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Abstract

A multiprocessor virtual machine benefits its guest
operating system in supporting scalable job throughput
and request latency—useful properties in server consol-
idation where servers require several of the system pro-
cessors for steady state or to handle load bursts.

Typical operating systems, optimized for multipro-
cessor systems in their use of spin-locks for critical sec-
tions, can defeat flexible virtual machine scheduling due
to lock-holder preemption and misbalanced load. The
virtual machine must assist the guest operating system
to avoid lock-holder preemption and to schedule jobs
with knowledge of asymmetric processor allocation. We
want to support a virtual machine environment with flex-
ible scheduling policies, while maximizing guest perfor-
mance.

This paper presents solutions to avoid lock-holder
preemption for both fully virtualized and paravirtualized
environments. Experiments show that we can nearly
eliminate the effects of lock-holder preemption. Further-
more, the paper presents a scheduler feedback mecha-
nism that despite the presence of asymmetric processor
allocation achieves optimal and fair load balancing in the
guest operating system.

1 Introduction

A recent trend in server consolidation has been to pro-
vide virtual machines that can be safely multiplexed on
a single physical machine [3, 7, 24]. Coupling a virtual
machine environment with a multiprocessor system fur-
thers the trend of untrusted server consolidation.

A multiprocessor system offers many advantages for
a virtualized environment. The hypervisor, the control-
ling agent of the virtual machine environment, can dis-
tribute the physical processors to guest operating sys-
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tems (OS) to support arbitrary policies, and reassign
the processors in response to varying load conditions.
The allocation policy may support concurrent execution
of guests, such that they only ever access a fraction of
the physical processors, or alternatively time-multiplex
guests across a set of physical processors to, e.g., ac-
commodate for spikes in guest OS workloads. It can
also map guest operating systems to virtual processors
(which can exceed the number of physical processors),
and migrate between physical processors without no-
tifying the guest operating systems. This allows for,
e.g., migration to other machine configurations or hot-
swapping of CPUs without adequate support from the
guest operating system. It is important to recognize that
allowing arbitrary allocation policies offers much more
flexibility than schemes where one can only configure a
virtual machine to either have an arbitrary share of a sin-
gle processor [7,24], or have uniform shares over multi-
ple physical processors [10,24].

Isolating commodity operating systems within virtual
machines can defeat the assumptions of the guest oper-
ating system. Where the guest operating system expects
constant resource configurations, critical timing behav-
ior, and unrestrained access to the platform, the virtual
machine provides illusionary access as it sees fit. Sev-
eral methods exist to attempt to satisfy (a subset of) the
assumptions of the guest operating system. The solu-
tions may focus on the issues of instruction set emu-
lation, such as trapping on system instructions [22], or
they may focus on the behavior of the guest operating
system algorithms, such as dynamic allocation of physi-
cal memory [25].

This paper presents solutions to two problems that
arise with scheduling of virtual machines which provide
a multi-processor environment for guest operating sys-
tems. Both problems limit scalability and performance.
First, guest operating systems often use spin-locks as a
means to offer exclusive access to code or data. Such
spin-locks are, by design, only held for a short period of
time, but if a virtual machine is preempted while hold-
ing the lock this assumption no longer holds. The crux
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of the problem is that the same virtual machine may still
be running on a different processor, waiting for the lock
to be released, thus wasting huge amounts of processor
cycles (often several milliseconds).

The second problem is due to the ability of virtual
processors to offer the illusion of varying speed. Today’s
operating systems cannot react well to multi-processor
systems where otherwise identical CPUs have asymmet-
ric and varying clock speeds. The problem manifests
itself in suboptimal scheduling of CPU intensive work-
loads and burst-load handling.

To address the first problem, we have devised two
techniques for avoiding preemption of lock holders, one
requiring modifications of the locking primitives in the
guest OS, and one in which the hypervisor attempts to
determine when it is safe to preempt the virtual ma-
chine (i.e., without modifying the guest OS). Initial re-
sults suggest that our lock holder preemption avoidance
schemes can increase high-load web server performance
by up to 28% compared to an approach where the vir-
tualization layer does not take guest OS spin-locks into
account.

To handle asymmetric CPU speeds we propose a
technique calledtime ballooningwhere the hypervisor
coerces the guest OS to adapt scheduling metrics to pro-
cessor speed. The coercion may manifest as the intro-
duction of ghost processes into the scheduling queues
of the guest OS, or as balloon processes which donate
their cycles back to the virtualization layer when sched-
uled by the guest OS. By artificially increasing the load
on a virtual CPU we pressure the guest OS into migrat-
ing processes to other virtual CPUs with more available
resources.

The remainder of the paper is structured as follows.
Section 2 elaborates on the problem of lock-holder pre-
emption. Sections 3 and 4 describe our solutions with
lock-holder preemption avoidance and time ballooning,
followed by experimental results in Section 5. The im-
plications of our solution and future work are discussed
in Section 6. Section 7 presents related work, and finally
Section 8 concludes.

2 The Case for Lock-holder Preemption
Avoidance

Many of the commodity operating systems used in
server consolidation have optimized support for multi-
ple processors. A primary function of the multiproces-
sor support is to guarantee atomic and consistent state
changes within the kernel’s data structures. Typical ker-
nels use memory barriers to ensure in-order memory up-
dates, and they craft critical sections protected by locks
to enforce atomic updates. The critical sections may be

associated with a region of code, or as with more fine
grained locking, they may be associated with a particu-
lar piece of data.

When the number of processors in a system increases,
more processors will be competing for access to the crit-
ical sections. To achieve multiprocessor scalability it
is important that the time a processor spends in a crit-
ical section is short. Otherwise, the processors trying to
acquire the lock for the critical section can experience
long waiting times. Designing a system for short lock-
holding times makes it feasible to poll for a lock to be re-
leased (i.e., using spin-locks). Short lock-holding times
may also obviate the need to implement more expensive
locking primitives to enforce fair lock access, since the
kernel may achieve such fairness statistically.

