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ABSTRACT

With increasing clock speed and level of integration in
today’s processors, memories, and I/O-controllers, power
dissipation is becoming a definitive concern of system
design. Control-theoretic techniques have proven to manage
the heat dissipation and temperature starting from the level
of functional blocks within the processor up to the level of
complete systems, so that a thermal emergency will never
be reached. However application-, user- or service-specific
requirements had to be neglected.

In this work we investigate dynamic thermal management
with respect to the demands of individual applications, users
or services. We present an event-driven approach to deter-
mine on-the-fly the energy consumption on a fine grained
level and describe a model to estimate the temperature with-
out the need for measurement. With this power and thermal
model—combined with the well-known facility of resource
containers—it is possible to throttle the execution of indi-
vidual tasks according to their energy-specific characteris-
tics and the thermal requirements of the system. In addition
to throttling we investigate a modified process scheduler
which allots CPU time according to the power contribution
of each task to the current temperature level of the proces-
sor.

Experiments using a Pentium 4 architecture running a mod-
ified Linux show that a given temperature limit for the CPU
will not be exceeded while tasks are scheduled according to
their energy consumption.

1. Introduction

To meet the insatiable demand for high performance
hardware, components with increased gate count and
clock frequency were developed. The improvements in
manufacturing processes could not keep the power
increase at a reasonable level. Thus elaborate and costly
package cooling technologies have to be applied. The
heat removal mechanism is designed according to the
power specification of the components. There exist two
design alternatives:

* Cooling technology is designed for maximum power
consumption in a conservative approach to guarantee
that a pre-determined temperature threshold is never

exceeded even when running unrealistic workloads
with excessive thermal demands.

* Heat removal is designed for typical sustained pow-
er across realistic workloads. A trigger mechanism is
provided to respond with a throttling of activity in or-
der to guarantee a reliable operation of the device.
This dynamic thermal management (DTM) reduces
the cost for cooling by uniformly throttling the sys-
tem without respect to the importance of the current-
ly running task.

The major shortcoming of existing dynamic thermal
management schemes is the neglect of application-, user-
or service-specific requirements. The reason is not so much
a lack of fast acting response mechanisms but missing on-
line information about the originator of a specific hardware
activation and the amount of energy consumed by that ac-
tivity.

Our approach to dynamic thermal management pro-
vides task-specific throttling according to energy-spe-
cific characteristics of the task, according to the
performance demands of inidividual applications, users
or services, and of course according to the thermal re-
quirements of the hardware.

In this work, we present an event-driven energy-esti-
mation model that employs event-monitoring counters
to determine on-the-fly the actual power consumption
and who has used the power in the system. With the
specification of the cooling system (thermal resistance
and capacitance), the temperature can be estimated with-
out the need for measurement and used to trigger task-
specific throttling. We apply the abstraction of resource
containers [3] to account the consumed energy to an energy
principal and to throttle according to the attributes of the so
called Energy Containers. Additionally we present a CPU
scheduler which identifies and penalizes “hot” processes by
reducing their time slices.

Two target application spaces benefit from dynamic
thermal management: in the server market, cooling fa-
cilities play a significant role in the overall power con-
sumption and costs. Furthermore, cooling facilities are
often overprovisioned in order to cope with a cooling
unit failure. In the laptop market, dynamic thermal man-
agement could make fans obsolete or at least limit the
power consumption used for cooling and, as a conse-
quence, achieve longer battery lifetime.



Power and temperature measurements of a Pentium 4
system running synthetic tests as well as real-world ap-
plications and benchmarks demonstrate that event-driv-
en dynamic thermal management can handle energy
budgets of applications and services while keeping the
temperature below a critical limit by constraining the
CPU activity.

Section 2 reviews related work. We detail our ap-
proach to event-driven energy accounting and dynamic
thermal management in section 3. Further we describe
our implementation in section 3.4 and present an evalua-
tion in section 4. Section 5 discusses future work and
section 6 summarizes our results.

