
TCP Performance over ATM on Linux and Windows NT

Martin Borriss Uwe Dannowski

Hermann H�artig

Dresden University of Technology

Computer Science Department

Operating Systems Group

Phone� ���������	�
��� Fax� ���������	�
�
�

Email� fborrissud�haertigg�os�inf�tu�dresden�de

Keywords� Performance TCP ATM Operating Systems

Abstract

In today�s local area networks ATM is often used as
replacement for slow Ethernet� This work measures
and compares performance of the Transmission Con�

trol Protocol �TCP� over ATM on two popular op�
erating systems on PC hardware� Throughput and
round trip latency of TCP data transfer over both
Linux and Windows NT on identical hardware were
measured� For throughput measurements� send and
receive performances have been isolated by using a
fast third�party machine as peer�

Firstly� measurements indicated that high�end PC
hardware can utilize the bandwidth provided by
������ Mbps ATM network adapters well� Running
the heavyweight TCP protocol� data rates of up to
	
� of the bandwidth available have been observed�

As a second result� Linux and Windows NT bulk
data throughput were competitive� However� partic�
ularly on slow hardware� the Linux implementation
consistently outperformed NT�

Finally� signi�cant latency dierences in the order
of a ��� advantage for Linux were indicated by the
request�response test suite�

� Motivation

Part of the current work of the Operating Systems
Group at Dresden University of Technology deals
with operating system support for predictable high�
speed networking� The ability to estimate resource
utilization by networking protocols and networking
applications involves �nding upper bounds on possi�
ble data throughput and latency� depending on the
hardware and protocols used�

Furthermore� since the Linux device driver for the
ATM boards used was written in our group� we were
naturally interested to verify its competitiveness�

As discussed in Section ���� using TCP over ATM
was expected to be a most challenging test for oper�
ating system� protocol and driver software�

� Environment

To make the results as expressive as possible� identi�
cal machines have been used� All measurement were
done on both �slow� and �fast� machines by today�s
standards� While measuring� no CPU�intense ap�
plications ran concurrently on the participating ma�
chines�

Additionally� another communication partner� a



Sun�Ultra�� machine has been included� This was
done for two reasons�

� Particular optimizations� such as proprietary
TCP �ow control� would not go completely un�
detected in a heterogeneous environment�

� Isolation of send and receive performance is pos�
sible�

The test environment is visualized in Figure �� The
next section describes the hardware used in more de�
tail�

Carola (P100, Linux)

Kastor (Sun Ultra 1,

Solaris)

FORE ASX-200WG

FORE ASX-200BX

Agnes (PPro200, Linux)

Therese (PPro200, Linux/NT)

Christian (PPro200, Linux)

Maria (PPro 200, NT) Johann (P100, NT)

Figure �� Test environment

��� Hardware

The measurements were performed on o�the�shelf
Pentium���� machines�� Pentium Pro���� machines�

and a Sun Ultra � model ��� running SunOS �release
������ as reference machine�
All PC machines included FORE PCA����E PCI

network interface adapters� the Sun used the SBus
version of the NIC� The boards support a line rate of
������ Mbps and are capable of AAL� processing in
hardware and bus�master DMA transfer�

����KB Cache ��MByte RAM� ASUS main boards PCI�I�
P��NP�D

����KB Cache� ��MByte RAM� ASUS main boards P�I�
XP�NP�

All machines were physically connected to a FORE
ASX����WG ATM switch using OC�
 optical �ber�
the Sun machine was connected via a FORE ASX�
���BX switch�

��� Software

Some test machines had both Linux andWindows NT
installed� others are dedicated Linux and Windows
NT systems on identical hardware�
Linux� as a non�commercial monolithic UNIX sys�

tem originally for i
	��based Intel processors� con�
tains full ATM support� including Classical IP over
ATM� LAN Emulation v���� native ATM support via
an ATM API and a �exible device driver interface ����
The Linux driver for the network interfaces used has
been developed in our group and is freely available �
��
For the work presented� the stable kernel ������� the
ATM patch ��
�� and the PCA����E device driver
��� have been employed�
For both Windows NT ��� and Solaris the com�

mercial ForeThought software has been used� which
includes hardware driver and IP encapsulation�
For our measurements� encapsulation was done ac�

cording to the Classical IP model ���� The ATM
switch functions as ATMARP server in our environ�
ment�
It has been shown that even low�end PC hard�

ware can utilize bandwidth provided by ������ Mbps
ATM hardware very well� ���� as long as the com�
plex state�based TCP protocol is excluded from the
data path� This particularly applies if the proto�
col architecture permits direct copies from applica�
tions to the network interface� Due to TCP�s re�
quired checksum computation reducing data copies
is not feasible� Still� Partridge argues that perfor�
mance improvement techniques for TCP allow seam�
less integration into a gigabit environment� reducing
the common case TCP�IP processing to as little as
��� instructions ����
We were curious whether TCP actually is a �killer�

for high�bandwidth applications on state�of�the�art

�Using unidirectional transfer with a �single�copy	 opti�
mization� the theoretical limit has been approached even for
Pentium 
� machines equipped with less powerful boards based
on the Intel Neptune chip set�



PC machines� Encapsulation and protocol overhead
limits the achievable bandwidth for applications us�
ing TCP to �
��� Mbps for a maximum transmission
unit �MTU� size of ��	� bytes ���� This is shown in
Figure ��

10

20

30

40

50

60

70

80

90

100

110

120

130

140

1 4 16 64 256 1024 4096 16384 65536

D
ur

ch
sa

tz
 in

 M
bp

s

Nachrichtengroesse

Theoretische Maximaldurchsaetze

Line rate
ATM
TCP

Figure �� Theoretical achievable TCP bandwidth de�
pending on message size�

For measurements� the netperf utility has been
used ���� No particular optimizations involving ker�
nel changes have been made� thus making the results
more useful in practice� Only user�level�adjustable
parameters� such as message size and socket options�
have been varied� During all measurements the par�
ticipating machines were otherwise unloaded�

� Expectations

A number of performance problems regarding the us�
age of TCP on high�speed links are well known �����
Inadequate socket buer sizes and inaccurate round
trip time estimation may even lead to temporary
deadlocks �	�� Protocol processing involving TCP is
CPU�intensive� even if data copying overhead is min�
imized by modern network adapters capable of DMA
transfer �as in our case��
From measuring throughput over the loop�back in�

terface�� an approximate bound could be placed on

�netperf �l �� �H localhost �t TCP STREAM �i ����

�I ���� �� �m ����� �s ����� �S �����

achievable throughput� Note that the ATM driver is
not involved when using the loop�back interface� IP
packets re�enter the IP layer via the loop�back driver�
Therefore� loop�back numbers hint at machine perfor�
mance regarding TCP�IP processing� For example�
a Pentium���� running Linux achieved a loop�back
throughput of 	� Mbps� thus already practically pre�
cluding the possibility of achieving the theoretical
maximum TCP throughput for this machine� For
comparison of the results� we refer to the netperf re�
sults database ���� For instance� TCP loop�back re�
sults for P���� machines running Win�� indicate that
the surprisingly bad number for Johann is no error�

Machine Operating
System

Through�
put �in
Mbps�

Sun �Kastor� SunOS ��	�		
PPro���� �Christian� Linux 
�����
P���� �Carola� Linux 	����
PPro���� �Maria� WinNT 

	�	�
P���� �Johann� WinNT ����


Table �� Loop�back device throughput

Socket buer size� has a direct in�uence on the
granularity of read�� and write�� system calls and
the advertised TCP window size� Assuming a round
trip time of �ms and an available bandwidth of
�
�Mbps� the bandwidth�delay product is ���	KB�
giving a lower bound on the required socket sizes�
Furthermore� it is recommendable that the socket re�
ceive buer is an even multiple of TCP�s maximum
segment size �MSS�� and should hold at least three
TCP segments ����� TCP implementations may raise
the socket buer size to the next even multiple of
the MSS size� Therefore� we could reasonably expect
to see good performance starting with 
�KB socket
buers�
In addition� larger�sized messages should also out�

perform smaller�sized messages� The reason con�

�SO RCVBUF and SO SNDBUF are the generic socket options
which allow changing the default socket buer size� which is
��KByte for Linux TCP sockets� The maximum socket buer
size in Linux is ���KB�

�For IPv�� MSS �MTU � ��Bytes



sists in the reduced number of system calls� lower
per�message protocol overhead� and lower TCP pro�
cessing overhead� By default� TCP does not send
small messages immediately if there is outstanding
unacknowledged data� rather it assembles segments
smaller than the MSS into larger segments to im�
prove throughput �Nagle�s algorithm�the socket op�
tion TCP NODELAY disables this behaviour���
For high performance networks the maximum size

of the TCP sliding window can severely restrict per�
formance� However� in the LAN environment� the
bandwidth�delay product is still small� Linux sup�
ports the window scaling option� potentially allowing
windows of size ��� bytes�
The hardware purposely chosen for the experiment

lets us expect huge performance dierences for P����
and PPro���� class machines� �The PPro machines
are roughly 
 times as fast as P���� machines� con�
sidering integer performance�� The Sun machine was
expected to perform about as well as the PPro����
machines� in addition� the memory subsystem of the
Sun is faster than the PC architecture� We did ex�
pect the CPU speed to cause performance dierences�
while we assumed the I�O bandwidth of the PCI bus
������MBps� to be su�cient�

� TCP Throughput

TCP bulk data throughput was measured in the
following way� netperf �l �� �H ��������	���

�t TCP STREAM �i ��
	 �I ��
� �� �m ��	

�s ����� �S ������ That is� netperf repeats
measurements until they obey the de�ned con�dence
interval �which is ���������� in this case�� The
in�uence of message size �� � � � ���
� bytes� and
socket buer size �
�KB and ��KB� was evaluated�

Socket Bu�er Size� As expected� a larger socket
buer always had a non�negative in�uence on
throughput� Linux did not adapt the socket buer
sizes to the next higher multiple of the MSS which
we interpret as a possible reason for Linux pro�ting
more from bigger socket buer sizes than Windows
NT did �see Figure 
�� For the remaining throughput
numbers� the default ��KB socket buers are used�

10

20

30

40

50

60

70

80
90

100
110
120

256 512 1024 2048 4096 8192 16384 32768 65536

PPro 200 - socket buffer size influence

Linux 64k
Linux 32k

Windows NT 32k
Windows NT 64k

Figure 
� Throughput for 
�KByte and ��KByte
socket buer sizes on PPro���� machines for Linux
and Windows NT �in Mbps��

TCP Send Performance� This paragraph
presents results for send performance of both the
�fast� and �slow� class of machines for WinNT and
Linux� As mentioned in Section 
� small messages
challenge primarily the protocol processing within
the sender� In contrast� for larger messages� receiver
performance becomes critical� Figure � sketches
data path and required copies for write�� calls� Ap�
plication data is copied into kernel memory� Linux
uses�in contrast to BSD�s mbufs�fast linear buers
�sk buffs�� In�kernel buers are then copied by the
network interface card into the internal send FIFO
and transmitted� No CPU involvement is necessary
for the last data copy �DMA�� Thus� write�� calls
are possible with a single CPU initiated copy�

copy copy

(DMA)

Kernel

(socket buffer)
Application NIC memory

(tx FIFO)

Figure �� Write data path

As was estimated from the discouraging loop�back
performance �Section 
�� we found send performance
on �slow� Pentium���� hardware exceedingly better
on the Linux machine vs� the WinNT machine �Fig�
ure ��� For medium sized messages �e�g�� ���� bytes�
a more than three times higher throughput under



Linux was observed� the ratio of peak performances
gives ������

�����
� ��	��

10

20

30

40

50

60

70

80

90

100

110

120

130

4 16 64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t

Message size

TCP Peak Transfer Rates (Tx)

Johann (P100 - WinNT) - Sun
Carola (P100 Linux) - Sun

Figure �� TCP throughput for slow senders�

We repeated the previous scenario with more pow�
erful PPro���� sender machines� Both under WinNT
and Linux the theoretical maximum bandwidth has
been approached relatively close �up to 		�� percent��
Figure � gives the graph�

Similar to the previous scenario� raising the mes�
sage size to 
�KB and ��KB results in lower through�
put which particularly aected the Linux machine�
We explain this eect by the sender overrunning the
receiver�s NIC buers with large messages� causing
cell loss and subsequent PDU and packet loss�

TCP Receive Performance� As can be seen from
Figure �� read�� calls require an extra data copy�
Typically� a receive interrupt activity has to identify
the higher�level protocol of a PDU� allocate kernel
memory� copy the PDU into the socket buer and
return the old buer to the ATM device driver� In
addition� in�kernel control �ow is divided into the in�
terrupt activity and the read�� activity initiated by
the receiving application� which blocks until data ar�
rives�
As in the previous paragraph� we isolated TCP re�

ceive performance by selecting the Sun machine as
sender� The performance graph of both the slow
WinNT and the slow Linux machine is given in Figure

