
Initial Evaluation of a User-Level Device Driver
Framework

Kevin Elphinstone1 and Stefan Götz2

1 National ICT Australia� � �

and
School of Computer Science and Engineering
University of NSW, Sydney 2052, Australia

kevine@cse.unsw.edu.au
2 System Architecture Group, Universität Karlsruhe, 76128 Karlsruhe, Germany

sgoetz@ira.uka.de

Abstract. Device drivers are a significant source of system instability.
In this paper, we make the case for running device drivers at user-level
to improve robustness and resource management. We present a frame-
work for running drivers at user-level whose goal is to provide similar
performance when compared to in-kernel drivers. We also present initial
promising performance results for the framework.

1 Introduction

Most modern operating systems feature monolithic operating system kernels.
Most modern architectures are designed to efficiently support this form of con-
struction. A kernel provides its services by combining the software that imple-
ments potentially independent services into a single large amalgamation. How-
ever, once we scale the size and complexity of a monolithic system to the levels of
current systems, extensibility becomes more difficult due to legacy structure, se-
curity becomes more difficult to maintain and impossible to prove, and stability
and robustness also suffer.

One promising approach to tackling the expanding complexity of modern
operating systems is the microkernel approach [1]. A microkernel-based OS con-
sists of a very small kernel at its core. The kernel only contains a minimal set of
services that are efficient and flexible enough to construct services for applica-
tions as servers running on the microkernel. Only the microkernel itself runs in
privileged mode. Although these servers provide operating system functionality,
they are regular applications from the microkernel’s point of view. Such a system
enables extensibility as servers can be added or removed, it provides security as
the core of the system is small enough to analyse or maybe even prove [2], and

� � � National ICT Australia is funded by the Australia Government’s Department of
Communications, Information and Technology and the Arts and the Australian Re-
search Council through Backing Australia’s Ability and the ICT Centre of Excellence
program.

P.-C. Yew and J. Xue (Eds.): ACSAC 2004, LNCS 3189, pp. 256–269, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Initial Evaluation of a User-Level Device Driver Framework 257

stability and robustness is improved as services can be isolated from each other.
The modular structure that is encouraged, and even enforced by virtual memory
protection boundaries, improves maintainability.

Most microkernel based systems still include device drivers in the kernel.
Drivers are included for either security [3], performance reasons [4] , or because
the system’s focus was toward goals other than decomposition and minimisa-
tion, such as distribution [5,6,7]. It has been shown that device drivers exhibit
much higher bug rates (three to seven time higher) than other kernel code [8].
Microsoft has also identified drivers as the major cause of system instability and
has instigated their driver signing program to combat the problem [9]. It remains
to be seen whether signing a driver as having passed a quality control scheme
has an affect on driver correctness. Simply digitally signing a piece of software
obviously has no effect on the software itself.

This paper tackles the problem of device driver instability by running drivers
at user-level and hence subjecting them to the normal controls applied to applica-
tions. We also aim to provide a flexible driver framework for microkernel-based
systems that enables trade-offs between driver performance and containment.
Attempts thus far can be characterised as being too concerned with compati-
bility with existing driver collections [10] or having an alternative focus such as
realtime systems [11]. The achieved performance has been insufficient to make
the approach convincing.

Device drivers at user level could be treated almost like normal applications.
Like normal applications, drivers could be isolated from unneeded resources using
the processor’s virtual memory hardware. Being able to apply the principle of
least privilege would greatly minimise the potential damage a malfunctioning
driver could inflict. This is very much in contrast to the current situation where
drivers have access to all resources in the system. A single malfunction often
results in catastrophic failure of the entire system.

Developers of user-level drivers can use facilities usually only available to
normal applications. Standard debuggers can provide a much richer debugging
environment than usually available to kernel-level drivers (e.g., source level de-
bugging versus kernel dumps). Application tracing facilities can also be used to
monitor driver behaviour. Application resource management, such as CPU time
controls, can be used to control driver resource usage.

User-level drivers are not a completely new idea. Drivers in the past have
been incorporated into applications such as networking software (e.g distributed
shared memory applications) [8,12]. The inclusion in this case was to improve
performance by giving the application direct access to the device, and thus avoid-
ing kernel entry and exit. Such scenarios relied on near exclusive access to the
device in order to avoid issues in multiplexing the device between competing
clients. In most cases, specialised hardware was developed to provide concur-
rent access via specialised access channels, and to provide performance via a
specialised interface that required no kernel intervention.

