
Frank Bellosa

Process Cruise Control:
Event-Driven Clock Scaling

for Dynamic Power Management

Technical Report TR-I4-01-11

Distributed Systems and Operating Systems
Department of Computer Science 4

Friedrich-Alexander-Universität
Erlangen-Nürnberg
TECHNISCHE FAKULTÄT

Frank Bellosa

Department of Computer Science (Operating Systems), University of Erlangen,

Martensstr. 1, 91058 Erlangen, Germany

bellosa@cs.fau.de
g

Scalability of the core frequency is a common feature of low-

power processor architectures. Many heuristics for frequency

scaling were proposed in the past to find the best trade-off

between energy efficiency and computational performance.

With complex applications exhibiting unpredictable behavior

these heuristics cannot reliably adjust the operation point of the

hardware because they do not know where the energy is spent

and why the performance is lost.

Embedded hardware monitors in the form of event counters

have proven to offer valuable information in the field of perfor-

mance analysis. We will demonstrate that counter values can

also characterize the power-specific characteristics of a thread.

In this paper we propose an energy-aware scheduling policy

that benefits from event counters. By exploiting the information

from these counters, the scheduler determines the appropriate

clock frequency for each individual thread running in a time-

sharing environment. A recurrent analysis of the thread-specific

energy and performance profile allows an adjustment of the fre-

quency to the behavioral changes of the application. While the

clock frequency may vary in a wide range, the application per-

formance should only suffer slightly (e.g. with 10% perfor-

mance loss compared to the execution at the highest clock

speed). Because of the similarity to a car cruise control, we

called our scheduling policy Process Cruise Control. This adap-

tive clock scaling is accomplished by the operating system

without any application support.

Process Cruise Control has been implemented on the Intel

XScale architecture, that offers a variety of frequencies and a set

of configurable event counters. Energy measurements of the

target architecture under variable load show the advantage of

the proposed approach.

Keywords: Power Management, Scheduling, Clock Scaling,

Event Counter

1 Introduction
Without energy the processing and transport of data is impossi-

ble. Nonetheless the measurement, accounting, and manage-

ment of energy has been widely neglected in the field of systems

research. With the emergence of portable and wireless devices

and with the energy crisis affecting data centers and server-

farms in many parts of the United States we are suddenly facing

a rising awareness for the topic of energy management.

This paper contributes to this awareness and initiates a new

approach in system software: the on-line evaluation of counters

that register performance- and energy-critical events. By

exploiting these counters the operating system has the complete

knowledge where the energy has been consumed, where the

time has been spent, and who has been responsible for the use

of energy. According to the individual demands of each appli-

cation, power management can find a trade-off between energy

consumption and quality of service demands. To fulfill this task

an operating system has a variety of options for the activation

and configuration of HW-components. Not only the time of

activity, but also the degree of activity can be controlled. Our

approach to an integrated energy monitoring system respects

these power states and provides the essential information for

advanced power management policies.

In this paper we focus on two energy-critical HW-components,

the CPU and the memory, because the use of both components

can already be monitored by the performance monitoring

counters found in many contemporary processor architectures.

To demonstrate the energy savings possible with Process Cruise

Control we choose the Intel XScale architecture as our target

platform. Other architecture like Intel Speedstep-M and AMD

Mobile Athlon are ready for Process Cruise Control. With the

acceptance of event counters as a prerequisite for reliable

power-management decisions we expect more low-power

architectures to offer event-counters, some of the counters even

specially dedicated to energy profiling.

This paper is organized as follows: In the next section, we

investigate the energy characteristics of advanced processor

architectures. This motivates our scheduling approach Process

Cruise Control that is presented in section 3. In Section 4 we

describe the implementation in an embedded Linux operating

system and we exhibit energy measurements that validate the

benefit of our approach. Finally in section 5, we propose further

architectural innovations that Process Cruise Control could

avail oneself of and then conclude in section 6.

2 Energy Characteristics of Processor
and Memory

2.1 Characteristics of Interest

In semiconductor technology, energy is used whenever current

is flowing due to leakage or due to loading/de-loading of capac-

itors triggered by transistor switch operations. The leakage cur-

rent depends on static parameters like time, voltage and proper-

ties of the semiconductors. In addition to these static parameters

the dynamic energy consumption depends on the switching fre-

quency of the gates.

