
Performance of Address-Space Multiplexing on the Pentium

Volkmar Uhlig Uwe Dannowski Espen Skoglund Andreas Haeberlen
Gernot Heiser

Lehrstuhl Systemarchitektur
Universität Karlsruhe
contact@l4ka.org

Abstract

This paper presents an analysis of the performance
potential and limitation of the so-called small-space
scheme, where several logical address spaces are se-
curely multiplexed onto a single hardware address
space. This can be achieved on the IA-32 architec-
ture by using the segment registers to relocate ad-
dress spaces transparently to the applications.

Our results show that the scheme can provide sig-
nificant performance improvements in cases where
processes with small working sets interact frequently,
as is often the case in client-server applications, and
particularly in microkernel-based systems. We also
investigate how potentially costly revocation of map-
pings can be prevented by clustering communicating
processes.

1 Introduction

The gap between processor and memory speed con-
tinues to widen in modern architectures. As a re-
sult, the dependence of system performance on high
hit rates in the CPU caches is increasing. Computer
architects achieve these high hit rates by increasing
cache capacity, and increasing the depth of the cache
hierarchy.

A large cache implies that there is a significant
probability of finding part of the cache still hot after
a context switch, and thus a possibility of reducing
the indirect context switch costs resulting from a cold
cache. This potential always exists when switching

between threads belonging to the same address space.
It also exists when switching between processes, pro-
vided that the architecture supports secure sharing
of caches between different address spaces.

Similarly critical for performance is the translation
look-aside buffer (TLB), which is a cache for address
translations. A TLB miss implies a cost of at least a
few dozen cycles (assuming a hardware-loaded TLB
and a cache hit on the page table). Indirect context
switching costs can, again, be reduced if the TLB(s)
can be shared across contexts.

Most modern architectures support sharing of CPU
caches and TLBs between address spaces, usually by
tagging TLB entries with an address-space identifier
(ASID) and using physically-tagged caches. How-
ever, this is not the case on the IA-32 architecture,
which presently dominates the PC and low-end server
markets. On this architecture TLBs and virtually
tagged CPU caches must be flushed on an address-
space switch, an operation which itself is costly on
some processors, but also implies significant indi-
rect costs resulting from subsequent cache and TLB
misses. This imposes performance limits on appli-
cations with high context switching rates, such as
client-server type applications and microkernel-based
systems.

Liedtke has shown how the Pentium’s segment reg-
isters can be used to simulate ASIDs, and has pre-
sented results showing context switching costs can
thus be reduced by 2–4 times under favorable condi-
tions [7].

This paper presents a thorough investigation of

1



the performance potential of this small address-space
approach under a wide range of application scenar-
ios where benefits can be expected. These scenarios
are generally characterized by high context-switching
rates and moderate working sets. We also examine
ways to reduce the potentially high revocation costs
associated with the promotion of processes which
have outgrown their allocated “small” space.

Section 2 explains address-space multiplexing in
detail and examines the best-case benefits. Section 3
presents the setup for the experiments, which are pre-
sented, together with their results, in Section 4. Sec-
tion 5 discusses limitations of the scheme and how
they can be overcome. Related work is presented in
Section 6 and conclusions in Section 7.

2 Address-space Multiplexing

Before describing the small address-space approach
in detail we give an overview of the cache and mem-
ory management architecture of IA-32 processors.
As there are significant differences between proces-
sor generations we concentrate on the latest one, the
Pentium 4.

2.1 Pentium 4 memory architecture

The Pentium 4 has an on-chip physically tagged
L1 data cache (D-cache). Instead of an instruction
cache (I-cache) it features a virtual trace cache, which
stores instructions pre-translated into microcode for
the Pentium 4 core. Because it is virtually tagged,
the trace cache must be flushed on an address-space
switch. All L2 caches are physically tagged and thus
require no flushing.

The IA-32 virtual memory architecture uses a com-
bination of segmentation and paging. A processor-
issued 32-bit virtual address is first translated into a
32-bit linear address via a (usually implicitly spec-
ified) segment register. It is then translated into a
physical address via a two-level page table, as shown
in Figure 1. The page size is 4KB, but the page di-
rectory can map a whole 4MB super-page instead of
pointing to a page table.1 The hardware caches seg-

1The architecture allows turning off page translation, in

Base Limit

Dir. Tab. Off.

Segment Register

Virtual Space

Linear Space

Physical Space

Desc. Table

Seg. Desc.

Linear Address

Segmentation
Paging

Page
Directory

Page
Table

Virtual Address

Physical Address

Figure 1: Segmentation and paging on IA-32.

ment descriptor and page table lookups, the latter
in separate instruction and data TLBs (called ITLB
and DTLB from here on).

2.2 TLB tagging

Architectures featuring tagged TLBs essentially ex-
tend the virtual address by a per-process address-
space tag, the ASID. The combination of ASID and
virtual page number is what is being translated into
a physical frame number on such processors. The ba-
sic idea behind the small-space approach is to reduce
the application-usable part of the virtual address by
a few bits, and use the segment registers to simulate
an ASID in those bits, as shown in Figure 2. This
is completely transparent to the application (except
for the size of the usable address space.) By applying

which case the linear address is the physical address. It also
provides an alternative three-level page table format with 4KB
and 2MB pages.

2



PID vaddr

ASID vaddr

TLB tag

(a)

ASID vaddr’

vaddr

TLB tag

(b)

Figure 2: Tagging of TLB entries with (a) hardware
supported and (b) emulated ASIDs.

