
Technical Report

OS-Directed Throttling of Processor Activity
for

Dynamic Power Management

Frank Bellosa

June 1999 TR-I4-3-99

Computer
Science Department

Operating Systems – IMMD IV

Friedrich-Alexander-University
Erlangen-Nürnberg, Germany





Today, embedding fast processors in portable devices is
infeasible because such battery operated systems cannot be
supplied with enough power and cannot be kept cool for a rea-
sonable period of time.
Many processors offer the feature of reducible clock speed to
save power. Reducing clock speed improves the performance-
to-energy ratio for three reasons: First, the number of stall cy-
cles that the CPU has to wait for main memory is reduced, be-
cause the clock-cycle time of the processor core gets closer to
the memory latency. Second, by reducing the clock speed one
can draw more energy out of batteries due to the impact of the
lower discharge rate on the capacity of a battery. Finally, a re-
duced clock speed offers the possibility for further energy sav-
ings, because the supply voltage can be reduced as well.
Our approach to OS-directed power management adds the
clock speed to the runtime context of a thread. In addition to
the questions when a thread has to be executed and which CPU
should be used, we enlarge the freedom of scheduling to a third
dimension: the speed of execution. By tuning the clock speed,
the operating system can adjust the quality of service to the
power constraints of a device.

1 Introduction
Battery operated systems with sporadic yet extremely high de-
mands in computing power (e.g., hand-writing or speech rec-
ognition) call for fast processors. To lower the energy con-
sumption, today’s operating systems stop the processor in the
idle thread. But frequent context switches to the idle thread im-
ply additional computing overhead and energy consumption.
Therefore halting and restarting the processor does not pay for
short periods of idle time. (You don’t repeatedly open and
close the faucet to regulate the throughput of water in the
shower.) Furthermore, there are background activities per-
forming uncritical optimization tasks (e.g., page recoloring in
the operating system, motion optimization in the area of robot-
ics) preventing the system from idling.

Some of today’s embedded processors (AMD ELAN SC400
[Amd97], PowerPC860 [Mot98], StrongARM1100 [Int99b],
Hitachi SH4 [Hit98]) offer the feature of reducible clock speed
to save power. Reducing clock speed improves the energy per-
formance for three reasons: Reduced stall cycles, improved
battery capacity and power savings due to voltage reduction.

1.1 Saving memory stall cycles

The die of high performance processors is dedicated mostly to
the caches, e.g., the 1.5 MB first level cache of the PA-RISC
8500 processor makes up the bigger part of its 140 million
transistors. To improve the die yield and to cut down the costs
per unit the number of gates in an embedded processor should
be minimal. Without sacrificing functionality, costs can be cut
by leaving out large caches. Consequently most embedded
controllers have only small first level caches of 1 KB – 16 KB.
The cache miss rate of those systems is in the range of 2% –
10% [HP96]. Because of those high miss rates, the memory la-
tency has a significant impact on the system performance.

Assume the cache miss penalty is 30 clock cycles, all instruc-
tions take 2 clock cycles (ignoring memory stalls). Assuming
the miss rate is 5%, and there is an average of 1.33 memory
references per instructions. With this scenario the average
clocks per instruction are

Reducing the clock frequency lowers the number of cycles the
CPU has to wait for main memory. In our example a reduction
of the clock speed to a third marks down the miss penalty to 10
cycles.

Given a fixed supply voltage, the energy a processors needs to
solve a task is nearly proportional to the number of clock cy-
cles. In our example, the number of clock cycles and with it the
energy spent to solve a task could be cut down to 67% by re-
ducing the clock speed to 33%.

This effect becomes very important for highly clocked control-
lers with small caches. Reducing the clock speed of those pro-
cessors improves the performance relative to the clock speed
and therefore improves the energy performance while preserv-
ing the computing power for those situations when power con-
sumption does not matter.

1.2 Exploiting battery capacity

The currentI drawn by a processor has two components, the
static currentSthat is independent of the CPU frequencyF and
the dynamic component that is proportional to the frequency.
Reducing the clock speed down to 20%-90% reduces the cur-
rent within a range, that is still dominated by the
dynamic component. The static component has to be consid-
ered only if the device should be suspended for a long period
of time.