2. Related Work

Power and power density are becoming a major chal-
lenge in system design. Not only the power density on
the chip level is rising exponentially [12], but also the
problems for infrastructure level power supply and cool-
ing [4]. The widening gap between maximum power and
typical active power [26] allows two thermal design
alternatives:

(1) Heat spreading and cooling is designed for the
worst case of sustained maximum power to prevent ther-
mal emergency even under unrealistic conditions.

(2) Thermal design assumes moderate average power
thus reducing the cost for packaging and cooling. How-
ever, this approach requires dynamic thermal manage-
ment to influence switching activity whenever a critical
temperature limit is reached.

Dynamic thermal management can be divided in
three categories:

* Request management
Energy consumption is the consequence of serving a
request. Request throttling and load (re-)distribution
influence the energy consumption and thermal load
of a single system or a cluster. Typically this ap-
proach is recommended for internet data centers
working on many requests of short service time [23,
18, 19, 10].

* Direct feedback-driven reduction of chip activity
Temperature sensors or on-chip activity monitors de-
termine the thermal state of the chip and initiate a re-
duction of activity of individual units or the whole
chip by reducing their execution rate. This approach
was successfully applied to microprocessors by a
feedback-driven reduction of the clock frequency or a
throttling of the instruction cache [11, 22, 8, 24].

o Task level throttling

CPU intensive tasks are said to be “hot” when they
use more than a specific CPU activity over a period
of time. When temperature reaches a critical level,
hot tasks are candidates for throttling. In this way the
system is idling and the CPU spends more time in the
low-power state, so the temperature is decreased
[21].

In contrast to direct feedback-driven activity reduc-
tion, task-specific throttling does not affect necessar-
ily the performance of important activities like
interrupt processing and the execution of tasks that
do not contribute significantly to the power consump-
tion of the system.

Performance monitoring counters have proved to of-
fer valuable information in the field of performance
analysis [1] and cache-affinity scheduling in multipro-
cessors [6, 28]. Now they become more and more attrac-
tive in the area of power management: the
power/performance characteristics of a running thread
can be determined on-line by reading of event counters
[7, 5]. According to the thread’s patterns the scheduler
can find the optimal thread-specific clock-speed in a
time-sharing environment to save energy with just mi-
nor performance penalties [27].

Precise off-line power estimation is a prerequisite for
making architectural decisions and for the design of en-
ergy-aware software. Power simulators [9, 25, 13] dis-
close, how much energy was consumed by a specific
component as consequence of the execution of a certain
piece of code. Furthermore architectural-level power
simulators are useful to calculate thermal plots of the
processor die like the Pentium 4 [12]. Thermal plots are
essential for the placement of a temperature sensor sup-
porting feedback-driven thermal management.

On the fly power approximation using performance-
monitoring counters was quite inaccurate in the begin-
ning [5, 7] as the number of most CPU architectures al-
lowed to measure just two power-relevant events at a
time. For long-running user-applications with constant
execution behavior, time-multiplexing of several events
to the two counters seems to be sufficient for power
analysis [16, 17]. However, multiplexing is not suitable
for a general purpose run-time power estimation to de-
termine the thermal status of a device.

Managing energy as a first class resource and sharing
this resource among competing tasks according to user
preferences was introduced in ECOSystem [30]. The
Currentcy model [29] allows to allocate and account en-
ergy, and to enforce energy limits. ECOSystem/Current-
cy is very similar to our resource container
infrastructure and could easily be adapted to support dy-
namic thermal management.

3. Event-Driven Dynamic Thermal
Management

Knowledge of the thermal status of the processor is an
indispensable requirement for dynamic thermal manage-
ment. Chip sets which allow the reading of a thermal
diode embedded in modern processors cannot be used
for fine-grained management because they don’t allow a
correlation between the originator of power consump-
tion and the effect of heating. Furthermore, our experi-
ments revealed that reading the thermal diodes of a
typical Pentium4 board imposes significant overhead on



the system. It takes 5.5 ms to retrieve the current tem-
perature level via the system management bus (SMBus).

Our approach is based on the performance counters
in today's processors to clearly identify “hot” processes,
to estimate the processor's power consumption, and to
amply determine the temperature of the chip given that
the ambient temperature is either constant or can be
measured occasionally. Contrary to the measurement ap-
proach described above, access to the performance
counters is very fast, allowing a process-specific update
on energy consumption during every timer interrupt.

