O Department of Computer Science 4

Distributed Systems and Operating Systems

Frank Bellosa

The Case for
Event-Driven Energy Accounting

Technical Report TR-14-01-07

Friedrich-Alexander- Un|ver5|tat
Erlangen-Nurnberg i

T TECHISCHE FAKULTAT (. &G3)

The Case for Event—Driven Energy Accounting

Frank Bellosa

Department of Computer Science (Operating Systems), University of Erlangen,
Martensstr. 1, 91058 Erlangen, Germany
bellosa(@cs.fau.de

Energy management requires a precise knowledge of the pat-
terns of energy use. Not only knowing where the energy has been
spent isimportant but also knowing who was responsible for the
use of energy.

The resolution of power measurement equipment like current
meters or smart battery interface is neither sufficient to identify
the hardware unit consuming the energy nor to identify the orig-
inator (energy principal) of a specific hardware activation. Our
measurements have also demonstrated that timing data, the
source of information used in current operating systems, is not
adeqguate to estimate the use energy consumption, because the
power depends on the patterns for the use of specific functional
units.

To investigate energy usage patterns we strongly encourage the
use of embedded hardware monitors (e.g., processor perfor-
mance counters) that have al so proven to offer valuable informa-
tion in the field of performance analysis. We use information
about active hardware units (e.g., instruction decoder, memory
management unit, cache-/memory-interface) gathered by event
counters to establish a precise and energy principal-specific
energy accounting.

By showing the correlation of events and energy values we can
provide the necessary information for energy-aware scheduling
policies that go far beyond the capabilities of the state of the art
power management standards like ACPI. While the aspect of
energy saving by driving the system at its optimal operation
point is important in mobile devices, the aspect of client- and
service-specific throttling is vital in data-centers where servers
have to provide mission critical services even when running
under an emergency power supply in times of (rolling) black
outs.

An implementation of the proposed event-driven energy
accounting using a Linux/x86 system and extensive measure-
ments prove the concept.

1 Introduction

Without energy the processing and transport of data isimpossi-
ble. Nonethel ess the measurement, accounting, and management
of energy has been widely unattended in the field of systems
research. With the emergence of portable and wireless devices
and with the energy crisisaffecting data centersand server-farms
in many parts of the United States we are suddenly facing aris-
ing awareness for the topic of energy management.

This paper contributes to this awareness and initiates a new
phase in the evolution of OS power management. To better clas-
sify our approach we describe the previous phases:

* Frank Bell osawas on sabbatical as an academic visitor of the SawMill group at
the IBM Watson Laboratory from November 2000 to April 2001.

The implementation and measurements were supported by the IBM Austin
Research Laboratory .

D

@)

The operating system analyzes the active and idle times
of adevice (e.g., CPU, hard disk or display) and makes
assumptions about the future use of the device. Based on
these assumptions the, OS decides when a HW-compo-
nent should switch its power-state to a low-power mode.
These power-modes differ in their energy savings, the
timeto switch the power state, and the energy that is nec-
essary to perform this change of state. These simple heu-
ristic policies only affect the behavior of applications by
the latency to switch to an active mode or the perfor-
mance in a low-performance active mode. Because they
affect the behavior of devices on a system wide-scope,
these policies resemble centrally-planned economies that
neglect the individual demands and characteristics of the
objects (e.g., applications serving a request) affected by
the decisions. These palicies have no knowledge of the
usage patterns and demands of a specific application.
Consequently, they cannot optimize their strategy such
that some low-priority applications suffer from higher
latencies while other high-priority tasks are not signifi-
cantly affected. An example of this type of power man-
agement isfound in Windows2000 [21] using ACPI [16].

Having several HW-components available that can fulfill
the same service offers a further chance to influence the
energy consumption. By focusing the load on a subset of
the components (load consolidation), we generate idle
components that can be set into alow-power state.
Especially in clustered environments with nearly state-
less systems which process short term requests, this
approach of energy saving is effective and can easily be
realized by an energy-aware load distribution mecha
nisms[8]. A typical representative of these environments
are web-server farms with diskless compute nodes and
network-attached storage devices. Here the compute
nodes are the targets for load consolidation. However,
this approach does not apply to complex services consist-
ing of several interdependent sub-services which built up
some state (e.g., file-locking, transactions) while answer-
ing request-sequences.

We see a consolidation technigue that has been success-
fully applied to fail-safe, hot-swappable computer archi-
tectures for more than 20 years as a good candidate for
power-savings in server systems. In these systems, built
as shared-memory multiprocessor or single-chip multi-
processor architectures, tasks can easily be moved to
another CPU due to the common memory. In thisway we

©)

can consolidate the load and shutdown some of the pro-
cessors even when complex state in the common memory
has been established.

The last step in the evolution of power management is a
renouncement from a system centric approach to an
energy management, that rules according to the individ-
ual characteristics of applications, the demands of spe-
cific requests and the energy related status of the whole
system. According to our economic analogy of (1) this
approach resembles more a social market economy.

Because the operating system has the complete knowl-
edge where the energy has been spent, who was respon-
sible for the use of energy and what are the individual
demands, power management can find a trade-off
between energy consumption and quality of service
demands. Examples are the task-specific control of the

2 Energy-Related Characteristics of
System Components

2.1 Processor/Memory/Interconnection Technology

In semiconductor technology, energy is (very simplified) used
whenever current is flowing due to leakage or due to loading/
deloading of capacitors triggered by transistor switch operations.
The leakage current depends on static parameters like time, volt-
age and properties of the semiconductors. In addition to these
static parameters the dynamic energy consumption depends on
the switching frequency of the transistors and the size of the
capacitors.

If we want to identify those parts of a system architecture which
contribute significantly to the total energy consumption, we have
to look at those parts containing most of the capacitors and those
with the highest switching frequencies:

CPU speed and voltage under consideration of the task’s
quality-of-service demands (a potential scenario for the
Intel XScale architecture [14]), the delay of certain
requests to reduce the number of energy-expensive
power-up state-transitions of HW-components (see [26]
of IBM ARL) or the throttling of specific activities with
respect to quality-of-service/environmental/cooling/
energy-supply demands (see section 4).