A B C

D
E
F
G

D
E
F
G

D
E
F
G

Figure 3: A system with 4 small and 3 large processes.

this trick to suitable address spaces only, we can en-
sure that processes requiring a full-size address space
are still able to run.

Specifically, on the Pentium processor, the 4GB ad-
dress space is split into two regions: a large-space area
(of, say, 2GB), and a small-space area, which makes
up the remainder of the hardware address space. The
small-space area is itself split into a number of small-
space regions, each of which can hold a small address
space. A process which is to run in a small address
space is assigned a small-space number, identifying
which of the small-space regions it is to use. The
segmentation registers are then used to relocate the
process’s address space into that region. A “large”
process is not relocated and has access to the whole
large-space area. The number of small processes is
limited to the number of small-space regions.

At any time the address spaces of one large and

ITLB entries 128
ITLB repl. 31 cycles
DTLB entries 64
DTLB repl. 48 cycles
Associativity Full, LRU repl.
TraceCache 12K, 8 way

Table 1: TLB configuration and replacement costs
for a 1.4GHz Pentium 4 processor

all small processes are “visible” to the hardware, as
shown in Figure 3. A TLB miss in a large process
is, as usual, handled by the hardware walking the
present page table. An initial miss in a small space
generates a fault which is handled by the kernel by
copying the appropriate page directory entry of the
small process into the appropriate relocated entry of
the current page table. In addition, a global bit is set
on small-space TLB entries to prevent them from be-
ing flushed when switching between large processes.

As a result, any context switch between two small
processes, or between a large and a small process,
does not change the hardware addressing context,
and does therefore not require any TLB or cache
flushes. Flushing is only required when switching be-
tween large processes, and does not affect any TLB
entries of small processes.

2.3 Analysis of Costs

2.3.1 Savings per context switch

The potential savings resulting from the small-spaces
scheme can be determined from the knowledge of
characteristics of the architecture, as summarized
in Table 1. The various contributions to context-
switching costs are as follows.

Direct costs of flushing TLBs and trace cache,
which can be fully eliminated for a suitable process
switch. The savings amount to 480 cycles, the cost
of executing a reload CR3 instruction, which changes
the page table and flushes the trace cache and the
TLBs.

3



TLB replacement costs. These depend on how
much of the TLB working set of the switched-to
process can be kept alive during the execution of
other processes. For a processor with fully associative
TLBs, like the Pentium 4, this is the total TLB size,
minus the combined TLB working sets of all processes
which were running since the switched-to process was
last executing. It is therefore very sensitive to the
composition of the present process mix. The upper
limit of this cost savings is given by TLB size times
cost to reload a single entry, which is ∼4,000 cycles
for the ITLB and ∼3,000 cycles for the DTLB on a
1.4GHz Pentium 4. This assumes that all page table
lookups hit in the L2 cache, a reasonable assumption
in a scenario where these savings are relatively high.

Trace-cache replacement costs. The cost of
reloading the trace cache is difficult to measure, but
we estimate it to be in the order of 5,000–10,000 cy-
cles. Frequent branch mispredictions could add to
that figure.

2.3.2 Context switch costs

The cost associated with the scheme is mostly that
of reloading the segment registers, 253 cycles.

2.3.3 Overall savings

The maximum savings per context switch are not par-
ticularly high, hence the small-space scheme will only
produce significant savings under conditions of high
context-switching rates. These typically appear in
client-server scenarios, particularly if the workload is
reasonably evenly balanced between the client and
the server. This includes scenarios where a client
acts as a server for a third party, i.e., where several
applications cooperate in a pipelined fashion.

Besides high context-switching rates, the ability to
keep caches warm between context switches is crit-
ical to seeing a significant effect. This means that
the total page working set of kernel and applications
must be in the order of the TLB size. If the page
working set is very small, the average saving per con-
text switch is small. If it is too big, then too few hot
entries remain in order to benefit.

Other than making qualitative statements of where
effects are likely to be seen, it is difficult to estimate
the amount of savings that can be expected in real-
life scenarios. We therefore performed a quantitative
study of potential interesting cases.

3 Experimental Test Bed

We used the L4 microkernel [6, 8] as the test bed
for our experiments. One reason for our choice is
that it is much easier to implement such a mecha-
nism in a small kernel, compared to a large system
like Linux. The experiments which required modifica-
tions to low-level components like page table handling
and context switching, but also require API changes
(to control the assignment of small-space regions to
processes) were much easier to perform in L4.

A second, and equally important, reason is that
microkernel-based systems are particularly sensitive
to context-switching costs, as are any systems where
components run as separate processes (so-called
multi-server systems). We therefore ran most experi-
ments using L4Linux [4], which is a port of the Linux
kernel to L4.

3.1 Address-space multiplexing in L4

The L4 version used in this work is L4Ka/Hazelnut,
a portable re-implementation of Liedtke’s original
(100% assembler) kernel. L4Ka/Hazelnut is written
in C/C++ with optional assembly implementation of
some critical components, like delivery of IPC mes-
sages. In spite of being mostly written in a higher-
level language, L4Ka/Hazelnut outperforms the orig-
inal assembly kernel’s IPC implementation on Pen-
tium III and Pentium 4 systems.