Currently, our implementation is constricted to ther-
mal management of the processor, because the rest of
the system architecture is not covered by any energy-
specific monitoring counters. The presented thermal
model is not intended to compete with dedicated power
simulators. However it should provide sufficient accura-
cy to account on-the-fly CPU energy to an energy prin-
cipal, to determine the thermal status of the processor
and to support appropriate throttling mechanisms (e.g.
by placing the CPU in HLT state until an interrupt oc-
curs).

The event-driven power and thermal model is com-
bined with the well-known facility of resource contain-
ers [3] to throttle the execution of individual tasks
according to their energy-specific characteristics, their
service requirements and the thermal demands of the
system. We call this operating system abstraction Energy
Containers. The root-container (reflecting the sum of all
processes’ energy consumption) is utilized to estimate
an upper limit on the processor temperature. In this way
a trigger for the system is provided to begin throttling
processes. “Hot” processes can be identified using ener-
gy consumption information stored in their resource
containers.

For measurements we used a P4 2GHz motherboard
(ASUS P4B266E, DDR RAM) instrumented with four—
terminal precision resistors attached between the board
and the 3.3V, 5V and 12V power supply. The voltage
drop at the sense resistors was measured with an A/D-
converter with up to 40000 samples per second and with
a resolution of 256 steps.

3.1 From Events to Energy

The increasing complexity of modern processors (super-
scalar architecture, out of order execution, branch pre-
diction, ...) demands a more elaborate procedure to
estimate on-the-fly the power consumption. While it was
sufficient for former architectures like Pentium II to cal-
culate the percentage of CPU activity [21], we registered
a wide variation of the active power consumption
between 30 W and 51 W for the P4 architecture running
a compute intensive task. We measured the power and
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Figure 1: Measured and estimated power consumption

energy consumption of a set of test programs structured
in three groups (see bars in figure 1):

* ALU: programs which operate entirely on registers
using ALU instructions like addc, bswap, xor, ...

« MEM: programs which operate on registers and
memory (including L1/L2 caches)

e Micro benchmarks which perform various algo-
rithms (checksum, factor, heron, SHA-1,
RIPEMD-160, ...).

Because there are high-power tasks that need about
70% more power than low-power tasks, CPU cycles are
no longer a clear indicator for energy consumption.

The next step is to use more processor-internal infor-
mation provided by the performance counters on-line.
Modern processors feature much more performance
counters than their predecessors. In particular, the Pen-
tium 4 architecture provides 18 performance counters
which can be used simultaneously.

Our approach to energy estimation is to correlate a
processor-internal event to an amount of energy. As
events being monitored correspond to specific activities,
this correlation has linear characteristics. Therefore, we
select several events which can be counted simulta-
neously and use a linear combination of these event
counts to estimate the processor's energy consumption.

The event selection was done manually. For each set
of events (containing »n events), m test programs were
run and their consumption recorded.



The data gained from such a test consists of:

e energy consumption for m processes
T
e = (e ey...e,)

+ n performance counter values for each of the m pro-
cesses: A = [al.j] (1<i<m, 1<j<n)

. . _T
The problem is to find a vector X~ = (X1, X9, o0 X,)
with |4 - x - él|, minimal and 4-X-&>0 so that an un-
derestimation of the energy will not be accepted.

The computation of the coefficients was done using
dged, a netlib FORTRAN subroutine which tries to find
a vector X for which the vector (g,(x), g,(%), ..., g,,(X))
has minimum length, with linear constraints on X. This
routine was set up so that a linear combination of events
and coefficients was at least as large as the measured
energy consumption.