A very different approach to achieve multi-processor
scalability in operating systems has been to avoid lock-
ing altogether by using non-blocking synchronization
primitives. Although an operating system kernel can in
theory be made lock free using atomiccompare-and-
swap instructions supported by many hardware archi-
tectures, it has been shown that special hardware sup-
port is needed to make lock free kernels feasible [11].
Such special hardware support has been used to imple-
ment lock-free versions of Synthesis [19] and the Cache-
kernel [6], but is not applicable to commodity operat-
ing systems in general, both because of the hardware re-
quirements and the tremendous task of rewriting large
parts of the kernel internal data structures and algo-
rithms. Some form of locking therefore seems unavoid-
able.

When running a commodity operating system in a
virtual machine, the virtual machine environment may
violate some of the premises underlying the guest oper-
ating system’s spin-locks. The virtual machine can pre-
empt the guest kernel, and thus preempt a lock holder,
which can result in an extension of the lock holding time.
For example, in Linux, the typical lock holding time is
under 20 microseconds (see Figure 2), which a preemp-
tion can easily extend by several time slices, often in the
order of tens of milliseconds.

Consequently, the main effect of lock preemption is
the potential for wasting a guest operating system’s time
slice. If a guest kernel spins on a preempted lock, it
could live out the remainder of its time slice spinning
and accomplishing no work. Thus spin-times are ampli-
fied. A concomitant effect is the violation of the original
statistical fairness properties of the lock.

The side effects of lock holder preemption could be
avoided with coscheduling [21]. In coscheduling (or
gang scheduling), all virtual processors of a virtual ma-
chine are simultaneously scheduled on physical pro-
cessors, for an equal time slice. The virtual machine
could preempt lock holders without side effects, since
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Povray Kbuild Apache 2
total 0.04% 15.3% 39.2%
average 3.0µs 1.8µs 2.2µs
max 103µs 293µs 473µs
std.dev. 5.3µs 6.7µs 7.7µs

Table 1. Lock-holding times for various Linux
workloads. Hold times are measured while at least
one kernel lock is being held by the CPU.

the coschedule guarantees that another processor will
not spin on a preempted lock. However, coscheduling
introduces several problems for scalability and flexibil-
ity. Coscheduling activates virtual processors whether or
not they will accomplish useful work, easily leading to
underutilized physical processors. Further, coscheduling
precludes the use of other scheduling algorithms, such
as multiplexing multiple virtual processors on the same
physical processor (e.g., in response to fault recovery of
a failed processor, or load balancing).

Alternative lock wait techniques to spinning, such
as reschedule or spin-then-reschedule, have successfully
been applied to user applications [16], but these tech-
niques are generally not applicable to traditional oper-
ating systems code because the kernel does not always
enjoy the option of preempting its current job (e.g., if
within a low-level interrupt handler). To conclude, we
see that spin-locks are and will be used in commodity
operating systems, and preempting lock-holdersmayas
such pose a significant performance problem.

To determine whether the frequency of lock-holder
preemption really merits consideration, we instrumented
Linux 2.4.20 with a lock tracing facility to inspect lock-
ing statistics. Table 1 shows the results for three work-
loads with varying characteristics from the application
spectrum. We measured the time for when a CPU holds
at least one lock, on a machine with four 700MHz In-
tel Xeon processors. With CPU-intensive applications
(povray, a ray-tracing application) we found locks being
held for an average of 3.0µs and a maximum of 103µs.
With an I/O-intensive workload like the Apache 2 web
server under stress these numbers were 2.2µs and 473µs
respectively.

From our tracing experiments we observe that the
probability of preempting a virtual CPU while hold-
ing a lock lies between 0.04% for CPU-intensive work-
loads and 39% for I/O-intensive workloads. These num-
bers indicate that scheduling a virtual machine running
an I/O-intensive workload without regard for guest OS
spin-locks can severely impact the performance of the
virtual machine. Some scheme for dealing with lock-
holder preemption is therefore deemed necessary.

There are two approaches to deal with lock-holder

preemption. The first approach is to detect contention
on a lock and to donate the wasted spinning time to the
lock holder. Also known ashelping locks, this approach
requires substantial infrastructure to donate CPU time
between virtual CPUs (provided donation is possible at
all) [14]. The second approach is to avoid preempting
lock-holders altogether. Instead, soon to become lock-
holders are preempted before acquiring a lock, or pre-
emption is delayed until after the last lock has been re-
leased.

Depending on the level of virtual machine aware-
ness in the guest operating systems, different methods
of lock-holder preemption avoidance can be used. We
discuss these methods in the following section.

3 Lock-holder Preemption Avoidance

Lock holder preemption avoidance can be achieved
by either modifying the guest operating system to give
hints to the virtual machine layer (intrusive), or have the
virtual machine layer detect when the guest operating
system is not holding a lock (non-intrusive). The for-
mer approach is well suited for systems where the vir-
tualized architecture is not identical with the underlying
hardware; also calledparavirtualization[28]. The latter
approach is well suited for fully virtualized systems.

3.1 Intrusive Lock-holder Preemption Avoid-
ance

For the intrusive approach we use a similar scheme
as implemented in Symunix II [8] and described by Kon-
tothanassis et. al. [17]; the main difference being that the
guest OS itself is here the application giving scheduling
hints to the lower layer (the hypervisor).