The small-space mechanism was implemented in
L4Ka/Hazelnut as follows. Each process, including
“small” ones, is associated in the normal way with a
hardware address space (which means that the pro-
cess has its own page table). However, the kernel
does not use this hardware address space when dis-
patching a thread in a small process. Instead, it mod-
ifies the segment descriptors for the address space so
that all memory accesses go into the small-space re-

4



gion allocated to the small process. As described in
Section 2.2, the process’s address space is populated
lazily by copying first-level page table entries from
the process’s own page table into the current page
table (that of the present “large” process). If such a
thread accesses memory beyond the size of the small-
space region, it is automatically promoted to a large
space of its own. Hence, small spaces are completely
transparent (except for performance) to user-level ap-
plications.

The kernel can be configured for a small-space area
of 0.5, 1 or 2GB, with the balance of the 4GB hard-
ware address space available for large processes. The
small-space regions can differ in size, from a mini-
mum of between 4MB and 16MB (depending on the
configured size of the small-space area). As the de-
fault link address for Linux application programs on
IA-32 is 0x08048000, or just above 128MB, we used a
size of 256MB for all small spaces in our experiment,
to avoid having to relink Linux applications.

3.2 L4Linux

L4Linux is a single-server system—the Linux “kernel”
runs as a single user-level process on top of L4, possi-
bly side-by-side with other microkernel applications,
such as real-time components. It is binary compati-
ble with the normal Linux kernel for IA-32 and can
be used with any IA-32-based Linux distribution.

L4Linux applications execute in their own separate
address spaces on top of L4, and besides the L4Linux
server. Applications communicate with the server
via a dedicated shared page mapped into the address
space of applications and server. In order to achieve
binary compatibility with native Linux, Linux sys-
tem calls cause an exception, which is mirrored by
the microkernel to an emulation library. The latter
is some code mapped from the L4Linux server into
the application address space. The emulation library
stores the system call parameters in the communica-
tion page and sends each Linux system call request
via L4 IPC to the L4Linux server. The L4Linux server
decodes the request, executes the Linux system call
and stores the results in the shared communication
page. Afterwards, it sends an IPC back to the ap-
plication who reads the system call results into the

respective registers and resumes execution after the
system call instruction.

For every Linux system call two IPCs are required.
Hence, cross-address space IPC performance is cru-
cial for L4Linux’ overall performance. L4’s IPC per-
formance on IA-32 is dominated by hardware costs
for switching to kernel mode and back. The actual
IPC path in the kernel accounts for about 100 cycles
only, whereas the two instructions for entering and
leaving the kernel together add another 166 cycles.
This is in addition to the context-switching costs dis-
cussed in Section 2.3.

Obviously, L4Linux’ performance suffers extremely
from high context switch cost. A simple system call
like getpid, which is one line of C code in the Linux
kernel, causes the complete invalidation of DTLB,
ITLB and trace cache on a Pentium 4 system. With
small address spaces these costs can be reduced to
two kernel entry and exits (compared to one on
a monolithic Linux) and segment register reloads—
basically the costs for a round-trip IPC on L4 which
costs 550 cycles plus some additional costs for dis-
patching the system call in the L4Linux server. The
difference is around 1,700 cycles per Linux system
call, depending on application size.

Considering the above mentioned costs, the most
obvious candidate to put into a small space is the
L4Linux server itself. Since L4Linux runs on global
pages, and multiple address-space switches do not re-
sult in systematic TLB invalidations, the reduction of
TLB misses can then be expected to approach that
of a native Linux system,

There will still be a small amount of additional
TLB misses, however: L4 uses one page for map-
ping thread control blocks for each thread (L4Linux or
application). Furthermore, one communication page
per Linux application needs to be mapped in both,
L4Linux and the application, consuming another two
pages per application. Hence, a client-server appli-
cation scenario would consume 7 extra DTLB entries
in L4Linux compared to native Linux (9% of DTLB
capacity). This, plus some extra processing cost for
the IPC and slightly increased cache misses, are the
costs resulting from running Linux at user level.

5



2500
5000
7500

10000
12500
15000
17500
20000

0 3000 6000 9000 12000 15000
Trace Cache working set (bytes)

C
yc

le
s

Large Space
Small Space

(a) Trace Cache

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120 140 160 180 200
TLB working set (pages)

C
yc

le
s

Large Space
Small Space

(b) Instruction TLB

1000
2000
3000
4000
5000
6000
7000
8000

0 20 40 60 80 100 120
TLB working set (pages)

C
yc

le
s

Large Space
Small Space

(c) Data TLB

Figure 4: Execution time per IPC round trip (averaged over 100 executions) as a function of the trace cache
and TLB working sets.

3.3 Linux applications

We also modified L4Linux to support applications
running in small spaces. This only required minor
changes to the memory layout of Linux applications.
More precisely, we had to do the following modifica-
tions:

1. We limited the application’s (initial) virtual
address-space size by allocating the stack at
256MB.

2. We changed the start mapping area for mmap ()
(used, e.g., for shared libraries) from 1GB to
167MB. Of course, this is rather limiting for
large applications like databases, but the actual
mapping address could easily be configured on
a per-application basis. We never encountered a
case where this was necessary, but then we don’t
tend to run large databases.

3. In L4Linux systems the emulation library pages
are located outside the valid application address
space at address 0xA0000000, in order to pro-
vide a usable application address space of 2.5GB.
This needed to be relocated inside the small-
space size. We chose the region 0x4000–0x6000,
which is not normally used by Linux applica-
tions. We also modified mmap () to deny explicit
maps into that memory region.