If we want to identify those parts of the CPU/memory complex

which contribute significantly to the total energy consumption,

we have to look at those parts containing most of the capacitors

and those with the highest switching frequencies:

Process Cruise Control:
Event-Driven Clock Scaling for Dynamic Power Management

Process Cruise Control: Event-Driven Clock Scaling for Dynamic Power Management 2

� The processor core executing algorithmic, logical, or control

flow operations consumes energy depending on the switch-

ing activity within the essential functional units. As the basic

activity of the CPU core proceeds in clock cycles, we expect

some relation between energy consumption and clock fre-

quency. However, a major part of the activity depends on the

type of instructions and their operands. Therefore, we have

to keep an eye on the activity of each functional unit.

� If a memory management unit (MMU) is used in a computer

architecture for reasons of mapping and protection, the

MMU will contribute significantly to the energy consump-

tion as it is built-up from full associative memory that is ac-

cessed whenever memory is referenced. Therefore, the ener-

gy consumption might depend on the memory-reference pat-

terns of the executed software.

� Caches contribute to static energy consumption depending

on their size but also to dynamic energy consumption de-

pending on the frequency of cache references and the asso-

ciativity of the cache indexing algorithm. The higher the as-

sociativity, the more cache-tags have to be compared at each

cache reference.

� Dynamic random access memory (DRAM) is build up of ca-

pacitors to store information. As these capacitors have to be

recharged to keep their information, we expect a significant

contribution of memory to the static energy consumption de-

pending on the size of memory.

To satisfy memory requests, data has to be transferred be-

tween the data-rows which make up a memory bank and the

sense amplifiers. Several decode and multiplex stages have

to be passed to move data to the output drivers and from the

receiver registers. Because of this comprehensive transfer

and switching activity, we should see a high dynamic energy

consumption of DRAM.

Advanced memory modules (e.g., RDRAM) also offer sev-

eral low-power states which differ in the latency to re-acti-

vate the memory module again. In a low-power state some

parts of the address-logic and the bus connectors of the mod-

ule are shut down. This saving in passive energy consump-

tion has to be paid by a higher access latency.

� The interconnection network (e.g., the bus system) contrib-

utes mainly to the dynamic energy consumption as the capac-

itance of the bus-lines has to be loaded/unloaded at each bus

cycle. Therefore, we expect an energy consumption which is

related to the activity level of the interconnect.

As we want to influence the energy efficiency of a system by a

task specific clock frequency we have to identify

� which components benefit from clock scaling and those

which do not.

� which components are used by a specific task.

� which consequences on the speed of executions a variation

in clock speed will entail.

Although architectural simulators [6] can simulate selected pro-

cessor targets with a sufficient resolution in time and energy,

they do not yet cover the whole system including off-chip com-

munication and I/O. However a complete system is necessary to

boot a full-featured operating system and to run real-world appli-

cations so we can demonstrate the benefit of OS directed power

management.

To identify the energy-specific characteristics of a system with

configurable clock speed that also offers the opportunity for per-

formance analysis and event-driven energy-accounting, we

explored the energy consumption of an Intel IQ80310 system

[14].

The Intel XScale 80200 [13, 12] processor used in this system

can operate at clock speeds from 333 MHz to 733 Mhz. The

high-speed core clock is produced by a programmable clock

multiplier. Changing the clock frequency is done by writing the

multiplication factor into a configuration register. Although the

processor can operate at different core voltages depending on the

selected core frequency, we could not scale the voltage when

modifying the clock frequency (dynamic voltage scaling DVS),

because the voltage could not be adjusted with the IQ80310

evaluation board.

The processor instruction set is compliant to the ARM V5TE

instruction set. It implements a 32-KByte, 32-way set associa-

tive data- and instruction cache with a line size of 32 bytes.Thr

policy of the data cache is configured to write-back. The instruc-

tion and data MMU implements a 32 entry full associative TLB.

The processor offers performance monitoring counters to regis-

ter events like executed instructions, cache references/misses,

and memory requests.

The Intel 80312 I/O companion chip includes a PCI, SDRAM

and flash memory controller. Serial and ethernet interfaces are

provided to communicate with the device.

The system is running a modified version of BlueCat Linux from

LynuxWorks.

2.2 Measurement Set-Up

The IQ803010 system is built up as a PCI board plugged into a

PCI slot of a host PC or PCI backplane. The power is supplied

by the 3.3 V supply voltage pins of the PCI slot. To measure the

energy consumption, a sense resistor of low resistance (0.05 Ω)

is placed in series with the power supply. A data acquisition sys-

tem with a sampling frequency of up to 300 KHz guarantees a

high temporal resolution of the measurements. To separate the

static (idle) power of the processor, chip-set and memory from

the dynamic (active) power, we measured the power consump-

tion when the processor is in the idle-state and the dynamic part

when the CPU is busy. Just the dynamic power consumption is

essential for further investigations in this paper. The idle power

is constant for all clock frequencies.

Apart from the dynamic energy consumption of the CPU and

memory, our measurements also comprise the dynamic energy

consumption of the voltage regulators and the chip set.

Process Cruise Control: Event-Driven Clock Scaling for Dynamic Power Management 3

2.3 Basic System Energy Characteristics

Goal of the basic measurements is to determine the variation in

the power of the processor and the memory. We executed several

simple micro-benchmarks that involve different sets of func-

tional units. During all the runs the processor was constantly

busy. For the presentation in this paper we selected some micro-

benchmarks which exhibit interesting characteristics of today�s

computer architectures.

First, we ran an arithmetic test (add_reg) doing arithmetic oper-

ations with all operands in register, then a synthetic application

(goto_label) to investigate the influence of branches on the

energy consumption. One of the tests (call_function) passes

parameters to subroutines. As the stack is used to pass parame-

ters we see a mix of normal operations on registers, branches and

cache references. Finally several tests were executed that trigger

read and write cache- and memory-operations (read, read/write

L1/memory).

The dynamic power consumption of the low-power XScale sys-

tem (see figure 1) is quite stable for CPU intensive applications

without main memory requests. Here the power drain ranges

between 570 mW and 800 mW at a clock frequency of 733 MHz.

As soon as the main memory serves requests, the memory con-

troller and the SDRAM module are involved. This leads to a

boost in energy consumption up to 1220 mW.

Four factors which can be monitored with the performance mon-

itoring counters seem to influence the energy consumption (see

table 1). The rate of executed instructions, of executed branches,

of data cache references and the rate of memory requests. While

the number of executed instructions seems not to influence the

energy consumption, the frequency of branches (when executing

goto_label), the activity of the MMU and the caches

(call_function, read, read/write L1 cache) increases the energy

needs of the processor core.

2.4 Power/Performance Characteristics

The effect of frequency scaling on the performance and system

energy consumption is demonstrated in figure 2 and figure 3.

Figure 2 shows a linear increase in performance for all CPU- and

cache intensive applications. Doubling the clock speed results in

twice the performance. In the same way the dynamic energy con-

sumption rises linear with the clock frequency for those applica-

tions (see Figure 3).

While memory intensive applications show the same linearity in

energy consumption they suffer in performance because the pro-

cessor stalls in a busy mode while waiting for memory requests

to be served. Up to four 32 byte read requests can be outstanding

in a fill buffer before the XScale 80200 needs to stall. Further-

Benchmark Instructions

per µs

Branches

per µs

L1 References

per µs

Memory Requests

per µs

add_reg 680 12 0 0

goto_label 313 104 0 0

call_function 379 52 143 0

read L1 548 46 182 0

read/write L1 578 38 307 0

read memory 85 7 28 3.7

read/write memory 43 3 23 4.3

TABLE 1:Rates of characteristic events

0 mW

200 mW

400 mW

600 mW

800 mW

1000 mW

1200 mW

1400 mW

ad
d
_r

eg
g
ot

o_
la

b
el

ca
ll
_f

un
ct

io
n

re
ad

 L
1

re
ad

/w
it

e
L

1
re

ad
 m

em
or

y
re

ad
/w

ri
te

 m
em

or
y

Dynamic CPU&Memory Power

FIG. 1 : IQ80310 Board (XScale@733MHz, 32 MB SDRAM) Power Breakd

1

1,2

1,4

1,6

1,8

2

2,2

2,4

33
3

M
H
z

40
0

M
H
z

46
6

M
H
z

53
3

M
H
z

60
0

M
H
z

66
6

M
H
z

73
3

M
H
z

add reg

call function

goto label

read L1

read/w rite L1

read memory

read/w rite

memory

FIG. 2 : Relative Application performance at various clock speeds

Performance

0 mW

200 mW

400 mW

600 mW

800 mW

1000 mW

1200 mW

1400 mW

333
 M

H
z

400
 M

H
z

466
 M

H
z

533
 M

H
z

600
 M

H
z

666
 M

H
z

733
 M

H
z

add reg

call function

goto label

read L1

read/write L1

read memory

read/write

memory

FIG. 3 : Energy consumption of the IQ80310 board (XScale 333-733MHz)

at various clock speeds

Process Cruise Control: Event-Driven Clock Scaling for Dynamic Power Management 4

more 8 write buffers of 16 bytes help to buffer data while the bus

is not available. The read memory application can tolerate the

memory latency to a certain degree because of the fill buffer,

whereas the read/write memory application stalls for each new

allocated cache line because a dirty cache-line has to be written

back to memory before a new one can be stored.

To show the relation between application performance and

energy consumption, the energy consumption is divided by the

application performance and normalized relative to the value at

733 MHz (see figure 4). We call this value the energy perfor-

mance ratio. An energy performance of ep at a certain clock

speed cs means that running at cs MHz needs ep% of the energy

to fulfill the task at 733 MHz

CPU intensive applications operate energy efficiently at all clock

speeds. They are even a little bit less efficient (ep=105%) at

lower clock speed. The reason is the constant overhead of peri-

odic kernel activities (e.g., timer interrupt processing). The per-

centage of cycles for these operating system activities rises with

slower clock frequency and fewer cycles remain for the execu-

tion of the applications. Consequently it requires slightly more

energy to execute the application at low speed.

From the point of energy efficiency it does not pay to run the

CPU and cache intensive applications at lower clock speed.

Therefore we can run those applications at the highest speed.

The more memory requests are issued by an applications the

more it pays to drive the application at low speed. Energy sav-

ings of 22% (ep=78% for read/write memory at 333 MHz) to

complete the same task are possible without a substantial reduc-

tion in application performance (4% performance loss for read/

write memory at 333 MHz as shown in figure 2).

Depending on the memory reference characteristics of an appli-

cation we can save a significant amount of energy without severe

losses in performance by running the application at the suitable

clock speed.

3 Process Cruise Control
Performance and energy consumption at variable speed are two

characteristics which are correlated, but the degree of correlation

depends on the use of performance- and energy-critical HW-

components. Only if the operating system knows the compo-

nent-specific usage patterns of each of the managed execution

entities (threads or processes), it can find the best power/perfor-

mance trade-off and select the right speed of execution.

Our approach to find the patterns is the on-line evaluation of

event-counters. For a specific architecture we have to find a set

of countable events that characterize the behavior of a thread

concerning performance and energy consumption when the

thread is executed at various clock frequencies.

The rates, at which these events can happen at a certain clock fre-

quency, span a multidimensional space which describes all the

potential patterns a thread could exhibit. For each point in the

space we can find the proper clock frequency that minimizes the

energy consumption for a given performance requirement.

We are facing the challenge to partition this space into domains

with equal clock frequency and to describe these partitions (fre-

quency domains) in a way that the scheduler of the operating

system can determine the clock speed of a specific thread by a

fast mapping from event rates to clock frequencies.

A scheduler implementing Process Cruise Control adapts the

clock speed when switching from one thread to another. The new

frequency is determined by a periodic evaluation of the event

rates in the latest history of the thread. Therefore the scheduler

has to find the frequency domain that matches all the event rates

of the thread.

3.1 XScale Frequency Domains

The Intel XScale 80200 processor implements two event

counters and one clock counter. Under these restrictions, and

considering the energy/performance characteristics of section

2.4 and table 1, the selection of the following events is recom-

mended:

� The memory requests per second clearly indicate the degree

of memory use. The higher the rate of memory requests the

more the energy performance will benefit from a reduction in

clock speed.

� The instructions per second indicate the sensitivity for a per-

formance loss due to speed reduction. The lower the rate of

executed instructions the less a thread�s performance will

suffer from a reduction in clock speed.

To span the space of both event rates we constructed

microbenchmarks producing various event rates. For each clock

speed, we determined the event rates for each of these bench-

marks. The dots represent the micro-benchmarks with their char-

acteristic event rate at a fixed clock speed (666 MHz in figure 5).

The next step is to find the minimal clock speed which can be

tolerated for given performance requirements. In figure 5 we

choose 10% as an acceptable performance loss. The shading of

the dots represents the minimum speed at which a certain thread

will run with less than 10% performance loss.

The last step is to partition the two-dimensional space in fre-

75%

80%

85%

90%

95%

100%

105%

110%

33
3

M
H
z

40
0

M
H
z

46
6

M
H
z

53
3

M
H
z

60
0

M
H
z

66
6

M
H
z

73
3

M
H
z

add reg

call function

goto label

read L1

read/w rite L1

read memory

read/w rite

memory

FIG. 4 : Relative Energy Performance of the IQ80310

Process Cruise Control: Event-Driven Clock Scaling for Dynamic Power Management 5

quency domains. We choose a simple approach with lines that

define the frequency domains. The lines separate micro-bench-

mark with different optimal clock speed. If the coordinates of a

thread fall below a line, the thread can run without significant

performance loss at the speed that corresponds to this line.

4 Process Cruise Control in Linux

4.1 Implementation

The enhancement of LynuxWorks BlueCat Linux 2.2.12 to sup-

port event-driven frequency scaling comprises several modules:

� The module �perfctr� provides basic support for the config-

uration and reading of the event counters. The character de-

vice /dev/perfctr offers an interface for the configuration and

monitoring of the counters from the user level.

� Context switch routines and kernel data structures are modi-

fied in module �virtual_perfctr� to hold the values of the two

available performance-monitoring event counters. Within

the timer interrupt processing thread-specific virtual event

counters are updated and the event ratio for each event is de-

termined. To ease the implementation we base on the Perfor-

mance API (PAPI) from the University of Tennessee [18, 7].

� Basic speed adjustment is performed in module �scale� that

offers a /proc/scale interface for the configuration of default

speed settings.

� Each thread can be configured to run at a thread-specific

fixed speed or to run with dynamic event-driven clock-scal-

ing. Module �virtual_scale� extends the context switch rou-

tines for thread-specific speed tuning and offers the neces-

sary user-interfaces (/proc/vscale).

� The determination of the clock frequency with respect to the

values of the virtual event counters and to the thread-specific

event rates is done in the module �policy�. To provide a high-

er flexibility, different policies are possible. A thread can be

configured to use a certain policy for its speed decisions. Our

initial policy module provides a /proc/event_scale interface

to configure and reconfigure the frequency partitions of a

running system.

� Finally �event_scale� is the wrapper around the other mod-

ules. Periodically the thread-specific data is gathered from

�virtual_perfctr�, the clock speed is determined by �policy�

and the clock frequency is adjusted by �virtual_scale� if this

should be recommended.

With all these modules to be hooked into the Linux scheduler

there arises the overhead question. Our initial implementation

nearly doubles the overhead of the scheduler with a high varia-

tion due to a variable number of compulsory cache misses.

While the pure scheduler is optimized and avoids function calls,

we designed process cruise control for maximum modularity and

easy re-configuration, even of the running system. A bunch of

indirect function calls within the scheduler is not beneficial for

the scheduler performance. Therefore there are still many

options for tuning of the code, for re-arranging of run-time data

and for inlining of functions.

4.2 Measurements

To show the benefit of event-driven clock scaling we measured

the energy consumption and performance of four simple appli-

cations to find the optimal clock speed according to external

energy measurements. Figure 7, 8, 9 and 10 show the power/per-

formance characteristics of four applications which exhibit dif-

ferent behavior.�find|grep� searches for a string in the RAM file

system, �gzip� compresses a shared library, �djpeg� decom-

presses a JPEG file to an image file and finally, �factor� factors

a number.We ran the four applications at all possible clock fre-

quencies to determine the energy consumption, performance and

the optimal speed according to the allowed penalty of 10% per-

formance loss.

