Beyond Address Spaces -
Flexibility, Performance, Protection, and Resource Management in the
Type-Safe JX Operating System

Michael Golm, Jirgen Kleindder, Frank Bellosa
University of Erlangen-Nirnberg
Dept. of Computer Science 4 (Distributed Systems and Operating Systems)
Martensstr. 1, 91058 Erlangen, Germany
{golm,kleinoeder,bellosa}@informatik.uni-erlangen.de

Abstract coarse), nor offers it appropriate abstractions for access con-

Early type-safe operating systems were hampered bytrol (page tags are not capabilities).
poor performance. Contrary to these experiences we show These deficiencies justify the exploration of alternative
that an operating system that is founded on an object-ori- Protection mechanisms. Java popularized a protection
ented, type-safe intermediate code can compete with MMU-mMechanism that is based on a combination of type-safe
based microkernels concerning performance while widen- intermediate code and load-time program verification.
ing the realm of possibilities. Several other research groups have been building Java-

Moving from hardware-based protection to software- based operating systems: Sun's JavaOS [14], which was
based protection offers new options for operating systemlater replaced by “JavaOS for Business” [18], JN [16], J-
quality, flexibility, and versatility that are superior to tradi- ~Kernel [11], KaffeOS [2], and Joust [9]. But they are either
tional process models based on MMU protection. However, limited by a monolithic structure or are built upon a full-fea-
using a type-safe language—such as Java—alone, is notured OS and JVM. Furthermore, no performance figures
sufficient to achieve an improvement. While other Java for OS related functionality are published. KaffeOS and J-
operating systems adopted a traditional process concept, JXKernel are two projects that try to overcome the monolithic
implements fine-grained protection boundaries. The JX Sys-structure by intruducing a process concept which is similar
tem architecture consists of a set of Java components exet0 the domain concept of JX. But their research is mainly
cuting on the JX core that is responsible for system initial- concerned with introducing the traditional process concept
ization, CPU context switching and low-level domain man- and a red line [6] between user level and kernel into their
agement. The Java code is organized in components whicava operating system. While a red line between trusted and
are loaded into domains, verified, and translated to native untrusted code is indeed important, we must free our mind
code. from the MMU-enforced architecture of traditional operat-

JX runs on commodity PC hardware, supports network ing systems. The aim of our research is a customizable and
communication, a frame grabber device, and contains an flexible [4] open OS architecture with fine-grained protec-
Ext2-compatible file system. Without extensive optimizationtion boundaries. Depending on functionality and deploy-
this file system already reaches a throughput of 50% of ment of a system there are different levels of trust and pro-

Linux. tection. An embedded real-time system needs a different red
line than a single-user desktop system or a multi-user server
1 Introduction system or an active network node OS [5]. In our architecture

it is possible to draw red lines when and where they are

For several years there has been an ongoing discussion ifeeded. . . .
the OS community whether software-based protection is a While other Java operating systems require a microker-
promising approach [3]. We want to support the argumentsn€l, or even a full operating system including a JVM, JX
for software-based protection with the experience we runs on the bare hardware with o_nly a m|n|mgl statically
gained while building the JX operating system. linked core (<100kB). The remaining operating system
While MMU-based protection is commonly used in functionality, including device drivers, is provided by Java
today’s operating systems it has some deficiencies [10], [3]. COmponents that are verified, compiled to native code, and
From the point of functionality it neither meets the actual OPtimized at load time.
requirements of fine grained protection (page size is too

The paper is structured as follows: In section 2 we <During a portal call a component must check the validity
describe the architecture of the JX system. The problems of the parameters because the caller could be in a different
that appear when untrusted modules directly access hard-domain and is not trusted. When caller and callee are co-
ware are discussed in section 3. Section 4 gives examples oflocated (intra-domain call), the checks change their moti-

the performance of IPC and file system access. vation—they are no longer done for security reasons but
for robustness reasons. We currently parametrize the com-
2 JX System Architecture ponent whether a safety check should be performed or not.