We propose an architecture where the system designer can choose the most
appropriate configuration for drivers based on requirements of the targeted sys-

258 K. Elphinstone and S. Götz

tem. We envisage drivers incorporated into specialised applications where per-
formance is paramount. However, we also envisage drivers running as individual
servers to improve security and robustness, or drivers clustered into a single
server to reduce resource requirements. Immature drivers could be run in isola-
tion until mature enough to be combined with other components when required.

While we intend to take advantage of specialised hardware (such as myrinet
network cards which have their own programmable processors [13]), we also do
not intend to restrict ourselves to such hardware. For the results of this project
to be truly useful we must be able to support commodity hardware that is not
necessarily tailored to the environment we are developing. Commodity hardware
may not provide all features necessary for complete security. For instance, nearly
all hardware is unable to restrict what a driver can access via DMA. On such
a hardware platform, a malicious driver can always corrupt a system. However,
even limited success in supporting commodity hardware with little performance
impact would make our results applicable to the widest variety of platforms possi-
ble. Limited success could persuade more manufacturers to include the hardware
features required for complete security. Our group has begun exploring restrict-
ing DMA access using the limited hardware available in high-end servers [14].
However, we do not focus on this problem for the remainder of this paper.

Past approaches to drivers at user-level have usually taken a top-down ap-
proach. The system was designed with a specific target in mind, built, and
analysed. The results have varied widely. Some projects, specifically the user-
level networking with specialised hardware, have been successful [12,15]. Other
projects have been less successful and have usually disappeared without a clear
analysis of why success eluded them [10,16]. In this paper we identify the funda-
mental operations performed by device drivers, their relevance to performance,
and present how they can be implemented safely and efficiently at user-level.

In the remainder of the paper, Section 2 provides the background to run-
ning user-level drivers by describing a simple model of device drivers in existing
monolithic systems. We use it as a reference for the rest of the paper. Section 3
describes the experimental operating system platform upon which we developed
our driver framework. Section 4 describes the framework itself. The experimen-
tal evaluation and results follow in Section 5, with conclusions afterwards in
Section 6.

2 Simple Driver Model

To define common terminology, help convey the issues we have identified, and
introduce our framework itself, we present a simple model of a device driver
and highlight the issues within that model. This model initially assumes a tradi-
tional monolithic kernel whose kernel address space is shared between all process
contexts.

A driver broadly consists of two active software components, the Interrupt
Service Routine (ISR) and the Deferred Processing Component (DPC). We ig-
nore initialisation code and so forth. The ISR is responsible for reacting quickly

Initial Evaluation of a User-Level Device Driver Framework 259

and efficiently to device events. It is invoked almost directly via a hardware
defined exception mechanism that interrupts the current flow of execution and
enables the potential return to that flow after completion of the ISR. In general,
the length of the ISR should be minimised so as to maximise the burst rate of
device events that can be achieved, and to reduce ISR invocation latency of all
ISRs (assuming they are mutually exclusive).

The ISR usually arranges for a DPC to continue the processing required to
handle the device event. For example, a DPC might be an IP stack for a network
device. A DPC could also be extra processing required to manage the device
itself, or processing required to complete execution of a blocked kernel activity.
Another way to view a DPC is that it is the kernel activities made runnable as
a result of the execution of the ISR. It may be a new activity, or a previously
suspended activity. DPCs are usually activated via some kernel synchronisation
primitive which makes the activity runnable and adds it to the scheduler’s run
queue.

2.1 Driver Interfaces and Structure

A driver consists of an interface in order for clients (other components in the
kernel) to direct the driver to perform work. For instance, sending packets on
a network device. Drivers also expect an interface provided by the surrounding
kernel in order to allocate memory, activate DPCs, translate virtual addresses,
access the device information on the PCI bus, etc. We believe the following
interfaces are important to driver performance:

Providing work to the driver. Drivers provide an interface for clients to en-
queue work to be performed by the device. This involves passing the driver
a work descriptor that describes the work to be performed. The descriptor
may be a data structure or arguments to a function call. The work descriptor
identifies the operation and any data (buffers) required to perform the work.
Drivers and clients share the kernel address space which enables fast transfer
(by reference) and access to descriptors and buffers.