Intrusive lock-holder preemption avoidance in our
system is achieved by augmenting Linux (our guest OS)
with a delayed preemption mechanism. Before acquir-
ing a lock, the guest OS indicates that it should not be
preempted for the nextn microseconds. After releas-
ing the lock, the guest OS indicates its willingness to be
preempted again. The virtualization layer will not pre-
empt the lock-holder if it has indicated that it wishes no
preemption, but rather set a flag and delay the preemp-
tion bynmicroseconds. When the guest OS releases the
lock, it is required to check the flag, and if set, immedi-
ately yield its processing time back to the virtualization
layer. Failure to give back the processing time will be
caught by the virtualization layer aftern microseconds,
and the guest operating system will be penalized by a
subsequent reduction in its processing time and the pos-
sibility of untimely preemption.
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Povray Kbuild Apache 2
Locked:

total 0.04% 15.3% 39.2%
average 3.0µs 1.8µs 2.2µs
max 103µs 293µs 473µs
std.dev. 5.3µs 6.7µs 7.7µs

Unsafe:
total 0.09% 26.6% 98.9%
average 6.9µs 17.8µs 1.4ms
max 1.4ms 2.0ms 47.6ms
std.dev. 28.7µs 52.4µs 7.5ms

Table 2. Lock-hold and unsafe times

The value to choose forn depends on how long the
guest OS expects to be holding a lock and will as such
rely heavily upon the operating system used and the
workload being run. We have run a number of lock-
intensive workloads on a version 2.4.20 Linux kernel
and found that more than 98% of the times the Linux
kernel holds one or more locks, the locks are held for
less than 20µs. These numbers suggest that settingn
any higher than 20µs will not substantially decrease the
probability of preempting lock holders in the Linux ker-
nel.

3.2 Non-intrusive Lock-holder Preemption
Avoidance

It is not always the case that one has the possibility of
modifying the guest operating system, in particular if the
kernel is only distributed in binary form. We therefore
need non-intrusive means to detect and prevent lock-
holders from being preempted. Utilizing the fact that
the operating system will release all kernel locks before
returning to user-level, the virtualization layer can moni-
tor all switches between user-level and kernel-level,1 and
determine whether it is safe to preempt the virtual ma-
chine without preempting lock-holders. This gives us a
first definition ofsafeandunsafepreemption states:

safe state— Virtual machine is currently executing at
user-level. No kernel locks will be held.

unsafe state— Virtual machine is currently executing
at kernel-level. Kernel locksmaybe held.

The safe state can be further refined by monitoring
for when the guest OS executes the equivalent of the
IA-32 HLT instruction to enter a low-latency power sav-
ing mode (while in the idle loop). Since the operating

1The mechanism used for monitoring depends heavily on the hard-
ware architecture emulated and the virtualization approach used. One
can for instance catch privileged instructions, or insert monitoring code
where the hypervisor adds or removes protection for the guest OS ker-
nel memory.

safe
unsafe
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unlocked
locked
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µs

Kernel build (NFS)
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unlocked
locked

0 400 800 1200 1600 2000
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Figure 1. Locked and unsafe times for three differ-
ent locking scenarios. Povray spends most of the
time executing at user-level. Linux kernel build
over NFS spends a considerable amount of time
at user-level, and moderately stresses the VFS and
network layer of the kernel. Apache 2 utilizes the
sendfile system call which offloads large amounts
of work to the kernel itself.

system can be assumed to hold no global kernel locks
while suspended, it is safe to treat theHLT instruction
as a switch to safe state. A switch back into unsafe state
will occur next time the virtual CPU is rescheduled (e.g.,
due to an interrupt).

With the safe/unsafe scheme it is still possible that
the virtual machine will be preempted while auser-
level application is holding a spin-lock. We ignore
this fact, however, because user-level applications us-
ing spin-locks or spin-based synchronization barriers are
generally aware of the hardware they are running on, and
must use some form of coscheduling to achieve proper
performance. Section 6.4 deals with such workloads in
more detail.

In order to substantiate the accuracy of the
safe/unsafe model for approximating lock-holding
times, we augmented the lock tracing facility described
in Section 2 with events for entering and leaving safe
states. Our measurements are summarized in Table 2.
Figure 1 shows more detailed excerpts of the traces for
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Figure 2. Lock-hold and unsafe state time distri-
butions for three different locking scenarios. His-
tograms are for readability reasons truncated to a
probability of 20%.

three different workload classes (spikes on top of the
locking states indicate nested locks). The povray work-
load executes almost entirely at user-level and experi-
ences short unsafe periods only at fixed periods. The
kernel-build workload performs a parallel build of the
Linux kernel on an NFS-mounted file system. It mod-
erately stresses the VFS subsystem and network layer
while spending a fair amount of time at user-level. The
figure shows a typical 200µs sample period. Lastly, the
Apache 2 workload continually serves files to clients and
only sporadically enters safe states (only 1.1% of the ex-
ecution time is spent in a safe state). The large amount
of unsafe time can be attributed to Apache’s use of the
sendfile system call to offload all file-to-network transfer
into the kernel (i.e., avoid copying into user-level).

For the Povray and kernel-build workloads we ob-
serve that the unsafe times reasonably approximate their
lock holding times. Figure 2 shows that the unsafe times
for these workloads are generally less than 10µs longer
than the lock-holding times. For the Apache 2 workload,
however, the unsafe times are on average three orders of

50%
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500 1000 1500 2000

Povray
Kernel build (NFS)

Apache 2

50%
60%
70%
80%
90%

100%

50 100 150 200

Unsafe time (µs)

Figure 3. Cumulative probability of unsafe state
times for three different workloads. The two
graphs show the probabilities of both long and
short unsafe state times.

magnitude longer than the locking times. We observe an
average unsafe time of more than 1.4ms. This is in spite
of locking times staying around 2µs, and can, as men-
tioned above, be attributed to the Apache server offload-
ing file-transfer work to the kernel by using the sendfile
system call.

