
Stub-Code Performance is Becoming Important

Andreas Haeberlen Jochen Liedtke Yoonho Park Lars Reuther Volkmar Uhlig

University of Karlsruhe
System Architecture Group
76128 Karlsruhe, Germany

{haeberlen,liedtke,uhlig}@ira.uka.de

IBM T.J.Watson
Hawthorne, NY 10532

yoonho@us.ibm.com

Dresden University of Technology
Department of Computer Science

01062 Dresden, Germany
reuther@os.inf.tu-dresden.de

Abstract

As IPC mechanisms become faster, stub-code efficiency
becomes a performance issue for local client/server
RPCs and inter-component communication. Inefficient
and unnecessary complex marshalling code can almost
double communication costs. We have developed an
experimental new IDL compiler that produces near-
optimal stub code for gcc and the L4 microkernel. The
current experimental IDL4 compiler cooperates with the
gcc compiler and its x86 code generator. Other com-
pilers or target machines would require different opti-
mizations. In most cases, the generated stub code is ap-
proximately 3 times faster (and shorter) than the code
generated by a commonly used portable IDL compiler.
Benchmarks have shown that efficient stubs can increase
application performance by more than 10 percent. The
results are applied within IBM’s SawMill project that
aims at technology for constructing multi-server operat-
ing systems.

1 Motivation

Multi-server and component-based systems are promis-
ing architectural approaches for handling the ever-
increasing complexity of operating and application sys-
tems. Components or servers (and clients) communi-
cate with each other through cross-domain method in-
vocations. Such interface method invocations, if cross-
ing protection boundaries, are typically implemented
through the inter-process communication (IPC) mech-
anisms offered by a microkernel.

Firstly, component interaction in such systems has
to be highly efficient. Therefore, for over a decade,
performance-oriented research focused on microker-
nel construction, in particular IPC performance, fi-
nally resulting in acceptable IPC overheads (100. . . 200
cycles)[6, 2].

Secondly, component interaction has to be conve-

niently usable from an application programmer’s per-
spective. This requirement led to the development
of interface-definition languages (IDLs), e.g. Corba
IDL [7], DCOM [3] and their corresponding IDL com-
pilers. From interface procedure/method definitions,
such compilers generate stub code that marshals param-
eters on the client side, communicates through IPC or
RPC kernel primitives with the server, unmarshals the
parameters on the server side, invokes the corresponding
server procedure/method, etc. As a result, a programmer
can specify and use remote interfaces as easily as inter-
nal ones.

So far, IDL-compiler research has focused more on
generating code in a portable and adaptable way than
on producing efficient stubs. In fact, stub-code per-
formance was insignificant for early microkernels that
required multiple thousands of cycles per IPC. How-
ever, with high-performance IPC, stub-code efficiency
becomes an issue.

For example, when using the Flick IDL compiler [4]
for the SawMill Linux file system [5], we found that the
generated user-level stub code consumed about 260 in-
structions per read request. When reading a 4K block
from the file system, the stub code adds an overhead of
about 17% due to stub instructions. (The stub code may
also generates further indirect costs through side effects
such as cache pollution.) For an industrial system, such
overheads can no longer be ignored.

Hand coding of the aforementioned stub resulted
in 80 instead of 260 instructions. Although this
was a singular experiment, it gave us some evidence
that improving stub-code generation might be worth-
while. The potentially achievable reductions justified
a compiler-construction experiment to explore whether
near-optimal stub code can be generated at reasonable
costs.

This paper describes the resulting IDL4 compiler that
generates code for gcc on x86 and the L4 microkernel.
The current IDL4 is a prototype that purely focuses on
generating efficient code. Portability and adaptability

are ignored and remain a topic for future work.

Structure of the paper

This paper reports on progress that has been made with
IDL4, an experimental IDL compiler for the L4 mi-
crokernel. Section 2 sketches prerequisites for under-
standing the subsequent discussion such as IDL syn-
tax, L4-IPC mechanisms, and our experiences using the
Flick IDL compiler in the SawMill project. Section 3
describes the stub-code model that was designed for
the IDL4 compiler, and Section 4 illustrates the code-
generation principles. Finally, Section 5 reports on the
achieved stub-code quality, Section 6 discusses the costs
of adapting the system to other processor architectures
and compilers, and Section 7 concludes.

2 Prerequisites

2.1 L4/x86 IPC

L4’s [6] basic communication paradigm is synchronous
IPC. Typical operations are send, receive, call (atomic
send&receive), and atomic reply&wait. Rich message
types help to improve end-to-end IPC performance:

Register messages consist of a small number of 32-bit
words that are sent and received in general purpose reg-
isters. On the x86 platform, up to 3 words (plus sender
id and message descriptor) can be transferred as a reg-
ister message. As there is no need for copy operations
across address space boundaries, register messages have
the lowest IPC costs, e.g. 180 cycles on a Pentium III
450 MHz.

Memory messages can be used to copy longer mes-
sages from the sender’s address space to the receiver.
Message size can be up to 2MB; however, this mech-
anism is slower than a register message because it in-
volves copying from/to memory, and the kernel might
have to establish a temporary mapping to make both ad-
dress spaces available at the same time.

Indirect strings avoid unnecessary copy operations
to/from the message buffer. Up to 31 strings can be
included in a memory message. On the receiver side,
buffers for such strings can be specified so that the IPC
can copy directly from server object to client object or
vice versa. Scatter/gather permits strings to be gath-
ered on the sender side and/or scattered on the receiver
side. Thus multiple blocks can be directly transferred to
a single receive buffer; a single send buffer can be split
into multiple blocks. Figure 1 illustrates how a complex
memory message is transferred.

Map messages map pages or larger parts of the
sender’s address space into the receiver’s space. This
feature enables user-level pagers and main-memory

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����

������
��
��
��
�� ��������

��
��
��

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

Header Message Part Dopes Header Message Part Dopes

Indirect Parts
Indirect Parts

(Address Space A)
Sender Receiver

(Address Space B)

Figure 1. Complex memory message in-
cluding indirect strings.

management on top of the microkernel. Special commu-
nication mechanisms based on shared regions can also
be constructed.

2.2 SawMill

IBM’s SawMill project aims at addressing the complex-
ity of developing and maintaining a variety of custom
operating systems. With the emergence of embedded
and personal systems, the need to create operating sys-
tems customized to device and application requirements
has increased significantly. The development and main-
tenance of these operating systems is quite unwieldy. As
a first step, the SawMill project is developing an ap-
proach and tools to decompose existing operating sys-
tems into flexibly reusable components. The next step is
to define an architecture upon which efficient and robust
operating systems can be composed. This framework is
being applied to Linux to create SawMill Linux which
consists of Linux-based components running on top of
the L4 microkernel. It provides typical system services
through multiple user-level servers, such as file systems,
device drivers and network systems. Further general
components such as memory servers, task servers, and
access control managers enable the composition of a co-
herent Linux system.

2.3 Flick

IDL Compilers such as Flick [4] are relatively easy to
port to a new OS or middleware kernel, and they are ex-
tensible through new data types. The output of an IDL
compiler is typically used as input for a general-purpose
compiler, e.g. gcc, that a programmer uses for code de-
velopment. Easy adaptation of the IDL compiler to new
general-purpose compilers is a further relevant property.

Flick tries to generate efficient stub code by using in-
line functions and macros for the generated stubs when-
ever possible. Nevertheless, at least when combined
with gcc, this results in huge amounts of data transfer
operations that are logically superfluous. In theory, a
compiler should be able to remove all of them. In prac-
tice, the required data flow analysis is too complicated;
consequently, inefficient code is generated.