0,00%

0,10%

0,20%

0,30%

0,40%

0,50%

0,60%

0,70%

0% 20% 40% 60% 80% 100%

Instruction Execution Rate

M
e
m

o
ry

 R
eq

u
e
st

 R
a
te

333 MHz
400 MHz optimal 400 MHz
466 MHz optimal 466 MHz
533 MHz optimal 533 MHz
600 MHz optimal 600
666 MHz optimal 666 MHz
733 MHz optimal 733 MHz

FIG. 5 : Frequency domains of a space spanned by instruction-execution

and memory-request rate at 666 MHz.

Modules Overhead in Cycles

Linux scheduler > 26000

perfctr 184

event_scale & 6000-18000

scale 1000-2300 (= 3.1 µs)

Linux Scheduler

scale

virtual_scale

policy

event_scale

perfctr

virtual_perfctr

FIG. 6 : Module structure of Process Cruise Control in Linux.

Process Cruise Control: Event-Driven Clock Scaling for Dynamic Power Management 6

Furthermore Process Cruise Control determined the rate of

memory requests and executed instructions. The characteriza-

tion according to the rates gathered at 666 MHz is plotted in fig-

ure 11. Here the speed according to Process Cruise Control is

determined by the line above the marker of each application.

-15,00%

-10,00%

-5,00%

0,00%

5,00%

10,00%

15,00%

20,00%

3
3

3

4
0

0

4
6

6

5
3

3

6
0

0

6
6

6

7
3

3

Savings Performance Loss

FIG. 7 : find & grep Power/performance Profile

-25,00%

-20,00%

-15,00%

-10,00%

-5,00%

0,00%

5,00%

10,00%

15,00%

20,00%

3
3

3

4
0

0

4
6

6

5
3

3

6
0

0

6
6

6

Savings Performance Loss

FIG. 8 : gzip power/performance profile

FIG. 9 : djpeg Power/performance Profile

-50,00%

-40,00%

-30,00%

-20,00%

-10,00%

0,00%

10,00%

20,00%

3
3

3

4
0

0

4
6

6

5
3

3

6
0

0

6
6

6

7
3

3

Savings Performance Loss

-50,00%

-40,00%

-30,00%

-20,00%

-10,00%

0,00%

10,00%

20,00%

3
3

3

4
0

0

4
6

6

5
3

3

6
0

0

6
6

6

7
3

3

Savings Performance Loss

FIG. 10 :factor Power/performance Profile

factor

gzip

djpeg

find|grep

0,00%

0,10%

0,20%

0,30%

0,40%

0,50%

0,60%

0,70%

0% 20% 40% 60% 80% 100%

Instruction Execution Rate

M
e
m

o
ry

 R
eq

u
es

t
R

at
e

optimal 400 MHz optimal 466 MHz

optimal 533 MHz optimal 600 MHz

optimal 666 MHz optimal 733 MHz

factor gzip

djpeg find|grep

FIG. 11 :Frequency domains of a space spanned by instruction-execution

and memory-request rate at 666 MHz.

Process Cruise Control: Event-Driven Clock Scaling for Dynamic Power Management 7

Table 2 summarizes the results. For three tests (�find|grep�,

�gzip� and �factor�) Process Cruise Control comes to the same

clock speed as the external measurements.

One application �djpeg� is scheduled with a speed that is one

step to low. The application would suffer a performance loss of

12% which is below the tolerated limit of 10%.

However we could prove, that it is possible to come very close

to the optimal clock frequency by an on-line evaluation of event

counters. For the Intel IQ80310 system energy savings of 15%

are possible without severe performance impact. If we tolerated

a higher performance degradation, the energy efficiency could

be improved further.

5 Energy Monitoring Counters
The performance monitoring counter that are implemented in

contemporary architectures hold a number of drawbacks:

� The selection of countable events was done to support per-

formance profiling and not energy profiling.

Several events which differ substantially in their energy con-

sumption cannot be differentiated. An example are move and

arithmetic/logical instructions. Move instructions need less

energy, but is takes the same amount of time.

Another example are read and write memory requests. Both

types differ in their energy consumption [17]. Event counters

should register the type of memory request and the number

of row activations in the memory modules.

� Because we use the performance monitoring counters for

power/performance characterizations of threads, they cannot

be used for application profiling. Therefore an energy-aware

system should implements two sets of counters: a set of per-

formance monitoring counters, and a set of energy monitor-

ing counters.