We found quite promising correlations between ener-
gy consumption and integer ALU operations, load-/store
operations and cache-references. For complex floating
point instructions, MMX, SSE, and SSE2 operations our
quest for a set of events failed because of a lack of
meaningful events. Although these internal events are
known and are used in INTEL’s architectural-level pow-
er simulator ALPS [12], they cannot be counted with the
performance monitoring infrastructure of the Pentium 4.
Therefore we focused on integer applications to demon-
strate the viability of our approach. A further restriction
is the fact that first- and second-level cache misses can-
not be counted simultaneously, although both are high-
ly relevant events for energy estimation. Most
applications show a low 2nd-level cache miss rate, so
we decided to ignore the power contribution of 2nd-lev-
el cache misses. For some memory intensive applica-
tions this can lead to an underestimation of energy
consumption of up to 20% (see annotation in section 4.1
and figure 4d).

The final set of events and corresponding coefficients
did well for most of the test programs (see table 1). The
worst energy estimation is 30% too high, while the esti-
mation was less than 1% wrong for 11 of 25 test pro-
grams (see error bars for major categories of test
programs in figure 1). The contribution of the time
stamp counter constitutes the basic power consumption
of the halted processor. Additional energy has to be dis-
sipated if the CPU is active (unhalted cycles) and for
each micro-operation fed into the pipeline. Branches
contribute differently to the power budget depending on
their predictability. Whenever a data memory address is
referenced, the memory management unit and the first-
level cache become active. The memory order buffer
can contribute significantly to the power consumption
though this event cannot be seen at a high rate.

3.2 Energy Containers

To manage energy as a first class resource we apply the
abstraction of resource containers [3]. These Energy

weight| maximum rate| power contribution

event [n]]| (events / cycle) [Watt]

time stamp counter| 6.17 1.0000 12.33
unhalted cycles| 7.12 1.0000 14.23
uop queue writes| 4.75 2.8430 26.99
retired branches| 0.56 0.4738 0.53
mispred branches | 340.46 0.0024 1.62
mem retired| 1.73 1.1083 3.84

mob load replay| 29.96 0.4165 24.95

Id miss 1L retired| 13.55 0.2548 6.91

Table 1: set of events and their power contributions

Containers are a specialized form of resource containers
that can account energy with respect to client-server
relations. When a machine is running under energy pres-
sure, processes are throttled according to the limits of
the energy containers.

Energy consumption of all activities like running pro-
cesses or I/0 requests are accounted to hierarchical en-
ergy containers. Energy accounted to an energy
container is also accounted to its parent container.
Hence, the root container indicates the total energy con-
sumption of the system. If an accountable device is idle,
its energy consumption is accounted to the container of
the idle task.

The association between processes and containers
can be dynamically established by special system calls
to reflect changes in the workload of the processes. It is
also possible to precisely account the energy consump-
tion of a server to a client on a per-request basis. While
a server is reading a new request from a file descriptor,
an implicit update of its energy container binding is trig-
gered.

Local clients can attach their resource container to a
file descriptor (e.g, pipe, socket). For remote clients a
packet filter can classify the packet carrying a request
and bind the socket to an energy container depending on
the address range from which the client request is com-
ing. This approach propagates resource bindings from
clients to server applications.

An energy container is used to control power con-
sumption storing the used energy as well as a limit. We
do not limit the amount of energy, but the rate of energy
consumption. Thus, time is split up in epochs and a con-
tainer has an energy limit per epoch. This limit is re-
freshed according to the current energy policy of the
machine. Every activity that consumes energy reduces
the available energy of some container. As energy con-
tainers are just a special kind of resource containers,
they can account for multiple resources. A task is al-
lowed to run if all resources are available (e.g., energy
and network bandwidth). Our implementation currently
accounts CPU time and energy consumption.



The operating system stops all activities that do not
have enough energy in their energy container and enters
low-power states to reduce power dissipation. By put-
ting the CPU into a low-power state (e.g., HLT-state)
for a short duration of time, it is possible to modulate
the processor power consumption. Further potential
throttling mechanisms are discussed in [8].

Due to the hierarchical structure of energy contain-
ers, there a control loop of one container affecting all
containers in the sub-tree. The top-level resource con-
tainer controls any energy consuming activity in the
complete system. By changing the amount of energy
that is refreshed in this container, system-wide power
consumption can be managed according to thermal re-
quirements.