DPCs and offloading work. Drivers also produce work for clients. A com-
mon example is a network driver receiving packets and therefore generating
work for an IP stack. Like enqueueing work for the driver itself, an effi-
cient mechanism is required for the reverse direction to enqueue work for,
and activate, a DPC such as an IP stack. Work descriptors and buffers can
be handled in a similar manner to enqueueing work for the driver, i.e. de-
scriptors and buffers can be transferred and accessed directly in the kernel’s
address space.
Once work is enqueued for a DPC, the DPC requires activation via a syn-
chronisation primitive. Again, the primitive can rely on the shared kernel
address space to mark a DPC runnable and place it on the appropriate
scheduler queue.

Buffer allocation. The buffers containing the data that is provided to the
driver must be allocated prior to use and deallocated for reuse after process-
ing. Buffers may be produced by a client and consumed by a driver (or vice

260 K. Elphinstone and S. Götz

versa) and are managed via a memory allocator (e.g. a slab allocator) in the
shared kernel address space.

Translation. Buffers specified by user-level applications are identified using
virtual addresses. DMA-capable devices require these addresses to be trans-
lated into a physical representation. This translation can be done simply
and quickly by the device driver by accessing the page tables stored within
the kernel address space. Additionally, some driver clients deal only with the
kernel address space and can use physical addresses directly (or some fixed
offset).

Pinning. DMA-capable devices access physical memory directly without any
mediation via a MMU (though some architectures do possess I/O MMUs).
Coordination between the page replacement policy and the device driver
is required to avoid the situation where a page is swapped out and the
underlying frame is recycled for another purpose while an outstanding DMA
is yet to complete. Preventing pages from being swapped out is generally
termed pinning the page in memory. This can be implemented with a bit in
the frame table indicating to the page replacement algorithm that the frame
is pinned.

Validation. Validation is the process of determining whether a request to the
driver is permitted based on knowledge of the identity of the requester and
the parameters supplied. Validation is simple when a client issues a request
to a driver in a shared address-space kernel. The driver can implicitely trust
the client to issue sensible requests. It only needs to check the validity of a
request for robustness reasons or debugging. If needed, the client module in
the kernel is usually responsible for the validity of any user-level supplied
buffers or data which needs to reside in memory accessible to the user-
level application. Such a validation is simple and inexpensive to perform
within a shared address-space kernel — all the data required to validate an
application’s request is readily available.

It is clear that the model envisaged by computer architects is a fast hardware-
supported mechanism to allow privileged drivers to respond to device events, and
that the drivers themselves have cheap access to all the information required to
perform their function via the privileged address space they share with the ker-
nel. The high degree of integration with the privileged kernel allows drivers to
maximise performance by minimising overheads needed to interact with their
surrounds. This high degree of integration is also the problem: drivers detrimen-
tally affect security, robustness, and reliability of the entire system.

3 Experimental Platform

We chose the L4 microkernel as the experimental platform for developing and
evaluating our driver framework[1]. L4 is a minimal kernel running in privileged
mode. It has two major abstractions: threads and address spaces. Threads are the
unit of execution and are associated with an address space. A group of threads

Initial Evaluation of a User-Level Device Driver Framework 261

within an address space forms a task. Threads interact via a very light weight
synchronous interprocess communication mechanism (IPC) [17].

L4 itself only provides primitive mechanisms to manage address spaces.
Higher-level abstractions are needed to create a programming environment for
application developers. The environment we use is a re-implementation of a sub-
set of the SawMill multi-server operating system developed for L4 at IBM [10],
called Prime. The most relevant component to this paper is the virtual memory
framework [18], which we will briefly introduce here.

Dataspaces are the fundamental abstraction within the VM framework. A
dataspace is a container that abstracts memory objects such as files, shared
memory regions, frame buffers, etc. Any memory that is mappable or can be
made mappable can be contained by a dataspace. For a thread to access the
data contained in a dataspace, the dataspace is attached to, i.e. mapped into, the
address space. Address spaces are constructed by attaching dataspaces including
application code and data, heap and stack memory.

Dataspaces themselves are implemented by Dataspace Managers. Any task
within the VM framework can be a dataspace manager by implementing the
dataspace protocol. For example, a file system dataspace manager provides files
as attachable dataspaces by caching disk contents within its address space, and
using the underlying L4 mechanisms to map the cached content to clients who
have the dataspace attached. Dataspace managers map pages of dataspaces to
clients in response to the page fault handling mechanism which forwards page
faults on attached dataspaces to the appropriate dataspace manager that imple-
ments the dataspace.

The dataspace and dataspace manager paradigms provide a flexible frame-
work of object containers and object container implementors. Few restrictions
are placed on participants other than implementing the defined interaction pro-
tocol correctly. However, while clients with attached dataspaces see a logical
container, device drivers interacting with such a container require more infor-
mation about the current dataspace state for DMA purposes. In particular, they
have to know the translation between dataspace addresses and physical memory
which is only known by the dataspaces’ manager. In a traditional system we
have the kernel implemented page tables as a central authority for translation
information. With our VM framework, translation information is distributed
amongst dataspace managers which creates the problem of efficient information
retrieval. We describe our solution to this problem in Section 4

4 Driver Framework

As described in Section 2, the high degree of hardware and software integration in
classic system architectures creates an environment for efficient driver implemen-
tation. The challenge is to keep the high level of integration when transforming
drivers into user-level applications while enforcing protection boundaries between
them and the surrounding system. There are obviously trade-offs to be made be-
tween the strength of the protection boundary and the cost of interacting across

262 K. Elphinstone and S. Götz

it. A network driver interface that copies packets across protection boundaries
provides greater packet integrity and poorer performance compared to an inter-
face that passes packets by reference. In choosing trade-offs for this paper we
focused on maximising performance while still improving robustness. Drivers and
their clients may corrupt the data they produce and consume, but should not
be able to corrupt the operation of each other. However, our framework is not
restricted to the particular trade-offs we made for this paper. A system designer
can increase or decrease the degree of isolation between clients and drivers by
small changes in interfaces, their implementation, or the composition of drivers
and clients.

For this paper we took the following approach:

– Minimise the cost of interaction between clients and drivers by interacting via
shared memory instead of direct invocation where possible. This sharing is
secure in that it is done such that clients cannot interfere with the operation
of drivers and vice versa. However, data buffers can be modified by clients
or drivers at any point in the interaction.

– Minimise the cost of any overhead we must insert between clients and drivers
(or between drivers and the kernel) to support interaction across protection
boundaries.

– For any overhead that we must insert to enable interaction, we attempt to
amortise the cost by combining operations or event handling where possible.

We now describe how we applied our approach to constructing a driver frame-
work with reference to the model introduced in Section 2.

4.1 Interrupts

Direct delivery of interrupts to applications is not possible on current hardware.
A mechanism is required for an ISR within a driver application to be invoked.
We use the existing model developed for L4 where interrupts are represented
as IPCs from virtual interrupt threads which uniquely identify the interrupt
source. The real ISR within the kernel masks the interrupt, transforms the in-
terrupt event into an IPC message from the interrupt thread which is delivered
to the application’s ISR. The blocked ISR within the application receives the
message, unblocks, and performs the normal ISR functionality. Upon comple-
tion, the driver ISR sends a reply message to the interrupt thread resulting in
the interrupt source being unmasked. The ISR can then block waiting for the
next interrupt IPC.

While L4 IPC is very light-weight, it is not “free”. We add a small amount
of direct overhead to implement this clean model of interrupt delivery. Indirect
overhead is incurred by context switching from an existing application to the
driver application upon interrupt delivery. We expect this overhead to be low
compared to the high cost of going off-chip to manage devices, and plan to reduce
the overall overhead by using interrupt hold-off techniques currently applied to
limit the rate at which interrupts are generated.

Initial Evaluation of a User-Level Device Driver Framework 263

4.2 Session-Based Interaction

Copying data across protection boundaries is expensive. Where possible, we use
shared memory to pass data by reference, or to make control and metadata in-
formation readily available to clients and drivers. Establishing shared memory is
also an expensive operation both in terms of managing the hardware (manipulat-
ing page tables and TLB entries), and in terms of performing the book-keeping
required in software. To amortise the cost of setting up shared memory we use
a session-based model of interaction with drivers.

A session is the surrounding concept within which a sequence of interactions
between client and driver are performed. It is expected that a session is relatively
long lived compared to the duration of the individual interactions of which we
expect many within a session. To enable pass-by-reference data delivery, one or
more dataspaces can be associated with a session for its duration. Dataspaces
can contain a shared memory region used to allocate buffers, a client’s entire
address space, or a small page-sized object. There are obviously trade-offs that
can be made between cost of establishing a session, and the size and number of
dataspaces associated with a session. To avoid potential misunderstanding, there
can be many underlying sessions within our concept of a session. For example,
an IP stack has a session with the network device driver through which many
TCP/IP sessions can be managed.

4.3 Lock-Free Data Structures

There are obvious concurrency issues in managing data structures in shared
memory. We make heavy use of lock-free techniques to manage data structures
shared between drivers and their clients. We use lock-free techniques for pre-
dominately two reasons: to avoid external interaction and to avoid time-outs
and recovery on locks.

Enqueueing work (packet/command descriptors and similar metadata) for
a driver by explicitly invoking it requires at least two context switches per en-
queued item. This would cause the high level of integration achieved in normal
systems to be lost. Lock-free queues (implemented with linked lists or circular
buffers) allow work to be enqueued for a driver (or a client) without requiring ex-
plicit interaction with the driver on every operation. This encourages a batching
effect where several local lock-free operations follow each other, and finally the
recipient driver is notified via explicit interaction (a queued-work notify event).

Lock-free techniques allow us to avoid dealing with excessive lock holding
times. It is much easier to validate potentially corrupt data in a lock-free queue
that is caused by a misbehaving client (we have to validate client provided data
anyway), than to determine if a client is misbehaving because a lock is found
held.

4.4 Translation, Validation, and Pinning

Drivers process work descriptors which can contain references to the actual
buffers to be processed. Buffers are specified as ranges of addresses within datas-

264 K. Elphinstone and S. Götz

paces. The dataspaces are associated with the surrounding driver-client session.
The dataspaces themselves are implemented by other applications (dataspace
managers). This creates an interesting problem. The knowledge of a dataspace’s
existence, who is accessing it, and what physical frames implement it at any
instant in time is known by the dataspace manager implementing the dataspace,
not the client using the dataspace, and not the driver accessing the dataspace
to process the requests of the client. In a traditional system, this information
(page tables and frame tables) is readily available to the driver within the kernel
address space. Ideally, we would again like to safely replicate the high degree of
integration between driver, clients, and information required to operate.

The validation of buffers specified by the client within the above framework
is simple. Given buffers are ranges of addresses within dataspaces, validation
is a matter of confirming the dataspace specified is associated with the session
between the driver and client.

The translation of dataspace pages to physical frames is required by drivers
of DMA-capable devices. This translation is only known by a dataspace man-
ager. Our approach thus far has been to avoid external interaction by the driver
as much as possible, however translation requires this interaction in some form.
To enable translation, the dataspace manager provides a shared memory region
between it and the device driver: the translation cache. The translation cache is
established between the manager and driver when a dataspace is added to a ses-
sion between the driver and client. Multiple dataspaces from the same manager
can share the same translation cache. The translation cache contains entries that
translate pages within dataspaces into frames1. The cache is consulted directly
by the driver to translate buffer addresses it has within dataspaces to physical
addresses for DMA. After the translation cache is set up, the driver only needs to
interact with the object implementor in the case of a cache miss. At present we
use a simple on-demand cache refill policy, but we plan to explore more complex
policies if later warranted.

In addition to translating a buffer address to a physical address for DMA, the
driver needs a guarantee for the duration of DMA that the translation remains
valid, i.e. the page (and associated translation) must remain pinned in memory.
In this paper we have not focused on the problem of pinning in depth. We see at
least two approaches to managing pinning for DMA. The first method is to use
time-based pinning where entries in the translation cache have expiry times. The
second method is to share state between the driver and dataspace implementor
to indicate the page is in use and should not be paged out.

Time-based pinning has the difficult problem of the driver needing to estimate
how long a DMA transaction might take, or even worse, how long it will take for
a descriptor in a buffer ring to be processed, e.g. on a network card. However,
time-based pinning has the nice property of not requiring interaction between

1 In our virtual memory framework, dataspaces can also be composed of other datas-
paces. In this case, the translation consist of a sequence of dataspace to dataspace
translations, and then a final dataspace to physical frame translation. However, we
ignore this scenario for the sake of clarity in the paper.

Initial Evaluation of a User-Level Device Driver Framework 265

driver and object implementor. Further discussion of time-based pinning can be
found our previous work [19].

State sharing to indicate to the dataspace manager that pinning is required
could be achieved with a pin-bit within translation cache entries. This requires
read-write shared memory between driver and dataspace implementor that was
not required up until this point. It should be clear that the pin-bit has direct
parallels with similar flags in a traditional frame table and thus warrants little
further discussion. Note that the pin-bit would only be advisory. The memory
implementor can enforce quotas on pin time or the amount of pinned memory
by disabling the driver and resetting the device (if permitted) to recover pinned
pages.