This paper of the OS-research group of the University of Erlan-
gen belongs to the third phase in power management research.
Section 2 describes the energy-related behavior of hardware-
components like processor-core, caches, main-memory and 1/O
devices and motivates our approach for event -driven energy
accounting called Joule Watchers that was introduced in [4].

Section 3 details the Joule Watchers energy accounting system
and addresses the fallacies and pitfalls we encountered. We iden-
tify the limitations of the approach and sketch architectural
improvements that increase the fidelity of Joule Watchers. The
first results of an implementation on an x86 architecture are pre-
sented.).

In Section 4 we propose some on-line scheduling policies that
rely on the precise energy accounting of Joule Watchers. The
benefit of one of the policies is demonstrated by an implementa-
tion and energy measurements with a high-resolution data-
acquisition system. Here we can show that the power of a server
system can be throttled so that the average power within a time
window of 50 milliseconds will never exceed a given threshold.
This type of throttling might become vital for data centers which
have to provide 24x7 services even when running under an
emergency power supply.

We summarize with a description of some future projects of our

group.

The processor core executing algorithmic, logical, or control
flow operations consumes energy depending on the switch-
ing activity within the essential functional units. As the basic
activity of the CPU core proceeds in clock cycles, we expect
some relation between energy consumption and clock fre-
guency. However, a major part of the activity depends on the
type of instructions and their operands. Therefore, we have
to keep an eye on the activity of each functional unit.

If a memory management unit (MMU) is used in a computer
architecture for reasons of mapping and protection, the
MMU will contribute significantly to the energy consump-
tion as it built up from full associative memory that is access-
ed whenever memory is referenced. Therefore, the energy
consumption might depend on the memory-reference pat-
terns of the executed software.

Caches contribute to static energy consumption depending
on their size but also to dynamic energy consumption de-
pending on the frequency of cache references and the asso-
ciativity of the cache indexing algorithm. The higher the as-
sociativity, the more cache-tags have to be compared at each
cache reference.

Main memory built out of dynamic memory cells (DRAM)

is build up of capacitors to store information. We expect it to
contribute to the static energy consumption depending on the
size of memory.

For each memory request. the data has to be transferred from
the addressed memory cell to an intermediate buffer within
the memory chip before it is transferred over the interconnec-
tion network (e.g., a bus system) to the requesting device
(e.g., the CPU or an DMA capable I/O device). Therefore,
we see a dynamic energy consumption of DRAM as well.
Advanced memory modules (e.g., RDRAM) also offer sev-
eral low-power states which differ in the latency to re-acti-
vate the memory module again. In a low-power state some
parts of the address-logic and the bus connectors of the mod-
ule are shut down. This saving in passive energy consump-
tion has to be paid by a higher access latency.

The interconnection network (e.g., the bus system) contrib-
utes mainly to the dynamic energy consumption as the capac-

The Case for Event—-Driven Energy Accounting

itance of the bus-lines has to be loaded/unloaded at each bus
cycle. Therefore, we expect an energy consumption whichis
related to the activity level of the interconnect.

We have measured the energy consumption of aPentium |11 866
system with 1 GB RAM to determine the variation in power of
the processor and the memory. During all tests the processor was
aways busy. We ran several simple loops that involve different
functional units. An arithmetic test doing arithmetic operations
(additions) with al operands in register. We ran two tests to
investigate the influence of predicted and misspredicted
branches on the energy consumption. One of the test heavily
triggers the memory management unit, by steadily saving/restor-
ing the registers to/from the stack. Finally we ran three tests
which write data to the caches and the memory.

30— | 5vBoard [33V SDRAM]
275
25 S —
25 e S T
o 2o 1] -
8 ws+H —F+——F — — — —
; 154 [[[[[[|
E o544 5 1 1
& 1044 — — —f — —1 —1
g 54—
o 5 | | | | | | |
2544 — 1 B L b
0
Q el o Q. Q Q e}
5 5 5 g £ £ 5
b g g 9 E E 5
& % 8§ § 2 2 ¢8
= Q. o Q Q Q
5 5 2 = g g g
£ g = | g >
£ 8 S 2
£ g s
5 a 1S

FIG. 1: PC Board (PIll 866, 1 GB) Power Breakdown

The PC system shows avariation in the power at the 5V voltage,
that is converted to 1.65V to supply the CPU, from 16.43 Watt
up to 23.05 Watt (see Figure 1). If the main memory is involved
heavily, the 3.3V power which supplies the SDRAM rises from
4.73 W to 8.03 W.

At the first glance we see, that the energy consumption of asys-
tem depends on more parameters than just the time. The power
of the processor and the memory varies by more than 50%.

If the power management solely relies on timing information
to make decisions, the power estimation can be wrong by
40%. The knowledge of the involved HW-components is
essential to determine the power of a system.

2.2 Variable Clock Speed and Variable Voltage

A genuine saving in energy is possible with processors that offer
thefeature of tunable clock speed to reduce the power of the pro-
cessor. The CPU speed and a dynamically adapted supply volt-
age change the energy performance [28, 11, 17, 24]. Neglecting
the impact of external effects on CPU performance (e.g., mem-
ory latencies, bus contention) the energy per operation remains
constant when reducing the frequency at a fixed voltage. How-
ever, the energy per operation isproportional to s2, if frequency
and voltage is changed by afactor s within the allowable limits

of operation.

Particularly the academic results concerning variable voltage
design have been applied to latest products (Intel X Scale, Intel
Mobile Il [15], Transmeta Crusoe [27], AMD K6+ with Power-
Now). According to this assumption the processor runs more
efficiently at the lowest possible speed and voltage. However,
this assumption doesnot hold, if welook at main memory, which
isdriven by afixed voltage and that benefits concerning energy
efficiency from requests within the same address range, because
each memory reference involves a complete fetch of a memory
row into a row-buffer. If data from the same row is referenced
within a short period of time the memory operation is more
energy efficient. Therefore, memory benefitsfrom afast proces-
sors in terms of energy consumption, because afaster processor
can issue more memory operations. To demonstrate these
effects, we show some data that has been gathered with a Stron-
gARM SA-1100 system, which was designed to run at variable
speed and voltage [25]. If we look at the power-curves of the
variable speed processor running a bandwidth test (see Figure 2),
we see that the energy per megabyte isthe lower, the slower the
CPU is running. On the other side. the energy of the memory to
copy datais higher if the CPU isrunning slowly.