To implement an energy management policy that
copes with different situations ranging from no limit to
extreme energy pressure, resource limits of containers
can be scaled as the top-level limit changes. That way, a
given percentage is always available for the correspond-
ing process. An application of this feature is a packet
filter using our energy-aware socket extensions. The fil-
ter automatically configures the resource containers of a
server process and assigns different energy shares to re-
quests from different client address ranges.

To protect server processes from clients with a very
low energy quantum, they always retain their original
resource container as backup. As long as the client's
container provides enough energy, its budget is used and
energy is accounted to the client. If the client runs out of
energy, the server, working on behalf of the client,
would have to wait until the client’s container is re-
freshed. This would lead to a situation of priority inver-
sion if other clients which have not exhausted their
energy budget would have to wait for the server, too.
Thus, we modified the resource binding mechanism: if
the client’s container runs out of resources, the server
can be configured to fall back on his original container.
Other solutions to the problem of priority inversion ex-
ist, but are outside the scope of this paper and will not
be presented here.

3.3 From Energy to Temperature

With the processor's energy input known, we are able to
estimate the processor temperature by looking at the
thermal characteristics of the heat sink. The heat sink's
energy input consists only of the energy consumed by
the processor, and can be formulated as

t+ At
emAT = AQ = [ P(t)dr

t

c: constant

m: mass of heat sink
P: CPU power usage
At: elapsed time

AT :heat sink's temperature increase

AQ :difference of inner energy

which is transformed into

dT = L par = ¢ Pdt. (3.3.1)
cm

The energy output of the heat sink is primarily due to
convection and can be formulated as

AQ = %-(T—TO)~1= cmAT

r: thermal resistance
o : constant

T,: ambient temperature

which is transformed into Newton’s Law of Cooling:

dT = —c)(T—Ty)dt. (3.3.2)
Energy output by heat radiation does not have to be

considered because the temperature is quit low (< 60°

celsius) and the aluminium surface has a low radiation

emitting factor.

Together, these two formulas are used as an approach to

estimate the processor temperature:

dT = [c|P—co,(T-T)]dt. (3.3.3)

Solving this differential equation yields

Ty ==.c%+dper 33.4
= cz e 02 0- (3.3.4)

To find values for ¢, ¢, and T, we conducted two
experiments:

To determine c,, the raise in processor temperature
on a sudden constant power consumption and a sudden
reduction to HLT power was measured with the thermal
diode on the processor die.

Our thermal model resulting in the differential equa-
tion simplifies the real thermal conditions as it assumes
a single heat sink interfaced with the chip without ther-
mal resistance. However there is the impact of interface
material like grease and phase-change films [26] and the
thermal effects of heat spreaders. We found a simple ap-
proach to come close to the complex thermal model of
several heat spreading components. We assume two
constant values for ¢,: ¢, for increasing tempera-
ture, and ¢, 4., for decreasing temperature for model-
ling the overlay of the characteristics of interface
material, heat spreader and heat sink in case of rising
and falling temperatures: 2, up > €2, down and

02, up =6 cZ, down *
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Figure 2: Temperature raise and decay due to

constant power

With this approach, the estimated temperature is
above the measured temperature in all of the test cases.

For ¢, and T,,, we measured the static temperatures
and power consumption of the test programs and inter-
polated the resulting points with a quadratic function

T(P)= a,P" +a,P+a, (3.3.5)

which has to be above the curve measurements. Other-
wise there could be a program for which the real static
temperature is higher than the estimated.
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Figure 3: Estimating temperature for static power

The values for ¢; and 7|, are computed from a tan-
gent to T (P) in the point (P, T (P)) with P being the
current power consumption.

This results in the following differential equation to
estimate the processor's change in temperature:

dT = [(ayP +a,)P +ay— Tleydt (33.6)

with ¢, = €2, up if the last computed d7=0,
else ¢, = 2. down -

Once having measured a representative of the target
systems, the four parameters just have to be loaded into
the temperature estimation software. This estimator only
needs information about the ambient temperature and a

continuous flow of power values that can be determined
with the help of the event-monitoring counters (see sec-
tion 3.1).