))) Resource ManagementJX domains have their own heap
The JX system consists of a small core, written in C and g4 own memory area for stacks, code, etc. If a domain

assembler, which is less than 100 kilobytes in size. The needs memory, a domain-specific policy decides whether
majority of the system is written in Java and running in sep- s request is allowed and how it may be satisfied, i.e.,

arate protection domains. The core runs Wit_hout any proteC-yhere the memory comes from. Objects are not shared
tion and therefore must be trusted. It contains funt_:ﬂ_o_naghty between domains, but it is possible to share memory. Other
that can not be prowd_ed at the Java level (system initializa- 5,4 systems use shared objects with the consequence of
tion after boot up, saving and restoring CPU state, low-level ;ompjicated and not interdependent garbage collection,
domain management, monitoring). problems during domain termination, and quality-of-ser-

P vice crosstalk [13] between garbage collectors.
Components Heap . . . Lo
Classes Portals Typing. A domain has its own type space, that initially con-
mEm M . tains exactly one typgava.lang.Object. Types (classes and
Objects AN interfaces) and code (classes) can then be loaded into the
Threads o domain. Our type-space approach differs from the Java type
Java—StackE E E spaces [12] as we do not use the class loader as type-space
_ Thread Control Blocks) - _ separator but tie type separation to resource management
(_Domain A ' Domain B and protection. By this meansSacurityManager becomes
\4 redundant and protection boundaries are automatically
C Code Threads E E E enforced.
Assembler Stacks The C and assembler code of the JX core are encapsu-

Lhéeé‘d Control Blocks lated by a special domain, callddomainzZero All other

domains contain only Java code. We do not alleative
The Java code is organized in components (Sec. 2.2)methods.
which are loaded into domains (Sec. 2.1), verified (Sec.
2.4), and translated to native code (Sec. 2.5). Adomain can2.2 Components
communicate with another domain by using portals (Sec.
2.3). Code is generally loaded as a component. JX does hot
The protection of the architecture is solely based upon support loading of single classes. A component is a collec-
the JX core, the code verifier, the code translator, and hard-ion of classes and interfaces. There are four kinds of com-
ware-dependent components (Sec. 3). These elements angonents:

Domain Zero

thetrusted computing bagé] of our architecture. «Library: A simple collection of reusable classes and inter-
faces (example: the Java Development Kit).
2.1 Domains «Service A component that implements a specific service,

o)) e. g., afile system or a device driver. A service component
A domain is the unit of protection, resource manage- s startedafter it has been loaded. To start a service means
ment, and typing. to execute a static method that is specified in a configura-
Protection. Components in one domain trust each other. tion file that is part of the component.
One of our aims is code reusability between different sys- «Interface Access to a service in another domain is always
tem configurations. A component should be able to runin a performed using an interface. An interface component
separate domain, but also together (co-located) with other contains all interfaces that are needed to access a service.
components in one domain. This leads to several problems: An interface component also contains the classes of
+The parameter passing semantics must be by-copy in inter- parameter objects. A special interface libraeyocontains
domain calls, but may be by-reference in the co-located all interfaces to access DomainZero.
case. This is an open problem.

«Domain A domain is started by loading a domain compo- 2.4 Component Verifier
nent. An initial thread is created and a static method is exe-
cuted. When a component is loaded into a domain, its bytecode

Components can be shared between domains. Sharin(ff verified before itis translated into machine code. As in the
happens at two levels. At a logical level sharing establishes”o”””"?1I Java bytecod(_a verifie_r, the conformance to the Java
a window of type compatibility between two domains. Ata Tules is checked. Basically this guarantees type safety. Fur-
lower level, sharing saves memory, because the (machine}hermqre the verifier performs additional JX-specific chgcks
code of the component has to be stored only once. Whilefégarding interrupt handlers (Sec. 2.6), memory objects
component sharing complicates resource accounting andSec- 2.7), and Schedulers (Sec. 2.9).
domain termination, we believe that code sharing is an A type-safe operating system has the well-known advan-
essential requirement for every real operating system.!@ges of robustness and ease of debugging. Furthermore, it
While code can be shared if the domains use the same typdS Possible to base protection and optimization mechanisms
of execution environment (translator, memory layout), ©N the.type mformatlon_. Thisis extenswe_ly employed in JX
static variables are never shared. In JX this is implementeddy using well-known interfaces (contained in a trusted
by splitting the internal class representation into a domain- library) and restricting the implementability of these inter-
local part, that contains the statics, and a shared part, thataces (Sec. 2.6 and 2.7).
contains code and meta information.