CPItotal CPIexecution MemRefRate MissRate MissPenalty××+=

CPItotal 2.0 1.33 0.05 30××+ 3.995= =

CPItotal 2.0 1.33 0.05 10××+ 2.665= =

I S D F×+=

EndurIX
OS-Directed Throttling of Processor Activity for Dynamic Power Management

FRANK BELLOSA

Computer Science Department (Operating Systems), University of Erlangen, Germany



OS-Directed Throttling of Processor Activity for Dynamic Power Management

2

The battery capacity is the total amount of power a battery can
deliver when discharged at a constant current, called a 1C dis-
charge rate, over a a defined period (e.g., 5 hours) [MaSi96].
The discharge rate has a non-linear impact on the total amount
of power a battery can deliver. A typical lithium-ion battery has
the following characteristics [Int98]:

Using a processor in a high-speed mode producing a high dis-
charge rate (e.g., >4C) can lower the usable battery capacity to
70%-80%. In battery powered systems with sporadic yet ex-
tremely high demands in computing power (e.g., hand-writing
or speech recognition) dynamic clock-speed setting helps to
draw the best usable power out of batteries while providing
high computing power for short bursts.

1.3 Reducing power consumption

Since dynamic power consumption is proportional to the
square of the supply voltage, lowering the voltage provides a
disproportionate boost to battery life [WWD94]. First proces-
sors with clock speed that is adjustable via software are rated
for multiple voltages and clock rates, e.g., the voltage of the
AMD ELAN SC400 can be lowered from 3.3 Volts to 2.7 Volts
if the clock rate is lowered from 100 MHz to 33 MHz. The
power drops from 1818 mW (100 MHz/3.3V) down to
469 mW (33MHz/2.7V) [Amd97]. This reduction of speed and
voltage cuts down the energy per clock cycle to 77% of the
amount that is necessary in the high speed mode. Expanding
the range of supply voltage to the technological limits would
create the opportunity for quadratic savings.
However it takes several microseconds to adjust the supply
voltage. Therefore boosting the voltage before increasing the
clock frequency has to be considered in the medium-term
scheduling. A short-term reduction of the clock frequency is
possible, whereas a short-term increase is prohibited if the cur-
rent supply voltage is not sufficient.

2 Approach of This Paper
This paper discusses the fine-grainand thread-specific control
of CPU clock speed to save power while considering real-time
requirements. Because the expected power savings base on
very subtle effects (saving memory cycles, battery discharge
analysis, speed-voltage correlation) a trace-driven simulation
is unfeasible. Therefore we describe our approach in a way,
that a true evaluation with real hardware can follow.

Section 3 motivates the thread-specific speed control and
sketches mechanisms to tune the processor’s clock speed. Pol-
icies for OS-directed throttling of clock speed are presented in
Section 4. Finally we outline future work in Section 5, includ-
ing additional benefits from thread-specific speed control in
multiprocessors. Finally, Section 6 provides our conclusions.

3 Adding the Clock-Speed to the Context
The operating system has to tune the clock speed according to
the power constraints of the computer and the quality of ser-
vice demands of the applications.

The real-time properties of a task related to computing con-
cerns (we intend not to cover the field of I/O throughout this
paper) depend on two factors:

• the latency to start-up a task after the upcoming of an event

• the time it takes to complete the task

Assuming a preemptive system, the first factor depends on the
priority assigned to a task and the time span to perform a con-
text switch. The second factor depends on the number of clock
cycles dedicated to a task within a time span.

Tuning the clock speed presumes an entity to which a specific
clock speed must be assigned and a policy to determine the ap-
propriate speed settings. Previous work in the field of dynamic
speed settings [WWD94] [GCW95] adjust the clock speed in
intervals. The speed is determined by looking a fixed window
into the past. The cycles spent in the idle loop determine the
speed settings for all threads running in the next time window.
Global speed adjustment for all threads in the system implies
some drawbacks:

• Real-time requirements demand for deterministic
execution times of critical tasks, e.g., threads block-
ing valuable resources should proceed as fast as
possible. The execution time for a specific thread
cannot be predicted with a variable clock speed de-
fined on a global level.