4.5 Notification

Unlike traditional systems where thread state and scheduler queues are readily
available in shared kernel space, in a system with drivers in separate protection
domains, system calls must be performed to manipulate the scheduler queues,
i.e. block and activate threads. System calls are significantly more expensive
than state changes and queue manipulations. An efficient activation mechanism
is required for ISRs to hand-off work to DPCs, and for both clients and drivers
to deliver work and potentially block as the sender and while activating the
recipient.

By using queues in shared memory for message delivery, we create the envi-
ronment required for user-level IPC (as opposed to IPC involving the kernel).
User-level IPC has been explored by others [20,21], mostly in the context of
multiprocessors where there is an opportunity to communicate without kernel
interaction via shared memory between individual processors. Our motivation
is two-fold. We wish to avoid kernel interaction (not activate the destination) if
we know the destination is active (or will become active), and we wish to enable
batching of requests between drivers and clients by delaying notifications when
possible and desirable.

Our notification mechanism is layered over L4 IPC. Blocking involves waiting
for a message, activating involves sending a message. To avoid notifications when
unnecessary, the recipient of notifications indicates its thread state via shared
memory. If marked inactive, a notification is sent; if not it is assumed that the
recipient is (or will be) active and the notification is suppressed.

The delay between setting the state and blocking waiting for IPC creates
a race condition if preempted between the modification and blocking waiting
for IPC. There is a potential for notification messages to be missed if sent to
a thread that has not yet blocked. However, if the sender does not trust the
recipient, it is not safe for the sender to block on or re-send notifications without
being vulnerable to denial-of-service attacks. Thus, recipients have to be able to
recover from missed notifications on their own. We resolve this race by using a
general mechanism called preemption control, which can make threads aware of
preemption. In the rare case that a preemption is detected, the recipient rolls
back to a safe active state from where it tries to block again.

266 K. Elphinstone and S. Götz

The notification bit creates opportunities for delaying notification (to in-
crease batching) or avoiding notification altogether. An example of avoidance is
where a network driver would eventually receive a “packet sent” or “transmit
queue empty” interrupt from the device. If such events are known to occur within
acceptable latency bounds, notifying such a device when enqueueing an outgo-
ing packet is unnecessary as the driver will eventually wake via the interrupt
to discover the newly enqueued packets. This allows a driver client to submit
requests continuously to maximise the batching effect.

5 Evaluation and Results

We evaluate our framework for running device drivers at user level in a network
context. Handling modern high-speed networks is challenging for traditionally
structured systems due to the very high packet rate and throughput they achieve.

Our test system consists of a user-level ISR that is comprised of generic low-
level interrupt handling in the L4 kernel and device-specific interrupt handler
for a dp83820 Gigabit ethernet card driver. The DPC is the lwIP IP stack and a
UDP echo service that simply copies incoming packets once and echoes them to
the sender. The driver and lwIP execute in separate processes which interact as
described in Section 4. Note that the echo service is compiled into the process
containing lwIP. The machine is a Pentium Xeon 2.66 GHz, with a 64-bit PCI
bus.

We chose this test scenario as we believe it to be the extreme case that will
expose the overheads of our framework most readily. The test does very little
work other than handle interrupts, and send/receive packets across a protection
boundary between the driver and lwIP, and then onto (or from) the network. In a
more realistic scenario, we would expect the “real” application to dominate CPU
execution compared to the drivers and IP stack. By removing the application,
the driver and lwIP stack (and our overheads) will feature more prominently.

We used the ipbench network benchmarking suite[22] on four P4-class ma-
chines to generate the request UDP load that we applied to the test system.
ipbench can apply specific load levels to the target machine, the packet size used
was 1024 bytes. We performed two experiments, (a) that uses random-interval
program counter sampling to develop an execution profile at an offered load of
450Mb/s using 100us interrupt hold-off, and (b) which ramps up the offered
load gradually and records throughput and CPU utilisation at each offered load
level. The load generators record echoed packets to calculate achieved through-
put, CPU utilisation is measured by using the cycle counter to record time spent
in a low priority background loop. Utilisation results obtained via random sam-
pling and the cycle counter agree within one percent. The second experiment was
performed for both 0µs and 100µs interrupt hold-off for Prime, and to compare,
Linux with our driver and Linux’s IP stack in-kernel, and user-level echo server.