10

20

30

40

50

60

70

80

90

100

110

120

130

4 16 64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t

Message size

TCP Peak Transfer Rates (Tx)

Maria (PPro - NT) - Sun
Christian (PPro - Linux) - Sun

Figure �� TCP throughput for fast senders�

NIC memory
copy

(DMA)

Kernel

(socket buffer)

copy
ApplicationHost memory

ATM driver

copy

(interrupt)(rx queue)

Figure �� Read data path

	� showing a performance dierence of ��� in Linux�
favour� Only less than half �Linux� or less than a
third �WinNT� of the available bandwidth could be
used�
As a �nal throughput experiment� receive perfor�

mance of the PPro machines was measured �Figure
��� We got almost identical results for both ma�
chines� each utilizing about ��� of the theoretical
bandwidth� Note that� recalling Figure 
� the Linux
machine can receive at still higher data rates� There�
fore� the last scenario hints at the Sun�s send perfor�
mance as limiting factor�

TCP Peak Performance Summary� This para�
graph combines the observed peak performances�
Contrary to the naive expectations� we found the op�
timum message size to be in the ����� � � ���
	�� bytes
interval� That is� for those messages sizes no through�
put anomalies�such as lower throughput caused by
receiver overruns�were observed� The achieved peak
transfer rates are given in tables � and 
� each includ�
ing performance numbers for communication with the
reference machine �Sun��
When comparing the numbers for Linux and Win�



10

20

30

40

50

60

70

80

90

100

110

120

130

4 16 64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t

Message size

TCP Rx Performance

Sun - Johann (P100 WinNT)
Sun - Carola (P100 Linux)

Figure 	� TCP throughput for slow receivers�

Linux

Receiver

Sender P��� PPro��� Sun
P��� � �	�	� ������
PPro��� 

�	� ������ ������
Sun ����� ������ �

Table �� Linux TCP peak transfer rates �in Mbps�
for ��KB�sized socket buers�

dows NT� Linux outperformed Windows NT partic�
ularly on slow �P����� hardware� If running on fast
hardware� throughput relatively close to the theoret�
ical maximum value of �
��� Mbps can be achieved�
For small messages� protocol and system call over�
head dominates and results in a high load at the
sender� For large messages� the memory subsystem of
the receiver cannot yet preserve the throughput and
routinely loads the CPU fully�

� TCP Request�Response Per�

formance

For request�response protocols measurement of
the TCP round trip time is most signi�cant� The
following command line gives an example for the
measurement technique used� netperf �l �� �H

10

20

30

40

50

60

70

80

90

100

110

120

130

4 16 64 256 1024 4096 16384 65536

T
hr

ou
gh

pu
t

Message size

TCP Rx Performance

Sun - Maria (PPro - WinNT)
Sun - Christian (PPro - Linux)

Figure �� TCP throughput for fast receivers�

Windows NT

Receiver

Sender P��� PPro��� Sun
P��� � ����� �����
PPro��� 
	��� ������ ��
���
Sun �
�
� ����
	 �

Table 
� Windows NT TCP peak transfer rates �in
Mbps� for ��KB�sized socket buers�

��������	��� �t TCP RR �i ��
� �I ��
� ��

�r ��
�� �s � �S �� There was no need to ex�
plicitly disable TCP�s Nagle algorithm since such
ping�pong communication is not aected� The vary�
ing size of request and response data�taken from
netperf�s default test suite for request�response
tests�re�ects typical client�server communication
�table ���
Firstly� as a typical scenario communication of slow

clients �Pentium����� with fast servers �PPro����� is
examined� For comparison� the graph for communi�
cation of the same client with a dierent server �the
Sun machine�Kastor� is being given in Figure ���
All request�response measurements resulted in

Linux consistently outperforming Windows NT by a
large margin�
Secondly� Figure �� shows achieved overall peak

performances� using PPro���� computers for both



Request size Response size
� �
�� ��
��� ���
��	 	���

Table �� Request and response message sizes �in
bytes�

0

500

1000

1500

2000

2500

1 64 200 8192

R
eq

ue
st

s/
R

es
po

ns
es

 p
er

 s
ec

on
d

Response message size

Client-Server Request-Response Communication

P100 (NT) - PPro (NT)
P100 (NT) - Sun

P100 (Linux) - PPro (Linux)
P100 (Linux) - Sun

Figure ��� Number of request�responses per second
for client�server communication�

Windows NT and Linux� For Linux� a performance
of 

	���
 requests and responses per second has
been observed� corresponding to an application�to�
application round trip time of �s

���	���
� �����ms� On

the same hardware� Windows NT achieved a round
trip time of �s

������	
� �����ms� For a more realis�

tic request size ���	 bytes� and response size �	���
bytes�� round trip time increased to ����� ms �Linux�
and ��
�� ms �Windows NT�� This gives an speed
advantage of �
��� � � ������ for Linux� comparing
request�response performance on identical PPro����
machines�

It is worth stating that additional measurements
with �slow� P���� servers running Linux oered bet�
ter response times than both a PPro���� running
Windows NT and the Sun Ultra �answering null�
RPCs��

500

1000

1500

2000

2500

3000

3500

1 64 200 8192

R
eq

ue
st

/R
es

po
ns

es
 p

er
 s

ec
on

d

Response message size

TCP Request Response - PPro 200

Agnes(Linux)->Therese (Linux)
Maria(NT)->Therese (NT)

Figure ��� PPro���� WinNT vs� Linux� Number of
requests and responses�

� Conclusion

We compared achievable application�level perfor�
mance of TCP over ATM for two dierent operating
systems� We did not interpret all numbers in detail�
some have to be taken �as is�� This is partly due
to missing insight into the WinNT protocol architec�
ture� and to a lesser extent into the SunOS protocol
implementation� Nevertheless� some observations can
be made�
State of the art PC hardware can utilize available

bandwidth over ATM well� even when running a com�
plex transport protocol on top of ATM� However� we
found that CPU load on the participating machines is
very high� It can be concluded that host performance
is still relatively low in comparison to the bandwidth
oered by the network� In other words� there is no
urgency to replace the ������ Mbps ATM technology
in the local environment by faster technologies�
When comparing protocol stack and driver perfor�

mance of Windows NT and Linux� a number of points
can be raised�

�� Performance achievable at application level
mainly depends on CPU processing power and
e�cient implementation of the TCP�IP stack�

�� TCP throughput is in the same ballpark for
both Linux and Windows NT using fast ma�



chines� However� for slower hardware �e�g�� Pen�
tium ���� there is a clearly visible performance
advantage for Linux�


� From an application point of view� most consis�
tent throughput results have been achieved with
message sizes between �KByte and ��KByte�

�� TCP request�response performance is much
higher for Linux� yielding better round trip times
in the order of ����

�� Reviewing the assumptions made in Section 
�
the request�response measurements proved that
Linux is able to achieve round trip times signif�
icantly smaller than �ms� It follows that even
in the local environment the bandwidth�delay
product is high enough to make traditional TCP
window sizes �i�e�� less than ��KB� potential bot�
tlenecks�

Useful numbers we left out in this presentation in�
clude the exact CPU utilization of the machines� This
is owed to the lack of applicable quantitative mea�
surement tools on the platforms examined�

� Acknowledgements

The author wishes to thank Robert Baumgartl for his
comments� and Sven Rudolph for supplying con�gu�
ration details and general insights�

References

��� Werner Almesberger� High�Speed ATM net�
working on low�end Computer Systems� Tech�
nical report� LRC Lausanne� �����

��� Werner Almesberger� ATM on Linux�
http���lrcwww�ep��ch�linux�atm�� �����

�
� Martin Borriss and Uwe Dannowski� Linux
Support for FORE Systems PCA����E NIC�
http���os�inf�tu�dresden�de�project�atm�� �����

��� John David Cavanaugh� Protocol Overhead in
IP�ATM Networks� Technical report� Minnesota
Supercomputer Center�Inc�� �����

��� Rick Jones� The Netperf Results Database�
available from http���www�cup�hp�com�net�
perf�numbers�NetperfBrowse�html�

��� Rick Jones� The Public Netperf Homepage�
http���www�cup�hp�com�netperf�� �����

��� M�Laubach� Classical IP and ARP over ATM�
RFC ����� �����

�	� Kjersti Moldeklev and Per Gunningberg� Dead�
lock situations in TCP over ATM� In IFIP

Workshop on Protocols for high speed networks�
August �����

��� Craig Partridge� Gigabit Networking� Addison
Wesley� �����

���� W� Richard Stevens� Unix Network Program�

ming� Prentice�Hall� �nd edition� ���	�

���� V�Jacobson� R�Braden� and D�Borman� TCP
Extensions for High Performance� RFC �
�
�
�����


