
Frank Bellosa

The Case for
Event-Driven Energy Accounting

Technical Report TR-I4-01-07

Distributed Systems and Operating Systems
Department of Computer Science 4

Friedrich-Alexander-Universität
Erlangen-Nürnberg
TECHNISCHE FAKULTÄT

* Frank Bellosa was on sabbatical as an academic visitor of the SawMill group at
the IBM Watson Laboratory from November 2000 to April 2001.
The implementation and measurements were supported by the IBM Austin
Research Laboratory .

Frank Bellosa*

'HSDUWPHQW�RI�&RPSXWHU�6FLHQFH��2SHUDWLQJ�6\VWHPV���8QLYHUVLW\�RI�(UODQJHQ��

0DUWHQVVWU�����������(UODQJHQ��*HUPDQ\

EHOORVD#FV�IDX�GH

Energy management requires a precise knowledge of the pat-
terns of energy use. Not only knowing where the energy has been
spent is important but also knowing who was responsible for the
use of energy.
The resolution of power measurement equipment like current
meters or smart battery interface is neither sufficient to identify
the hardware unit consuming the energy nor to identify the orig-
inator (HQHUJ\�SULQFLSDO) of a specific hardware activation. Our
measurements have also demonstrated that timing data, the
source of information used in current operating systems, is not
adequate to estimate the use energy consumption, because the
power depends on the patterns for the use of specific functional
units.

To investigate energy usage patterns we strongly encourage the
use of embedded hardware monitors (e.g., processor perfor-
mance counters) that have also proven to offer valuable informa-
tion in the field of performance analysis. We use information
about active hardware units (e.g., instruction decoder, memory
management unit, cache-/memory-interface) gathered by event
counters to establish a precise and energy principal-specific
energy accounting.
By showing the correlation of events and energy values we can
provide the necessary information for energy-aware scheduling
policies that go far beyond the capabilities of the state of the art
power management standards like ACPI. While the aspect of
energy saving by driving the system at its optimal operation
point is important in mobile devices, the aspect of client- and
service-specific throttling is vital in data-centers where servers
have to provide mission critical services even when running
under an emergency power supply in times of (rolling) black
outs.
An implementation of the proposed event-driven energy
accounting using a Linux/x86 system and extensive measure-
ments prove the concept.

� ,QWURGXFWLRQ

Without energy the processing and transport of data is impossi-
ble. Nonetheless the measurement, accounting, and management
of energy has been widely unattended in the field of systems
research. With the emergence of portable and wireless devices
and with the energy crisis affecting data centers and server-farms
in many parts of the United States we are suddenly facing a ris-
ing awareness for the topic of energy management.

This paper contributes to this awareness and initiates a new
phase in the evolution of OS power management. To better clas-
sify our approach we describe the previous phases:

(1) The operating system analyzes the active and idle times
of a device (e.g., CPU, hard disk or display) and makes
assumptions about the future use of the device. Based on
these assumptions the, OS decides when a HW-compo-
nent should switch its power-state to a low-power mode.
These power-modes differ in their energy savings, the
time to switch the power state, and the energy that is nec-
essary to perform this change of state. These simple heu-
ristic policies only affect the behavior of applications by
the latency to switch to an active mode or the perfor-
mance in a low-performance active mode. Because they
affect the behavior of devices on a system wide-scope,
these policies resemble centrally-planned economies that
neglect the individual demands and characteristics of the
objects (e.g., applications serving a request) affected by
the decisions. These policies have no knowledge of the
usage patterns and demands of a specific application.
Consequently, they cannot optimize their strategy such
that some low-priority applications suffer from higher
latencies while other high-priority tasks are not signifi-
cantly affected. An example of this type of power man-
agement is found in Windows2000 [21] using ACPI [16].

(2) Having several HW-components available that can fulfill
the same service offers a further chance to influence the
energy consumption. By focusing the load on a subset of
the components (load consolidation), we generate idle
components that can be set into a low-power state.
Especially in clustered environments with nearly state-
less systems which process short term requests, this
approach of energy saving is effective and can easily be
realized by an energy-aware load distribution mecha-
nisms [8]. A typical representative of these environments
are web-server farms with diskless compute nodes and
network-attached storage devices. Here the compute
nodes are the targets for load consolidation. However,
this approach does not apply to complex services consist-
ing of several interdependent sub-services which built up
some state (e.g., file-locking, transactions) while answer-
ing request-sequences.
We see a consolidation technique that has been success-
fully applied to fail-safe, hot-swappable computer archi-
tectures for more than 20 years as a good candidate for
power-savings in server systems. In these systems, built
as shared-memory multiprocessor or single-chip multi-
processor architectures, tasks can easily be moved to
another CPU due to the common memory. In this way we

7KH�&DVH�IRU�(YHQW±'ULYHQ�(QHUJ\�$FFRXQWLQJ

The Case for Event–Driven Energy Accounting 2

can consolidate the load and shutdown some of the pro-
cessors even when complex state in the common memory
has been established.

(3) The last step in the evolution of power management is a
renouncement from a system centric approach to an
energy management, that rules according to the individ-
ual characteristics of applications, the demands of spe-
cific requests and the energy related status of the whole
system. According to our economic analogy of (1) this
approach resembles more a social market economy.
Because the operating system has the complete knowl-
edge where the energy has been spent, who was respon-
sible for the use of energy and what are the individual
demands, power management can find a trade-off
between energy consumption and quality of service
demands. Examples are the task-specific control of the
CPU speed and voltage under consideration of the task’s
quality-of-service demands (a potential scenario for the
Intel XScale architecture [14]), the delay of certain
requests to reduce the number of energy-expensive
power-up state-transitions of HW-components (see [26]
of IBM ARL) or the throttling of specific activities with
respect to quality-of-service/environmental/cooling/
energy-supply demands (see section 4).

This paper of the OS-research group of the University of Erlan-
gen belongs to the third phase in power management research.
Section 2 describes the energy-related behavior of hardware-
components like processor-core, caches, main-memory and I/O
devices and motivates our approach for event -driven energy
accounting called Joule Watchers that was introduced in [4].

Section 3 details the Joule Watchers energy accounting system
and addresses the fallacies and pitfalls we encountered. We iden-
tify the limitations of the approach and sketch architectural
improvements that increase the fidelity of Joule Watchers. The
first results of an implementation on an x86 architecture are pre-
sented.).

In Section 4 we propose some on-line scheduling policies that
rely on the precise energy accounting of Joule Watchers. The
benefit of one of the policies is demonstrated by an implementa-
tion and energy measurements with a high-resolution data-
acquisition system. Here we can show that the power of a server
system can be throttled so that the average power within a time
window of 50 milliseconds will never exceed a given threshold.
This type of throttling might become vital for data centers which
have to provide 24x7 services even when running under an
emergency power supply.
We summarize with a description of some future projects of our
group.

� (QHUJ\�5HODWHG�&KDUDFWHULVWLFV�RI�
6\VWHP�&RPSRQHQWV

��� 3URFHVVRU�0HPRU\�,QWHUFRQQHFWLRQ�7HFKQRORJ\

In semiconductor technology, energy is (very simplified) used
whenever current is flowing due to leakage or due to loading/
deloading of capacitors triggered by transistor switch operations.
The leakage current depends on static parameters like time, volt-
age and properties of the semiconductors. In addition to these
static parameters the dynamic energy consumption depends on
the switching frequency of the transistors and the size of the
capacitors.
If we want to identify those parts of a system architecture which
contribute significantly to the total energy consumption, we have
to look at those parts containing most of the capacitors and those
with the highest switching frequencies:

• The processor core executing algorithmic, logical, or control
flow operations consumes energy depending on the switch-
ing activity within the essential functional units. As the basic
activity of the CPU core proceeds in clock cycles, we expect
some relation between energy consumption and clock fre-
quency. However, a major part of the activity depends on the
type of instructions and their operands. Therefore, we have
to keep an eye on the activity of each functional unit.

• If a memory management unit (MMU) is used in a computer
architecture for reasons of mapping and protection, the
MMU will contribute significantly to the energy consump-
tion as it built up from full associative memory that is access-
ed whenever memory is referenced. Therefore, the energy
consumption might depend on the memory-reference pat-
terns of the executed software.

• Caches contribute to static energy consumption depending
on their size but also to dynamic energy consumption de-
pending on the frequency of cache references and the asso-
ciativity of the cache indexing algorithm. The higher the as-
sociativity, the more cache-tags have to be compared at each
cache reference.

• Main memory built out of dynamic memory cells (DRAM)
is build up of capacitors to store information. We expect it to
contribute to the static energy consumption depending on the
size of memory.
For each memory request. the data has to be transferred from
the addressed memory cell to an intermediate buffer within
the memory chip before it is transferred over the interconnec-
tion network (e.g., a bus system) to the requesting device
(e.g., the CPU or an DMA capable I/O device). Therefore,
we see a dynamic energy consumption of DRAM as well.
Advanced memory modules (e.g., RDRAM) also offer sev-
eral low-power states which differ in the latency to re-acti-
vate the memory module again. In a low-power state some
parts of the address-logic and the bus connectors of the mod-
ule are shut down. This saving in passive energy consump-
tion has to be paid by a higher access latency.

• The interconnection network (e.g., the bus system) contrib-
utes mainly to the dynamic energy consumption as the capac-

The Case for Event–Driven Energy Accounting 3

itance of the bus-lines has to be loaded/unloaded at each bus
cycle. Therefore, we expect an energy consumption which is
related to the activity level of the interconnect.

We have measured the energy consumption of a Pentium III 866
system with 1 GB RAM to determine the variation in power of
the processor and the memory. During all tests the processor was
always busy. We ran several simple loops that involve different
functional units. An arithmetic test doing arithmetic operations
(additions) with all operands in register. We ran two tests to
investigate the influence of predicted and misspredicted
branches on the energy consumption. One of the test heavily
triggers the memory management unit, by steadily saving/restor-
ing the registers to/from the stack. Finally we ran three tests
which write data to the caches and the memory.

The PC system shows a variation in the power at the 5V voltage,
that is converted to 1.65V to supply the CPU, from 16.43 Watt
up to 23.05 Watt (see Figure 1). If the main memory is involved
heavily, the 3.3V power which supplies the SDRAM rises from
4.73 W to 8.03 W.

At the first glance we see, that the energy consumption of a sys-
tem depends on more parameters than just the time. The power
of the processor and the memory varies by more than 50%.

,I�WKH�SRZHU�PDQDJHPHQW�VROHO\�UHOLHV�RQ�WLPLQJ�LQIRUPDWLRQ

WR�PDNH� GHFLVLRQV�� WKH� SRZHU� HVWLPDWLRQ� FDQ� EH�ZURQJ� E\

����� 7KH� NQRZOHGJH� RI� WKH� LQYROYHG� +:�FRPSRQHQWV� LV

HVVHQWLDO�WR�GHWHUPLQH�WKH�SRZHU�RI�D�V\VWHP�

��� 9DULDEOH�&ORFN�6SHHG�DQG�9DULDEOH�9ROWDJH

A genuine saving in energy is possible with processors that offer
the feature of tunable clock speed to reduce the power of the pro-
cessor. The CPU speed and a dynamically adapted supply volt-
age change the energy performance [28, 11, 17, 24]. Neglecting
the impact of external effects on CPU performance (e.g., mem-
ory latencies, bus contention) the energy per operation remains
constant when reducing the frequency at a fixed voltage. How-
ever, the energy per operation is proportional to , if frequency
and voltage is changed by a factor within the allowable limits

of operation.
Particularly the academic results concerning variable voltage
design have been applied to latest products (Intel XScale, Intel
Mobile III [15], Transmeta Crusoe [27], AMD K6+ with Power-
Now). According to this assumption the processor runs more
efficiently at the lowest possible speed and voltage. However,
this assumption does not hold, if we look at main memory, which
is driven by a fixed voltage and that benefits concerning energy
efficiency from requests within the same address range, because
each memory reference involves a complete fetch of a memory
row into a row-buffer. If data from the same row is referenced
within a short period of time the memory operation is more
energy efficient. Therefore, memory benefits from a fast proces-
sors in terms of energy consumption, because a faster processor
can issue more memory operations. To demonstrate these
effects, we show some data that has been gathered with a Stron-
gARM SA-1100 system, which was designed to run at variable
speed and voltage [25]. If we look at the power-curves of the
variable speed processor running a bandwidth test (see Figure 2),
we see that the energy per megabyte is the lower, the slower the
CPU is running. On the other side. the energy of the memory to
copy data is higher if the CPU is running slowly.

In conclusion we can say that there is an optimal operation point
near 142 MHz where the energy of the whole system, running
the memory bandwidth test, is minimal. That means, that
depending on the memory reference patterns of the application,
the optimal operation point is between the minimal frequency
and 142 MHz.
&RQVHTXHQWO\� WKH� RSWLPDO� IUHTXHQF\� IRU� PLQLPDO� HQHUJ\

FRQVXPSWLRQ� RI� D� YDULDEOH� VSHHG�YROWDJH�&38� FDQ� RQO\� EH

GHWHUPLQHG�� LI� WKH�PHPRU\�UHIHUHQFH� FKDUDFWHULVWLFV� RI� WKH

DSSOLFDWLRQ�LV�NQRZQ�

ar
ith

m
et

ic
 o

n
re

gi
st

e
rs

br
an

ch
 p

re
di

ct
ed

br
an

ch
 m

is
sp

re
di

ct
ed

pu
sh

_p
op

L1
 c

ac
he

 w
rit

e

L2
 c

ac
he

 w
rit

e

m
em

or
y

w
rit

e
ca

ch
ed

0

2.5
5

7.5

10
12.5

15
17.5

20

22.5
25

27.5

30 5V Board 3.3 V SDRAM

FIG. 1 : PC Board (PIII 866, 1 GB) Power Breakdown

P
ow

er
 in

 W
at

t

s2

s

FIG. 2 : Energy breakdown for memory read (SA-1100 with 32 MB of
EDO RAM) Measurements of the University of Delft [25]

The Case for Event–Driven Energy Accounting 4

��� ,�2�7HFKQRORJ\

Most of the I/O devices have an energy characteristics that differ
from the above-mentioned HW-components. Besides active
energy consumption which depends mainly of the number of I/
O requests, there is a static part which depends on the power
state of the device.

In addition to the increased latency to access a device and the
energy costs to reactivate the device (e.g. spin-up of a hard-disk
see Figure 3), there is an additional penalty in energy consump-
tion which is neglected in most of the simulation-based research
project of the past.
1RW�RQO\� WR�ZDNH�XS�D�GHYLFH� IURP�D� ORZ�SRZHU� VWDWH��EXW

DOVR� WR� VZLWFK� D� GHYLFH� WR� D� ORZ�SRZHU� VWDWH� FDQ� FRQVXPH

HQHUJ\�

One example is the head-lock mechanism of a hard-disk, that has
to grip and lock the disk-head after the disk has spun down (see
Figure 4).
An other example for power-down energy consumption is the
protocol between a wireless network adaptor and the base station
to inform the base station that it has to buffer incoming packets,
while the network adaptor is powered-down for some seconds.

��� 8QSUHGLFWDELOLW\�RI�$SSOLFDWLRQV

The previous subsections made clear that we have to know
which usage patterns for the various functional units and HW-
components a certain software is featuring.

It would be pleasing if we could characterize an application in
advance to give the power management a hint concerning the
application’s energy characteristics. A first approach was the
measurement and classification of applications and parts of
applications according to energy-usage patterns [6, 9]. For sim-
ple loops with a very regular behavior, this seems to be possible,
but a short look (see Figure 5 and 6) at the energy profile of an
single real-world application like a postscript interpreter or
Acrobat reader eliminates any hope that energy profiles can be
predefined in general.

The 5V plot for the CPU and the 3.3V power plot for the memory
shows, that for a ghostscript interpreter that converts a postscript
file into PCL printer code, phases of high CPU demand, change
with phases of medium CPU demands but high memory
demands. The length, type and number of these phases depends
on the content of the postscript file to be converted. The same
observation can be done with the Acrobat reader, where the time
and energy-curve to present a new page of the PDF-file depends
on the content of the page, especially on the fact, how many
complex pictures were embedded.

&RQVHTXHQWO\�D�SUHGHILQLWLRQ�RI�DQ�DSSOLFDWLRQ¶V�HQHUJ\�SUR�

ILOH�LV�QRW�SRVVLEOH�LQ�JHQHUDO�

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Zeit in 0,25 s

L
ei

st
un

g
in

 W
at

t

t
1
= 5s t

2
= 11,5s

6,5 s

FIG. 3 : Power consumption of an IBM DTNA-22160 disk spinning up.

P
ow

er
 in

 W
at

t

Time

ide-command
high-performance
idle mode

low-performance
idle mode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Zeit in 0,25 s

L
ei

st
un

g
in

 W
at

t

14 s

t
2
= 19 st

1
= 5 s

FIG. 4 : Power consumption of an IBM DTNA-22160 disk spinning down.

Head-Lock

standby-immediate command

Time

P
ow

er
 in

 W
at

t

0 0.5 1 1.5 2 2.5 3
Time in Seconds

5

10

15

20

P
ow

er
 in

 W
at

ts

CPU (5V) power
SDRAM (3.3V) power

FIG. 5 : Ghostscript: Postscript -> PCL

7.5 8 8.5 9 9.5
Time in Seconds

5

10

15

20

Po
w

er
 in

 W
at

ts

CPU (5V) power
SDRAM (3.3V) power

FIG. 6 : AcrobatReader: every page shows different behavior.

first page second page

The Case for Event–Driven Energy Accounting 5

��� 7KH�QHHG�IRU�RQ�OLQH�HQHUJ\�DFFRXQWLQJ

As the predefinition of an applications energy profile is not
known in advance we need some on-line measurements. By
employing a digital multimeter [10] an accurate power analysis
is nearly impossible due to the inertia of the voltage regulator
associated to the processor and the inertia of the multimeter’s
measurement unit.
A novel approach to on-line energy profiling should consider the
power-related effects of each functional unit without significant
influence on the execution of the target system. In section 2.1 we
have shown, that the energy consumption depends on the num-
ber of activations and the individual characteristics of the HW-
components. Our approach to on-line energy accounting uses
counters embedded in the target hardware to register events that
imply the consumption of a certain amount of energy. :H�ZLOO

VKRZ� WKDW� FRXQWHU� YDOXHV� VWURQJO\� FRUUHODWH� WR� D� VSHFLILF

HQHUJ\� FRQVXPSWLRQ�� VR� ZH� KDYH� IRXQG� D� FKHDS� DQG� HDV\

PHWKRGRORJ\�IRU�SRZHU�FRQVXPSWLRQ�PRQLWRULQJ�

As activity counters are not found in almost all of the I/O devices
and the power-state of these devices can change due to internal
device policies, the operating system has no chance to count pre-
cisely the number of state transitions. For example many hard
disks switch automatically after a time-out of several hundred
millisecond from a high-performance idle-mode to a low-perfor-
mance idle-mode without any notification to the operating sys-
tem.

7KHUHIRUH��ZH� UHFRPPHQG� WR� HPEHG� VRPH� FRXQWHUV� WR� ,�2

GHYLFHV�OLNH�KDUG�GLVNV�DQG�ZLUHOHVV�QHWZRUN�DGDSWRUV�WR�VXS�

SRUW�WKH�26�LQ�FRXQWLQJ�HQHUJ\�H[SHQVLYH�WUDQVLWLRQV�RI�WKH

GHYLFH¶V�SRZHU�VWDWH.

As event counters are not yet available in I/O devices we will
focus in the next sections on the use of event counters found in
advanced processor architectures. However, the results are not
limited to processors and memory-components. They can be
transferred to the field of I/O as well.

��� 7KH�QHHG�IRU�UHVRXUFH�FRQWDLQHUV

Previous work in the field of dynamic power management [12,
24, 28] focus on adjusting the power management parameters in
intervals. This approach is motivated by deadline driven real-
time strategies with a predefined workload but it does not apply
to interactive devices running unknown - maybe dynamically
loaded - software, or server systems with workloads that depend
on the input data of the client.
7KHUHIRUH��D�QRYHO�DSSURDFK�KDV�WR�VXSSRUW�WKUHDG�VSHFLILF

RU� UHTXHVW�VSHFLILF� HQHUJ\� DFFRXQWLQJ� EHFDXVH� WKH� HQHUJ\�

VSHFLILF�SURSHUWLHV�DUH�QRW�NQRZQ�LQ�DGYDQFH��

Our first approach was system support for thread-specific energy
accounting [4] to account and control each thread individually in
the time-sharing operating system Linux. Later process specific
energy accounting has been successfully applied to the quality-
of-service aware operating system Nemesis [23].
At the implementation of process-specific energy accounting in
power management (see also section 4.3) we realized that the
notion of a thread of control as a resource principal is not ade-

quate for a server thread consuming the resource “energy” while
answering requests from different clients. E.g., for a web server
of a company, one energy principal might be responsible for the
energy used to answer internal requests, while another energy
principal is responsible for external requests. With different
resource principals for the same group of threads you can differ-
entiate between different operation modes. While a thread might
run in the most energy efficient way for answering external
requests with lower latency demands, the same thread will run in
an energy inefficient way to answer critical internal requests. By
supporting the concept of resource containers [2] we can account
and schedule a thread according to the container it is acting for.
7KH�DEVWUDFWLRQ�RI�UHVRXUFH�FRQWDLQHUV�VHSDUDWHV�WKH�QRWLRQ

RI� D� VFKHGXOLQJ� HQWLW\� IURP� WKDW� RI� D� UHVRXUFH� SULQFLSDO�

$SSOLHG� WR� HQHUJ\� LW� HQDEOHV� ILQH�JUDLQHG� HQHUJ\�PDQDJH�

PHQW�LQ�FOLHQW�VHUYHU�HQYLURQPHQWV�DOORZV�WKH�SDUWLWLRQLQJ�RI

WKH�V\VWHP�LQ�HQHUJ\�GRPDLQV�ZLWK�GLIIHUHQW�SRZHU�PDQDJH�

PHQW�SROLFLHV.

� -RXOH�:DWFKHU�(QHUJ\�$FFRXQWLQJ

The principle of Joule Watcher follows the observation that
many of the events which are countable by performance moni-
toring counters correlate to some activity of the functional units
of a processor. An activation of a functional unit should show a
characteristic energy consumption. Now the challenge is to find
appropriate events and to correlate them to energy values.

��� 0HDVXUHPHQW�0HWKRGRORJ\

Our initial target environment is a simple Pentium III 866 MHz
PC running a Linux 2.4.0 operating system. Context switch rou-
tines and kernel data structures are modified to hold the values
of the two available performance-monitoring event counters.
These counters are realized in the P6 family as registers and can
be configured to count one of several events. The accumulated
counter values can be accessed though the /proc-file system. To
ease the implementation we base on the Performance API
(PAPI) from the University of Tennessee [7, 22] that already
offers interfaces to configure and read the event counters.
To find the correlation of events and energy values, synthetic
micro-benchmarks trigger events of a certain type and frequency
for several seconds, while a data acquisition system from
National Instruments (DAQ SCXI-1102C) measures the voltage
at 1mΩ and 10mΩ 4-pin sense resistors attached to the power
supply for the voltages of 5V and 3.3V.
In this way, we measure both the current and the voltage for the
two supply voltages and we can determine the power by multi-
plying both values. While sampling at 20 kHz we get a resolu-
tion of 24.5 mW at 5V and 1.6 mW at 3.3V. To synchronize the
sampling with special kernel events, we trigger the data acquisi-
tion system with rising edges sent by the parallel port of our tar-
get system. The data acquisition, streaming to disk, data explo-
ration and integration is done with LabVIEW. The plots are gen-
erated with the GRACE tool from the Weizmann Institute, Israel.

We configure the counters to register specific events, run the
micro benchmarks and measure the power consumption. So we

The Case for Event–Driven Energy Accounting 6

get a set of equations with event numbers (L�M and total power
values 3L.

(1)

Solving this set of equations gives us energy values 9�..9Q.

There are some events which contribute significantly to the
energy consumption. The main events are the clock cycles, the
retired instructions, the memory references leaving the CPU core
and the number of cycles during which the back-side bus, con-
neting the CPU with the second level cache, was busy.

In Figure 7 we have expressed the energy values in relation to the
clock-frequency of the CPU in order to make them independent
of the CPU speed. An energy value of 16.9 means, that it con-
tributes to a power of 16.9 Watt, if the event happens at the same
frequency as the clock speed. If the event just happens every 4th
clock cycle, it contributed with 16.9/4 Watts to the power of the
processor.

���)DOODFLHV�DQG�3LWIDOOV

If an event involves the activation of several functional units, we
see a high variation in energy consumption, if not all of these
units are involved every time, the event happens.

Our first approach was to use several training applications to
trigger events and determine the weights using the least-squares
error. This methodology is exactly the same proposed in [20].
The training applications (micro benchmarks, but also GNU

tools like gcc, make, and ghostscript) were generated by the gcc
compiler. The results were very promising and showed small
errors for the estimation of other applications. When we added
some floating point intensive code (like mpg123) we received
negative energy values for the floating point events. As we can-
not produce energy by using floating-point instructions, there
had to be some “flaw” in our methodology.

We wrote some assembler routines, which trigger specific events
with the highest possible frequency and which try to trigger as
few types of other events as possible. The first micro bench-
marks just makes calculations on registers, another micro bench-
mark reads/writes data to the first-level cache, then we produce
first-level cache misses to trigger the second-level cache and so
on. At the end we got a lower-triangle matrix like in equation (2).

(2)

We built several sets of microbenchmarks. Each set was suffi-
cient to solve the set of equations. We did not compute the
energy values using least-squares errors.

Our pitfall was that we assumed that whenever an address is cal-
culated by the MMU to write data, the data is really written to
the first-level cache. This assumption does not hold. The store
buffer of the CPU acts like a write-back, level-zero cache. If data
is read shortly after it was written and the same memory address
is later-on the target for a write operation, it seems to be that the
data is never transferred to the first-level cache. A write/reclaim
to the store buffer consumes less energy than a write/read to the
first-level cache. The energy consumption of an application per-
forming frequent push-pop operations to the cache or applica-
tions which use the cache very intensively for holding interme-
diate results, as it typically does x86 floating point code because
of the small number of floating point registers, consume there-
fore less energy for data memory references, because just the
MMU is just involved, but not the first-level cache. However,
applications working intensively on a small working set which
fits into the first-level cache, but not in the small store buffer
consume significantly more energy. The difference makes up a
factor of 3 in energy consumption per event and can contribute
to an error of up to 33% for some code.

Therefore, we recommend solving the set of equations directly
with multiple sets of training applications, where training appli-
cation which triggers the same event should be in different train-
ing sets. This procedure does not lead to more precise energy
values, but covers up weaknesses in the selection of events or
architectural features that are not covered by the available events
as we have shown in our example with the data memory refer-
ences.

Type of event Maximum occurrence
in% of clock cycles

Energy value Maximum power
contribution

CLK_UNHALTED 100% 11.2 11.2 W

INST_RETIRED 250% 0.74 1.85 W

DATA_MEM_REFS 49%/ 78% 16.9/10.1 8.28 W

L2_DBUS_BUSY 25% 13.8 3.45 W

E1 1, E1 2, ... E1 n,

E2 1, E2 2, ... E2 n,

...

En 1, En 2, ... En n,

V1

V2

...

Vn

P1

P2

...

Pn

=

11.2

0.74

16.9

13.8

CPU_CLK_UNHALTED

INST_RETIRED

DATA_MEM_REFS

L2_DBUS_BUSY
0.0

5.0

10.0

15.0

E
ne

rg
y

in
 W

at
t/

C
lo

ck
_f

re
qu

en
cy

Energy-Value per HW-activation event

FIG. 7 : Energy values of PIII 866 PGA370 with 256 KB on-die L2-cache.