• Background activities that perform optimization
tasks prevent the system from idling. Frequently,
optimizing is a pro-active task, that runs steadily
with low priority in the background. Because the
optimal result will never be reached on a given tar-
get-hardware within a span (e.g., self-learning
hand-writing recognition, motion optimization in
the area of robotics), the suboptimal result will be
used at a point in time, when a real-time or interac-
tive task needs a result. With thread-global settings
derived from idle cycles, those background tasks
prevent any effort for power savings.

To overcome the limitations of a global clock speed, we pro-
pose to enlarge the context of a thread. Beside the question
when a thread has to be executed and which CPU should be
used (in the case of a multiprocessor), we enlarge the freedom
of scheduling to a third dimension, the speed of execution. We

Discharge Rate Usable Battery Capacity
(Normalized to 1C Discharge Rate)

C/5 107%

C/2 104%

1C 100%

2C 94%

4C 86%



OS-Directed Throttling of Processor Activity for Dynamic Power Management

3

allow athree-dimensional division of the computing resources
among competing threads: in time (when?), in space (where?)
and in velocity (how fast?).

Within the space of decision, the scheduler has to control the
execution in a way that scheduling goals like throughput, time-
ly service and efficient use of energy are achieved (see
Section 4).

Additional to the traditional context of a thread (address space,
registers, I/O descriptors) the speed value is saved/restored in
the switching routine. Without any significant overhead, speed
setting is done in many processors by saving a speed value in
one of the control registers to program the internal PLL circuit
that generates the clock [Amd97][Mot98].
To emulate a divided processor clock frequency on processors
without a programmable PLL, the Advanced Configuration
and Power Interface Specification (ACPI) [Int99a] recom-
mends a programmable clock-logic that periodically stops the
processor’s clock by stop grand cycles. With a given clock-on-
time and a clock-off-time, the clock logic can throttle the clock
cycles so that the effective frequency is reduced. The latency to
tune the clock speed by ACPI should be the same as the latency
to write into a register of an external memory-mapped device.
Although this value is higher than the time for reprogramming
the CPU-internal PLL, it should be possible to tune the clock
speed within the time of a context switch.
To guarantee a proper operation of the processor the voltage
has to exceed a minimum level imposed by the clock frequency
and the settling time for the gates in the chip. Reducing the
clock speed is possible immediately, voltage reduction can fol-
low with a delay. When raising the clock speed the voltage has
to be boosted first. We propose to trigger the speed boost by a
high precision timer. While the voltage can be configured at the
context switch, the speed adjustment has to be delayed until the
voltage has reached a speed-compliant voltage level. With hard
real-time threads imposing narrow time-constraints, voltage
reduction is prohibited.

4 OS-Directed Throttling
Our approach to OS-directed throttling of processor activity
separates the aspect of execution speed from the aspects of
execution order and execution location. From the separation of
execution speed and execution order evolve four scheduling
classes. Theses classes build partitions within the space of de-
cision. To simplify the aspect of execution order, we assume
that the order in time can dynamically be transformed to an
execution priority. Firstly we focus on monoprocessor archi-
tectures. The field of multiprocessing is marked in Section 5.

4.1 Scheduling Classes

From the orthogonality of speed and priority we derive four
scheduling classes:

• A task that has predefined service-rate objectives with a
low start-up latency and deterministic execution time
should be assigned to the hard real-time class. Because the
scheduler operates on the highest priority-range, the laten-
cy can be kept low. Those time-critical tasks guarantee a
proper operation of the system. Therefore the dynamic
throttling of their speed is no question. If a task with close
limits cannot tolerate the delay of speed-adjustment im-
plied by voltage-reduction, the voltage must be frozen on
the highest level.

• If missing a dead-line does not cause severe consequences,
the speed of real-time threads can be tuned, so that they
meet their service-rate objectives with a high probability.
The start-up latency of soft real-time tasks is low, because
their priority is directly below the range that is dedicated to
hard real-time tasks. If power-consumption is an important
concern, the quality of service of those tasks can be re-
duced without compromising system stability.