Now, observing that the standard deviation for the
unsafe times in the Apache 2 workload is rather high
(7.5ms), we might be tempted to attribute the high dis-
parity between average lock-holding times and unsafe
times to a number of off-laying measurements. Looking
at Figure 3, however, we see that the Apache 2 workload
has substantially longer unsafe times even for the lower
end of the axis. For example, the Apache 2 workload
only has about 91% of the unsafe times below 200µs,
while the povray workload has close to 100% of its un-
safe times below 20µs. These numbers suggest that the
unsafe state approximation to lock-holding times is not
good enough for workloads like Apache 2. We want a
better approximation.

Having some knowledge of the guest OS internals,
it is often possible to construct points in time, so called
safe-points, when the virtual machine’s guest OS is guar-
anteed to hold no spin-locks.

One example of how safe-point injection can be
achieved is through targeted device drivers installed in
the guest OS, designed to execute in a lock free context.
An example (compatible with Linux) is the use of a net-
work protocol handler, added via a device driver. The
virtualization layer could craft packets for the special
protocol, hand them to the virtual NIC of Linux, from
where they would propagate to the special protocol han-
dler. When the guest OS invokes the protocol handler, it
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Figure 4. Virtual machine scheduling. A window
of sizew indicates when a VM may be preempted.
En indicates thenth end of time slice,Pn indicates
thenth actual preemption point, andsn indicates
the start of thenth preemption window.

will hold no locks, and so the protocol handler is safe to
yield the time slice if a preemption is pending.

In an experimental Linux setup we measured as little
as 8000 cycles for such a packet to travel from the virtual
NIC to our protocol driver under high load. With time
slice lengths in the millisecond range, this enables very
precise injection of preemption points.

3.3 Locking-Aware Virtual Machine Schedul-
ing

In the following section we describe a mechanism
for efficient scheduling of multiple multi-processor vir-
tual machines, leveraging the techniques described in the
previous two sections.

Virtual CPUs can be modeled as threads in the vir-
tualization layer which are then subject to scheduling,
each one in turn receiving its time slice to execute. Our
goal is to preempt a virtual machine (i.e., a thread in the
virtualization layer) as close to the end of its time slice
as possible, or before that if the virtual machine decides
not to consume the whole time slice. In addition, we
want to guarantee fairness so that a virtual machine will
aggregately obtain its fair share of the CPU time.

Figure 4 illustrates the basis of our virtual machine
scheduling algorithm. We define a preemption window,
w, around the end of the virtual machine’s time slice.
For thenth time slice, this preemption window starts
at time sn, En is the actual end of the allocated time
slice, andPn is the time when the hypervisor finds it
safe to preempt the virtual machine (the last spin-lock
was released or the VM entered a safe state). If no safe
preemption point occurs before the end of the window,
the hypervisor will enforce a preemption.

Our goal with the scheduling algorithm is to choose
the window start,sn, so that the preemption point,Pn,
on average coincides with the actual end of time slice,
En (i.e.,

∑n
i=0Ei − Pi = 0). In doing so we achieve

fair access to desired processor time.
Now, assume that in the past the average distance be-

tween our start points and preemption points equaled an
offset,on. In order to keep this property for our next time
slice we must calculate the next offset,on+1, so that it
takes into account the current distance between preemp-
tion point and window start (Pn − sn). This is a simple
calculation to perform, and the result is used to deter-
mine the next window start point:sn+1 = En+1−on+1.
The consequence of our algorithm is that a preemption
that occurs before the end of time slice will cause the
preemption window to slide forwards, making prema-
ture preemptions less likely (see lower part of Figure 4).
Conversely, a preemption after end of time slice will
cause the preemption window to slide backwards, mak-
ing premature preemptions more likely.

The scheduling algorithm ensures that any preemp-
tions before or after the end of time slice will eventu-
ally be evened out so that we achieve fairness. However,
since the algorithm keeps an infinite history of previous
preemptions it will be slow to adapt to changes in the vir-
tual machine workload. To mitigate this problem we can
choose to only keep a history of the lastk preemptions.
The formula for calculating the next window offset then
becomes:

on+1 =
on(k − 1) + (Pn − sn)

k

A further improvement of the algorithm is to detect
when preemptions have to be forced at the end of the pre-
emption window—a result of no safe state encounters—
and remedy the situation by injecting safe points into
subsequent preemption windows.

There are two tunable variables in our VM schedul-
ing algorithm. Changing the window length,w, will
decrease or increase the accepted variance in time slice
lengths, at the expense of having the virtual machines
being more or less susceptible to lock-holder preemp-
tions. Changing the history length,k, will dictate how
quickly the hypervisor adapts to changes in a virtual ma-
chine’s workload.

4 Time Ballooning

The scheduling algorithm of a multiprocessor OS dis-
tributes load to optimize for some system wide per-
formance metric. The algorithm typically incorporates
knowledge about various system parameters, such as
processor speed, cache sizes, and cache line migration
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(c) Balloon processes are started to even
out the differences in processor execu-
tion speed as seen by the virtual ma-
chines. Rather than consuming CPU cy-
cles, the balloon processes donate their
CPU time to other virtual machines.

Figure 5. Time ballooning

costs. It furthermore tries to perform a reasonable pre-
diction about future workloads incorporating previous
workload patterns.

By multiplexing multiple virtual processors on one
physical CPU the virtualization layer modifies the fun-
damental system parameters which are used to derive the
process distribution, e.g., linear time, identical processor
speeds and assumptions about cache working sets due
to scheduling order. Based on its wrong assumptions
the guest OS’s scheduling algorithm will distribute pro-
cesses among physical processors in a sub-optimal way
leading to over-commitment or under-utilization

To perform correct scheduling decisions the guest
scheduler has to be made aware of the virtualization
layer and incorporate the additional system parameters.
Instead of distributing load equally between all proces-
sors it should distribute based on the percentage of phys-
ical resource allocation.