2.5 Component Translator

2.3 IPC, Portals, and Services . .
Components are translated from bytecode into machine

Domains communicate solely by using portals. An code. The translator is a crucial element of JX to get a rea-

object that may be accessed from another domain is callecgonable performance. The translator is domain-specific, so
service Each service is associated witheavice thread it can be customized for a domain to employ application-

A portal is a remote reference that represents a service SPECific translation strategies. The same component may be
which is running in another domain. Portals are capabilities {ranslated differently in different domains. As the translator
that can be passed between domains. Portals allow to estadS @ trusted component, this facility has to be used carefully
lish the “principle of least privilege”. A domain gets only because it affects the protection of the whole system.

the portals it needs for doing its job. Furthermore the translator is used to “short-circuit” sev-
A portal looks like a normal object reference. The portal eral pgrtal invocations. Special portals that are exported by
type is an interface that is derived from the interfaoetal. DomainZero often do not need the domain context of

A portal invocation behaves like a normal synchronous DomainZero. Invocations of such portals can be inlined
interface method invocation: The calling thread is blocked, directly at the call site.

the service thread executes the method, returns the result

and is then again available for new service requests via a2.6 Interrupts

portal. The caller thread is unblocked when the service

method returns. While a service thread is processing a An interruptis handled by invoking thieandleinterrupt

request, further requests for the same service are blocked.Method of a previously installed interrupt handler object.
The method is executed by a dedicated thread while inter-

| Senvicchm oy rupts on the interrupted CPU are disabled. This would be
Portal senvice) O called thefirst-level interrupt handlein a traditional oper-
ating system. To guarantee that the handler can not block the

system forever, the verifier checks all classes that imple-
An object reference can be passed as parameter of a pormentthe!nterruptHandIgr interface whether th@ndlelnter.-

tal invocation only if the object is a service. In this case a uPt method has certain time bounds. To avoid undecidable

portal to the service is transferred and the reference counteProblems, only a simple code structure is allowed (linear

of the service is incremented. Other parameters are passefde; 100ps with constant bound and no write access to the

by value. When a portal is no longer referenced in a domain,!00P variable inside the loop). Aandleinterrupt method

it is removed by the garbage collector and the referenceusually acknowledges the interrupt at the device and

counter of the associated service is decremented. unblocks a thread that handles the interrupt asynchronously.
A portal/service connection between two domains

requires that these domains have overlapping type spaces.7 Memory Management

i.e. the interface component must be logically shared. If the

interface component depends on other components, theyi€ap and Garbage CollectionThe memory of the
must be shared, too. objects within a domain is managed by a heap manager with

Domain A Domain B

garbage collector. Currently, the heap manager is partofthe2.9 Scheduling

JX core. It cooperates with the translator to obtain informa-

tion about the object structure and stack structure. So farwe CPU scheduling in JX is split into two scheduler levels.
are working with only one heap manager implementation The low-level scheduledecides which domain should run
and one translator implementation, but it is also possible toon the CPU. Each CPU has its own low-level scheduler. The
build domain-specific heap managers. They can even behigh-level scheduleis domain-specific - each domain has
written in Java and run in their own domain. The heap man- one high-level scheduler per available CPU. A domain may
ager is a trusted part of the system. not be allowed to use all CPUs. To use a CPU, the domain
must obtain aCPU portal for the specific CPU. The high-

Memory objects.To handle large amounts of da_ta, Java level schedulers are responsible for scheduling the threads
uses arrays. Java arrays are useless for operating systemf a domain

.cqmponents,.because they do not provide access control and The high-level scheduler may be part of the domain or
it is not possible to share only a part of an array. JX uses . ; .
may be located in a different domain.