—7r Ny
: R total "
E 61 < a _ -
) % Zn MM”’ ey
© 5 S memory+GPU
- o 7
g T e 3emmm e —-X
3 i memory only |
&
B
2 3
T
=
8
= | CPUonly
=} on :
0 I . : - L 1 1
44 74 103 133 162 192 221 251

clock frequency [MHz]

FIG. 2: Energy breakdown for memory read (SA-1100 with 32 MB of
EDO RAM) Measurements of the University of Delft [25]

In conclusion we can say that there is an optimal operation point
near 142 MHz where the energy of the whole system, running
the memory bandwidth test, is minima. That means, that
depending on the memory reference patterns of the application,
the optimal operation point is between the minimal frequency
and 142 MHz.

Consequently the optimal frequency for minimal energy
consumption of a variable speed/voltage CPU can only be
determined, if the memory reference characteristics of the
application is known.

The Case for Event—-Driven Energy Accounting

2.3 1/0 Technology

Most of the I/O devices have an energy characteristicsthat differ
from the above-mentioned HW-components. Besides active
energy consumption which depends mainly of the number of 1/
O requests, there is a static part which depends on the power
state of the device.

60

L 65s

55 A

o [\

|
= a0 ide-commandf
8~ \ high-performance
E 35 \\ \ idte-mode
T 30
]
e

\ ‘ In\A/-pprfnrmanr‘n

|
|
o]
/ midle mode
|

— o

t=5% Time t=115¢
FIG. 3: Power consumption of an IBM DTNA-22160 disk spinning up.

In addition to the increased latency to access a device and the
energy costs to reactivate the device (e.g. spin-up of a hard-disk
see Figure 3), there is an additional penalty in energy consump-
tion which is neglected in most of the simul ation-based research
project of the past.

Not only to wake-up a device from a low-power state, but
also to switch a device to a low-power state can consume
energy.

One exampleisthe head-lock mechanism of ahard-disk, that has
to grip and lock the disk-head after the disk has spun down (see
Figure 4).

An other example for power-down energy consumption is the
protocol between awireless network adaptor and the base station
to inform the base station that it has to buffer incoming packets,
while the network adaptor is powered-down for some seconds.

55

14s
5.0 |

4.5 A /

»
o

\\
e Head-L ock (W \
2. ||
RV
g 20 standby-immediate command I \
& O at— —
L0 | \\
0.5 I
A =55 Time & =105

FIG. 4 : Power consumption of an IBM DTNA-22160 disk spinning down.

2.4 Unpredictability of Applications

The previous subsections made clear that we have to know
which usage patterns for the various functional units and HW-
components a certain software is featuring.

—CPUGV)

powver
0 — SDRAM (3.3V) power
i)
S
£
10
5
[T T T T T T T T T T]
0 05 1 15 2 25 3
Timein Seconds

FIG. 5: Ghostscript: Postscript -> PCL

It would be pleasing if we could characterize an application in
advance to give the power management a hint concerning the
application’s energy characteristics. A first approach was the
measurement and classification of applications and parts of
applications according to energy-usage patterns [6, 9]. For sim-
ple loops with a very regular behavior, this seems to be possible,
but a short look (see Figure 5 and 6) at the energy profile of an
single real-world application like a postscript interpreter or
Acrobat reader eliminates any hope that energy profiles can be
predefined in general.

— CPU (5V) power
20 — SDRAM (3.3V) fo
&
= 15
£
o]
E " b
104 T T
5
rst page secmMge
f T T T T T T T 1
75 8 85 9 95

Timein Seconds
FIG. 6 : AcrobatReader: every page shows different behavior.

The 5V plot for the CPU and the 3.3V power plot for the memory
shows, that for a ghostscript interpreter that converts a postscript
file into PCL printer code, phases of high CPU demand, change
with phases of medium CPU demands but high memory
demands. The length, type and number of these phases depend
on the content of the postscript file to be converted. The same
observation can be done with the Acrobat reader, where the time
and energy-curve to present a new page of the PDF-file depends
on the content of the page, especially on the fact, how many
complex pictures were embedded.

Consequently a predefinition of an application’s energy pro-
file is not possible in general.

The Case for Event—-Driven Energy Accounting

2.5 The need for on-line energy accounting quate for a server thread consuming the resource “energy” while

As the predefinition of an applications energy profile is not answering requests from different clients. E.g., for a web server
known in advance we need some on-line measurements. By of a company, one energy principal might be responsible for the
employing a digital multimeter [10] an accurate power analysis energy used to answer internal requests, while another energy
is nearly impossible due to the inertia of the voltage regulator principal is responsible for external requests. With different

associated to the processor and the inertia of the multimeter's "ésource principals for the same group of threads you can differ-
measurement unit. entiate between different operation modes. While a thread might

A novel approach to on-line energy profiling should consider the fun in the most energy efficient way for answering external
power-related effects of each functional unit without significant requests with lower latency demands, the same thread will run in
influence on the execution of the target system. In section 2.1 we @n energy inefficient way to answer critical internal requests. By
have shown, that the energy consumption depends on the num-Supporting the concept of resource containers [2] we can account
ber of activations and the individual characteristics of the Hw- and schedule a thread according to the container it is acting for.
components. Our approach to on-line energy accounting uses The abstraction of resource containers separates the notion
counters embedded in the target hardware to register events thapf @ scheduling entity from that of a resource principal.

imply the consumption of a certain amount of eneWjy.will Applied to energy it enables fine-grained energy manage-
show that counter values strongly correlate to a specific ment in client-server environments allows the partitioning of
energy consumption, so we have found a cheap and easy the system in energy domains with different power manage-
methodology for power consumption monitoring. ment policies.