3.4 Implementation of Thermal Management
With Energy Containers, the kernel used in this work
has the infrastructure for accounting and controlling
energy consumption of processes and the entire
machine. As a result, the temperature estimation and
control could easily be implemented in user-space facili-
tating the use of floating point operations.

The resource container facility features simultaneous
energy limits on different time-slices (128 ms and 1024
ms per default). Our approach to temperature control is
to compute an energy limit for each time-slice for the
whole computer (= root container), based on the current
estimated temperature and the temperature limit. By
limiting the root container’s power consumption, the
change in the processor’s temperature (specified in
equation (3.3.6)) will never result in an overrun of the
critical temperature:

[(ayP+a)P+ay—Tle,dt<T);, ., —T. (3.4.1)
Formula (3.4.1) forms the quadratic inequation
T, . =T

2 limit
02P +a]P+aO—TSW 3.4.2)
Because a, <0 the solution of this inequation is

2

—a T,. .—T a
pc—_|L dmi g 4T+, (3.4.3)

2a, Nay| cydt 4a,

We extended the utility mbmon, which reads the
health monitoring chip set and displays the measured
temperature, with the temperature estimator and the
code to limit the root resource container. This eases cali-
bration of the temperature estimation procedure. The en-
ergy consumption necessary for the temperature
estimator is read from the root resource container. To
prevent a deadlock, the mbmon-process is accounted,
but never throttled.

Small errors in the temperature estimation mecha-
nism or errors due to changing ambient temperature will
accumulate over time. Me measured an error of 3°-5° C
over a period of 24 hours. In order to prevent such devi-
ations the estimated temperature is periodically adjust-
ed to the measured temperature. For this re-calibration a
period of 10 to 20 minutes is sufficient.

In order to examine the effects of energy- or tempera-
ture-aware process scheduling, we modified the allot-
ment strategy for CPU time of the Linux scheduler.
Originally, time slices are computed using the static pri-
orities—the nice-levels—of the processes. We imple-
mented a scheduler which computes time slices
according to the relative power consumption of the pro-



cess compared to the power consumption of the root
container. This relation reflects the contribution of the
process to the current power dissipation and, further-
more, to the current temperature level of the CPU. Addi-
tionally, the priority computation—the decision which
process will run next—is based on the relative power
consumption. With this approach “hot” processes are
disadvantaged by the scheduler.

To sum up, we are able to identify hot processes us-
ing energy containers. We present two means to deal
with them: first, limiting the power consumption of the
attached containers automatically throttles hot process-
es as they spend their power budget faster than the oth-
ers. Second, a power-based process scheduler can allot
longer time slices to energy-efficient processes. While
the second approach does not waste CPU time, throttling
is needed to facilitate thermal management.

4. Evaluation

To get an impression of the applicability of our power
and thermal models to the “real world” we performed
measurements of different applications and application
benchmarks.

We attached each test application to a newly created
resource container. Thus we were able to isolate the
power consumption of the application from the rest of
the system.

Using mbmon we recorded the following informa-
tion:

e the power consumption (derived from the power
model) accounted to the application resource contain-
er and to the root resource container

+ the temperature (derived from the thermal model) of
the whole system

+ the measured temperature

In addition to that we determined the energy consump-
tion of each test run by recording the accounted energy
consumption of the application and root resource con-
tainers before and after the test run.

We evaluated our power and thermal model with fol-
lowing applications and benchmarks:

perl benchmark

Linux 2.5.64 kernel build with gcc

caffeine 2.5 benchmark.

jvm98 1.03 benchmark

Mozilla 1.0.0: Browsing an on-line news magazine
MiBench 1.0: An embedded benchmark suite [14]

AN L AW N~

4.1 Evaluation of the Accuracy of Estimates
4.1.1 Computed vs. measured power consumption

Figure 4 shows the power consumption accounted to the
applications, to the whole system (root container) and
the measured power consumption. Table 2 shows the esti-

mation errors of the energy consumption for each application
and benchmark.

application or benchmark estimation error of

energy consumption
perl benchmark 4.95%
Linux 2.5 kernel build 4.16%
caffeine benchmark 6.09%
jvm98 benchmark 2.20%
Mozilla -0.56%
MiBench -1.73%

Table 2: estimation error of energy consumption
(positive values: estimation too high)

For real-world applications the energy estimator
seems to be quite accurate with an inconsiderable differ-
ence between the measured power consumption and the
accounting information of the root container (< 10% er-
ror). For interactive applications, which are blocked
most of the time, the difference between the energy esti-
mation of the root container and the application contain-
er is the idle-power (about 13 W) that is accounted to
the idle thread.