E1 1,

E2 1, E2 2,

...

En 1, En 2, ... En n,

V1

V2

...

Vn

P1

P2

...

Pn

=

The Case for Event–Driven Energy Accounting 7

��� $FFXUDF\�RI�(YHQW�'ULYHQ�(QHUJ\�(VWLPDWLRQV

With the energy values we derived from the training applica-
tions, we estimated the energy consumption of real-world appli-
cations, which are mostly compiler generated and do not show
up extreme behavior like some assembler routines.

We calculated the energy consumption for all applications just
on the basis of 2 events. The Pentium III CPU can count two
independent events. However, we have to switch to another
event type between application runs, if we want to count more
than 2 events. For those applications, where the run of the appli-
cations can be repeated exactly, we modified the event types
between the runs and counted up 5 different relevant events.
As the behavior of real-world applications in contrast to numer-
ical loops, varies heavily over time, random sampling of the
counters with different configured event types [1] does not apply
to on-line energy profiling, because the results have to be evalu-
ated within short time (scheduling cycles see section 4) and the
application behavior is not constant (see subsection 2.4)

The error-values show the correlation between the extra mea-
surements and the estimation by using event counters. With just
the available 2 counter found in the Pentium III hardware, we
come close to 10% to the measurements. If more counters would
be available, an error of less than 5% is achievable.

7KH� FRQFHSW� RI� HYHQW�GULYHQ� HQHUJ\� DFFRXQWLQJ� PDNHV� DQ

HQHUJ\�HVWLPDWLRQ�SRVVLEOH�WKDW�FRPHV�YHU\�FORVH�WR�WKH�UHDO

HQHUJ\�FRQVXPSWLRQ��:LWK���FRXQWHUV�DQ�HUURU�RI� OHVV�WKDQ

����LV�IRXQG�IRU�FRPSLOHU�JHQHUDWHG�FRGH��7KH�DFFXUDF\�LV

MXVW�OLPLWHG�E\�WKH�QXPEHU�RI�FRXQWHUV�DQG�QRW�E\�WKH�SULQ�

FLSOH�LWVHOI�

��� (YHQW�&RUUHODWLRQ�IRU�6'5$0

For the main memory we found out that the energy per main
memory transaction depends on the frequency of the memory
requests. The more we reference the main memory, the more
energy it consumes, but also the less energy is necessary per
memory transaction. This observation corresponds to the mea-
surements from the university of Delft, which reported that the
energy per transferred megabyte depends on the speed of the
CPU and, therefore, on the reference frequency as well (see sub-
section 2.2).

Beside the static energy consumption of 4.72 Watt per GB of
memory (512 MB modules) we see a linear correlation between
the energy per memory transaction that we can count by an event
counter and the frequency, these transactions happen (see Figure
8).The frequency is here expressed in relation to the clock fre-
quency. A 1% share of memory bus transaction means, that at
1% of the clock cycles we see a memory transaction. By period-
ically (e.g., in the timer-interrupt handler) calculating the trans-
action frequency, we estimate the energy values per memory
transaction and can then estimate the dynamic energy consump-
tion of the main memory which could reach up to 3.3 Watt.

Applying this model to real-world applications leads to a very
precise estimation of the energy consumption with an error of
less than 3%.

7KH�DFFXUDF\�RI�WKH�HQHUJ\�HVWLPDWLRQ�IRU�PHPRU\�GHSHQGV

RQ�WKH�HQHUJ\�PRGHO�ZH�DSSO\�DQG�VKRXOG�EH�SURYLGHG�E\�WKH

GHVLJQHU�RI�WKH�PHPRU\�DUFKLWHFWXUH��)RU�6'5$0�ZH�IRXQG

D�PRGHO�WKDW�HVWLPDWHV�WKH�HQHUJ\�ZLWK�DQ�HUURU�RI�OHVV�WKDQ

���E\�MXVW�UHTXLULQJ�D�VLQJOH�FRXQWHU�

� (QHUJ\�$ZDUH�6FKHGXOLQJ

To demonstrate the benefits of an event-triggered energy
accounting, we propose energy-aware scheduling strategies that
improve the battery capacity in mobile systems, reduce the
energy consumption, and throttle the average power in worksta-
tions and servers.

��� ,PSURYLQJ�WKH�XVDEOH�EDWWHU\�FDSDFLW\

The operating system can improve the usable battery capacity
and consequently, the active life-time of a mobile device by a
battery-friendly operation mode. The capacity of a battery is
dominated by two factors: the load power and the intermittence
of discharge. The charge capacity is the total amount of energy a
battery can deliver when discharged at a constant current, called
a 1C discharge rate, over a defined period (normally 1 hour)

Application Error in 5V (CPU)
using 2 Counters

Error in 5V (CPU)
using 5 Counters

ghostscript -4.77% 4.74%

acroread 8.39% 3.47%

netscape 7.99% 0.08%

mpg123 11.4% 0.09%

make&gcc -2.05% 3.46

apache 100 5.5%

apache 200 1.32%

apache 300 3.46%

apache 400 -6.6%

Application Error or 3.3 V (SDRAM)

ghostscript -2.76%

mpg123 1.19%

make&gcc 0.83%

0% 0.2% 0.4% 0.6% 0.8% 1% 1.2% 1.4% 1.6% 1.8%

Share of BUS_TRAN_MEM

100

150

200

250

300

350

400

E
ne

rg
y

V
al

ue
 in

 W
/f

1 GB SDRAM (2 modules)
512 MB SDRAM (1 module)

FIG. 8 : Energy values for SDRAM in relation to the transaction frequency.

The Case for Event–Driven Energy Accounting 8

[19]. The discharge rate has a non-linear impact on the total
amount of power a battery can deliver. A typical lithium-ion bat-
tery has the following characteristics [13]:

A high discharge rate (e.g., >4C) can lower the usable battery
capacity to 70%-80%. Additionally, the usable battery capacity
can be shortened by an intermittent load. Duty cycles of 25% can
reduce the usable capacity by 40% compared to a continuous
load with the same average power [19].

Measurement of a typical browser application (netscape) shows
an extremely intermittent energy profile which is caused by the
fast processing of the arriving data and the high latency of the
network which implies a halt of the processor (see Figure 9).

Assuming a multithreaded browser that can hide network
latency by the processing of the data to be displayed, the most
battery-friendly execution mode would be a processor that is
running so slow that it never has to stop and wait for incoming
data. Consequently there are no abrupt changes in the energy
profile which are caused by halting and restarting the CPU.
$� &38� ZLWK� YDULDEOH� FORFN� VSHHG� DQG� YROWDJH� OLNH� ,QWHO

;6FDOH� FDQ� EH� VORZHG� GRZQ� E\� WKH� VFKHGXOHU� LQ� RUGHU� WR

HVWDEOLVK�D�VWHDG\�ORDG�RI�D�PRGHVW�OHYHO�ZKLFK�RSWLPL]HV�WKH

XVDEOH�EDWWHU\�FDSDFLW\. The energy accounting has to be aware
of the influence of discharge rate and load intermittence on the
battery capacity and has to find the best trade-off between bat-
tery efficiency and energy efficiency of the consuming devices
(see next point).