As activity counters are not found in almost all of the I/O devices
and the power-state of these devices can change due to interna§ Joule Watcher Energy Accounﬁng
device policies, the operating system has no chance to count pre-

cisely the number of state transitions. For example many hard 1€ Principle of Joule Watcher follows the observation that
disks switch automatically after a time-out of several hundred Many of the events which are countable by performance moni-

millisecond from a high-performance idle-mode to a low-perfor- toring counters correlate to some activity of the functional units

mance idle-mode without any notification to the operating sys- of a processor. An activation of a functional unit should show a
tem. characteristic energy consumption. Now the challenge is to find

appropriate events and to correlate them to energy values.
Therefore, we recommend to embed some counters to I/O

devices like hard disks and wireless network adaptors to sup- 3.1 Measurement Methodology
port the OS in counting energy expensive transitions of the

) Our initial target environment is a simple Pentium Il 866 MHz
device’s power state.

PC running a Linux 2.4.0 operating system. Context switch rou-
As event counters are not yet available in I/O devices we will tines and kernel data structures are modified to hold the values
focus in the next sections on the use of event counters found inof the two available performance-monitoring event counters.
advanced processor architectures. However, the results are nofrhese counters are realized in the P6 family as registers and car
limited to processors and memory-components. They can be be configured to count one of several events. The accumulated

transferred to the field of /O as well. counter values can be accessed though the /proc-file system. Tc¢
. ease the implementation we base on the Performance API
2.6 The need for resource containers (PAPI) from the University of Tennessee [7, 22] that already

Previous work in the field of dynamic power management [12, offers interfaces to configure and read the event counters.

24, 28] focus on adjusting the power management parameters inTo find the correlation of events and energy values, synthetic
intervals. This approach is motivated by deadline driven real- micro-benchmarks trigger events of a certain type and frequency
time strategies with a predefined workload but it does not apply for several seconds, while a data acquisition system from
to interactive devices running unknown - maybe dynamically National Instruments (DAQ SCXI-1102C) measures the voltage
loaded - software, or server systems with workloads that dependat 1mQ and 10n@ 4-pin sense resistors attached to the power

on the input data of the client. supply for the voltages of 5V and 3.3V.

Therefore, a novel approach has to support thread-specific In this way, we measure both the current and the voltage for the
or request-specific energy accounting because the energy- two supply voltages and we can determine the power by multi-
specific properties are not known in advance. plying both values. While sampling at 20 kHz we get a resolu-

Our first approach was system support for thread-specific energy tion of 24.5 mW at 5V and 1.6 mW at 3.3V. To synchronize the
accounting [4] to account and control each thread individually in sampling with special kernel events, we trigger the data acquisi-
the time-sharing operating system Linux. Later process specific tion system with rising edges sent by the parallel port of our tar-
energy accounting has been successfully applied to the quality-get system. The data acquisition, streaming to disk, data explo-
of-service aware operating system Nemesis [23]. ration and integration is done with LabVIEW. The plots are gen-
At the implementation of process-specific energy accounting in erated with the GRACE tool from the Weizmann Institute, Israel.

power management (see also section 4.3) we realized that theywe configure the counters to register specific events, run the
notion of a thread of control as a resource principal is not ade- micro benchmarks and measure the power consumption. So we

The Case for Event—-Driven Energy Accounting 5

Energy-Value per HW-activation event

2 6.9
T 150 18
8
gl 1.2
§ 10.0
] i
B
= 5.0
£ i
& .74
5 00 S
s PR o 5
\>$\e‘ 6‘ /@ \‘\@ - S 06/
/G\,\l\/ w P\’\P‘/ N>
C

FIG. 7 : Energy vaues of PlIll 866 PGA 370 with 256 KB on-die L2-cache.

get a set of equations with event numbers £ and total power
values P;.

El,l El,Z aes El
E27l EZ,Z aes EZ

n

oY = T

En1En2 - Ennl|Vn P,

Solving this set of equations gives us energy values ;.1

There are some events which contribute significantly to the
energy consumption. The main events are the clock cycles, the
retired instructions, the memory references|eaving the CPU core
and the number of cycles during which the back-side bus, con-
neting the CPU with the second level cache, was busy.

In Figure 7 we have expressed the energy valuesin relation to the
clock-frequency of the CPU in order to make them independent
of the CPU speed. An energy value of 16.9 means, that it con-
tributesto apower of 16.9 Watt, if the event happens at the same
frequency asthe clock speed. If the event just happens every 4th
clock cycle, it contributed with 16.9/4 Watts to the power of the
processor.

Type of event Maximum occurrence | Energy value | Maximum power
in% of clock cycles contribution

CLK_UNHALTED |100% 1.2 112W

INST_RETIRED 250% 0.74 1.85W

DATA_MEM_REFS (49%/ 78% 16.9/10.1 8.28W

L2 DBUS BUSY 25% 13.8 345W

3.2 Fallacies and Pitfalls

If an event involvesthe activation of several functiona units, we
see a high variation in energy consumption, if not all of these
units are involved every time, the event happens.

Our first approach was to use several training applications to
trigger events and determine the weights using the | east-squares
error. This methodology is exactly the same proposed in [20].
The training applications (micro benchmarks, but also GNU

toolslike gcc, make, and ghostscript) were generated by the gcc
compiler. The results were very promising and showed small
errors for the estimation of other applications. When we added
some floating point intensive code (like mpgl23) we received
negative energy values for the floating point events. As we can-
not produce energy by using floating-point instructions, there
had to be some “flaw” in our methodology.

We wrote some assembler routines, which trigger specific events
with the highest possible frequency and which try to trigger as
few types of other events as possible. The first micro bench-
marks just makes calculations on registers, another micro bench-
mark reads/writes data to the first-level cache, then we produce
first-level cache misses to trigger the second-level cache and so
on. Atthe end we got a lower-triangle matrix like in equation (2).

El, 1 Vl Pl
Bz 1Bz Vol = (2)
En1Enz - Enn Ve |Pnl

We built several sets of microbenchmarks. Each set was suffi-
cient to solve the set of equations. We did not compute the
energy values using least-squares errors.