The results show that for the profile experiment 68% of time was spent in
the idle thread. For the remaining 32% of samples, we divided the samples into
the following categories: IPC kernel code associated with the microkernel IPC

Initial Evaluation of a User-Level Device Driver Framework 267

path; Driver code associated with the network driver that would be common
to all drivers for this card independent of whether it runs in-kernel or at user-
level; IP code associated with lwIP that is also independent of running at user-
level or in kernel; Kernel code that is independent of system structuring, this
code is mostly related to interrupt masking and acknowledgement; User-level
Notification code that implements notification within our framework; User-level
Translation code that performs translation from dataspace addresses to physical
memory; User-level Interrupt code related to interrupt acknowledgement; User-
level Buffer code for managing packet buffers, including (de-)allocation, within
our framework.

IPC
7%

Kernel
11%

Driver
8%

IP
46%

Buffer
17%

Notification
5%Translation

6%
Interrupt

0%

 0

 20

 40

 60

 80

 100

 0 2e+08 4e+08 6e+08 8e+08 1e+09
 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09
C

P
U

 (
%

)

T
hr

ou
gh

pu
t (

M
b/

s)

Offered load (Mb/s)

In = Out
Prime 0us

Prime 100us

Linux 0us
Linux 100us

(a) (b)

Fig. 1. (a) Execution profile. (b) CPU utilisation and throughput versus load level for
Prime and Linux using 0µs and 100µs interrupt hold off.

The profile of execution within these categories is illustrated in Figure 1. The
component of execution unrelated to our framework (Kernel + Driver + IP)
forms 65% of non-idle execution time. Code related to our framework (Buffer +
Interrupt + Translation + Notification + IPC) forms the remaining 35% of non-
idle execution. Even when considering all framework related code as overhead
introduced by running drivers at user-level, this is not a bad result. The test
scenario we chose to analyse does so little work that we expect in a more realistic
scenario our framework will consume a smaller fraction of execution time.

Considering all framework related code as overhead is not a fair comparison
as two components of the framework (buffer management and translation) also
have to be performed in a traditional system structure. If traditional buffer
management and translation is comparable, then the overhead of running drivers
at user-level (Notification + IPC + Interrupt) is only 12% of non-idle time.

268 K. Elphinstone and S. Götz

Figure 1 also shows the result of the CPU utilisation and throughput ex-
periment. The thin diagonal line represents where achieved throughput equals
offered load. The lines beginning and rising above this reference represent CPU
utilisation. The lines that track the reference and diverge to the right represent
achieved throughput. We see that for 100µs interrupt hold off, both Prime and
Linux achieve similar throughput of approximately 460Mb/s and 480Mb/s re-
spectively. Prime uses much less CPU achieving the result (32% versus 72%).
However, we make no claim of a fair comparison as Linux has a heavier weight IP
stack, translation and pinning infrastructure, and uses a socket interface which
results in an extra packet copy compared to Prime. We simply observe that we
are currently competitive with a traditionally-structured existing system and
are optimistic we can at least retain comparable performance in more similarly
structured systems. For the 0µs hold-off results, we see Linux goes into live-
lock near 100% CPU after which throughput tapers off as offered load increases.
Prime achieves exactly the same throughput for 0µs and 100µs hold-off, though
CPU utilisation differs markedly (58% versus 32%).

6 Conclusions

We have constructed a framework for running device drivers at user-level. Our
goal was to preserve the high degree of system integration that enables high-
performance driver construction while at the same time confining drivers safely
to their own address space like normal applications. We analysed our framework’s
performance in the context of gigabit ethernet, and our initial results show mod-
est overhead in an execution profile in a test scenario designed to exacerbate the
overhead. In throughput oriented benchmarks, we demonstrated similar perfor-
mance to Linux in terms of achieved throughput. We plan to further explore
our framework’s performance by constructing more realistic test scenarios (e.g.
SPECweb), drivers and interfaces for other devices (e.g. disk). We also plan to
explore system structures more comparable to existing systems (e.g. driver, IP
stack, and web server all running as separate processes).

We eventually hope that our results will be encouraging enough to CPU
and system architects to consider exploring efficient control of DMA for protec-
tion purposes in commodity hardware. Such hardware would ensure that device
drivers are just normal applications under the complete control of the operating
system.