��� 5HGXFWLRQ�RI�(QHUJ\�&RQVXPSWLRQ

While the motivation for energy reduction is obvious for battery-
powered systems, servers are more and more becoming a target
for efforts in energy savings due to the rising cost of energy used
by computer systems and for energy used by the cooling system.
Also becoming important is the cost of floor-space used for racks
which can only be populated sparsely with servers to guarantee
sufficient air-flow for cooling. On the other side, a denser server
population requires a more expensive cooling system.

����� $IILQLW\�VFKHGXOLQJ

If the operating system monitors a high number of cache misses
after restarting a thread (compulsory misses) it should extend the
time-slice of the thread to reduce the number of restarts. Addi-
tionally, scheduling strategies can respect the cache affinity of
individual threads [5, 29] and improve the cache reuse of threads
that use shared memory segments [3] in order to avoid bus trans-
actions and CPU stall cycles due to cache misses. In addition to
the improvement in performance all those memory-conscious
scheduling strategies mitigate the power consumption of a sys-
tem.

Looking at the power estimations for current embedded-core
generations like XScale we see a significant increase in the
amount the memory contributes to the system power.

(YHQW� FRXQWHUV� ZKLFK� UHJLVWHU� FDFKH�PLVVHV� �OLNH� WKH� WZR

FRXQWHUV� IRXQG� LQ� WKH� ,QWHO� ;6FDOH� DUFKLWHFWXUH�� VXSSRUW

PHPRU\�FRQVFLRXV� VFKHGXOLQJ� VWUDWHJLHV� ZKLFK� LPSURYH

HQHUJ\�HIILFLHQF\.

�����)LQGLQJ�WKH�RSWLPDO�RSHUDWLRQ�SRLQW

A high number of main memory references (e.g., bus transac-
tions related to main memory) and a low number of instructions
indicates that the speed of execution is dominated by the main
memory latency. Without noticeable performance degradation
the scheduler can improve the energy efficiency by throttling the
clock speed of the processor working on behalf of a latency-
bound application. By this means the clock frequency is kept at
such a low level that applications run close to their optimal oper-
ation point (see section 2.2 and Figure 2) Application measure-
ments have demonstrated [18] that this operation point is appli-
cation- and parameter-dependant.
&RXQWHUV�WKDW�UHJLVWHU�FDFKH�PLVVHV�DQG�HYHQWV�UHODWHG�WR�WKH

SURFHVVRU�LQWHUQDO� H[HFXWLRQ� RI� LQVWUXFWLRQV� SURYLGH� LQIRU�

PDWLRQ�IRU�DQ�RQ�OLQH�FKDUDFWHUL]DWLRQ�RI�WKH�FXUUHQWO\�UXQ�

QLQJ� DSSOLFDWLRQV�� 7KLV� LQIRUPDWLRQ� LV� HVVHQWLDO� WR� UXQ� WKH

V\VWHP� DW� LWV� RSWLPDO� IUHTXHQF\� IRU� PLQLPDO� HQHUJ\� FRQ�

VXPSWLRQ�

Discharge Rate Usable Battery Capacity
(Normalized to 1C Discharge Rate)

C/5 107%

C/2 104%

1C 100%

2C 94%

4C 86%

5.5 6 6.5 7 7.5
Time in Seconds

5

10

15

20

P
ow

er
 in

 W
at

ts

CPU (5V) power
SDRAM (3.3V) power
CPU (5V) average power
SDRAM (3.3V) average power

FIG. 9 : Netscape browsing the Web

HW-Component Peak Power
Intel XScale

CPU Core 0.9 W@800MHz
0.45 W@600MHz
0.04 W@150MHz

Memory 32 MB 0.4 W

The Case for Event–Driven Energy Accounting 9

��� 7KURWWOLQJ�RI�$YHUDJH�6\VWHP�3RZHU

����� 0RWLYDWLRQ

Not only the energy efficiency of a system is of importance, but
also the temporal distribution of the energy consumption.

• With workstations a high energy consumption becomes an-
noying if the noise of fans influences the work environment.
Therefore, many users ask for a system with passive cooling
but low-power components that operate continuously with
passive cooling offer the desired performance only at a high
price, that is normally justified just for mobile systems.

• The higher the power requirements of a cluster of servers in
a high-availability 24x7 environment the higher the cost of
installation and maintenance of an uninterruptible power
supply consisting of batteries, converters and generators.

Both scenarios have the fact in common that costs arise because
we have to care for the rare case of peak energy consumption.
In a workstation environment high computing power is only
used at short bursts. Most of the time the system is idle and does
not need a noisy cooling system.
For high-available server systems the uninterruptible power sup-
ply has to be projected for the uncommon case of peak client
load in times of power outages.

����� 3ULQFLSOH�RI�WKURWWOLQJ

Our approach to power throttling reduces the costs in both envi-
ronments. For workstations we employ affordable standard com-
ponents that normally rely on active cooling like fans. But we
throttle the system activity if the average energy use exceeds the
predefined power-dissipation capacity of the passive cooling. In
servers we throttle the system in the case of a power outage. By
this procedure the batteries and the generator of the uninterrupt-
ible power supply (UPS) can be configured in much smaller
dimensions.

The -RXOH�:DWFKHU energy accounting offers information about
the energy use with regards to individual threads as well as the
whole system. If the average system-energy exceeds the rate that
guarantees a safe operation, the CPU is halted by the execution
of the HLT-instruction. By halting the CPU for a short period of
time the average system-energy diminishes. At the next interrupt
another thread is chosen if the average system-energy low
enough so that the system is allowed to run again. Threads are
ranked according to their priority and energy consumption in the
history. Highly interactive threads still can run, but low-priority
threads consuming a lot of energy become throttled so that the
system can dissipate enough heat or stays below the power
capacity of the UPS. Threads that have waited a long time will
be preferred because their average power use decays.
We have implemented this policy on a Linux-2.4.0 system. The
basic operation of throttling is demonstrated on a compute inten-
sive loop which would consume 17W without throttling. By
halting the CPU about twenty times per second we keep the aver-
age power below the given limit of 10 W (see figure 10).

��� 7KURWWOLQJ�RI�DQ�DSDFKH�VHUYHU

Our scenario for a practical deployment of throttling is an apache
web server under load generated by the httperf load generator
(see Figure 11). The four plots show the energy profile of an
apache which has to establish 100, 200, 300 and 400 connections
per seconds and has to serve 5 identical requests at each connec-
tion. With the minor load of 100, 200 and 300 connections per
second, you can even identify each single request. Because each
connection means a cold start for the cache, it is clear to us that
the first request consumes more than the remaining 4 requests.
However, we can not yet explain the effect that the second
requests still consumes more than the third.The average power
of an 50ms window rises from 7 Watts to 9 Watts, 11 Watts and
finally to more than 15 Watts.

Deploying the Joule Watchers energy accounting together with
the power throttling scheduler we see that the server stays below
the configured 10W limit (see Figure 12).