Using ideas similar to memory ballooning in the
VMware ESX Server [25], we propose a new mecha-
nism, time ballooning, that enables the hypervisor to
partake in the load balancing decisions without requir-
ing modification of the scheduling code itself. A balloon
module is loaded into the guest OS as a pseudo-device
driver. Periodically, the balloon module polls the virtu-
alization layer to determine how much processing time
the virtual machine is allotted on the different CPUs. It
then generates virtual workload making the guest OS be-
lieve that it is busy executing a process during the time of
no physical CPU allocation. The virtual workload lev-
els out imbalances of physical processor allocation (see
Figure 5 (c)). The time balloon is used to correct the
scheduler’s assumption that all processors have the same
processing speed, leading to the anticipated distribution.

The method for generating virtual workload depends
on the specific load balancing scheme of the guest OS
and cannot be generalized. We investigated two Linux
scheduling algorithms, the latest, better-scalable O(1)
scheduler and the original, sampling-based work steal-
ing algorithm. Since our focus was on non-intrusive so-
lutions, we explicitly avoided modifications of the guest
OS’ scheduling code that may have resulted in a more
efficient solution.

4.1 Linux O(1) Scheduler

Linux’s O(1) scheduler uses processor local run
queues. Linux bases load balancing decisions on two
parameters, the run queue length, using the minimum of
two sampling points, and cache working-set estimates
based on last execution time. When the balancing al-
gorithm finds a length difference of more than 25% be-
tween the current and the busiest run queue, or when the
current processor falls idle, it starts migrating processes
until the imbalance falls below the 25% threshold.

To reflect differences in virtual machine CPU re-
source allocations, the balloon module has to manipu-
late the run queue length. This can be achieved non-
intrusively by generating low priority virtual processes
with a fixed CPU affinity. In the balloon module we
calculate the optimal load distribution using the total
number of ready-to-run processes and the allocated CPU
share for each virtual CPU. Based on the calculated
optimal distribution we add balloon processes to each
run queue until all have equal length to the longest run
queue, i.e., the virtual CPU with the largest physical pro-
cessor allocation.

For a guest OS withn virtual CPUs, a total ofp run-
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ning processes, and a CPU specific processor sharescpu,
the number of balloon processesb on a particular virtual
processor is

bcpu =
⌈

max(s)− scpu∑n
i=1 si

· p
⌉

Rounding up to the next full balloon results in at
least one balloon process on all but those virtual CPUs
with the largestscpu and thereby avoids aggressive re-
balancing towards slower virtual CPUs that fall idle.

4.2 Linux Work-Stealing Scheduler

The second scheduling algorithm, the work-stealing
algorithm, migrates processes under two conditions.
The first condition responds to newly runnable pro-
cesses. When a processorP1 must schedule a newly wo-
ken task, it can suggest to idle processorP2 to acquire
the task. The migration completes only whenP2 chooses
to execute the task. In the second migration condition,
which takes place during general scheduling events such
as end-of-timeslice, a processor can choose to steal any
process from the centralized task list which is not hard-
bound to another processor.

Linux bases load balancing decisions purely on the
characteristics of a process, calculated as a “goodness”
factor. The decision to steal a process is independent of
the status of other processors, and thus doesn’t consider
factors such as the number of processes associated with
other processors.

To influence load distribution, a balloon module has
to give the impression that while the virtual processor
is preempted it is not idle (i.e., it is executing a virtual
process), to avoid migration attempts from other proces-
sors. The module could add balloon threads to the task
list, bound to a particular processor, and which yield the
virtual machine to the hypervisor when scheduled. But
the module is unable to guarantee that Linux will sched-
ule the balloon threads at appropriate times. The like-
lihood of scheduling balloon tasks can be increased by
adjusting their priorities.

An alternative to balloon processes is possible. The
work-stealing algorithm stores the inventory of running
tasks in a central list, and thus if these tasks possess the
property of cache affinity, then their task structures are
likely to possess a field to represent preferred processor
affinity (as is the case for Linux). The balloon module
can periodically calculate an ideal load distribution plan,
and update the tasks’ preferred processor. Thus, as pro-
cessors perform scheduling decisions, they’ll find jobs
in the task list biased according to feedback from the
hypervisor.

5 Evaluation

5.1 Virtualization Architecture

For our experiments we used a paravirtualization ap-
proach running a modified Linux 2.4.21 kernel on top
of a microkernel-based hypervisor [13, 23]. With our
approach the management and device access parts of
the hypervisor run unprivileged in user-space; interac-
tion with the virtual machine manager, including device
access, takes place via the microkernel’s inter-process
communication (IPC) facility.

We modified the Linux kernel to utilize the hypervi-
sor’s virtual memory management and scheduling prim-
itives. All device access was wrapped into virtual device
drivers that communicate with the real device drivers in
the hypervisor.

The hypervisor supports all core device classes: hard
disk, Gigabit Ethernet, and text console. Furthermore,
it manages memory and time allocation for all virtual
machines. To reduce device virtualization overhead we
export optimized device interfaces using shared memory
communication and IPC.

Currently, the hypervisor partitions memory and pro-
cessors statically, i.e., no paging of virtual machines is
taking place and virtual processors do not migrate be-
tween physical CPUs.

5.2 Lock Modeling

Our paravirtualization approach permitted us to reim-
plement the Linux kernel locks to study the benefits of
intrusive lock-holder preemption avoidance. We im-
plemented delayed preemption locks, pessimistic yield
locks, and optimistic yield locks (with brief spinning).