Our pitfall was that we assumed that whenever an address is cal-
culated by the MMU to write data, the data is really written to
the first-level cache. This assumption does not hold. The store
buffer of the CPU acts like a write-back, level-zero cache. If data
is read shortly after it was written and the same memory address
is later-on the target for a write operation, it seems to be that the
data is never transferred to the first-level cache. A write/reclaim
to the store buffer consumes less energy than a write/read to the
first-level cache. The energy consumption of an application per-
forming frequent push-pop operations to the cache or applica-
tions which use the cache very intensively for holding interme-
diate results, as it typically does x86 floating point code because
of the small number of floating point registers, consume there-
fore less energy for data memory references, because just the
MMU is just involved, but not the first-level cache. However,
applications working intensively on a small working set which
fits into the first-level cache, but not in the small store buffer
consume significantly more energy. The difference makes up a
factor of 3 in energy consumption per event and can contribute
to an error of up to 33% for some code.

Therefore, we recommend solving the set of equations directly
with multiple sets of training applications, where training appli-
cation which triggers the same event should be in different train-
ing sets. This procedure does not lead to more precise energy
values, but covers up weaknesses in the selection of events ol
architectural features that are not covered by the available events
as we have shown in our example with the data memory refer-
ences.

The Case for Event—-Driven Energy Accounting

3.3 Accuracy of Event-Driven Energy Estimations

With the energy values we derived from the training applica-
tions, we estimated the energy consumption of real-world appli-
cations, which are mostly compiler generated and do not show
up extreme behavior like some assembler routines.

We cdl culated the energy consumption for al applications just
on the basis of 2 events. The Pentium 111 CPU can count two
independent events. However, we have to switch to another
event type between application runs, if we want to count more
than 2 events. For those applications, where the run of the appli-
cations can be repeated exactly, we modified the event types
between the runs and counted up 5 different relevant events.

As the behavior of real-world applications in contrast to numer-
ical loops, varies heavily over time, random sampling of the
counters with different configured event types[1] does not apply
to on-line energy profiling, because the results have to be evalu-
ated within short time (scheduling cycles see section 4) and the
application behavior is not constant (see subsection 2.4)

Application | Errorin 5V (CPU) | Error in 5V (CPU)
using 2 Counters | using 5 Counters

ghostscript | -4.77% 4.74%
acroread 8.39% 3.47%
netscape 7.99% 0.08%
mpgl123 11.4% 0.09%
make&gcc | -2.05% 3.46

apache 100 | 5.5%

apache 200 | 1.32%

apache 300 | 3.46%

apache 400 | -6.6%

The error-values show the correlation between the extra mea
surements and the estimation by using event counters. With just
the available 2 counter found in the Pentium Il hardware, we
come close to 10% to the measurements. If more counterswould
be available, an error of lessthan 5% is achievable.

The concept of event-driven energy accounting makes an
energy estimation possible that comes very close to the real
energy consumption. With 2 counters an error of less than
10% is found for compiler generated code. The accuracy is
just limited by the number of counters and not by the prin-
ciple itself.

3.4 Event Correlation for SDRAM

For the main memory we found out that the energy per main
memory transaction depends on the frequency of the memory
requests. The more we reference the main memory, the more
energy it consumes, but also the less energy is necessary per
memory transaction. This observation corresponds to the mea-
surements from the university of Delft, which reported that the
energy per transferred megabyte depends on the speed of the
CPU and, therefore, on the reference frequency aswell (see sub-
section 2.2).

400

3501 +—¢ 1 GB SDRAM (2 modules)
=—1 512 MB SDRAM (1 module)

300+

250
200+

Energy Valuein W/f

150

Wr——T 7T 71 1T 1 1 T "
0% 02% 04% 06% 08% 1% 12% 14% 1.6% 1.8%
Share of BUS TRAN_MEM
FIG. 8: Energy vaduesfor SDRAM in relation to the transaction frequency.

Beside the static energy consumption of 4.72 Watt per GB of
memory (512 MB modules) we see alinear correlation between
the energy per memory transaction that we can count by an event
counter and the frequency, these transactions happen (see Figure
8).The frequency is here expressed in relation to the clock fre-
guency. A 1% share of memory bus transaction means, that at
1% of the clock cycles we see a memory transaction. By period-
icaly (e.g., in the timer-interrupt handler) calculating the trans-
action frequency, we estimate the energy values per memory
transaction and can then estimate the dynamic energy consump-
tion of the main memory which could reach up to 3.3 Watt.

Applying this model to real-world applications leads to a very
precise estimation of the energy consumption with an error of
less than 3%.

Application Error or 3.3V (SDRAM)
ghostscript -2.76%

mpgl123 1.19%

make& gcc 0.83%

The accuracy of the energy estimation for memory depends
on the energy model we apply and should be provided by the
designer of the memory architecture. For SDRAM we found
a model that estimates the energy with an error of less than
3% by just requiring a single counter.

4 Energy-Aware Scheduling

To demonstrate the benefits of an event-triggered energy
accounting, we propose energy-aware scheduling strategies that
improve the battery capacity in mobile systems, reduce the
energy consumption, and throttle the average power in worksta-
tions and servers.

4.1 Improving the usable battery capacity

The operating system can improve the usable battery capacity
and consequently, the active life-time of a mobile device by a
battery-friendly operation mode. The capacity of a battery is
dominated by two factors: the load power and the intermittence
of discharge. The charge capacity isthe total amount of energy a
battery can deliver when discharged at a constant current, called
a 1C discharge rate, over a defined period (normally 1 hour)

The Case for Event—-Driven Energy Accounting

[19]. The discharge rate has a non-linear impact on the total
amount of power a battery can deliver. A typical lithium-ion bat-
tery hasthe following characteristics [13]:

A high discharge rate (e.g., >4C) can lower the usable battery
capacity to 70%-80%. Additionally, the usable battery capacity
can be shortened by an intermittent load. Duty cycles of 25% can
reduce the usable capacity by 40% compared to a continuous
load with the same average power [19].