The jvm98-benchmark contains an interesting exam-
ple of a program for which the energy estimation model
is incorrect: the energy estimation of the database part
of the benchmark is /ower than the measured power con-
sumption (s. figure 4d, time range 25-45 s). A measure-
ment of this routine with various sets of events reveals
the difference to the test programs: its number of 2nd
level cache misses is higher than any other program in
the test set by orders of magnitude. Unfortunately, the
Pentium 4 performance counter architecture does not al-
low a distiction between the 1st and 2nd level cache
misses when they are counted simultaneously. As stated
in section 3.1, we decided to omit this event in favor of
the 1st level cache misses.

4.1.2 Computed vs. measured temperature

For all real-world applications the temperature esti-
mator is within the accuracy of the temperature mea-
surement (< 1° C). The worst-case scenario is an energy
estimation error of 30% resulting in an error in tempera-
ture estimation of 7° celsius. So the error in temperature
estimation is always the consequence of an error in en-
ergy estimation. The thermal model presented in sec-
tion 3.3 did not show any shortcomings.

4.2 Enforcing Energy Limits

The effect of throttling can be illustrated with a set of
CPU intensive threads sharing an energy container with
a share of 50% relative to the root container. We ran
Hourglass [20], a tool to visualize scheduling behavior.
Figure 5 shows the assignment of energy budgets in
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epochs of 128 milliseconds to an energy container
shared by the four threads of Hourglass.
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Figure 5: Throttling of 4 threads sharing one resource
container with a 50% limit (128ms epochs).

4.3 Enforcing Temperature Limits

Figure 6 shows a test run of the apache web server httpd.
Two clients repeatedly send http “GET”-requests to the
target machine in order to execute a cgi program (one of
the test programs from section 3.1). The shaded area
reflects the temperature limit which is set to 50° celsius.
Mbmon wakes up periodically and computes the current
temperature. The defined temperature level is enforced
by setting an appropriate energy limit on the root con-
tainer. As long as the computed temperature is below the
target temperature, no energy limit is set. As can be seen
in figure 6 the temperature is rising up to 50° celsius. At
time stamp 190 the energy consumption of the root con-
tainer is limited and the system is throttled in order to
stay below the target temperature.
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Figure 6: Throttling when reaching a limit at 50° celsius

Figure 7 shows another run of httpd. Initially no tem-
perature limit is defined. Around time stamp 148s the
limit is set to 50° celsius (again, the shaded area repre-
sents the allowed temperature level). This could be nec-
essary if e.g. a cooling unit in a server cluster fails so
that the cluster nodes have to be kept below a certain
critical temperature. In our test, the thermal manage-
ment needs about 110 seconds to reduce the temperature
to the new limit.
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Figure 7: Cool-down with throttling

The proof of concept is a web server accepting re-
quests from two different classes of clients. When a crit-
ical temperature limit of 50° celsius is reached, client #1
should be preferred and should get a share of 80% of the
allowed total power, while client #2 is just allowed to
consume 20% of the remaining power. The power shares
can be specified using user space tools which adjust the
energy limits of the corresponding resource containers.
Figure 8 shows the power consumption of the free run-
ning apache tasks working on behalf of the two classes
of clients before and after reaching the predefined limit
of 50° celsius. The root container reflects the sum of
both client containers plus the power consumption of the
halted CPU accounted to the idle thread.
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Figure 8: Throttling at 50° according to energy shares