Having implemented our changes, Linux applica-
tions were able to execute unmodified. The results
obtained are described below.

4 Experiments and Results

4.1 Ping-Pong

In order to establish upper limits on the performance
benefits of small spaces we used a benchmark with
high context switching rates and adjustable working
sets. A simple ping-pong application, normally used
to benchmark IPC performance, systematically filled
TLBs or the trace cache. Afterwards, it performed
a ping-pong IPC by sending an empty message to
a thread in a different address space and receiving
an empty response. It then proceeded accessing the
previously accessed cache entries. The partner thread
did not perform any operation other than the reply.

The generated synthetic loads for the different
caches were as follows:

Trace Cache: continuous execution of nop instruc-
tions (0x90). The instruction is 1 byte long.

I-TLB: relative jump by 4155 bytes. The jump in-
struction itself is 5 bytes long.

D-TLB: 4-byte read access at every 4160 bytes.

6



The reason for not using offsets of page granular-
ities in the TLB measurements is to avoid evictions
from the second level cache due to self interference.

The ping-pong results in Figure 4 show, as ex-
pected, that with growing trace cache working set the
IPC cost grows much slower with small spaces, cul-
minating in a two-fold difference in execution time at
the point when the trace cache reaches its capacity
(at 8K nops, corresponding to the trace cache size of
12KB). Once the trace cache is exhausted, large and
small spaces perform identically.

Even more dramatic than the trace cache work-
ing set measurements is the dependency on the ITLB
working set size, with small spaces performing about
3.5 times faster than large spaces at the point were
the TLB capacity is exhausted. In contrast to the
trace cache case, however, the small-space scenario
still has a performance advantage, even with large
working sets. This results from the fact that the ker-
nel IPC code in the trace cache survives throughout
the execution of the smaller process.

The DTLB working set has a similar effect, al-
though much less dramatic than in the case of the
ITLB. Still, execution times are up to twice as
fast with small spaces, and are significantly lower
throughout all working set sizes.

4.2 Linux vs. L4Linux

The performance of L4Linux has been thoroughly an-
alyzed before [4]. The result was a very significant
performance difference between Linux and L4Linux
on micro-benchmarks (more than a factor of three
in the case of getpid()) and a 5–10% slowdown on
lmbench and hbench (on a 133MHz Pentium).

Basic system calls present a worst-case scenario for
L4Linux, and a best-case scenario for the small-space
approach. We measured the performance penalty of
such system calls of L4Linux over native Linux, and
the difference between the L4Linux server running in
a large or a small space. As can be seen from the
results in Table 2, the overhead of running Linux as
a server is dramatically reduced by putting the server
into a small space.

Native L4Linux
System Call Linux Large Small
getpid () 1540 (0.7) 3837 (1.7) 2200
gettimeofday () 1840 (0.7) 4295 (1.7) 2547
read (4K) 4241 (0.8) 7067 (1.4) 5198
write (4K) 5332 (0.8) 8746 (1.4) 6368

Table 2: Comparison cost in cycles (normalized to
small space costs in parentheses) of selected Linux
system calls in native Linux, with L4Linux executing
in a small or large space (Pentium 4, 1.4GHz).

Client

L4Linux

Server

L4Linux

1

2

3

4

(a) Large spaces.

Client

Server
L4Linux

1

23

4

(b) Small spaces.

Figure 5: Pipe based communication on an L4Linux
system for applications running in large versus small
spaces.

4.3 Client-Server Pipe

In a client-server environment on a monolithic oper-
ating system such as Linux, communication is either
based on pipes, Unix sockets, or IP-based sockets.
We repeated the ping-pong experiment on a Linux
system, using a pipe to communicate between a client
and a server task.

We then performed the same experiment on an
L4Linux system with the L4Linux server running in a
small space. We measured the pipe performance with
both application processes running either in large or
small address spaces. As indicated in Figure 5, this
results in two hardware context switches per packet
(label 2 and 4) in the former case, zero in the latter.

Figure 6 shows a comparison of the three setups

7



with different working set sizes and the correspond-
ing communication costs in cycles. The results show
the same behavior of large vs. small spaces as seen
in Figure 4. Remarkably, the L4Linux system in a
small space outperforms native Linux on this test,
as long as trace cache and ITLB capacity is not ex-
ceeded. This is a clear indication that native Linux
also stands to benefit from small spaces.

4.4 cat | wc

As a typical pipe-based real life Unix application we
piped a large file through wc, a utility which counts
words of a text. The text itself was delivered from
multiple chained cats. We measured the cycles and
number of TLB misses for a 10MB file for large and
small space configurations.

The number of ITLB misses were reduced by 75%
and the number of DTLB misses by 86%. The total
execution time was 7.4% shorter with small spaces.
Obviously, since cat and wc are tiny applications,
most of the savings have to be accounted to the re-
duced number of DTLB misses.

4.5 X11 and x11perf

We ran x11perf, the performance test program for
the X server. We used this application for two rea-
sons: it stresses communication between two Linux
tasks, itself and the X server, and it demonstrates
the benefits of small spaces in a part of the system
that we believe the user is very sensitive to—the GUI.
x11perf exercises a set of drawing primitives of the
X Windows System Protocol [10], such as dots, rect-
angles, circles, different line styles and fillings, text
rendering, bitmap copies, etc., and measures the per-
formance of these operations.

For the experiment, the L4Linux-server and the X
server each ran in a small space. Ignoring ordinary
preemptive scheduling, no hardware address space
switches were required.

