
Managing Code Complexity in a Portable Microkernel

Uwe Dannowski

System Architecture Group
Universiẗat Karlsruhe
Uwe.Dannowski@ira.uka.de

Abstract

Increasing code complexity can become a serious is-
sue even in a software project as small as a microkernel.
This paper reports on how we address this problem in the
L4Ka::Pistachio microkernel.

We define multiple configuration dimensions and assign
code fragments to the appropriate dimensions. The kernel
build system combines code fragments for the specific con-
figuration. While this approach avoids the run-time costs of
a full-blown object-oriented design, it does not avoid code
duplication.

To address the code duplication problem, we model the
code selection with class hierarchies using multiple inheri-
tance and polymorphism. However, the run-time overhead
of virtual functions results in a serious (2x) performance
hit for the time-critical kernel functionality.

To address this latter problem, we apply class flatten-
ing to completely eliminate the overhead of virtual function
calls. Our evaluation shows that a kernel with flattened
class hierarchies performs as fast as one without class hi-
erarchies. Thus, advanced object-oriented programming
techniques need no longer be avoided in performance-
focused microkernels.

1 Introduction

Even in a software project as small as a microkernel,
code complexity and maintainability often become serious
issues. These problems amplify when the kernel needs to
support various hardware configurations, i.e., needs to be
portable. A configurable source base and an object-oriented
(OO) design are promising approaches to tackle the prob-
lem. C++ code is portable yet allows sufficient control over
data and code layout as it is required in a microkernel.

A successful microkernel must have minimal cache
footprint and execution time [6, 7]. Any unnecessary over-
head reduces the performance of the system on top of the
microkernel. Using OO techniques such as class hierar-
chies with multiple inheritance and polymorphic calls in a
microkernel is prohibitively expensive due to the target ad-

dress of a virtual function call being resolved at run-time.
A common implementation is to store a pointer to a table of
function pointers (vtable) in the object, requiring up to two
data references and an indirect call for each virtual function
call. These costs are usually in the order of tens of proces-
sor cycles. For user applications the effective overhead of
virtual function calls has been measured to be as high as
40% [2, 5]. This overhead is often aggravated within a mi-
crokernel, since the kernel’s critical path, the IPC path, is
only in the order of 100 instructions long.

In our initial implementation of the L4Ka::Pistachio mi-
crokernel [15] we strictly avoided all expensive features of
C++ that cause additional run-time overhead: virtual func-
tions, exception handling, and run-time type information.
Nevertheless we aimed at well-structured code. We use
classes with member functions to implement our kernel ob-
jects and the operations on them. Data members are ac-
cessed via inline access methods, which does not result in
any overhead compared to direct member access. Heavy
use of inlining generally reduces run-time overhead despite
a fine-granular method structure. Due to aggressive opti-
mization the performance of our implementation rivals that
of assembly-only implementations.

With the increasing number of supported target config-
urations1 we have identified the need for using more ad-
vanced OO features to address problems of reduced main-
tainability due to excessive code duplication. As we will
demonstrate in this paper, we can eliminate the run-time
overhead of virtual function calls using class flattening.
This enables us to use class hierarchies with multiple in-
heritance and polymorphic calls without adversely affect-
ing the microkernel’s performance.

The remainder of this paper is structured as follows:
Section 2 sketches our initial kernel design with multiple
configuration dimensions and how it can be represented
with a class hierarchy. In Section 3 we describe flatten-
ing of C++ classes and present the conditions that enable
its use in our case. The evaluation in Section 4 determines
the overhead of using virtual functions in a microkernel and
shows the effect of class flattening. Section 5 deals with re-
lated work and Section 6 concludes.

1L4Ka::Pistachio supports nine architectures and 18 platforms.

1



2 Multidimensional Configuration

To address portability issues, we defined multiple con-
figuration dimensions, most prominent being the kernel
API (v4, x0, etc.), the target architecture (ia32, ia64, arm,
powerpc, etc.), and the target platform (pc99, ipaq, miata,
etc.). We determined whether a certain kernel functionality
(implemented in a class member function) needs to be spe-
cific for one or more dimensions (e.g., architecture-specific
or API-and-architecture specific). We assigned code frag-
ments, namely class member function implementations, to
specific values in one (e.g., powerpc) or more dimensions
(e.g., v4-ia32) and grouped them into separate files. The
build system combines fragments for the target configura-
tion from various files and feeds them to the compiler. This
way, we are able to implement the kernel’s performance-
critical data structure, the thread control block classtcb t ,
as a simple class.

There are, however, limitations with the above approach.
A member function that must be implemented differently
for one configuration (e.g., for one architecture while all
other architectures can share the same implementation)
must be re-implemented in all other configurations as well.
Likewise, a data member that is required by only one
configuration will be present in all configurations. We
have partially addressed the latter problem by introduc-
ing dimension-specific sub-structures, i.e., an architecture-
specific data member that contains data members only used
by that specific architecture. We have also used preproces-
sor logic to address these problems, but found that it re-
duces readability of the code. Another minor issue is that
source browsing tools (which proved useful for new project
members) often get confused when they encounter several
implementations of a single member function.

All problems mentioned above can be solved with a
class hierarchy. The different configuration dimensions and
their code fragments can be modeled with a class hierarchy
with mix-ins as illustrated in Figure 1.

base tcb

arch tcb api tcb ...

tcb

Figure 1. Thetcb class is constructed from a set of
mix-in classes that is determined by the configuration.

The common virtual base class defines the interface be-
tween the mix-in classes. Since member functions in mix-
ins may need to call member functions implemented in
other mix-ins, they need to be virtual functions. Member
functions and data members required for their implementa-
tion can be logically grouped together. Default implemen-

tations can be specialized where necessary. Code duplica-
tion and unused data members can be avoided.

It is important to notice that independent of how the
class is implemented internally (i.e., as a single flat class
or as a class hierarchy), the interface to the class does not
change. This minimizes the costs of migrating an existing
source base to a class hierarchy, since no code that uses the
class needs to be modified.

3 Flattening C++ Classes

We apply class flattening [3] to eliminate the run-time
overhead of virtual function calls. The idea is to create a
flat class from a whole class hierarchy by moving members
of base classes into the most derived class while maintain-
ing semantic equivalence as far as possible. From the class
hierarchy we can derive which particular implementation
of a virtual function should be moved to the most derived
class. In the flattened class, all member functions can be
made non-virtual since only one implementation exists that
objects of the most derived class would use. The technique
eliminates the indirection via the vtable and therefore leads
to faster method invocation.

It is important to notice that class flattening can be ap-
plied transparently. While the implementation of the most
derived class may change significantly, the interface to the
class remains unchanged.

A class hierarchy can be flattened with very little effort
given the following preconditions:

• The class hierarchy is a valid C++ class hierarchy. We
want to maintain the semantics of C++ as program-
mers know them.

• Outside the class hierarchy, only the most derived
class is ever instantiated or referenced by a pointer.
No pointers to base classes exist. The internal struc-
ture of the class is invisible to the user of the class.

• Data members in the class hierarchy have unique
names. Thus, no renaming of data members is re-
quired.

• No ambiguities with respect to name resolution exist
inside the class hierarchy (that would require a base
class specifier to resolve.)

Given that the above preconditions apply, flattening a class
hierarchy then involves the following steps:

1. Clone base class members (functions, data) into the
target class. Following the class hierarchy in a
breadth-first manner beginning at the target class will
find the correct implementation of a member function.

2. Clone non-inline base class member definitions and
adjust their scope.

2



3. In cloned members, rename all base class types to the
target class.

4. Clone base class constructors into target class func-
tions. Insert calls to these functions into target class
constructors.

5. Remove the keyword virtual from all member func-
tions, the base class specifiers from the target class
definition, and the base class definitions themselves.

With the aforementioned rules (that are easy to follow
when constructing class hierarchies for the microkernel),
class flattening does not require semantic analysis. In the
microkernel we can leave the decision of which class to
flatten to the kernel designer. Thus we can avoid the in-
frastructure to identify classes that would be candidates for
flattening.

Applied to a class hierarchy liketcb t from Section 2,
we would expect performance similar to that of a single flat
class.

4 Evaluation

In this section we first determine the performance im-
pact of using a class hierarchy with virtual functions in the
L4Ka::Pistachio microkernel. We then apply class flatten-
ing and compare the resulting performance with the perfor-
mance when not using a class hierarchy.

We evaluate the kernel’s IPC performance with the stan-
dard L4 IPC benchmarkpingpong on a 2.8 GHz Pen-
tium 4 processor. Thepingpong benchmark sends short
messages between two threads and determines the number
of processor cycles for a single IPC operation. The num-
bers presented here are for intra-address space IPC and
include hardware costs for entering and leaving the ker-
nel.2 Benchmarking additional scenarios like cross-address
space IPC would report the same absolute overhead since
the code paths are identical with respect to the number of
virtual function calls.