• The rapid finishing of a task might have a high importance
for an interactive user. While latency is associated with pri-
ority, importance is more related to speed. To obtain a re-

CPU

When To Run?

Where To Run?

How Fast To Run?

Tim
e of Execution

Spe
ed

 o
f E

xe
cu

tio
n

Location of
Execution

DimensionsScheduling
Goals

Throughput

Timely
Service

Efficient
Use of
Energy

Speed

Priority

sporadic task
without latency demands

but with high
computing demands

periodic task

real-time task
with low latency

but uncritical deadline
(soft real-time)

real-time task
with low latency

and close deadline
(hard real-time)

(interactive)

(background)
infinite task



OS-Directed Throttling of Processor Activity for Dynamic Power Management

4

sult quite fast, the processor can run with high speed as
long as it is justifiable from the view of power manage-
ment. Many important tasks have a low frequency (e.g.,an
update of cross-references in documents, compilation of
sources). Therefore the speed boost is mostly short-term so
that the higher energy consumption can be accepted in
many cases.

• Background activities should operate at a speed level that
is low enough to save a significant amount of energy.
Frequently, background threads fulfill optimization tasks.
Running those tasks with full speed prevents the system
from idling and drains the battery. Stopping those tasks
abandons any optimization.
An other example of background activity are periodic up-
dates (automatic saving of an editor, scanning of external
servers for incoming mail/news, roaming in a wireless net-
work, recoloring of physical pages in the operating sys-
tem).
We recommend to assign energy budgets (e.g., cycles/sec-
ond) to those background tasks. The background-scheduler
cares for the assignment of the budgets at a minimal clock
speed. This prevents the system from idling while keeping
the average clock speed as low as possible.

4.2 Energy Accounting

Significant data related to the subject of decision should be a
prerequisite of any judgement. Because of the lack of energy
accounting, serious power management is not possible with
current operating systems, in which adjusting power-manage-
ment parameters to achieve a long system-lifetime is at best a
black art.
To determine if a thread is a candidate for speed throttling, we
have to account its energy use. Monitoring hardware is already
embedded in many processors to count events like clock cy-
cles, stall cycles, and cache misses. A first approach to energy
accounting is the use of a cycle counter. The number of clock
cycles that a thread has used is multiplied by an energy factor
which depends on the clock frequency. The characteristic
curve of the energy factor is derived from power measurements
carried out on the target system[BBC98].

4.3 Speed-setting Policies

The objective of scheduling in general is to provide timely ser-
vices. This includes the option to complete the service in some
point in the future.Therefore the system has to control the en-
ergy consumption of a battery powered device so that the sys-
tem is still operational at this point in time.

It is important to know how long the system has to be kept op-
erational under the current workload. According to the user’s
preferences the characteristics of the battery, and the power
characteristics of other components in the system (e.g., back-
light, disk, chip set, etc.), the average power consumption
which can be granted to the processor is determined.

Keeping the processor busy at low speed is the key to dynamic
speed throttling. The threads of both the real-time classes and
the background tasks form the base-load of the system. The
speed values assigned to those threads should be specified in
such a way that context switches to the idle thread become a
rare event.

Periodically the speed-adjustment software caries out the fol-
lowing steps with respect to the power characteristics of indi-
vidual threads:

(1) The speed of the hard real-time threads should be fixed
at a conservative level (e.g. twice the recommended
speed) to avoid any deadline misses.

(2) The speed of the soft real-time threads should be tuned
in a way that they meet their deadlines with a high reli-
ability.
If the power consumption of hard and soft real-time
threads exceeds the limit imposed by the user prefer-
ences, the user should be asked to authorize a cutback
in the quality of service of the power-intensive soft real-
time tasks.

(3) The remaining power is distributed among the back-
ground tasks.

(4) Because of the conservative rating in step (1) and (2),
we should have enough energy for sporadic interactive
bursts. If the energy budgets are not sufficient in the
long-term, we further throttle the background tasks
down to a minimum level (e.g., 10% of the maximum
speed). If this is not sufficient, even the interactive
threads are throttled according to their energy con-
sumption.

The speed adjustment of individual threads is a concern of me-
dium-term scheduling.