References

1. Liedtke, J.: Toward real microkernels. Communications of the ACM 39 (1996)
2. Hohmuth, M., Tews, H., Stephens, S.G.: Applying source-code verification to a

microkernel - the VFiasco project. In: Proc. 10th SIGOPS European Workshop.
(2002)

3. Engler, D.R., Kaashoek, M.F., Jr., J.O.: Exokernel: An operating system archi-
tecture for application-level resource management. In: 15th Symp. on Operating
Systems Principles, Copper Mountain Resort, CO, ACM (1995)

Initial Evaluation of a User-Level Device Driver Framework 269

4. Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., Young,
M.: MACH: A new kernel foundation for UNIX development. In: Proc. Summer
USENIX. (1986)

5. Cheriton, D.R.: The V kernel: A software based for distribution. IEEE Software
1 (1984) 19–42

6. Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien, M., Guillemont, M., Her-
mann, F., Kaiser, C., Langlois, S., Leonard, P., Neuhauser, W.: Chorus distributed
operating system. Computer Systems 1 (1988)

7. Tanenbaum, A.S., van Renesse, R., van Staveren, H., Sharp, G.J., Mullender, S.J.:
Experiences with the amoeba distributed operating system. Communications of
the ACM 33 (1990) 46–63

8. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.: An empirical study of
operating systems errors. (In: Proc. 18th Symp. on Operating Systems Principles)

9. Microsoft: Driver signing for windows. Available: http://www.microsoft.com/tech-
net/prodtechnol/winxppro/proddocs/code signing.asp (2002)

10. Gefflaut, A., Jaeger, T., Park, Y., Liedtke, J., Elphinstone, K., Uhlig, V., Tidswell,
J., Deller, L., Reuther, L.: The SawMill multiserver approach. In: 9th SIGOPS
European Workshop, Kolding, Denmark (2000)

11. Härtig, H., Baumgartl, R., Borriss, M., Hamann, C.J., Hohmuth, M., Mehnert, F.,
Reuther, L., Schönberg, S., Wolter, J.: DROPS - OS support for distributed mul-
timedia applications. In: Proc. 8th SIGOPS European Workshop, Sintra, Portugal
(1998)

12. von Eicken, T., Basu, A., Buch, V., Vogels, W.: U-net: a user-level network interface
for parallel and distributed computing. In: Proc. 15th Symp. on Operating Systems
Principles, Copper Mountain, Colorado, USA (1995) 40–53

13. Myrinet: Myrinet. Website: www.myrinet.com (2002)
14. Leslie, B., Heiser, G.: Towards untrusted device drivers. Technical Report UNSW-

CSE-TR-0303, School Computer Science and Engineering, University of New South
Wales, Sydney, 2052, Australia (2003)

15. Felten, E.W., Alpert, R.D., Bilas, A., Blumrich, M.A., Clark, D.W., Damianakis,
S.N., Dubnicki, C., Iftode, L., Li, K.: Early experience with message-passing on
the SHRIMP multicomputer. In: Proc. 23rd Symp. on Computer Architecture.
(1996) 296–307

16. Rawson III, F.L.: An architecture for device drivers executing as user-level tasks.
In: USENIX MACH III Symposium. (1993)

17. Liedtke, J., Elphinstone, K., Schönberg, S., Härtig, H., Heiser, G., Islam, N., Jaeger,
T.: Achieved IPC performance. In: 6th Workshop on Hot Topics in Operating
Systems (HotOS), Chatham, Massachusetts (1997)

18. Aron, M., Liedtke, J., Park, Y., Deller, L., Elphinstone, K., Jaeger, T.: The SawMill
framework for virtual memory diversity. In: Australasian Computer Systems Archi-
tecture Conference, Gold Coast, Australia, IEEE Computer Society Press (2001)

19. Liedtke, J., Uhlig, V., Elphinstone, K., Jaeger, T., Park, Y.: How to schedule un-
limited memory pinning of untrusted processes or provisional ideas about service-
neutrality. In: 7th Workshop on Hot Topics in Operating Systems, Rio Rico,
Arizona (1999)

20. Unrau, R., Krieger, O.: Efficient sleep/wake-up protocols for user-level IPC. In:
International Conference on Parallel Processing. (1998)

21. Ritchie, D., Neufeld, G.: User level ipc and device management in the raven kernel.
In: Proc. USENIX Microkernels and Other Kernel Architectures. (1993)

22. Wienand, I., Macpherson, L.: ipbench. Website: http://ipbench.sourceforge.net/
(2002)

	Introduction
	Simple Driver Model
	Driver Interfaces and Structure

	Experimental Platform
	Driver Framework
	Interrupts
	Session-Based Interaction
	Lock-Free Data Structures
	Translation, Validation, and Pinning
	Notification

	Evaluation and Results
	Conclusions