3 Designing a Stub Model

3.1 A Simple Stub Model

We first describe a simple stub model to illustrate the
tasks performed by stub code on the client side and on
the server side. For this simple model, we assume that
a client invokes a procedure or method M that is sup-
plied by the server. Synchronization and concurrency
are ignored in this simple model. M has in parameters
(values passed from the client to the server), out param-
eters (result values passed from the server back to the
client), and inout parameters that are first passed to the
server and then overwritten by results coming back from
the server.

The IDL compiler generates a client stub procedure
Mclient for each function M in the interface definition.
The client stub is called locally by the client application.
The fact remains hidden that the service function does
not run locally, but rather in another address space or
even on another computer thousands of miles away. The
client stub assembles a message with all the information
the server requires to complete the task, including all the
parameters (marshalling).

The message is then sent to the server, and the client
waits for the server’s reply. The reply message contains
all out and inout result values. The client stub unpacks
these values from the message and stores them in the
appropriate client parameters (unmarshalling). In detail,
the client stubMclient —

C1 constructs a request message that contains all
input and inout parameters, and a key that
identifies the procedure/method M (mar-
shalling);

C2 sends the request message to the server that
implementsM and waits for a reply message
from the server;

C3 fills the inout and out parameters with data
received through the reply message (un-
marhalling); and

C4 returns to the invoking client.

The server programmer implements a procedureM server

on the server side for each method M of the interface
definition.

The IDL compiler generates a central code pattern
that handles communication, decoding, marshalling, and
unmarshalling of parameters. This central server code
typically includes a main loop that receives requests
from clients and distributes them to the correspond-
ing server procedures Mserver. For each Mserver, the
IDL compiler generates a server stub that examines
the request packet and retrieves the input data (unmar-
shalling). The stub then invokes the routine itself and
finally creates a reply for the client.

An IDL compiler should generate both the main loop
and the stubs automatically. Users should be able to eas-
ily modify the loop code, because they might want to
implement additional features, e.g. load balancing.

In detail, a thread that waits for client requests —

S0 receives the request message and uses the
received key to determine which proce-
dure/methodM should be invoked and which
parameters are expected and will be returned
byM ;

S1 extracts in and inout parameters from the re-
ceived request message (unmarshalling);

S2 calls the server procedure Mserver with the
extracted parameter values;

S3 constructs a reply message and stores the re-
sult values of all inout and output parameters
of procedure Mserver in that message (mar-
shalling);

S4 sends the reply message back to the client.

Steps C2, S0, and S4 are basically determined by the un-
derlying IPC system, in our case by the L4 microkernel.
Steps C4 and S2 are determined by the general-purpose
compiler used, in our case gcc. Marshalling and unmar-
shalling, steps C1+S1 and S3+C3, are less restricted and
more crucial. As our experience with Flick shows, a less
optimal model can easily result in significant copy over-
head for marshalling and unmarshalling.

3.2 Marshalling Through Direct Stack Trans-
fer

To get an idea of how parameters can be communi-
cated most efficiently between Mclient and Mserver, we
first look at a local procedure call. Gcc and many other
C compilers push input-parameter values on the stack
prior to procedure invocation. Figure 2 shows the stack
layout for a procedure called with 3 input parameters.
Now look at the remote case. Three parameter val-
ues have just been pushed on to the client stack (left,
Mclient). On the server side (right), Mserver would ide-
ally expect a stack of exactly the same content since

P0

P1

P2

Mclient Mserver

P1

P2

P0

Pu
sh

 d
ir

ec
tio

n

Figure 2. Procedure with 3 input parame-
ters.

Mserver has exactly the same parameters asMclient. Basi-
cally, the stub code had to copy the stack frame one-
to-one from the client to the server stack. No addi-
tional operations would be required for parameter mar-
shalling/unmarshalling.

Since out parameters in C are typically implemented
through pointers (which are passed as in parameters), we
have to extend the parameter set by pointers that point to
those variables that are later sent back to the client as out
parameters. Figure 3 illustrates the three basic layouts:

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

1

2

3

STR

STRPTR STROUTI/OIN

STRI/O OUT

IN I/O

Header

Function ID

Caller ID

Return value

Header

Stack top

Figure 3. Message layouts. (1): sent by the
client to the server; (2): received message, extended to
server stack; (3): message sent back by the server to the
client.

1. The client constructs a message that contains all in and
inout values (plus optional strings). The message buffer
has enough space to receive the reply message from the
server.

2. The server extends the received message by pointers that
make the inout and out parameters (and optional strings)
accessible for the server procedure Mserver. Then it in-

vokes Mserver. As a normal C function, it works on its
input parameters (PTR, IN and the caller ID).

3. After returning from Mserver, the stub removes pointer
and in parameters from the stack, pushes the return value
and an appropriate message header, and sends the result-
ing reply message to the client.

An immediate consequence of the stack and message
layouts is that the IDL compiler must sort parameters
to enforce the sequence in, inout, out.1

3.3 Complex Data Types

At this time, the only data types IDL4 handles are 32-
bit words and strings (up to 2 MB). It will be extended
by pages to also handle mapping through IDL functions.
Any other data type can be implemented through those
basic types. Large objects like arrays or structs can be
transferred as strings, while small objects (characters,
short integers) may safely be extended to 32-bit words.

Extending smaller objects to words has no additional
costs since gcc maps such objects to words anyhow
when generating local function calls. Implementing
large data types as indirect strings is beneficial since it
avoids copying them into the message buffer.

4 Generated Code — An Example

To further illustrate details, we analyze the output that
the compiler generates for the function pfs_write of the
physical file system (pfs):

int pfs_write([in] int handle,
[in, out] int *pos,
[in] int len,
[in] int data_size,
[in, size_is(data_size)] int *data);

IDL4 generates three files which contain the client stubs,
the server stubs and the main server loop. Client and
server stubs are generated as asm functions for gcc. The
server loop is in C so that it can easily be modified by an
application programmer. It is common to all functions
and decodes incoming requests, i.e. selects the appro-
priate server function and invokes it through the server
stub:

setupNewBuffer();
ipcReceive();
do {

unpackQuery();
callStub();
packResponse();
setupNewBuffer();
ipcReplyWait();

} while (1);

1A similar sorting mechanism is used to collect string parameters
and pages to be mapped.

Client stub

Table 1 shows the output IDL4 creates for the pfs_write()
call on the client side. Assuming it hands over two pa-
rameters in registers, this stub consists of 17 instruc-
tions. In detail, the code sections (referring to the num-
bers in the code) work as follows:

1. Create descriptors for indirect strings. pfs_write() has
one input string, *data, so a descriptor has to be cre-
ated.

2. Marshal parameters. The input and inout parameters
are pushed on the stack; inout parameters go first. Note
that the last two parameters (len and handl) are not
pushed, but loaded into the EBX and EDI registers.

3. Generate message header. The header specifies the num-
ber of dwords to be transferred for both directions, as
well as one dword for the mapping function, which is not
used here.

4. Load registers for IPC and supply function key. IDL4

needs to specify the send and receive buffer addresses
and a timeout. The function key is transferred via regis-
ters and loaded here as well.

5. Invoke IPC call.

6. Unmarshal server output. In the case of pfs_write(), a
return value and the *pos parameter must be handled.
These can be transferred via registers, so the memory
buffer is entirely discarded.

Server stub

The stub (see Table 2) is called from the server loop. It
converts the request message from the client into a stack
frame for the server function:

1. Move the stack pointer to the message buffer. The mes-
sage header and the function ID (which is the first dword
in the payload) can be overwritten, so the new ESP points
to the fifth dword in the buffer.

2. Add pointers to strings and output values. First, a pointer
to *pos is pushed, then one to the input string buffer.
Finally, the ID of the source thread is supplied.

3. Perform function call.

4. Create reply message. The input values and pointers
are discarded, then the return value and a new message
header are added.

5. Restore the stack pointer. Its original value was saved in
EBP during the function call, as it is the only register that
is automatically saved by gcc.

__inline__ extern sdword pfs_write(
sm_service_t __service, sdword handl,
sdword *pos, sdword len,
sdword data_size, sdword *data)

{
dword __return;

int dummy0,dummy1,dummy2,dummy3;

asm volatile (sub $8, %esp);
asm volatile (pushl %0 ::"g" ((int)data)); // (1) push in string
asm volatile (pushl %0 ::"g" (data_size)); // descriptor

asm volatile (pushl %0 ::"g" (*pos)); // (2) push 2 in
asm volatile (pushl %0 ::"g" (data_size)); // parameters

asm volatile (
sub $12, %%esp

pushl $0xA100 // (3) msg header,
pushl $0x8000 // bits describe msg struct
pushl $0

mov %%esp, %%eax // (4) ipc register setup
pushl %%ebp // save frame prt reg
xor %%ebp, %%ebp // reply msg type = short
mov func_id, %%edx // function key
xor %%ecx, %%ecx // timeouts = infinity

int $0x30 // (5)

popl %%ebp // (6) (restore frame ptr reg)
add $48, %%esp // release stack space

: "=S" (dummy0), "=d" (__return),
"=b" (*pos), "=D" (dummy3)

: "S" (__service), "D" (len),
"b" (handl)

: "%eax", "%ecx"
);

return __return;
}

Table 1. Client stub for pfs_write.

5 Performance

5.1 Measurement Environment — SawMill
Linux

IDL4 is used in the SawMill project for component com-
munications. SawMill Linux is a Linux-derived multi-
server OS where physical file systems (PFS), file and
buffer cache, device drivers, network stack, VM sub-
systems such as anonymous memory, etc. are all imple-
mented as user-level servers that communicate through
L4 IPC and IDL4 stubs.

For SawMill, we analyze the stubs that are required
to let a normal Linux process execute file-system op-
erations such as open, read, and write. The physical
file system we used in the experiments is compatible to

__inline__ extern void *call_pfs_write(void *buf,
int com_source, int *strlist)

{
int __return,dummy0,dummy1;

asm volatile (
pushl %%ebp // (1)
mov %%esp, %%ebp
mov %%eax, %%esp

mov %%eax, %%edi // (2)
add $12, %%edi
pushl %%edi
pushl 4(%%esi)
pushl %%ebx

call _pfs_write // (3)

add $24, %%esp // (4)
pushl %%eax
pushl $0x2000
pushl $0x2000
pushl $0

mov %%esp, %%eax // (5)
mov %%ebp, %%esp
popl %%ebp

: "=a" (__return), "=b" (dummy0),
"=S" (dummy1)

: "a" (buf), "b" (com_source),
"S" ((int)strlist)

: "%ecx", "%edx", "%edi"
);

return (void*)__return;
}

Table 2. Server stub for pfs_write.

Linux’ ext2. In fact, the ext2 code was extracted from
Linux and then combined with IDL4-generated server
templates. The resulting ext2-compliant PFS runs as
a user-level server in its own address space. Libraries
have been modified such that now IDL4 stubs and L4 IPC
communicate with SawMill servers. An open request is
always sent first to the virtual file system (VFS) which
propagates it to the corresponding PFS server. Subse-
quent read/write requests, however, are handled through
direct communication between the user application and
that PFS server, i.e., need only one RPC (two IPCs).

The normal SawMill Linux has all stubs generated by
the IDL4 compiler. In addition, we generated a second
version of SawMill Linux whose stubs were all gener-
ated by the Flick compiler. For both versions, we mea-
sured stub instructions and application performance.