Memory objects m_stead. The memory tha.t IS represe_nted by To avoid that one domain monopolizes the CPU, the
such aMemory object can be accessed via method invoca- . .) .
computation can be interrupted by a timer interrupt. The

tions. These invocations are inlined by inserting the :) .
o . . timer interrupt leads to the invocation of the low-level
machine instructions for the memory access instead of the . .
. . . scheduler. The low-level scheduler first informs the high-
method invocation. This makes memory access as fast a . i
. evel scheduler of the interrupted domain about the preemp-
array access. Memory object can represent a part of the

: . tion. For this purpose it invokes a method of the high-level

memory of anotheMemory object andviemory objects can L)
S . scheduler with interrupts disabled. An upper bound for the
be shared between domains like portals. Sharing memory L . . .
. . . execution time of this method has been verified during the
objects between domains and the ability to create subranges” .~ "
. . verification phase. When the method returns, the system
are the fundamental mechanisms for a zero-copy implemen-

. . - switches back to the low-level scheduler. The low-level
tation of system components, like the network stack, the file . . .
scheduler then decides, which domain to run next. After
system, or an NFS server.

ensuring that it will be reactivated with the next (CPU-local)
Avoiding range checks by object mappingA memory timer interrupt, the low-level scheduler activates the high-
range can be mapped to a (virtual) object that implements alevel scheduler of the selected domain. The high-level
marker interface (an interface without methods that is only scheduler chooses the next runnable thread. It can switch to

used to mark a class aappedLittleEndian or MappedBig- this thread by calling a method at ti@PU portal. This
Endian). The verifier ensures that a class tiaplements method can only be called by a thread that runs on the cor-
one of these interfaces is never instantiated byidnebyte- responding CPU.

code. Instead the objects are created by mapping and the
translator generates code to directly access the memory3 Device Drivers
range for access to instance variables. This makes the range

check redundant. Due to the enormous amount of new hardware that
appeared in the last years, operating system code is domi-
2.8 Domain Termination nated by device drivers. While it is rather straight forward to

move most operating system parts, such as file systems or
When a domain terminates, all resources must benetwork protocols, out of the trusted kernel, it is very diffi-
released. Further interaction with the domain raises ancylt for device drivers.
exception. Developers of commodity hardware do not assume that
All services are removed by stopping the service thread. their products are directly accessed by untrusted code.
A service contains a reference counter, that is incrementeda|though the Nemesis project has demonstrated that it is
each time a portal to this service is passed to anotherpossible to build user-safe hardware [17], we do not expect
domain. Itis also incremented when a client domain passessych hardware to become commercially available in the
the portal to another client domain. It is decremented, whennear future.
the portal object in a client domain is garbage collected or Device drivers in JX are programmed in Java and are
when the client domain is terminated. As long as the refer- installed as service component in a domain. JX aims at only
ence counter is not zero, the service can not be completelptrysting the hardware manufacturer (and not the driver pro-
removed when its domain terminates. Until all reference vider) in assuming that the device behaves exactly accord-

counters drop to zero, the domain remains zombiestate. ing to the device specification. When special functionality
Interrupt handlers are uninstalled. _AII threads are of the hardware allows bypassing the protection mecha-
stopped and the memory (heap, stacks) is released. nisms of JX, the code for controlling this functionality must

also be trusted. This code can not be part of the JX core,

because it is device dependent. One example for such cod@osted JX can be attributed to the usagigbrocmask to dis-

is the busmaster DMA initialization, because a device can able/restore signals.

be programmed to transfer data to arbitrary main memory The IPC cost of J-Kernel doe®tinclude thread switch-

locations. ing costs, because the J-Kernel uses a “segmented” stack.
To reduce the amount of critical code, the driver is split IPC without switching threads complicates resource

into a (simple) trusted part and a (complex) untrusted part. accounting, garbage collection, termination, and type sepa-
To understand the issues related to device drivers, weration.