� The value of the event counters is sampled at special points

in the operating system code. Sampling implies some over-

head, so we cannot afford to sample at the beginning and at

the end of interrupt service routines and other short running

kernel activities. Consequently, kernel activity is accounted

to the currently running thread which is not beneficial for a

precise characterization.

Therefore two sets of energy monitoring counters, one for us-

er- and another for kernel activity, is recommended to reduce

the number of sampling points and to increase the accuracy

of the characterization.

6 Related Work

This research contributes to the work on system power-analysis

and dynamic clock-scaling. The innovative approach is the use

of event-counters to enable serious power/performance trade-

offs in a time-sharing scheduler.

Event-counters were explored extensively in the context of static

performance analysis (e.g., see [1]). The first on-line evaluation

of event counters in a scheduler for the purpose of scheduling

was reported in [5]. The focus of this work was on cache affinity

scheduling in NUMA architectures. Furthermore, the operating

system can manage the memory-bandwidth in multiprocessors

at run-time if counters provide information about memory

requests and memory stall cycles[2].

Recent work employs event counters for run-time power estima-

tions and energy accounting and throttling [3, 16, 4].

There is a rising number of papers which describe the power

measurement of systems which support dynamic clock scaling

sometimes in combination with dynamic voltage scaling [8, 9,

15, 21].

Several papers cover the topic of scheduling on systems with

variable speed. Most of them focus on real-time scheduling [19,

11, 20]. Here the scaling factor is reduced as long as the real-time

requirements are fulfilled.

When clock speed becomes a novel system parameter, there is a

need for system interfaces to control this parameter. Unlike our

simple architecture-specific /proc/scale and /proc/vscale inter-

face, the BUFScale API [10] offers an architecture independent

interface for power system tools and applications.

7 Conclusion
In the past, scheduling had a single dimension. The scheduler

had to decide which thread of control should run on the CPU.

With the emergence of power-sensitive devices we enlarge the

freedom of scheduling to a second dimension, the speed of exe-

cution to control power-consumption effects. Within the space of

decision, the scheduler has to control the execution in a way that

the scheduling goals are achieved.

In this paper we have tackled the problem of finding the optimal

process-specific execution speed in a time-sharing environment.

The more the operating system knows what is going on inside

the hardware the better it can react on changing usage patterns.

We have identified event counters as the valuable source of

information for the operating system scheduler. The reading of

event counters and the processing of counter values does not

imply a high overhead so we have found a cheap and easy meth-

odology to detect thread-specific usage patterns for power char-

acterization.

Once we have characterized a system according to certain per-

formance requirements, Process Cruise Control determines the

optimal clock frequency of a thread according to his patterns.

Our approach does not impose any hints on application. Process

Cruise Control minimizes the energy consumption while sched-

ules unmodified and uninstrumented code with just minor per-

formance penalties.

Application optimal speed Process Cruise Control:

clock scaling

Process Cruise Control

Energy Savings

find|grep 400 MHz 400 MHz 15%

gzip 466 MHz 466 MHz 10%

djpeg 600 MHz 533 MHz 8%

factor 600 MHz 600 MHz 4%

TABLE 2:Process Cruise Control clock speed and energy savings

Process Cruise Control: Event-Driven Clock Scaling for Dynamic Power Management 8

A prototype implementation on a low-power Intel XScale eval-

uation system running Linux shows energy savings of 22% for

memory intensive applications. The current implementation can

only use a small number of counters that were intended origi-

nally for performance profiling. If the operating system technol-

ogy is ready to deal with a variety of counters it is just a small

step to embed new counters which are exclusively devoted to

energy profiling.

We expect thread-specific speed settings in combination with

event-driven energy profiling to become an essential element of

future operating systems for power-sensitive devices.

References

[1] ANDERSON, J., BERC, L., DEAN, J., GHEMAWAT, S., HEN-

ZINGER, M., LEUNG, S.-T., SITES, R., VANDERVOORDE,

M., WALDSPURGER, C., AND WEIHL, W. Continuous pro-

filing: Where have all the cycles gone? ACM Transactions

on Computer Systems 15, 4 (Nov 1997).