4.4 Energy/Temperature Scheduling

To evaluate our modified scheduler we ran two of the
test programs presented in section 3.1: pushpop, which
shows a very high power consumption compared to the
other tests, and alu-add, which operates very energy-
efficient. These test programs are both compute-inten-
sive and each of them receives, when run on the original
Linux scheduler with equal priorities, exactly 50% of the
CPU time (as expected). Figure 9 shows the estimated
power consumptions. On the left side, the results run-
ning the original scheduler are displayed: the contribu-



tions of the two processes to the total power
consumption are 27 W or 64% for pushpop and 15 W or
36% for alu-add. The energy scheduler changes the
assignments for CPU time to 39% and 61% respectively.
As can be seen on the right side of the figure, both pro-
grams consume the same amount of power. As a conse-
quence of the shorter time slices for pushpop, the overall
power consumption is also reduced (by 3W). This exam-
ple clearly demonstrates that event-driven energy esti-
mation determines hot processes accurately and makes
energy-driven scheduling feasible.
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Figure 9: Comparison of different schedulers

4.5 Overhead

4.5.1 Overhead of Resource Container Infrastructure

Reading of the event-monitoring counters is done in the
timer interrupt (1000 times per second) or when a task is
blocking. The context switching times in Linux 2.5 with
energy container support is increased by 49% (5.9 us)
due to algorithmic overhead and the time for reading the
event counters. However for a typical scenario like ker-
nel compiling we registered an overall performance loss
of less than 1% (the time a kernel compile run needs on
the original kernel compared to our modified kernel).

4.5.2 Overhead of Temperature Estimation

Estimating the temperature takes about 4.85 us with a
standard error of 0.843 because of a varying number of
cache misses. Setting new limits to the root container re-
quires 12.37 us with a standard error of 1.537. The over-
head for temperature estimation can be neglected
because this procedure is typically executed 1-10 times
per second. Furthermore, the overhead is by orders of
magnitude smaller compared to reading the temperature
sensors of the motherboard (which takes about 5.5 ms).

5. Future Directions

There is a multiplicity of interesting opportunities for
research in operating systems and computer architecture.
Currently we extend our approach to propagate energy
accounting information in a server cluster by sending

them piggyback in IPv6 extension headers. In this way
energy within a cluster will be accounted to an energy
principal (=cluster reserve [2]). Having accomplished
cluster wide energy accounting, the next step is to throt-
tle power consumption according to thermal demands of
individual machines and the complete cluster environ-
ment and corresponding to quality of service require-
ments.

If the processor architecture allows a rapid change in
clock frequency, task-specific frequency scaling is a fur-
ther step to moderate the thermal load. Performance
monitoring counters will provide the essential informa-
tion for the power-performance trade-off. The thermal
model has to be enhanced to deal with variable speed.
Not only the number of events is relevant, but also the
clock speed at which the events happen.

The architectural placement of counters and the types
of countable events in today’s computer architectures
are devoted to performance profiling. In a hardware-
/software co-design project we investigate the benefit of
energy-monitoring counters (ECMs). In contrast to per-
formance-monitoring counters, EMCs cover all energy
relevant events. Furthermore the reading of these
counters by the operating system is as fast as reading a
processor register. The resulting low-overhead has to be
paid by a loss in accuracy because we allow a delayed
propagation of events to counters. By relaxing the time-
ly resolution of the counters, we accelerate energy ac-
counting and reduce the overhead in energy for
managing the energy consumption.

Memory is becoming more and more a target for
power management and energy accounting. According
to precise energy estimation models for memory [15] we
want to develop elaborate energy models for the use in
operating systems that employ counters connected with
the memory modules. These memory EMCs not only
count read and write request but also the number of cy-
cles the clock of the individual memory banks is en-
abled, and the number of cycles during which the rows
in the individual memory banks are open.

6. Conclusions

Events on all architectural abstraction layers are used to
simulate the energy consumption of computer systems.
Therefore event-monitoring counters should be the ade-
quate source of information for on-the-fly energy accou-
ing. Restricting our validation to integer applications we
could demonstrate the benefit of performance monitor-
ing counters for an estimation of energy consumption
and for managing the processor temperature. With archi-
tectural support for energy monitoring counters, we
expect comprehensive event-driven energy accounting
to form the basis of coming thermal management strate-
gies.
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