5 Future Work
The locality of execution has not been covered in this paper,
because multiprocessors play no part in the field of low power
devices. From the point of view of power consumption, a sin-
gle chip multiprocessor [HNO97] is quite attractive compared
to a high-end single processor requiring the same number of
gates, because some of the processors can be powered down in
periods of low load to save energy. It is easier and more effi-
cient to power up a processor unit than to preempt a running
thread if a request has to be processed. Depending on the pow-
er characteristics of a processor unit, the real-time demands of
the work load, and the demands of the interactive user, we have
to find the optimal operation point of each task in the system
concerning execution time, execution location, and execution
speed.

The proposed heuristic speed-setting policies can certainly be
refined in the future. However, a realistic evaluation of novel
policies is only possible with an adapted operating system run-
ning on real hardware, because the expected power savings



OS-Directed Throttling of Processor Activity for Dynamic Power Management

5

base on very subtle effects (saving memory cycles, battery dis-
charge analysis, speed-voltage correlation). Therefore we plan
an implementation of speed-setting policies in RT-Linux
[Yod99] running on the AMD ELAN processor and in the
JAVA based RTOS JBED [Jbed99] running on the PowerPC860
processor.

6 Conclusions
OS-directed throttling of processor activity improves the en-
durance of low-power devices by throttling clock rate and core
voltage, while providing quality of service (QoS) in a real-time
environment. We expect thread-specific speed settings to be-
come an unrenounceable element of future operating systems
for power-sensitive devices.

7 References
[Amd97] AMD, ElanSC400 and ElanSC410 Microcontrol-

ler User’s Manual,1997

[BBC98] L. Benini, A. Bogliolo, S. Cavallucci, Brunoa
Ricco, “Monitoring System Activity for OS-di-
rected Dynamic Power Managament”,Proc . o f
int. Symposium on Low Power Electronics and
Desing ISPLED’98, 1998

[Hit98] Hitachi,SuperH (SH) 32-Bit RISC MCU/MPU Se-
ries SH7750 Hardware Manual,July1998

[HP96] J. Hennessy and D. Patterson,Computer Archi-
tecture, a Quantitative Approach,San Francisco,
Morgan Kaufmann, 1996.

[GCW95] K. Govil, E. Chan, H. Wassermann,Compar ing
Algorithms for Dynamic Speed-Setting of a Low-
Power CPU,Technical Report TR-95-017, ICSI
Berceley, April 1995

[HNO97] L. Hammond, B. Nayfeh and K. Olukotun, “A
Single-Chip Multiprocessor”,IEEE Computer
Special Issue on “Billion-Transistor Processors”,
September 1997

[Int98] Intel, Mobile Power Guidelines 2000 Rev 1.0,
Dec. 1998

[Int99a] Intel, Microsoft, Toshiba,Advanced Configura-
tion and Power Interface Specification 1.0b,Feb.
1999

[Int99b] Intel, Intel StrongARM SA-1100 Microprocessor
Developer’s Manual,April 1999

[Jbed99] Esmertec,JBed RTOS Manual,Zürich, May 1999

[MaSi96] T. Martin, D. Siewiorek, “A Power Metric for Mo-
bile Systems”,Proc. of int. Symposium on Low
Power Electronics and Design ISPLED’96, 1996

[Mot98] Motorola,MPC860 PowerQUICC User’s Manual
Rev. 1,September 1998

[WWD94] M. Weiser, B. Welch, A. Demers, S. Shenker,
“Scheduling for Reduced CPU Energy”,Proc. of
the First Symposium on Operating System Design
and Implementation OSDI’94, November 1994

[Yod99] V. Yodaiken,The RTLinux Manifesto,Dept . o f
Computer Science, New Mexico Institute of Tech-
nology, April 1999


	1 Introduction
	1.1 Saving memory stall cycles
	1.2 Exploiting battery capacity
	1.3 Reducing power consumption

	2 Approach of This Paper
	3 Adding the Clock-Speed to the Context
	4 OS-Directed Throttling
	4.1 Scheduling Classes
	4.2 Energy Accounting
	4.3 Speed-setting Policies

	5 Future Work
	6 Conclusions
	7 References