The baselineperformance (i.e., the performance when
not using a class hierarchy) is shown in Figure 2.

4.1 Overhead of Virtual Function Calls

To determine the performance impact of using virtual
functions, we slightly modified the flat classtcb t to turn
it into a class hierarchy with a virtual base class and mix-
in classes. We moved some performance-critical member
functions into the mix-ins. The class hierarchy used for the
measurements acts as an early performance indicator only;
the complete conversion remains to be done.

The functions we chose to turn into virtual functions are
used several times on the critical path. Figure 2 shows an

2On a 2.8 GHz Pentium 4 processor, we measured 207 cycles for enter-
ing and exiting the kernel using the SYSENTER/SYSEXIT instructions.

baseline 378

class hierarchy 559

flattened 378

Figure 2. IPC performance in terms of processor cy-
cles (less is better). The dark parts of the bars indicate
kernel entry and exit costs. Introducing a class hierar-
chy adds an overhead of 181 cycles (48%). Applying
class flattening to the hierarchy completely eliminates
this overhead.

absolute run-time overhead of 181 processor cycles per IPC
operation for a kernel that uses aclass hierarchyto imple-
ment tcb t . This amounts to 48% overhead for the IPC
scenario we measured. The actual costs per virtual func-
tion invocation are irrelevant since we are not interested in
determining the exact overhead for a given code path.

4.2 Class Flattening

We flattened thetcb t class using a tool called
collapse [9]. collapse is invoked between the pre-
processing and the compilation stage of the build pro-
cess. The tool implements class flattening as a source-to-
source transformation of the preprocessed source and does
not require manual interaction.3 The class to be flattened
(tcb t ) is specified as a command line option.

The identical performance numbers for baseline and the
flattenedhierarchy in Figure 2 demonstrate that we com-
pletely eliminated the run-time costs of virtual functions.

While in the baseline kernel the memory layout of the
classtcb t was optimized for minimal data cache usage,
it is very likely that the flattened class has a suboptimal
layout only. However, we do not observe a performance
degradation due to increased cache usage. The low cache
footprint of thepingpong benchmark lets the involved
tcb t objects and the kernel code remain hot in the cache.

5 Related Work

The performance overhead introduced by the powerful
mechanisms that C++ and other object-oriented languages
have to offer is well-known. The run-time penalty incurred
by dynamic dispatch for virtual functions has been dis-
cussed in various research papers [2,5].

Several approaches to reduce the number of virtual func-
tion calls in object-oriented programs exist. Class hierar-
chy analysis [4] inspects call sites to potentially reduce dy-
namic dispatch to static dispatch by inferring from context

3Implementing class flattening as a source-to-source transformation by
a stand-alone tool avoids dependencies on a specific compiler and makes
it usable in various build environments.

3



(pointer p will always point to objects of class C.) Profile-
based type feedback [1,12] allows well-predicted run-time
type checking followed by static dispatch or inlining. How-
ever, the virtual function call is only turned into a likely
to be taken, yet conditional call. Sometimes virtual inher-
itance is unnecessary for a given application and can be
turned into normal inheritance after whole-program inspec-
tion [2, 13]. Class hierarchy specialization [14, 16] creates
a new class hierarchy with reduced object size and poten-
tially devirtualized functions.

Flattening C++ classes is not a new idea [3]. It is supe-
rior to aforementioned approaches in that it requires neither
class hierarchy analysis nor profiling information. Class
flattening has been implemented once in a prototype, yet
we miss further work that is based on it. As such, we don’t
know of any previous use of class flattening to allow object-
oriented programming in an OS kernel or in a microkernel
in particular.

Flattening can also be seen as an application of aspect-
oriented programming in that it applies code transforma-
tions to remove the aspect of inheritance. An alternative to
introducing class hierarchies with mix-ins would have been
to rewrite L4Ka::Pistachio for AspectC++ [11] with con-
figuration dimension specifics formulated as aspects. How-
ever, given the size of the L4Ka::Pistachio code base and
the frequent use of GCC extensions that the AspectC++
parser cannot handle, this would have been a substantially
larger effort than introducing a class hierarchy. Further-
more, it is not clear yet whether AspectC++ is equally suit-
able for all the cases we can address with our technique.