While we are very satisfied with the effect of throttling which
guarantees a safe operation of a server system even under an
emergency power supply, we note that the energy efficiency suf-
fers from our simple throttling approach. While the energy per
answered request stays constant in the unthrottled system, we
need 25% more energy per request in a intensively throttled sys-
tem. The reason is the scheduling strategy, that prefers runnable
threads that are blocked for longer time. If a thread has to stop,
because the average system-power threshold is exceeded, the
same thread is not chosen for restart. This leads to many more
compulsory cache misses than in an unthrottled system.

$VVXPLQJ�SUHFLVH�HQHUJ\�DFFRXQWLQJ��WKURWWOLQJ�RI�D�V\VWHP

E\�KDOWLQJ�WKH�&38�LV�D�YLDEOH�DSSURDFK�WR�NHHS�WKH�DYHUDJH

V\VWHP�SRZHU�EHORZ�D�WKUHVKROG��+RZHYHU��ZH�KDYH�WR�IRFXV

PRUH�RQ�HQHUJ\�HIILFLHQF\�VR�WKDW�WKH�V\VWHP�GRHV�QRW�VXIIHU

IURP�HQHUJ\�UHODWHG�VLGH�HIIHFWV�RI�FDFKH�LQHIILFLHQF\�

Application unthrottled CPU
Power

Energy per
Request

throttled CPU
Power

Energy per
Request

httperf 100 500 7.27 0.00574 J 500 7.11 0.00542 J

httperf 200 1000 9.47 0.00507 J 940 9.71 0.00564 J

httperf 300 1445 11.98 0.00524 J 790 9.93 0.007 J

httperf 400 1991 15.03 0.005339 J 832 10.03 0.0067 J

0 0.2 0.4 0.6 0.8 1
Time in Seconds

5

10

15

20

P
ow

er
 in

 W
at

ts

CPU power

FIG. 10 :Throttling of a 17W applications down to 10 W average power

The Case for Event–Driven Energy Accounting 10

5

10
15

20

P
ow

er
 in

 W
at

ts CPU power
50 ms average power

5

10
15

20

P
ow

er
 in

 W
at

ts

5

10
15

20

Po
w

er
 in

 W
at

ts

0.2

5

10
15

20

0.19 0.2 0.21 0.22 0.23

Time in seconds

5

10
15

20

P
ow

er
 in

 W
at

ts

5

10
15

20

FIG. 11 :Unthrottled Apache (100-400 con/s * 5 requests)

5

10
15

20

P
ow

er
 in

 W
at

ts

CPU power
50 ms average power

5

10
15

20

Po
w

er
 in

 W
at

ts

5

10
15

20

P
ow

er
 in

 W
at

ts

0.19 0.2 0.21 0.22 0.23

Time in Seconds

5

10
15

20

Po
w

er
 in

 W
at

ts

FIG. 12 :Throttled Apache to 10 Watt Limit (100, 200,300, 400 connection_attempts/s * 5 requests)

The Case for Event–Driven Energy Accounting 11

� &RQFOXVLRQ
The more the operating system knows what is going on inside
the hardware the more it can adapt the execution of threads to the
needs of the user. With the emergence of power-sensitive
devices, the operating system scheduler has to move from a
CPU-centric approach to activity control of all power related
components. Event-driven energy accounting and billing to a
resource principal is a promising approach to reach this goal.

Our approach to event-driven energy accounting has proved to
estimate the thread-specific energy consumption with high accu-
racy and without any overhead. The current implementation can
only use a small number of counters that were intended origi-
nally for performance profiling. If the operating system technol-
ogy is ready to deal with a variety of counters in all locations of
the hardware it is just a small step to embed new counters which
are exclusively devoted to energy accounting.

Future work will focus on an expansion of the concept of
resource containers to distributed and micro-kernel based sys-
tems. We want to improve the efficiency of our throttling tech-
nique and prove this approach in a data-center environment.
Finally, we will improve the energy efficiency by an on-line
determination of the optimal operation point as soon as we have
a variable speed/voltage systems offering event counter avail-
able.

We expect thread-specific speed settings in combination with
event-driven energy accounting to become an essential element
of future operating systems for power-sensitive devices

Acknowledgements

First, I would like to thank Trent Jaeger, my manager at IBM
T.J. Watson, for establishing the valuable contacts within IBM
research and to thank the SawMill team for providing a warm
and friendly research atmosphere.
Special thanks to Chandler McDowell and Bishop Brock at IBM
ARL for their help and advise in power analysis.

5HIHUHQFHV

[1] ANDERSON, J., BERC, L., DEAN, J., GHEMAWAT, S., HENZ-
INGER, M., LEUNG, S.-T., SITES, R., VANDERVOORDE, M.,
WALDSPURGER, C., AND WEIHL, W. Continuous profiling:
Where have all the cycles gone? $&0� 7UDQVDFWLRQV� RQ

&RPSXWHU�6\VWHPV���, 4 (Nov 1997).

[2] BANGA, G., DRUSCHEL, P., AND MOGUL, J. Resource con-
tainers: A new facility for resource management in server
systems. In 3URFHHGLQJV�RI�WKH�7KLUG�6\PSRVLXP�RQ�2SHU�
DWLQJ�6\VWHP�'HVLJQ�DQG�,PSOHPHQWDWLRQ�26',¶���� (Feb
1999).

[3] BELLOSA, F. Follow-on scheduling: Using tlb information
to reduce cache misses. In 3URFHHGLQJV�RI�WKH���WK�6\PSR�
VLXP�RQ�2SHUDWLQJ�6\VWHPV�3ULQFLSOHV�6263¶����:RUN� LQ

3URJUHVV�6HVVLRQ (Oct 1997).

[4] BELLOSA, F. The benefits of event-driven energy account-
ing in power-sensitive systems. In 3URFHHGLQJV�RI� WKH��WK
$&0�6,*236�(XURSHDQ�:RUNVKRS (Sep 2000).

[5] BELLOSA, F., AND STECKERMEIER, M. The performance
implications of locality information usage in shared-mem-
ory multiprocessors. -RXUQDO� RI� 3DUDOOHO� DQG� 'LVWULEXWHG
&RPSXWLQJ���, 1 (Aug. 1996), 1–2.

[6] BENINI, L., BOGLIOLO, A., CAVALLUCCI, S., AND RICCO, B.
Monitoring system activity of os-directed dynamic power
managament. In 3URFHHGLQJV�RI� WKH� ,QWHUQDWLRQDO�6\PSR�
VLXP� RQ� /RZ�3RZHU� (OHFWURQLFV� DQG� 'HVLJQ� ,6/3('¶��

(1998).

[7] BROWNE, S., DONGARRA, J., GARNER, N., LONDON, K.,
AND MUCCI, P. A scalable cross-platform infrastructure for
application performance tuning using hardware counters. In
3URFHHGLQJV� RI� WKH� &RQIHUHQFH� RQ� 6XSHUFRPSXWLQJ

6&¶���� (Nov 2000).

[8] CHASE, J., AND DOYLE, R. Balance of power: Energy man-
agement for server clusters. In 3URFHHGLQJV�RI� WKH�(LJKWK

:RUNVKRS�RQ�+RW�7RSLF�LQ�2SHUDWLQJ�6\VWHPV�+RW26¶����

(May 2001).