We measured total execution times (in cycles) for
the different x11perf operations. To our surprise the
overall performance did only improve for a quite lim-
ited number of tested X functions, especially func-
tions not accessing the video memory at all.

Large Small
X operation Space Space Improvement
Dot 202 200 1%
QueryPointer 54499 48144 13%
GetProperty 58911 53706 22%
GetImage 10x10 149863 145258 3%

Table 3: Comparison of cycles per object for multiple
X operations tested by x11perf. For the large setup,
only L4Linux was running in a small space. In the
small setup the X server was executing in a small
space. Multiple objects may be drawn at a time.

We account our finding to the rather large TLB
footprint of the X server, and to the bundling of mul-
tiple drawing functions in one X request. We con-
clude that the break-down on a per-object basis does
not lead to a significant performance difference.

Table 3 gives the average cycles and ratio for the
X server executing in a large versus a small space. In
general we see a performance benefit below 1% for
drawing functions.

4.6 Web Server + FastCGI

Web-serving with active content is a classical 3 tier
application scenario. The remote client requests a
web page with active content and the web server ei-
ther responds out of the cache or forwards the request
to another server, e.g., a database. If the web and
database servers run on the same node, this results
in local communication (e.g., through Unix sockets).

Depending on their working-set sizes, it may be
beneficial to run the web-server and the database
server in small address spaces.

For our analysis we configured Apache with
FastCGI support. FastCGI [1] is a high-performance
language-independent CGI extension based on Unix
sockets for local and TCP/IP sockets for remote com-
munication.

We implemented a small “Hello world” FastCGI
server. The server was benchmarked running in small
and large address spaces. All HTTP requests were
received over the network from another machine.

Running on a standard Linux system our setup re-

8



10000

12000

14000

16000

18000

20000

22000

24000

26000

0 20 40 60 80 100 120 140 160 180 200
TLB working set (pages)

C
yc

le
s

Native
Large Space
Small Space

(a) Instruction TLB

5000

10000

15000

20000

25000

0 20 40 60 80 100 120
TLB working set (pages)

C
yc

le
s

Native
Large Space
Small Space

(b) Data TLB

5000

10000

15000

20000

25000

30000

35000

0 4000 8000 12000 16000
Trace Cache working set (bytes)

C
yc

le
s

Native
Large Space
Small Space

(c) Trace Cache

Figure 6: Performance comparison of pipe-based client-server communication running on monolithic Linux
and L4Linux.

sults in two full context switches for each FastCGI re-
quest (Apache → FastCGI → Apache). Using small
spaces we expected to see a measurable decrease in
TLB and cache misses.

To handle one incoming HTTP request Apache and
Linux generate about 290 DTLB and 250 ITLB re-
placements. This is obviously far beyond the capacity
of the TLBs and we therefore did not see any perfor-
mance improvement running the FastCGI server in a
small address space. On the other hand, this result is
indicative of significant performance problems of the
Apache server itself.

In the next experiment we replaced Apache by a
very small and efficient web server—thttpd.2 thttpd
is a single-threaded server supporting file serving
and CGI. We extended thttpd with an experimental
FastCGI interface and repeated our measurements.

thttpd’s working set is significantly smaller than
Apache’s, leading to expected performance improve-
ment results. Our benchmark measures processing
time from the point in time that an HTTP request
is received by thttpd, until the full reply is generated
and about to be sent back to the client. Figure 7 com-
pares the processing times of HTTP requests with
FastCGI running in small and large spaces with dif-
ferent working set sizes. On average we gain about

2According to netcraft.com, thttpd has the fifth-largest
number of installations worldwide.

5% to 6% performance improvement running the
FastCGI server in a small address space.

4.7 MySQL

Considering the memory requirements for large
database servers, they do not sound like prime can-
didates for executing in small spaces. Nevertheless,
large applications like databases can indeed benefit
from small spaces if they are serving local clients
which are thin enough to run in small spaces them-
selves (e.g., HTTP servers). Whether there are any
benefits or not from using small spaces depends on
the working set needed to handle database requests.

To evaluate potential performance gains in the
realm of database servers, we measured the execu-
tion times for a number of small select-queries to
a database served by MySQL [2], a popular, rela-
tively light-weight, open source database server used
in numerous heavily loaded web server setups around
the globe. During our measurements we set up the
MySQL server to run in a single-threaded mode. This
was done to avoid the expensive operation of forking
off a separate worker processes upon each database
request, causing an invalidation of TLBs and virtu-
ally tagged caches. Performance did not suffer by
running it in a single thread since the server in our
experiment never needed to handle simultaneous re-

9



90000
100000
110000
120000
130000
140000
150000
160000
170000

0 20 40 60 80 100 120 140 160 180 200
TLB working set (pages)

C
yc

le
s

Large Space
Small Space

(a) Instruction TLB

90000
95000

100000
105000
110000
115000
120000
125000
130000

0 20 40 60 80 100 120
TLB working set (pages)

C
yc

le
s

Large Space
Small Space

(b) Data TLB

Figure 7: Processing time for thttpd and FastCGI request for different FastCGI server TLB working set
sizes. The black lines show the minimum number of cycles seen (i.e., best case), while the gray lines show
the average.

quests. Moreover, we believe that the server running
on a more modern operating system would be bet-
ter off distributing its load using cheap intra-address-
space threads anyway.