The delayed preemption locks were constructed to in-
hibit preemption whenever at least one lock was held.
Each virtual CPU (VCPU) maintained a count of ac-
quired locks. Upon acquiring its first lock, a VCPU en-
abled its delayed preemption flag to prevent preemption
by the hypervisor. The flag was cleared only after all
locks were released. Setting and clearing the flag was
a low cost operation, and only involved manipulating
a bit in a page shared between the hypervisor and the
VCPU. If the hypervisor signaled that it actually delayed
a preemption, via another bit in the shared page, then the
Linux kernel would voluntarily release its time slice im-
mediately after releasing its last lock.

The yield locks were pessimistic and assumed that
any spinning was due to a preempted lock, thereby im-
mediately yielding the time slice if unable to acquire the
lock. We also used an optimistic yield lock, which first
spun on the lock for 20µs (as suggested from lock hold-
ing times in Figure 2), and then yielded the time slice
with the assumption that the lock was preempted.
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Figure 6. Bandwidth measurement for Apache 2 benchmark. Two virtual machines are configured to run on
2, 3 and 4 CPUs. For each CPU configuration the virtual machines are further configured to consume 15%,
20%, 25% or 33% of the total CPU time. A third virtual machine with a CPU intensive workload consumes the
remaining CPU time. The bars show the aggregate bandwidth of the two VMs running the web servers.

To model the performance of lock-holder preemption
avoidance with a fully virtualized virtual machine, and
thus an unmodified guest OS, we had to create estimates
using our paravirtualization approach. Given that para-
virtualization can outperform a fully virtualized VM [3],
our results only estimate the real benefits of lock pre-
emption avoidance in a fully virtualized VM. Our safe-
state implementation precisely models the behavior we
describe in Section 3.2. We model safe-state detec-
tion by using the hypervisor’s delayed preemption flag.
When the guest OS executes kernel code we enable the
delayed preemption flag, thus compelling the hypervisor
to avoid preemption at the end of normal time slice. Af-
ter finishing kernel activity (upon resuming user code or
entering the idle loop), we clear the preemption flag. If
Linux kernel code exceeds a one millisecond preemption
grace period, it is preempted.

We observed spin-lock performance by using stan-
dard Linux spin-locks. The spin-lock data apply to the
case of using spin-locks for paravirtualization, and they
approximate the case of a fully virtualized VM.

5.3 Execution Environment

Experiments were performed with a Dell PowerEdge
6400, configured with four Pentium III 700 MHz Xeon
processors, and an Intel Gigabit Ethernet card (using
an 82540 controller). Memory was statically allocated,
with 256 MB for the hypervisor, and 256 MB per virtual
machine.

The guest operating system was a minimal Debian
3.0, based on a modified Linux 2.4.21 kernel. Most De-
bian services were disabled.

The hard disk was unused. Instead, all Linux in-
stances utilized a 64 MB RAM disk. Linux 2.4.21 intel-
ligently integrates the RAM disk with the buffer cache

which makes this setup comparable to a hot buffer cache
scenario.

5.4 Synthesized Web Benchmark

The synthesized web benchmark was crafted to tax
the Linux network and VFS subsystems, in effect, to
emulate a web server under stress. It used Apache 2,
for its support of the Linux sendfile system call. The
sendfile method not only offloads application processing
to the kernel, but it also supports network device hard-
ware acceleration for outbound checksum calculations
and packet linearization.

The benchmark utilized two virtual machines, each
hosting a web server to serve static files. The two virtual
machines competed for the network device, and each
had an equal amount of processor time. A third virtual
machine provided an adjustable processor load, to ab-
sorb processor time.

5.5 Lock-Holder Preemption Avoidance Data

For studying the effect of our lock-holder preemp-
tion schemes, we instrumented Linux’s synchronization
primitives, and measured the throughput of the synthetic
web benchmark described in the previous section.

To capture lock scaling in terms of number of pro-
cessors, the Linux instances were configured to activate
two, three, or four processors of our test system. Further,
for each processor configuration we configured the vir-
tual machines hosting the web servers to consume 15%,
20%, 25% or 33% of the total CPU time. Figure 6 sum-
marizes our results, showing the aggregate bandwidth of
both web servers for the different virtual machine and
locking scheme configurations.

The results often reveal a substantial performance dif-
ference between the various locking techniques. In order
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Figure 7. Extended lock-holding times for various virtual machine configurations (same configurations as in
Figure 6). The bars show the extended lock-holding time for one of the web server VMs, per processor,
expressed as a percentage of the run time. An extended lock-hold is one which exceeds 1 ms.
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Figure 8. Extended lock-wait times for various virtual machine configurations (same configurations as in
Figure 6). The bars show the extended time spent waiting for locks on one of the web server VMs, per
processor, expressed as a percentage of the run time. An extended lock-wait is one which exceeds 1 ms.

to explain these differences, we measured lock holding
times in each experiment. More precisely, we measured
the amount of wall-clock time that a lock was held by
the virtual machine running one of the web servers. Fig-
ure 7 shows the extended lock-holding time as a percent-
age of the virtual machine’s real execution time during
the benchmark. To distinguish between normal locking
activity and lock-preemption activity, we show only ex-
tended lock-holding time. A lock-hold time is consid-
ered extended if it exceeds one millisecond.

We also measured the total time spent acquiring locks
in each of the experiments (i.e., the lock spin-time or
wait-time). These lock-acquire times are presented in
Figure 8. Again, the time is measured relative to the
real execution time of the benchmark. The data include
only wait-times which exceeded one millisecond, to dis-
tinguish between normal behavior and lock-wait activity
due to preempted locks.