[9] ELLIS, C. The case for higher level power management. In
3URFHHGLQJV� RI� WKH� 6HYHQWK� :RUNVKRS� RQ� +RW� 7RSLF� LQ

2SHUDWLQJ�6\VWHPV�+RW26¶���� (Mar 1999).

[10] FLINN, J., AND SATYANARAYANAN, M. Energy-aware
adaption for mobile applications. In 3URFHHGLQJV� RI� WKH
��WK�6\PSRVLXP�RQ�2SHUDWLQJ�6\VWHPV�3ULQFLSOHV�6263¶��

(Dec 1999).

[11] GOVIL, K., CHAN, E., AND WASSERMANN, H. Comparing
algorithms for dynamic speed-setting of a low-power cpu.
In 3URFHHGLQJV�RI�WKH��VW�&RQIHUHQFH�RQ�0RELOH�&RPSXWLQJ

DQG�1HWZRUNLQJ�02%,&20¶�� (Mar 1995). also as techni-
cal report TR-95-017, ICSI Berkeley, Apr. 1995.

[12] HONG, I., POTKONJAK, M., AND SRIVASTAVA, M. On-line
scheduling of hard real-time tasks on variable voltage pro-
cessor. In 3URFHHGLQJV�RI�WKH�,QWHUQDWLRQDO�&RQIHUHQFH�RQ
&RPSXWHU�$LGHG�'HVLJQ�,&&$'¶�� (Nov 1998).

[13] INTEL. 0RELOH�3RZHU�*XLGHOLQHV������5HY����, Dec 1998.

[14] INTEL. ,QWHO� ������ 3URFHVVRU� EDVHG� RQ� ,QWHO� ;6FDOH
0LFURDUFKLWHFWXUH, Nov 2000.

[15] INTEL. ,QWHO�6SHHG6WHS�7HFKQRORJ\, Jan 2000.

[16] INTEL, AND ANF TOSHIBA, M. $GYDQFHG�&RQILJXUDWLRQ�DQG
3RZHU�,QWHUIDFH�6SHFLILFDWLRQ����E, Feb 1999.

The Case for Event–Driven Energy Accounting 12

[17] MARTIN, T., AND SIEWIOREK, D. A power metric for mobile
systems. In 3URFHHGLQJV�RI�WKH�,QWHUQDWLRQDO�6\PSRVLXP�RQ
/RZ�3RZHU�(OHFWURQLFV�DQG�'HVLJQ�,6/3('¶�� (1996).

[18] MARTIN, T., AND SIEWIOREK, D. The impact of battery
capacity and memory bandwidth on cpu speed-setting: a
case study. In 3URFHHGLQJV�RI�WKH�,QWHUQDWLRQDO�6\PSRVLXP
RQ� /RZ�3RZHU� (OHFWURQLFV� DQG�'HVLJQ� ,6/3('¶�� (Aug
1999).

[19] MARTIN, T. L. %DODQFLQJ� %DWWHULHV�� 3RZHU� DQG� 3HUIRU�
PDQFH�� 6\VWHP� ,VVXHV� LQ� &38� 6SHHG�6HWWLQJ� IRU� 0RELOH

&RPSXWLQJ. PhD thesis, Department of Electrical and Com-
puter Engineering, Carnegie Mellon University, 1999.

[20] MARTONOSI, M. Power-performance modeling, analyis and
validation. Tutorial at the HPCA’2001, Jan 2001.

[21] MICROSOFT. Windows power management:instant pc avail-
ability and energy savings. White Paper, March 2001.

[22] MUCCI, P. The performance api papi. White Paper of the
Univeristy of Tennessee, http://icl.cs.utk.edu/projects/papi/
, March 2001.

[23] NEUGEBAUER, R., AND MCAULEY, D. Energy is just
another resource: Energy accounting and energy pricing in
the nemesis os. In 3URFHHGLQJV�RI�WKH�(LJKWK�:RUNVKRS�RQ
+RW�7RSLF�LQ�2SHUDWLQJ�6\VWHPV�+RW26¶���� (May 2001).

[24] PERING, T., AND BRODERSON, R. Energy efficient voltage
scheduling for real-time operating systems. In 3URFHHGLQJV

RI� WKH� �WK� ,(((� 5HDO�7LPH� 7HFKQRORJ\� DQG� $SSOLFDWLRQV

6\PSRVLXP�57$6¶����:RUN�LQ�3URJUHVV�6HVVLRQ (Jun 1998).

[25] POUWELSE, J., LANGENDOEN, K., AND SIPS, H. Dynamic
voltage scaling on a low-power microprocessor. In 3UR�

FHHGLQJV�RI�WKH�,QWHUQDWLRQDO�6\PSRVLXP�RQ�0RELOH�0XOWL�

PHGLD� 6\VWHPV� 	� $SSOLFDWLRQV� 006$¶���� (November
2000).

[26] RAJAMONY, R., BOHRER, P., BROCK, B., ELNOZAHY, E.,
KELLER, T., AND LEFURGY, M. K. C. The case for power
management in web servers. Tech. rep., IBM Austin
Research Laboratory, Nov 2000.

[27] TRANSMETA. 7KH� 7HFKQRORJ\� EHKLQG� &UXVRH� 3URFHVVRUV,
Jan 2000.

[28] WEISER, M., WELCH, B., DEMERS, A., AND SHENKER, S.
Scheduling for reduced cpu energy. In 3URFHHGLQJV�RI�WKH

)LUVW�6\PSRVLXP�RQ�2SHUDWLQJ�6\VWHP�'HVLJQ�DQG�,PSOH�

PHQWDWLRQ�26',¶�� (Nov 1994).

[29] WEISSMAN, B. Performance counters and state sharing
annotations: a unified approach to thread locality. In 3UR�

FHHGLQJV�RI�WKH�(LJKWK�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�$UFKL�

WHFWXUDO� 6XSSRUW� IRU� 3URJUDPPLQJ� /DQJXDJHV� DQG

2SHUDWLQJ�6\VWHPV�$63/26¶�� (Oct 1998).

	1 Introduction
	2 Energy-Related Characteristics of System Components
	2.1 Processor/Memory/Interconnection Technology
	2.2 Variable Clock Speed and Variable Voltage
	2.3 I/O Technology
	2.4 Unpredictability of Applications
	2.5 The need for on-line energy accounting
	2.6 The need for resource containers

	3 Joule Watcher Energy Accounting
	3.1 Measurement Methodology
	3.2 Fallacies and Pitfalls
	3.3 Accuracy of Event-Driven Energy Estimations
	3.4 Event Correlation for SDRAM

	4 Energy-Aware Scheduling
	4.1 Improving the usable battery capacity
	4.2 Reduction of Energy Consumption
	4.2.1 Affinity scheduling
	4.2.2 Finding the optimal operation point

	4.3 Throttling of Average System Power
	4.3.1 Motivation
	4.3.2 Principle of throttling

	4.4 Throttling of an apache server

	5 Conclusion