Our experiments show that there is not much to
gain from using MySQL in a small spaces environ-
ment. With very simple queries we gained about 3%
performance increase by using small spaces. More
complex queries were completely dominated by the
execution time in the MySQL server, and had too
large a working set to have any impact on the perfor-
mance numbers. Other more light-weight database
servers with a smaller working set for common queries
might be able to benefit more from using small
spaces.

4.8 LxDoom

As a representative for a whole class of applications—
games—we chose LxDoom, a version of the 3D
shoot’em’up game Doom originally released by iD
software. As with all interactive setups, a higher up-
date rate of displayed information is likely to result in
increased acceptance by the user. As such, the frame
rate with which LxDoom can render the player’s view
on the screen is a reasonable measure for application
performance.

For our experiments we replayed a previously
recorded session file (a five minutes stroll through the
first level) in LxDoom’s benchmark mode with sound
output disabled. In this mode, the recorded session
is rendered as fast as possible and the achieved frame
rate is reported afterwards. Additionally, we counted
the number of ITLB misses, DTLB misses, cycles the
trace cache spent building micro-ops from instruc-
tions fetched, and cycles the trace cache spent to
deliver micro-ops to the out-of-order execution core.
Figure 8 shows the normalized numbers for execut-
ing the X server in a small space compared to a large
space.

Running the X server in a small space, we see a
dramatic 63% reduction of ITLB misses. Since the
instructions executed remained the same, the number
of cycles the trace cache spent delivering micro-ops
to the core is inverse to the execution time. The re-
duction in the number of cycles the trace cache spent
building micro-ops shows an increased hit rate in the
trace cache, which in turn causes less ITLB misses.
The number of DTLB misses, however, is reduced by
as little as 2%. This confirms that the data working
set of both LxDoom and the X server is far beyond
the DTLB capacity.

We conclude that the small space approach has im-
pact on the trace cache and ITLB only, but still re-

10



20%

40%

60%

80%

100%

Frame
Rate

ITLB
Misses

DTLB
Misses

Trace
Build

Trace
Deliver

Small

Large

Figure 8: A comparison of LxDoom performance
measurements when running the X server in either
a large or a small space. Numbers are normalized to
executing it in a large space.

sults in a 6% higher frame rate.

4.9 Make and Friends

Another prominent macro-benchmark is the com-
pilation of programs, like the Linux kernel source
tree. First, we let gcc compile a C++ source file
of L4Ka/Hazelnut and measured execution time,
DTLB misses, and ITLB misses in different system
configurations. Second, we measured these values
in the same configurations for a complete build of
L4Ka/Hazelnut after a make clean. The system
configurations were (a) Linux in a small space, (b)
L4Linux and all Linux tasks in small spaces, and (c)
all Linux tasks in small spaces, but L4Linux in a large
space. The L4Ka/Hazelnut source tree consisted of
40 header files (161KB), 32 C++ files (513KB), and
5 assembler files (24KB). All files could be held in the
file cache thus avoiding disk accesses.

The results were reproducible, but neither surpris-
ing nor satisfying: We could measure a reduction of
both ITLB and DTLB misses by no more than 3% for
configurations (b) and (c) compared to configuration
(a). The execution time remained the same (compile:
0.52s, make: 7.3s). The working set of the measured
jobs is simply too large (compile: 660K TLB misses,
make: 9.4M TLB misses) to draw any benefits from
the small space approach. The differences between
configurations (b) and (c) were negligible.

4.10 SawMill

SawMill [3] is a multi server operating system run-
ning on top of L4. It is based on a Linux 2.2.5 kernel
decomposed into separate orthogonal services. Ser-
vices are protected from each other by running as
servers within separate address spaces. As any multi-
server operating system, SawMill extremely stresses
IPC performance and context switching overhead
by remotely invoking functions within other system
servers.

We evaluated the performance impact of small
spaces on SawMill by running a TCP/IP stack and a
driver for a network interface card (NIC) in separate
address spaces. A ping packet was then sent to the
machine, and the round-trip time from when the in-
terrupt arrived in the network driver until the ICMP
reply packet was enqueued at the network card was
measured.

Handling of a single ping packet requires: (a) a
full context switch to the driver, (b) an intra-space
context switch to the bottom half handler thread in
the driver’s address space, (c) a full context switch to
the IP stack, and (d) a full context switch back to the
driver. As such, three full context switches involving
TLB and trace cache invalidation can be saved by
using small spaces.

Large Small
Spaces Spaces Improvement

Cycles 38950 31800 18 %
DTLB Misses 46 5 89 %
ITLB Misses 44 0 100 %

Table 4: Execution times and TLB misses when han-
dling a ping packet in the SawMill NIC driver and
TCP/IP stack.

Table 4 summarizes our measurements. We see
that 89% of the data TLB misses and 100% of the
instruction TLB misses are saved by running the
NIC driver and TCP/IP stack servers in small spaces.
These savings, together with trace cache savings, re-
sults in an 18% performance improvement.

11



4.11 Summary

The measurements performed with L4Linux running
in a small space on top of L4 allow us to estimate
the benefits of small spaces to a native Linux sys-
tem without actually having to implement the scheme
in Linux. As explained in Section 3.2, running the
L4Linux server in a small space, while not eliminat-
ing microkernel overhead completely, eliminates prac-
tically all address-space switching overheads result-
ing from running Linux at user level. Hence, the
relative performance differences between applications
running in small and in large address spaces, as sum-
marize in Table 5, should be a good indication of the
expected benefits of small spaces to a native Linux
system. As the table shows, these can be anywhere
between zero and 74%.