have developed drivers for the IDE controller, the 3C905B

network card, and the Bt848 framegrabber chip. The IDE

controller and network card basically use a list of physical We used the iozone benchmark to measure the Linux

memory addresses for busmas_ter DMA. The code th‘_ﬁ"tethfs re-read throughput (file size: 4 kB, record length: 4
builds and installs these tables is trusted. The Bt848 chipy g 4 <450 1). To measure JX re-read

can execgte a program in a special instr_uctio_n set (RISCthroughput we wrote a Java benchmark, similar to iozone.
code). This program writes captured scanlines into arbitrary The system configuration that we measured works as fol-

memory regions. The memory addresses are part of thelows: The virtual file system, the buffer cache, and the ext2
RISC program. We currently trust the RISC generator andfile system run in one domaiff$Domain). The IDE device
thus limit extensibility. To allow an untrusted component to driver runs in another domain. The client runs in a third

download RISC code, we would need a verifier for this domain. A service thread in theSDomain accepts client

'nSKILIJCt'_On iet‘ I-based svst here dri drequests. The client domain gets a portal to the virtual file
MICrokernel-based systems, where drivers are move system and calls lookup to geF#elnode portal.FSDomain

into untrusted address spaces run into the same problemsuses one thread to asynchronously receive data from the
but they have much weaker means to cope with these prObblock device driver. Only the service thread is active in this

lems. Using an MMU. does not h_elp, because _busmaSterbenchmark, because all data comes from the buffer cache.
DMA accesses physical RAM without consulting page

File System.We have implemented the ext2fs in Java [19].
We reused the algorithms that are used in Linux-ext2fs.

tables. JX uses type-safety, special checks of the verifier System Throughpyt Latency

and splitted drivers to address these problems. (MByte/s) | (psec/4kB)
Linux (Plll 500 MHz) 400 10.¢

4 Performance JX (PIIl 500MHz) 201 19.9
JX co-located (Plll 500MHz) 213 18}7

IPC. We measured the performance of a portal call. Table 1
compares the IPC round-trip performance of JX with fast
microkernels and other Java operating systems. We now try to estimate the necessary performance
improvement to reach Linux throughput. The latency can be

Table 2: File system re-read throughput and latency

System IPC .
y (cycles) broken down as shown in table 3.

L4KA (PIIl, sysenter, sysexit) [8] 800 Operation JIX JX goa
Fiasco/L4 (PIll 450 MHz) 2610 memory copy 5.2 5.p
[http://os.inf.tu-dresden.de/fiasco/status.html] PC 13 13
J-Kernel (LRMI on MS-VM, PPro 200MHz) [11] 440 e system logic 135 3k
Alta/KaffeOS [1] 2727(oa — :
JIX/hosted (Linux 2.2.14, PIIl 500MHz) 7100 Table 3: Latency breakdown (in psec)
JX/native (Pl 500MHz) 65 Memory copy and IPC are relative constant costs in JX.

The poor performance of the file system logic is not a prob-
lem of the JX architecture but of our non-optimizing com-
Comparing IPC times for these systems is not easy piler. With an improvement of factor 4 in Java performance,
because they were measured on different hardware (cach#e would reach the Linux performance level. Although
size, cache bandwidth, memory bandwidth, etc.), and, moresafety-related overhead cannot be avoided completely,
importantly, they have different protection models. IPC is recent research in JIT compiler technology has shown that
usually more expensive on a system with better protection.an optimizing compiler can improve the performance of a
Currently the IPC path in JX is implemented in C and not Java program significantly. Performance differences of fac-
optimized. It may be better compared with the Fiasco imple- tor 10 are not unusual between non-optimizing and optimiz-
mentation of L4 than with L4KA. The emphasis of our work ing Java compilers.
was on getting the architecture right and enabling perfor-
mance, but not achieving it. The bad performance of Linux-

Table 1: IPC latency (round-trip)

5 Status and future work [8] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. Elphinstone, V.
Uhlig, J.E. Tidswell, L. Deller, and L. Reuther. The SawMill Multi-
The system runs either on standard PC hardware (i486,server Approach. IRroc. of the 9th SIGOPS European Workshop
Pentium, and embedded PCs with limited memory) or as aSep. 2000.

guest system on Linux. The JX Java components also run on[. . .
)) . 9] J. Hartman, L. Peterson, A. Bavier, P. Bigot, P. Bridges, B.
a standard JOK (with an emulation fe#emory objects). Montz, R. Piltz, T. Proebsting, and O. Spatscheckti. Experiences