For our measurements, we used a Pentium III running
at 500 MHz with 64 MB of main memory and a 540 MB
IDE disk drive (IBM DALA-3540).

5.2 Effects On IOzone Throughput

The IOzone benchmark [1] begins by writing a file of
64kB, then it reads the contents twice. In the second
read phase, all requests can be backed by the page cache.
The performance of the second phase is completely de-
termined by processor operations, basically for commu-
nication and for copying data into the user program’s
buffer, and not by disk accesses.

We measured reread throughput where IOzone read
4 KB2 of file data per read request. Table 3 presents the
overall performance results reported by IOzone (ten con-
secutive iterations). IDL4 improves the IOzone through-
put by approximately 13%. The time for a 4-KB read re-
quest decreases from 8.0 �s to 7.0 �s. Since reread costs
are dominated by the data copy costs this result can only
be explained by significant improvements in stub code.

IOzone reread throughput on SawMill Linux
using

Flick stubs IDL4 stubs

503 kB/s �17 kB/s 569 kB/s �18 kB/s (+13%)

Table 3. Overall throughput (� standard devia-
tion) in the IOzone benchmark.

5.3 Stub-Code Instructions

To analyze the stub-code performance, we counted
the executed instructions for the Flick-generated and
the IDL4-generated stubs. Table 4 compares the re-
sults for three SawMill file-system functions, pfs_open,
pfs_write, and pfs_get_direntries. The numbers include
all instructions that are executed in stubs and in the cen-
tral server loop. For comparison, the number of instruc-
tions the L4 microkernel executes for the corresponding
IPCs is also included. (Note that complex operations
such as block transfer operations are counted per itera-
tion.) The effective communication costs are then given
by adding the stub costs —either Flick or IDL4— to the
IPC costs.

2Longer read requests effectively decrease application per-
formance, independently of whether pure monolithic Linux or
SawMill/Flick or SawMill/IDL4 is used: The Pentium L1 cache has
a size of 16 KB. If, e.g., 8 KB of data are copied from the page cache
to the user buffer, this operation already floods the entire cache. So ev-
ery other application or file system data access leads at first to a cache
miss. Furthermore, since some further cache lines are also used for the
data copy, the first part of the user buffer will be flushed from L1 at the
end of the copy operation. Effectively, most application accesses to
the data read will thus also lead to L1 cache miss except if a clever ap-
plication would read its data or if the OS would copy its data in reverse
direction.

int pfs_open ([in] int client, fobj, flags, mode, [out] int *handle)

IPC (kernel) Flick stub IDL4 stub

client! server 163 116 65 (–44%)

client server 95 105 37 (–61%)

total 258 221 102 (–54%)

eff. comm. instructions, IPCs+stubs 479 360 (–25%)

int pfs_write ([in] int handle, [in,out] *pos, [in] int len, data_size,
[in, size_is data_size] int *data)

IPC (kernel) Flick stub IDL4 stub

client! server 248 150 73 (–51%)

client server 95 105 38 (–64%)

total 343 255 111 (–56%)

eff. comm. instructions, IPCs+stubs 598 454 (–24%)

int pfs_get_direntries ([in] int handle, [in,out] *pos, [in] int count,
[out] int data_size, [out, size_is data_size] int **data)

IPC (kernel) Flick stub IDL4 stub

client! server 157 145 79 (–46%)

client server 248 140 42 (–70%)

total 405 285 121 (–58%)

eff. comm. instructions, IPCs+stubs 690 526 (–24%)

Table 4. Instructions executed for Flick and IDL4

stubs (client+server). The IPC column shows the
instructions executed by the microkernel per IPC
(this depends on message type and size). The ef-
fective communication instructions are the sum
of the required IPC (kernel) instructions plus the
(user) instructions of the stubs.

Flick stubs take almost as many instructions as the
microkernel needs for the IPC system call (including
the message copy). Current IDL4 stubs use only half
as many instructions.