Application Improvement
L4Linux 40–70%
Client-Server Pipe 19–74%
cat | wc 7.6%
X11 + x11perf 0–13%
Apache + FastCGI 0%
Thttpd + FastCGI 5–6%
MySQL 0–3%
Doom 6%
Gcc + Make 0%
SawMill 18%

Table 5: Average execution time improvements of
using small address spaces over large address spaces.

5 Limitations

As described in Section 3.1, small address spaces are
implemented in a manner which makes them com-
pletely transparent to the applications using them.
This was achieved by automatically transferring the
small space into a larger one when the it accessed
memory outside of its limited address space. How-
ever, if an application is to make use of a small space,
the system must be aware of the fact that the appli-
cation has only a limited virtual memory region to

work within and take appropriate steps to make sure
that it stays within its bounds. Most notably, stack
space can no longer be located in the upper part of
the virtual memory area (typically just below 3GB)
and dynamically loaded libraries must be located so
that they fit into the limited virtual space. Fortu-
nately, these adjustments can be done transparently
to the application by the dynamic linker and the op-
erating system. The application binary will usually
still be linked to some relatively high virtual address,
though (typically just above 128MB and upwards),
and relinking of the binary is therefore necessary if
the application is to run in a truly small space.

5.1 Revocation

Another more pressing issue is the limited number
of available ASIDs in the system, i.e., the virtual
memory area dedicated to small spaces. Recalling
that running unmodified Linux applications requires
at least 256MB of virtual memory, and the 4GB ad-
dress space must be shared between a large space
and all small spaces, it is apparent that the number
of ASIDs in the system is vastly insufficient. A mech-
anism for recycling ASIDs must as such be devised.

Unfortunately, recycling of ASIDs is extremely
costly. It requires that one existing ASID must be
preempted (i.e., revoked from the application using
it). Revoking the ASID itself is not expensive at all,
but the fact that page table entries might have been
lazily copied to any hardware address space in the
system implies that the affected page table entries
in the small space area must be purged from every
single existing page table. Considering the possible
number of existing tasks (i.e., page tables), it is evi-
dent that such an operation must not be performed
frequently.3

Given the tremendous cost of preempting ASIDs, a
sensible ASID scheduling policy is paramount to the
performance of the system. Finding such a policy is
hard, though. Not only must the system spend un-

3Alternatively, lazy purging of page table entries is pos-
sible. Such a scheme would, however, dramatically increase
the worst case switching time between threads, which would,
in particular, result in unacceptably high worst-case interrupt
latencies.

12



necessary cycles doing another preemption should the
scheduling algorithm choose an inappropriate ASID
for revocation, but the very nature of the applica-
tions running in small spaces tend to aggravate the
cost of the preemption. That is, an application run-
ning in a small space must often respond quickly to
some request or else one or more other applications
in the system might suffer heavily from the increased
latency. After all, performance was the reason for
running the application in a small space in the first
place. We have so far not been able to come up with a
reasonable scheduling policy that decreases the ASID
recycling frequency to a level suitable for deployment
in a real system. As the following section describes,
however, there exists other solutions to solving the
ASID preemption problem.

5.2 Application Groups

Observing that the number of ASIDs is too small and
that ASID preemption is deemed too expensive to be
performed frequently, one might conclude that ASID
recycling is impractical, and only a limited number of
small space tasks can therefore be supported. How-
ever, looking at the applications that benefit from
executing in small spaces, i.e., client-server applica-
tions, one realizes that they tend to mostly communi-
cate with a very limited group of other applications.

For example, as seen in Figure 9, the different
pipeline stages of a compilation (cpp, cc1, and as)
will only communicate with each other. Likewise, in
Figure 10, a web server with dynamic content will
only communicate with L4Linux and certain other
servers (e.g., FastCGI servers), and so on.

Moreover, the communication between the tasks
within a group is usually such that one task issues a
system call that releases another blocked task (e.g.,
sending a signal or providing some more data to an
empty pipeline). As such, context switches will usu-
ally occur between different tasks within the group.
Only when the operating system performs a schedul-
ing decision, or when a task explicitly communicates
with some task outside of the group—both infrequent
operations—will some other task outside of the group
be scheduled.

If applications are grouped together according to

9115 9120 9125 9130

cmd

pid

m
ak

e

cp
p0

gc
c

cc
1

cp
p0

ascc
1

shshas shsh gc
c

sh cp
p0

gc
c

cc
1

as sh

Figure 9: Compiling three source files in the Linux
kernel tree. Switches always happens in clockwise
fashion. The line width indicates the number of times
a certain switch occurs (the width being a logarithmic
function on the number of switches).

such relationships, only switches between groups re-
quire ASID preemption. Thus, ASIDs are no longer
recycled one by one, but in groups. Such recycling of
ASIDs, however, is cheap since the ASIDs within the
group are restricted to one single hardware address
space—there is no need to purge the ASIDs from all
hardware spaces in the system. A simple switch of
the hardware address space is sufficient.

Having the ability to group applications, a simple
optimization can then be implemented by observing
that some tasks (e.g., the L4Linux server) communi-
cate with all tasks in the system and therefore should
be a member of all application groups. This can
be implemented with the help of global pages, i.e.,
pages with TLB entries that are not affected by TLB
flushes. By having these global small-space tasks op-
erate on global pages, their TLB working set will
not be flushed when switching between application
groups. Figure 11 illustrates such a system with mul-
tiple groups and a single task which is global among
all groups.