When running on the bare hardware, the system can accesBuilding a communication-oriented JavaS8&ftware--Practice
IDE disks [19], 3COM 3C905 NICs [15], and Matrox G200 and Experienceg0 (10), Apr. 2000

video cards. The network code contains IP, TCP, UDP,

NFS2 client, and SUN RPC. JX also runs on a Plll SMP [10] C. Hawblitzel, T. von Eicker case for language-based pro-

machine. tection Technical Report TR-98-1670, Dep. of Comp. Science,
We have already implemented a heap manager that rungCornell University, March 1998

in its own domain and manages the heap of another domain 11] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, T. von

This heap manager is always called, when the manage icken. Implementing Multiple Protection Domains in Java. In

do_mam mes to Creat.e anew opject orarray. Creating a "W broc. of the USENIX Annual Technical ConfereNesv Orleans,
object with the build-in mechanism costs 250 cycles, calling |LA June 1998

another domain adds at least 650 cycles. This is not practical
until we further improve IPC performance. There are also [12] S. Liang, G. Bracha. Dynamic Class Loading in the Java Vir-
efforts to improve the quality of the machine code generatedtual Machine. IfProc. of OOPSLA ‘98Dctober 1998

by the translator. .
The JX architecture supports a broad spectrum of 08[13] | M. Le_slle,_D. McAuley, R. Black, T. Ro_scoe, P Barham, D'.
o : Evers, R. Fairbairns, and E. Hyden. The design and implementation
structures — from pure monolithic to a vertical structure of an operating svstem to subport distributed mulimedia applica-
similar to the Nemesis OS [13]. We are going to investigate . b 95y PP app

. : . tions.IEEE Journal on Selected Areas in Communicatibf),
the issues that are involved when reusing componentspp. 1280-1297, Sept. 1996

between these diverse operating system configurations.
[14] P.Madany, et. allavaOS : A Standalone Java Environment
6 References White Paper, Sun Microsystems, May 1996

[15] M. MeyerhdtferDesign und Implementierung eines Ethernet-
Treibers und TCP/IP-Protokolls fir dasJava-Betriebssystem JX
Studienarbeit (supervised by M. Golm), University of Erlangen,

[1] G.Back, P. Tullmann, L. Stoller, W. C. Hsieh, J. Lepreau. Tech-
nigues for the Design of Java Operating Systerfomn of the
2000 USENIX Annual Technical Conferempe 197-210, June IMMD4, Oct. 2000

2000

. _ [16] B. R. MontagueIN: An Operating System for an Embedded
[2] G. Back, W. C. Hsieh, J. Lepreau. Processes in KaffeOS: Isolasy, - Network ComputeFechnical Report UCSC-CRL-9629 Uni-
tion, Resource Management, and Sharing in Jaisoln of the 4th v put I P o

ersity of California, Santa Cruz, 1996
OSD| pp.333-346, Oct. 2000 versity iforni uz

[17] 1. A. Pratt.The User-Safe Device I/O Architecturd.D. the-

[3] B. Bershad. S.Savage, P. Pardyak. Protection is a Software sis, King's College, University of Cambridge, 1997

Issue. IrProc. of the Fifth Workshop on Hot Topics in Operating
Systemgp. 62-65, 1995 [18] Sun Microsystems, IBMlavaOS for Business, Reference

: S . . . Manual Version 2.1, Oct. 1998
[4] V. Cahill. Flexibility in Object-Oriented Operating Systems: A al I

ReviewTechnical Report TCD-CS-96-05, Dep. of Comp. Science [19] A. WeisselEin offenes Dateisystem mit Festplattensteuerung
Trinity College Dublin, 1996 fur metaXaOSStudienarbeit (supervised by M. Golm), Univ. of

: . Erlangen, IMMD4, Feb. 2000
[5] K. Calvert (ed.)Architectural Framework for Active Networks 9

Version 1.0, Active Networks Working Group, July 1999

[6] D. R. Cheriton. Low and High Risk Operating System Archi-
tectures. IfProc. of OSDIpg. 197, Nov. 1994

[7] Department of Defens@tusted computer system evaluation
criteria. DOD Standard 5200.28, Dec. 1985