The Fiasco microkernel [10] is implemented in C++ us-
ing class hierarchies and virtual functions, too. However,
due to the project’s focus on real-time (with performance as
a secondary concern) the Fiasco developers have accepted
the overhead of virtual functions [8]. Fiasco’s use of point-
ers to base class objects does not allow direct application
of class flattening.

6 Conclusion

In this paper we have shown how we manage code com-
plexity in the L4Ka::Pistachio microkernel. We introduced
class hierarchies with multiple inheritance and polymor-
phic calls to replace preprocessor based code generation.
We analyzed the costs of using such class hierarchies in
a microkernel focusing on performance — something that
has previously been considered infeasible. We demon-
strated the effectiveness of applying class flattening to the
class hierarchy, completely eliminating the run-time over-
head of virtual functions. Our result encourages the use of
OO design techniques, even in such performance-critical
areas as microkernels.

The single flat class remaining from flattening the hier-
archy allows for further optimization steps. In future work
we plan to apply member reordering in order to optimize
cache usage on the kernel’s critical path.

References

[1] Gerald Aigner and Urs Ḧolzle. Eliminating virtual function
calls in C++ programs. InECOOP ’96—Object-Oriented
Programming, volume 1098 ofLecture Notes in Computer
Science, pages 142–166. Springer, 1996.

[2] David F. Bacon and Peter F. Sweeney. Fast static analysis
of C++ virtual function calls. InOOPSLA ’96 Conference
Proceedings, pages 324–341, San Jose, CA, October 1996.

[3] Umesh Bellur, Al Villarica, Kevin Shank, Imram Bashir,
and Doug Lea. Flattening C++ classes. Technical Report
TR-92-23, New York CASE Center, Syracuse NY 13244,
August 21 1992.

[4] Jeffrey Dean, David Grove, and Craig Chambers. Optimiza-
tion of object-oriented programs using static class hierarchy
analysis.Lecture Notes in Computer Science, 952:77–101,
1995.

[5] Y.-F. Lee and M. J. Serrano. Dynamic measurements of C++
program characteristics. Technical Report ADTI-1995-001,
IBM Santa Teresa Laboratory, January 1995.

[6] J. Liedtke. Onµ-kernel construction. InProceedings of
the 15th ACM Symposium on Operating System Principles
(SOSP), pages 237–250, Copper Mountain Resort, CO, De-
cember 1995.

[7] J. Liedtke. µ-kernels must and can be small. In5th In-
ternational Workshop on Object Orientation in Operating
Systems (IWOOOS), pages 152–155, Seattle, WA, October
1996.

[8] Frank Mehnert. private communication. April 2004.

[9] Jan Oberl̈ander. Applying source code transformation to col-
lapse class hierarchies in C++. Study Thesis, System Archi-
tecture Group, University of Karlsruhe, Germany, Decem-
ber 2003.

[10] TU Dresden Operating Systems Group. The Fi-
asco microkernel. Available fromhttp://os.inf.
tu-dresden.de/fiasco/ .

[11] University of Magdeburg OS Research Group. AspectC++.
http://www.aspectc.org/ .

[12] S. Porat, D. Bernstein, Y. Fedorov, J. Rodrigue, and E. Ya-
hav. Compiler optimization of C++ virtual function calls. In
Proceedings of the Second USENIX Conference on Object-
Oriented Technologies and Systems (COOTS), pages 3–14,
Berkeley, CA, June 17–21 1996. USENIX.

[13] Gregor Snelting and Frank Tip. Reengineering class hi-
erarchies using concept analysis. Technical Report RC
21164(94592)24APR97, IBM T.J. Watson Research Center,
P.O. Box 704, Yorktown Heights, NY 10598, USA, 1997.

[14] Peter F. Sweeney and Frank Tip. A study of dead data
members in C++ applications. InSIGPLAN Conference on
Programming Language Design and Implementation, pages
324–332, 1998.

[15] System Architecture Group. The L4Ka::Pistachio mi-
crokernel. White paper, Universität Karlsruhe, May 1
2003. Available fromhttp://l4ka.org/projects/
pistachio/ .

[16] Frank Tip and Peter F. Sweeney. Class hierarchy specializa-
tion. Acta Informatica, 36(12):927–982, 2000.

4


	Abstract
	1 Introduction
	2 Multidimensional Configuration
	3 Flattening C++ Classes
	4 Evaluation
	4.1 Overhead of Virtual Function Calls
	4.2 Class Flattening

	5 Related Work
	6 Conclusion
	References