Discharge Rate | Usable Battery Capacity
(Normalized to 1C Discharge Rate)
C/5 107%
Ci2 104%
1C 100%
2C 94%
4C 86%

Measurement of atypical browser application (netscape) shows
an extremely intermittent energy profile which is caused by the
fast processing of the arriving data and the high latency of the
network which implies a halt of the processor (see Figure 9).

— CPU (5V) power
— SDRAM (3.3V) power
CPU (5V) average power

f SDRAM (3.3V) average powerHj
[T
gl Iwu My

l

f T T T T
55 6.5 7 7.5
Timein Seconds
FIG. 9: Netscape browsing the Web

F—

Assuming a multithreaded browser that can hide network
latency by the processing of the data to be displayed, the most
battery-friendly execution mode would be a processor that is
running so slow that it never has to stop and wait for incoming
data. Consequently there are no abrupt changes in the energy
profile which are caused by halting and restarting the CPU.

A CPU with variable clock speed and voltage like Intel
XScale can be slowed down by the scheduler in order to
establish a steady load of a modest level which optimizes the
usable battery capacity. The energy accounting hasto be aware
of the influence of discharge rate and load intermittence on the
battery capacity and has to find the best trade-off between bat-
tery efficiency and energy efficiency of the consuming devices
(see next point).

4.2 Reduction of Energy Consumption

Whilethe motivation for energy reduction isobviousfor battery-
powered systems, servers are more and more becoming a target
for effortsin energy savings dueto therising cost of energy used
by computer systems and for energy used by the cooling system.
Also becoming important isthe cost of floor-space used for racks
which can only be populated sparsely with servers to guarantee
sufficient air-flow for cooling. On the other side, adenser server
population requires a more expensive cooling system.

4.2.1 Affinity scheduling

If the operating system monitors a high number of cache misses
after restarting athread (compul sory misses) it should extend the
time-slice of the thread to reduce the number of restarts. Addi-
tionally, scheduling strategies can respect the cache affinity of
individual threads [5, 29] and improve the cache reuse of threads
that use shared memory segments[3] in order to avoid bustrans-
actions and CPU stall cycles due to cache misses. In addition to
the improvement in performance all those memory-conscious
scheduling strategies mitigate the power consumption of a sys-
tem.

Looking at the power estimations for current embedded-core
generations like XScale we see a significant increase in the
amount the memory contributes to the system power.

HW-Component | Peak Power
Intel XScae

CPU Core 0.9 W@800MHz
0.45 W@600MHz

0.04 W@150MHz

Memory 32 MB | 0.4 W

Event counters which register cache-misses (like the two
counters found in the Intel XScale architecture) support
memory-conscious scheduling strategies which improve
energy efficiency.

4.2.2 Finding the optimal operation point

A high number of main memory references (e.g., bus transac-
tions related to main memory) and alow number of instructions
indicates that the speed of execution is dominated by the main
memory latency. Without noticeable performance degradation
the scheduler can improve the energy efficiency by throttling the
clock speed of the processor working on behaf of a latency-
bound application. By this means the clock frequency is kept at
such alow level that applications run closeto their optimal oper-
ation point (see section 2.2 and Figure 2) Application measure-
ments have demonstrated [18] that this operation point is appli-
cation- and parameter-dependant.

Counters that register cache-misses and events related to the
processor-internal execution of instructions provide infor-
mation for an on-line characterization of the currently run-
ning applications. This information is essential to run the
system at its optimal frequency for minimal energy con-
sumption.

The Case for Event—-Driven Energy Accounting

4.3 Throttling of Average System Power 20

— CPU power
4.3.1 Motivation Lh " 1 i 8 ‘
Not only the energy efficiency of a system is of importance, but £ 151 ﬂ * r ﬂ 7 i p r r f 1 F r
also the temporal distribution of the energy consumption. %
« With workstations a high energy consumption becomes an- %
noying if the noise of fans influences the work environment. 104
Therefore, many users ask for a system with passive cooling
but low-power components that operate continuously with
passive cooling offer the desired performance only at a high 54 h k Y h J h h W b u N k - h t W h J \
price, that is normally justified just for mobile systems.
. . : 0 02 04 06 08 1
» The higher the power requirements of a cluster of servers in Timein Seconds
a high-availability 24x7 environment the higher the cost of FIG. 10 :Throttling of a 17W applications down to 10 W average power

installation and maintenance of an uninterruptible power
supply consisting of batteries, converters and generators. 4.4 Throttling of an apache server

Both scenarios have the fact in common that costs arise becaus@Ur scenario for a practical deployment of throttling is an apache
we have to care for the rare case of peak energy consumption. Web server under load generated by the httperf load generator
In a workstation environment high computing power is only (see Figure 11). The four plots show the energy profile of an
used at short bursts. Most of the time the system is idle and does@Pache which has to establish 100, 200, 300 and 400 connection:
not need a noisy cooling system. per seconds and has to serve 5 identical requests at each conne
For high-available server systems the uninterruptible power sup- tion. With the minor load of 100, 200 and 300 connections per
ply has to be projected for the uncommon case of peak client second, you can even identify each single request. Because eacl

load in times of power outages. connection means a cold start for the cache, it is clear to us that
the first request consumes more than the remaining 4 requests
4.3.2 Principle of throttling However, we can not yet explain the effect that the second

requests still consumes more than the third.The average power
of an 50ms window rises from 7 Watts to 9 Watts, 11 Watts and
finally to more than 15 Watts.