6 Portability Versus Specialization

The IDL4 experiment gave us some evidence that spe-
cialization in stub-code generation pays and is perhaps
even necessary for industrial acceptance of component-
based system construction. However, the obvious ques-
tions are (1) how portable can an optimizing IDL code
generator be made, and (2) what efforts are required to
port a specific code generator to a different compiler or
machine architecture?

Currently, the IDL4 code generation is specialized for
the gcc compiler and x86 processors. From our current

experience, we can give some raw estimates about the
costs to adapt IDL4 to other architectures:

New register link conditions: Low adaptation costs,
comparable to those that are required to modify the
C bindings for all 7 microkernel system calls.

Different Processor: Low adaptation costs as long as
the stack layout is similar. Basically, the stub tem-
plates used by the IDL4 code generator have to
be translated into the new machine/assembler lan-
guage.

Different stack layout: Depending on how different
the stack layout is, adaptation costs might be lower
or higher. Different orderings or distances on the
stack are easy; a runtime model without a stack
might require designing a new data model for
cross-address space parameter transfer.

Different C compiler: Easy if the C compiler offers in-
line asm procedures exactly like gcc. Medium-high
costs if the compiler offers basically the same fea-
tures but uses different syntax. Impossible or inef-
fective if the compiler offers no such features.

The last point is probably the most critical one. Opti-
mization is hard or even impossible if the C compiler
does not offer access to its code generation process.
However, this seems to be an inherent problem of sep-
arating the IDL and the programming language. In all
other cases, the adaptation costs are similar if not lower
than porting a normal compiler.

7 Conclusions

IDL4 shows that efficient stub code can be generated
with reasonable effort. With the availability of fast IPC,
the gains achievable through optimized stub code are be-
coming relevant for component-based systems. Multi-
server operating systems can probably not be built effi-
ciently without such optimized stubs.

We have shown that significant performance im-
provements are possible. Nevertheless, it is still open,
how far the current IDL4-generated stubs are from the
optimum.

The optimized stub-code generation requires special-
ization of the IDL compiler’s code generator in two di-
mensions, firstly, toward the target programming lan-
guage and compiler, secondly, toward the target ma-
chine. In this area, two questions are still open: (1) How
specialized (with respect to acceptable efficiency) must
an optimizing IDL compiler be? (2) Can we find a small
set of templates and/or methods that permit easy and
low-cost specialization of an optimizing IDL compiler

for most existing programming-language compilers and
hardware architectures?

An obvious next step therefore is to determine
whether and how the current results can be generalized.
An ideal solution would permit extension of the portable
Flick compiler with the presented code-generation tech-
niques.

References

[1] The IOZone filesystem benchmark, April 2000. Available from
http://www.iozone.org/.

[2] J. Bruno, J. Brustoloni, E. Gabber, A. Silberschatz, and C. Small.
Pebble: A component-based operating system for embedded ap-
plications. Proc. USENIX Workshop on Embedded Systems, pages
55–65, 1999.

[3] G. Eddon and H. Eddon. Inside Distributed COM. Microsoft
Press, 1998.

[4] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary Lind-
storm. Flick: A flexible, optimizing idl compiler. Proceedings of
the ACM SIGPLAN ’97 Conference on Programming Language
Design and Implementation (PLDI), pages 44–56, June 1997.

[5] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin
Elphinstone, Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller,
and Lars Reuther. The SawMill multi-server approach. In
9th ACM SIGOPS European Workshop, Koldingfjord, Denmark,
September 2000.

[6] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter.
The performance of �-kernel-based systems. In 16th ACM Sym-
posium on Operating System Principles (SOSP), pages 66–77, St.
Malo, oct 1997.

[7] The Object Management Group (OMG). The Complete COR-
BAServices Book. http://www.omg.org/library/csindx.html.

