monitoring for multiprocessor operating system&dR003:
Igniting Innovation Phoenix, AZ, November 2003.

[122] W. WuUIf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Piersand F. Pol-
lack. HYDRA: The kernel of a multiprocessor operating syst&€@ommu-
nications of the ACM17(6):337-345, June 1974.

[123] Michael Wayne Youngexporting a User Interface to Memory Management
from a Communication-Oriented Operating SystdPnD thesis, Carnegie-
Mellon University, 1989.