Our approach to power throttling reduces the costs in both envi-
ronments. For workstations we employ affordable standard com-
ponents that normally rely on active cooling like fans. But we
throttle the system activity if the average energy use exceeds thePeploying the Joule Watchers energy accounting together with
predefined power-dissipation capacity of the passive cooling. In the power throttling scheduler we see that the server stays below
servers we throttle the system in the case of a power outage. Bythe configured 10W limit (see Figure 12).

this procedure the batteries and the generator of the uninterrupt-while we are very satisfied with the effect of throttling which
ible power supply (UPS) can be configured in much smaller guarantees a safe operation of a server system even under a
dimensions. emergency power supply, we note that the energy efficiency suf-

TheJoule Watcher energy accounting offers information about ~ fers from our simple throttling approach. While the energy per
the energy use with regards to individual threads as well as the@nswered request stays constant in the unthrottled system, we
whole system. If the average system-energy exceeds the rate thaf€ed 25% more energy per request in a intensively throttled sys-
guarantees a safe operation, the CPU is halted by the executiorféMm- The reason is the scheduling strategy, that prefers runnable
of the HLT-instruction. By halting the CPU for a short period of threads that are blocked for longer time. If a thread has to stop,
time the average system-energy diminishes. At the next interrupt Pecause the average system-power threshold is exceeded, th
another thread is chosen if the average system-energy lowSame thread is not chosen for restart. This leads to many more
enough so that the system is allowed to run again. Threads arecOmpulsory cache misses than in an unthrottled system.
ranked according to their priority and energy consumption in thel application | unthrottied | CPU | Energy per | throttied | CPU | Energy per
history. Highly interactive threads still can run, but low-priority Power | Request Power | Request
threads consuming a lot of energy become throttled so that th
system can dissipate enough heat or stays below the power
capacity of the UPS. Threads that have waited a long time wil| "ttperf 200 | 1000 947 10.00507J 940 971 1000564
be preferred because their average power use decays. httperf 300 | 1445 11.98 |0.00524J |790 9.93 [0.007J
We have implemented this policy on a Linux-2.4.0 system. The
basic operation of throttling is demonstrated on a compute intent
sive loop which would consume 17W without throttling. By Assuming precise energy accounting, throttling of a system
halting the CPU about twenty times per second we keep the aver-by halting the CPU is a viable approach to keep the average
age power below the given limit of 10 W (see figure 10). system power below a threshold. However, we have to focus
more on energy efficiency so that the system does not suffer
from energy-related side-effects of cache-inefficiency.

ttperf 100 | 500 7.27 |0.00574J |500 7.11 |0.00542J

httperf 400 | 1991 15.03 |0.005339J | 832 10.03 |0.0067J

The Case for Event—-Driven Energy Accounting 9

— CPU power
20 — 50 msaverage power

o3 annAuann aan Mann MamnMann s Mann g
VVVL\/"\H]\\J "VV\JU "‘lV‘o\} VV\,\j 'VVL\J VVV\/\} "VV\\J 'VV\f\} VVV\\J

Power in Watts Power in Watts Power in Watts Power in Watts
(6)]
|

20 —

s e e P e P e e P e e
10-_\/"WV ‘W WVVVVVVV AW vvw\/vv\;v il "VVVV"VVV Wy
> | ! | ! | ! | ! |

20 - V.

. MV ™
= RIRARARARIE wv A
5_

0.|19 | 0|.2 0.I21 0.|22 | 0.I23

Timein seconds
FIG. 11 :Unthrottled Apache (100-400 con/s* 5 reguests)

5] — CPU power
107 NW\/\ — 50 ms average power NWW
5/ : \-v-sf-/J : \'\wv-:r'\-/ | \'-—-\/s--/\/) \w—\/wj Noa—

15 —

lo_lmm\ M I\!\AAA /\l\nm\ /\l\/mn /\nm /\I\n/m Aann aad l\nmm /
JVVY VVV VVV\,\/VVVVL\}VVV

SN

N
o
I

=
(6]
]

=
o
]

o
I

Power in Watts Power in Watts Power in Watts Power in Watts
(6)]
|

2o N
oo v o
| P P

0.19 0.2 0.21 0.22 0.23
Time in Seconds

FIG. 12 :Throttled Apache to 10 Watt Limit (100, 200,300, 400 connection_attempts/s * 5 requests)

The Case for Event—-Driven Energy Accounting

5 Conclusion

The more the operating system knows what is going on inside
the hardware the moreit can adapt the execution of threadsto the
needs of the user. With the emergence of power-sensitive
devices, the operating system scheduler has to move from a
CPU-centric approach to activity control of all power related
components. Event-driven energy accounting and bhilling to a
resource principa isapromising approach to reach this goal.

Our approach to event-driven energy accounting has proved to
estimate the thread-specific energy consumption with high accu-
racy and without any overhead. The current implementation can
only use a small number of counters that were intended origi-
nally for performance profiling. If the operating system technol-
ogy isready to deal with avariety of countersin all locations of
the hardwareit isjust asmall step to embed new counterswhich
are exclusively devoted to energy accounting.

Future work will focus on an expansion of the concept of
resource containers to distributed and micro-kernd based sys-
tems. We want to improve the efficiency of our throttling tech-
nique and prove this approach in a data-center environment.
Finaly, we will improve the energy efficiency by an on-line
determination of the optimal operation point as soon aswe have
a variable speed/voltage systems offering event counter avail-
able.

We expect thread-specific speed settings in combination with
event-driven energy accounting to become an essential element
of future operating systems for power-sensitive devices

Acknowledgements

First, | would like to thank Trent Jaeger, my manager at IBM
T.J. Watson, for establishing the valuable contacts within IBM
research and to thank the SawMill team for providing a warm
and friendly research atmosphere.

Specid thanksto Chandler McDowell and Bishop Brock at IBM
ARL for their help and advise in power analysis.

References

[1] ANDERSON, J., BERC, L., DEAN, J., GHEMAWAT, S., HENZ-
INGER, M., LEUNG, S.-T., SITES, R., VANDERVOORDE, M.,
WALDSPURGER, C., AND WEIHL, W. Continuous profiling:
Where have al the cycles gone? ACM Transactions on
Computer Systems 15, 4 (Nov 1997).

[2] BANGA, G, DRUSCHEL, P,, AND MOGUL, J. Resource con-
tainers: A new facility for resource management in server
systems. In Proceedings of the Third Symposium on Oper-
ating System Design and Implementation OSDI’1999 (Feb
1999).

(3]

[4]

(5]

[6]

[7]

(8]

[9]

BELLOSA, F. Follow-on scheduling: Using tib information
to reduce cache misses. In Proceedings of the 16th Sympo-
sium on Operating Systems Principles SOSP’97, Work in
Progress Session (Oct 1997).

BELLOSA, F. The benefits of event-driven energy account-
ing in power-sensitive systems. In Proceedings of the 9th
ACM SIGOPS European Workshop (Sep 2000).