5.6 Time Ballooning

Figure 9 presents the result of an experiment designed
to show the effectiveness of the O(1) time ballooning
algorithm with asymmetric, static processor allocation.
We ran two virtual machines, A and B, each configured
to run on two physical processors. The goal was to fairly
distribute physical processor time between all processes.
Both VMs were running a Linux 2.4.21 kernel with the
O(1) scheduler patch and our balloon module. Virtual
machine A was configured with 30% of the processing
time and ran ten CPU intensive tasks. Virtual machine B
was configured with the remaining 70% of the process-
ing time, but only ran one CPU intensive task for a short
period of time; the other CPU was idle.

Before VM B started using its processing time, VM A
used all processing time on both CPUs. Once VM B
started processing (at about 7 seconds into the experi-
ment), virtual machine A’s processing share on CPU 0
immediately dropped to 30%. Shortly thereafter, VM A
detected the imbalance in processing time, and at-
tempted to mitigate the problem by inserting balloon
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Figure 9. Time ballooning induced load balancing.

processes on the slower CPU. This in turn caused Linux
to start migrating processes to the other CPU.

When virtual machine B ceased using its processing
time (at about 35 seconds into the experiment), virtual
machine A again got the full CPU share, causing the
balloon processes to be removed, and Linux to perform
another load-balancing.

6 Discussion and Future Work

6.1 Lock-holder Preemption Behavior

The web server benchmark provided complicated
system dynamics. The processor utilization at almost
every data point fell below the allocated processor share
(we used a 5 ms time slice), suggesting that the work-
load was I/O-bound. On the other hand, the bandwidth
is (non-linearly) proportional to the amount of proces-
sor share, suggesting a processor-bound workload. The
sequencing of virtual machine scheduling, compared to
packet arrival and transmit periods, probably causes this
behavior. When a guest OS has access to the physical
processor it won’t necessarily be saturated with network
events, since the network card may be sending and re-
ceiving packets for a competing virtual machine. Other
factors can also regulate web server performance. For
example, when a virtual machine sees little concurrent
access to both the network device and the processor, the
role of kernel buffers and queues becomes important.

The buffers and queues must hold data until a resource
is available, but buffer overruns lead to work underflow,
and thus under-utilization of the time slice. The sequenc-
ing of events may also lead to high packet processing
latency, causing TCP/IP packet retransmits, which in-
creases the load on the limited resources.

During the experiments involving our lock-holder
preemption avoidance techniques we set the size of the
preemption window (the value ofw in Section 3.3) to
1 ms. Since more than 96% of the unsafe times for
an Apache 2 workload fall below the 1 ms boundary
(see Figure 3), the non-intrusive technique did not suffer
from excessive amounts of lock-holder preemptions. As
such, the web-server throughput achieved with the non-
intrusive technique was on par with the intrusive tech-
nique.

The hypervisor uses a proportional share stride-
scheduling algorithm [26, 27], which ensures that every
virtual machine receives its allocated share of the pro-
cessor. However, the scheduler doesn’t impose a ceil-
ing on a virtual machine’s processor utilization. If one
virtual machine under-utilizes its processor share for a
given unit of time, then another virtual machine can pil-
fer the unused resource, thus increasing its share. With
I/O bound workloads, we witness processor stealing (be-
cause we have time slice under-utilization). In essence,
the scheduling algorithm permits virtual machines to re-
arrange their time slices. The concept of time-stealing
also applies to yield-style locks. When a virtual pro-
cessor yields its time slice, rather than wait on a lock-
acquire, it may avoid many milliseconds of spinning.
Yielding the time slice, though, enables the hypervisor
to schedule another virtual machine sooner, and thus re-
turn to scheduling the yielding virtual machine earlier,
at which point the lock should be released from the orig-
inal lock holder. Time slice yielding, as an alternative
to spinning on preempted locks, will improve the overall
efficiency of the system, as it avoids processor waste.
And via the rearrangement of time slices, yield-style
locks may improve their processor/packet sequencing,
and improve performance.

Increasing parallelism by adding more processors in-
creases the likelihood of lock contention. Thus preemp-
tion of a lock holder can lead to spinning by more pro-
cessors. As Figure 8 shows, the lock-wait time increases
with the number of processors.

In the graphs which represent lock-holding time (Fig-
ure 7) and lock-waiting time (Figure 8), the mecha-
nisms which avoid lock-holder preemption (delayed-
preemption locks and safe-state detection) have under
1% time involved with locking activity. In contradis-
tinction, the spin-locks lead to severe locking times and
spinning times due to preempted locks. The yield-style
locks are susceptible to lock preemption, as they only
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focus on recovering from lock spinning, and also suf-
fer from long lock holding times. And due to releasing
their time slices for use by other virtual machines, yield-
style locks suffer from long lock-wait times as well. The
tactic of avoiding spin-time by yielding doesn’t help
the benchmark results, and often leads to performance
worse than spin-locks. Spin-locks may spin for a long
time, but they have a chance of acquiring the lock before
the end of time slice, and thus to continue using the time
slice.

6.2 Time Ballooning

Our time ballooning mechanism is targeted to-
wards processor allocations with infrequent changes.
Highly dynamic processor reconfigurations introduce
load-dependent properties, and are a topic of future
work. To support dynamic load balancing in response
to adjustments of the processor allocations requires at-
tention to several variables, such as the rates at which
the guest OS can rebalance and migrate tasks, alloca-
tion sampling rates, sampling overhead, cache migration
costs, sample history window size, allocation prediction,
and attenuation of thrashing. Likewise, response to burst
loads is another dynamic situation for future work. For
example, to achieve optimal use of the available phys-
ical processor resources, web servers distributed across
asymmetric processors may require load balancing of in-
coming wake-up requests, or load balancing of the web
server processes after they wake/spawn.