13



L4Linux
Server XFree86

fcgi
httpd

mysqld

xload

lxdoom
fvwm95

(a)

XFree86

fcgi
httpd

mysqld

xload

lxdoom
fvwm95

(b)

Figure 10: In L4Linux it seems that all tasks commu-
nicate with the Linux server only (a). As (b) shows,
however, they actually communicate in small groups.

6 Related Work

Small spaces were originally proposed by Liedtke,
who also presented some indicative data on IPC per-
formance in L4 with and without small spaces [7].
However, these results had been obtained from a ker-
nel modified specifically for the benchmark presented
in the report—to date no complete implementation of
small spaces had been performed in L4. Small spaces
have, apparently, been implemented in EROS [12],
but no performance figures are available.

The basic idea of multiplexing a large hardware
address space between smaller ones is not restricted
to IA-32, not even to segmented architectures. How-
ever, some degree of hardware support is necessary
to make it work securely. Such hardware support is
available on the StrongARM processor [5]. It features
a PID register, whose sole purpose it is to relocate
a small address space transparently to the applica-
tion. It is utilized in Windows CE [9], for example.
Windows CE does not provide full protection of ad-
dress spaces, though. The ARM domains [11] can be
used to provide full protection for small spaces on the
StrongARM, and can even be used for more general
multiplexing of the hardware address space between
processes [13]. No performance data are available at
this time. However, given that the StrongARM has

B
C

D

F
G
H

K
L

A E J

D D

Figure 11: A system with three application groups
{A,B, C}, {E, F, G, H}, and {J,K,L} and one
global small space task D.

a virtual L1 D-cache, in addition to a virtual L1 I-
cache and untagged TLBs, and its hardware support
for small spaces is more direct, and less costly to use
than on the Pentium 4, we can expect that the per-
formance benefits of small spaces are higher on that
architecture than on IA-32.

7 Conclusions

We have investigated the performance potential and
limitations of the idea of securely and transparently
multiplexing small logical address spaces within a sin-
gle hardware address space. We implemented the
scheme in the L4 microkernel and used L4Linux and
SawMill as the execution environment.

Our results show that the benefits of small spaces
are most pronounced in microkernel-based systems,
such as L4Linux and SawMill, where performance can
be improved by up to 70%. Cases where no signif-
icant performance improvements were evident could
be explained with working sets exceeding TLB capac-
ity. However, we found that client-server applications
running on Linux, as long as they feature high con-
text switching rates and small working sets, can also
benefit, often in the order of 5–10%, in extreme cases
up to 70%. We also found some cases where L4Linux
with small spaces outperforms native Linux. We con-
clude from these results that support of small spaces
would be beneficial for native Linux too.

The main limitation of the scheme is the poten-

14



tially high revocation cost once processes outgrow
their allocated small spaces. We have shown that
this cost can be avoided by appropriate grouping of
communicating processes. However, an implementa-
tion of such a scheme remains to be done.

Availability

The L4Ka/Hazelnut kernel, including support for
small spaces, is available from http://l4ka.org/.

References

[1] Mark R. Brown. FastCGI: A High-Performance
Gateway Interface. In Programming the Web -
a search for APIs, 1996.

[2] Paul DuBois. MySQL. New Riders, December
1999.

[3] Alain Gefflaut, Trent Jaeger, Yoonho Park,
Jochen Liedtke, Kevin Elphinstone, Volkmar
Uhlig, Jonathon E. Tidswell, Luke Deller, and
Lars Reuther. The SawMill Multiserver Ap-
proach. In 9th SIGOPS European Workshop,
Kolding, Denmark, September 2000.

[4] Hermann Härtig, Michael Hohmuth, Jochen
Liedtke, Sebastian Schönberg, and Jean Wolter.
The performance of microkernel-based systems.
In 16th ACM Symposium on Operating System
Principles (SOSP), SaintMalo, France, October
1997.

[5] Intel Corporation. Intel StrongARM SA-1110
Microprocessor Developer’s Manual.

[6] Jochen Liedtke. Improving IPC by kernel de-
sign. In 14th ACM Symposium on Operating
System Principles (SOSP), Asheville, NC, De-
cember 1993.

[7] Jochen Liedtke. Improved Address-Space
Switching on Pentium Processors by Transpar-
ently Multiplexing User Address Spaces. Techni-
cal report, GMD — German National Research

Center for Information Technology, November
1995.

[8] Jochen Liedtke. On µ-kernel construction. In
15th ACM Symposium on Operating System
Principles (SOSP), Copper Mountain Resort,
CO, December 1995.

[9] John Murray. Inside WindowsCE. Microsoft
Press, September 1998.

[10] Robert W. Scheifler. RFC 1013: X Window Sys-
tem Protocol, version 11: Alpha update April
1987, June 1987. Status: UNKNOWN.

[11] David Seal, editor. ARM Architecture Reference
manual. Addison-Wesley, 2nd edition, 2001.

[12] Jonathan S. Shapiro, Jonathan M. Smith, and
David J. Farber. EROS: a fast capability system.
In 17th ACM Symposium on Operating Systems
Principles, December 1999.

[13] Adam Wiggins and Gernot Heiser. Fast address-
space switching on the StrongARM SA-1100
processor. In 5th Australasian Computer Ar-
chitecture Conference, pages 97–104, Canberra,
Australia, January 2000. IEEE CS Press.

15