[2] BELLOSA, F. Process cruise control: Throttling memory

access in a soft real-time environement. Tech. Rep. TR-I4-

97-2, University of Erlangen, Department of Computer

Science, Jul 1997.

[3] BELLOSA, F. The benefits of event-driven energy account-

ing in power-sensitive systems. In Proceedings of the 9th

ACM SIGOPS European Workshop (Sep 2000).

[4] BELLOSA, F. The case for event-driven energy accounting.

Tech. Rep. TR-I4-01-07, University of Erlangen, Depart-

ment of Computer Science, June 2001.

[5] BELLOSA, F., AND STECKERMEIER, M. The performance

implications of locality information usage in shared-mem-

ory multiprocessors. Journal of Parallel and Distributed

Computing 37, 1 (Aug. 1996), 1�2.

[6] BROOKS, D., TIWARI, V., AND MARTONOSI, M. Wattch: A

framework for architectural-level power analysis and

optimizations. In Proceedings Of The 27th Annual Inter-

national Symposium on Computer Architecture ISCA-27

(June 2000).

[7] BROWNE, S., DONGARRA, J., GARNER, N., LONDON, K.,

AND MUCCI, P. A scalable cross-platform infrastructure

for application performance tuning using hardware

counters. In Proceedings of the Conference on Supercom-

puting SC�2000 (Nov 2000).

[8] FLINN, J., BACK, G., ANDERSON, J., FARKAS, K., AND

GRUNWALD, D. Quantifying the energy consumption of a

pocket computer and a java virtual machine. In Proceed-

ings of the International Conference on Measurement and

Modeling of Computer Systems SIGMETRICS�2000 (June

2000).

[9] FLINN, J., FARKAS, K., ANDERSON, J., AND FARKAS, K.

Power and energy characterization of the itsy pocket com-

puter. Tech. Rep. TN-56, COMPAQ Western Research

Lab, Feb 2000.

[10] GRUNWALD, D. Boulder unified frequency/voltage scal-

ing interface (bufscale). http://systems.cs.colorado.edu/

EnergyEfficientComputing/cdcvsi.html, 2001.

[11] HONG, I., POTKONJAK, M., AND SRIVASTAVA, M. On-line

scheduling of hard real-time tasks on variable voltage pro-

cessor. In Proceedings of the International Conference on

Computer-Aided Design ICCAD�98 (Nov 1998).

[12] INTEL. Intel 80200 Processor based on Intel XScale

Microarchitecture Developer�s Manual, Nov 2000.

[13] INTEL. Intel XScale Microarchitecture Technical Sum-

mary, Jul 2000.

[14] INTEL. Intel IQ80310 Evaluation Platform, July 2001.

[15] JOSEPH, R., BROOKS, D., AND MARTONOSI, M. Live, runt-

ime power measurements as a foundation for evaluating

power/performance tradeoffs. In Workshop on Complexity

Effectice Design WCED, held in conjunction with ISCA-

28 (June 2001).

[16] JOSEPH, R., AND MARTONOSI, M. Run-time power estima-

tion in high-performance microprocessors. In The Inter-

national Symposium on Low Power Electronics and

Design ISLPED�01 (August 2001).

[17] MICRON_TECHNOLOGY. Calculating memory system

power for ddr. Tech. Rep. TN-46-03, 2001.

[18] MUCCI, P. The performance api papi. White Paper of the

University of Tennessee, http://icl.cs.utk.edu/projects/

papi/, March 2001.

[19] PERING, T., AND BRODERSON, R. Energy efficient voltage

scheduling for real-time operating systems. In Proceed-

ings of the 4th IEEE Real-Time Technology and Applica-

tions Symposium RTAS�98, Work in Progress Session (Jun

1998).

[20] PILLAI, P., AND SHIN, K. Real-time dynamic voltage scal-

ing for low-power embedded operating systems. In Pro-

ceedings of the 18th Symposium on Operating Systems

Principles SOSP�2001 (October 2001).

[21] POUWELSE, J., LANGENDOEN, K., AND SIPS, H. Dynamic

voltage scaling on a low-power microprocessor. In Pro-

ceedings of the International Symposium on Mobile Mul-

timedia Systems & Applications MMSA�2000 (November

2000).