BELLOSA, F.,, AND STECKERMEIER, M. The performance
implications of locality information usage in shared-mem-
ory multiprocessors. Journal of Parallel and Distributed
Computing 37, 1 (Aug. 1996), 1-2.

BENINI, L., BoGLIOLO, A., CAVALLUCCI, S.,AND RicCo, B.
Monitoring system activity of os-directed dynamic power
managament. |Rroceedings of the International Sympo-
sium on Low-Power Electronics and Design ISLPED 98
(1998).

BROWNE, S., DONGARRA, J., GARNER, N., LONDON, K.,
AND Muccl, P. A scalable cross-platform infrastructure for
application performance tuning using hardware counters. In
Proceedings of the Conference on Supercomputing

SC 2000 (Nov 2000).

CHASE, J.,AND DoYLE, R. Balance of power: Energy man-
agement for server clusters. Broceedings of the Eighth
Workshop on Hot Topic in Operating Systems HotOS’2001
(May 2001).

ELLIS, C. The case for higher level power management. In
Proceedings of the Seventh Workshop on Hot Topic in
Operating Systems HotOS’1999 (Mar 1999).

[10] FLINN, J., AND SATYANARAYANAN, M. Energy-aware

adaption for mobile applications. |Broceedings of the
17th Symposium on Operating Systems Principles SOSP 99
(Dec 1999).

[11] GoviL, K., CHAN, E., AND WASSERMANN, H. Comparing

algorithms for dynamic speed-setting of a low-power cpu.
In Proceedings of the 1st Conference on Mobile Computing

and Networking MOBICOM 95 (Mar 1995). also as techni-
cal report TR-95-017, ICSI Berkeley, Apr. 1995.

[12] HONG, I., POTKONJAK, M., AND SRIVASTAVA, M. On-line

scheduling of hard real-time tasks on variable voltage pro-

cessor. InProceedings of the International Conference on
Computer-Aided Design ICCAD 98 (Nov 1998).

[13] INTEL. Mobile Power Guidelines 2000 Rev 1.0, Dec 1998.

[14] INTEL. Intel 80200 Processor based on Intel XScale

Microarchitecture, Nov 2000.

[15] INTEL. Intel SpeedStep Technology, Jan 2000.

[16] INTEL, AND ANF TOSHIBA, M. Advanced Configuration and

Power Interface Specification 1.0b, Feb 1999.

The Case for Event—-Driven Energy Accounting

11

[17] MARTIN, T., AND SIEWIOREK, D. A power metric for mobile
systems. In Proceedings of the International Symposium on
Low-Power Electronics and Design ISLPED 96 (1996).

[18] MARTIN, T., AND SIEWIOREK, D. The impact of battery
capacity and memory bandwidth on cpu speed-setting: a
case study. In Proceedings of the International Symposium
on Low-Power Electronics and Design ISLPED’99 (Aug
1999).

[19] MARTIN, T.L. Balancing Batteries, Power and Perfor-
mance: System Issues in CPU Speed-Setting for Mobile
Computing. PhD thesis, Department of Electrical and Com-
puter Engineering, Carnegie Mellon University, 1999.

[20] MARTONOSI, M. Power-performance modeling, analyisand
validation. Tutorial at the HPCA'2001, Jan 2001.

[21] MicrosoFT. Windows power management:instant pc avail-
ability and energy savings. White Paper, March 2001.

[22] Muccl, P. The performance api papi. White Paper of the
Univeristy of Tennessee, http://icl.cs.utk.edu/projects/papi/
, March 2001.

[23] NEUGEBAUER, R., AND MCAULEY, D. Energy is just
another resource: Energy accounting and energy pricing in
the nemesis 0s. |Broceedings of the Eighth Workshop on
Hot Topic in Operating Systems HotOS’2001 (May 2001).

[24] PeRING, T., AND BRODERSON, R. Energy efficient voltage
scheduling for real-time operating systemsPinceedings
of the 4th IEEE Real-Time Technology and Applications
Symposium RTAS 98, Work in Progress Session (Jun 1998).

[25] POUWELSE, J., LANGENDOEN, K., AND SIPS, H. Dynamic
voltage scaling on a low-power microprocessor.’ha-
ceedings of the International Symposium on Mobile Multi-
media Systems & Applications MMSA°2000 (November
2000).

[26] RAJAMONY, R., BOHRER, P., BROCK, B., B.NOZAHY, E.,
KELLER, T., AND LEFURGY, M. K. C. The case for power
management in web servers. Tech. rep., IBM Austin
Research Laboratory, Nov 2000.

[27] TRANSMETA. The Technology behind Crusoe Processors,
Jan 2000.

[28] WEISER, M., WELCH, B., DEMERS, A., AND SHENKER, S.
Scheduling for reduced cpu energy.Hroceedings of the
First Symposium on Operating System Design and Imple-
mentation OSDI’94 (Nov 1994).

[29] WEISsMAN, B. Performance counters and state sharing
annotations: a unified approach to thread locality?to-
ceedings of the Eighth International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems ASPLOS 98 (Oct 1998).

The Case for Event—-Driven Energy Accounting

12

	1 Introduction
	2 Energy-Related Characteristics of System Components
	2.1 Processor/Memory/Interconnection Technology
	2.2 Variable Clock Speed and Variable Voltage
	2.3 I/O Technology
	2.4 Unpredictability of Applications
	2.5 The need for on-line energy accounting
	2.6 The need for resource containers

	3 Joule Watcher Energy Accounting
	3.1 Measurement Methodology
	3.2 Fallacies and Pitfalls
	3.3 Accuracy of Event-Driven Energy Estimations
	3.4 Event Correlation for SDRAM

	4 Energy-Aware Scheduling
	4.1 Improving the usable battery capacity
	4.2 Reduction of Energy Consumption
	4.2.1 Affinity scheduling
	4.2.2 Finding the optimal operation point

	4.3 Throttling of Average System Power
	4.3.1 Motivation
	4.3.2 Principle of throttling

	4.4 Throttling of an apache server

	5 Conclusion