The time ballooning mechanism is designed to be in-
stalled in unmodified guest operating systems via device
drivers. Where it is possible to modify the guest op-
erating system, one can construct feedback scheduling
algorithms optimized for the OS and workload and vir-
tualization environment.

6.3 Dealing with Lock-Holder Preemption

An alternative to avoiding preemption of lock holders
in the first place is to deal with the effects of the preemp-
tion: Have the hypervisor detect extensive spinning and
schedule other, more useful work instead.

Techniques to detect spinning include instruction
pointer sampling and trapping on instructions that are
used in the back-off code of spin-locks. Descheduling
a virtual CPU immediately after a failed acquire opera-
tion is expected to show the same behavior as pessimistic
yield locks. To reduce the yield time, one could look
for a lock release operation following a failed lock ac-
quire. Lock release operations can be detected by write-
protecting pages containing a lock, using debug regis-
ters to observe write accesses, or, with additional hard-
ware support, through extensions of the cache snooping
mechanism.

However, preempting a virtual CPU due to a remote
release operation on a monitored lock may preempt an-
other lock holder. Most likely, release operations on a
contended lock occur with much higher frequency than
preemptions due to regular VM scheduling. Instead of
offering a solution, chances are that this approach could
amplify the problem. The potential costs and complex-
ity of detecting spinning on a lock and executing another
virtual CPU instead could outweigh the benefits.

6.4 Coscheduling Dependent Workloads

In this paper we have discussed application work-
loads that do not possess strong cross-processor schedul-
ing requirements. However, some workloads in the par-
allel application domain do rely on spin-based synchro-
nization barriers or application spin-locks, and thus ne-
cessitate some form of coscheduling in order to perform
efficiently. Coscheduling can only be achieved on phys-
ical resources (processors and time), and the coschedul-
ing requirements in the guest OS must therefore be com-
municated to the virtualization layer so that they can be
processed on a physical processor basis.

Making the virtualization layer aware of an appli-
cation’s coscheduling requirements and devising algo-
rithms for fulfilling these requirements is future work.

7 Related Work

The problems that may result from preempting parts
of a parallel application while holding a lock are
well-known [16, 20, 30] and have been addressed by
several researchers [1, 4, 8, 17, 29]. Proposed solu-
tions include variants of scheduler-aware synchroniza-
tion mechanisms and require kernel extensions to share
scheduling information between the kernel’s scheduler
and the applications. This translates well to our para-
virtualization approach where the guest OS kernel pro-
vides information to the hypervisor. To our knowledge
no prior work has applied this technique in the context
of virtual machines and their guest OSs.

Only very few virtual machine environments offer
multiprocessor virtual machines, and they either avoid
lock-holder preemption completely through strict use of
gang scheduling [5, 10], use gang scheduling whenever
they see fit [24], or they choose flexible scheduling but
don’t address lock-holder preemption [15].

Load balancing across non-uniformly clocked, but
otherwise identical CPUs is a standard technique in clus-
ter systems. However, we know of no commodity op-
erating system for tightly coupled multiprocessors that
would explicitly support such a configuration. The few
existing virtual multiprocessor VM environments either
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implicitly enforce equal virtual CPU speeds (through
gang scheduling) or do not consider speed imbalances.
As such, we know of no prior art where a virtual ma-
chine environment would coerce its guest operating sys-
tem to adapt to changing, or at least statically differ-
ent, virtual CPU speeds. Our solution was inspired by
the ballooning technique for reclaiming memory from a
guest OS [25].

Performance isolation is a quite well-researched prin-
ciple [2, 3, 12, 18] in the server consolidation field. For
CPU time our hypervisor enforces resource isolation
using a proportional share stride-scheduling algorithm
[26,27].

8 Conclusion

Virtual machine based server consolidation on top of
multiprocessor systems promises great flexibility with
respect to application workloads, while providing strong
performance isolation guarantees among the consoli-
dated servers. However, coupling virtual machine envi-
ronments with multiprocessor systems raises a number
of problems that we have addressed in this paper.

First, our schemes for avoiding preemption of lock-
holders in the guest operating systems prevents exces-
sive spinning times on kernel locks, resulting in notice-
able performance improvements for workloads exhibit-
ing high locking activity. Our lock-holder preemption
avoidance techniques are applicable to both paravirtual-
ized and fully virtualized systems.

Second, the allocation of physical processing time to
virtual machines can result in virtual machines experi-
encing asymmetric and varying CPU speeds. Our time
ballooning technique solves the problem by creating ar-
tificial load on slower CPUs, causing the guest OS to mi-
grate processes to the CPUs with more processing time.

Combined, our solutions enable scalable multi-
processor performance with flexible virtual processor
scheduling.

Acknowledgements
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bastian Scḧonberg, and Jean Wolter. The performance
of microkernel-based systems. InProc. of the 16th ACM
Symposium on Operating System Principles, Saint Malo,
France, October 5–8 1997.

[14] Michael Hohmuth and Hermann Härtig. Pragmatic non-
blocking synchronization for Real-Time systems. In
Proc. of the 2001 USENIX Annual Technical Conference,
June 25–30 2001.

13



[15] IBM. z/VM Performance, Version 4 Release 4.0, fourth
edition, August 2003.

[16] Anna R. Karlin, Kai Li, Mark S. Manasse, and Susan
Owicki. Empirical studies of competitive spinning for
a shared-memory multiprocessor. InProc. of the 13th
ACM Symposium on Operating Systems Principles, Pa-
cific Grove, CA, October 13–16 1991.

[17] Leonidas I. Kontothanassis, Robert W. Wisniewski, and
Michael L. Scott. Scheduler-conscious synchronization.
ACM Transactions on Computer Systems, 15(1):3–40,
1997.
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