Pre-Virtualization: Slashing the Cost of Virtualization

Joshua LeVasseurt Volkmar Uhlig®

Ben Lesliet"

Matthew Chapman#? Peter Chubb#?

Gernot Heisert"

fUniversity of Karlsruhe, Germany
SIBM T. J. Watson Research Center, New York
National ICT Australia
YUniversity of New South Wales, Australia

Abstract

Despite its current popularity, para-virtualization has an
enormous cost. Its diversion from the platform architecture
abandons many of the benefits that come with pure virtu-
alization (the faithful emulation of the platform API): sta-
ble and well-defined platform interfaces, single binaries for
kernel and device drivers (and thus lower testing, mainte-
nance, and support cost), and vendor independence. These
limitations are accepted as inevitable for significantly bet-
ter performance and the ability to provide virtualization-like
behavior on non-virtualizable hardware, such as x86.

We argue that the above limitations are not inevitable,
and present pre-virtualization, which preserves the bene-
fits of full virtualization without sacrificing the performance
benefits of para-virtualization. In a semi-automatic step
an OS is prepared for virtualization. The required mod-
ifications are orders of magnitudes smaller than for para-
virtualization. A virtualization module, that is collocated
with the guest OS, transforms the standard platform API
into the respective hypervisor API. The guest OS is still
programmed against a common architecture, and the bi-
nary remains fully functional on bare hardware. The sup-
port of a new hypervisor or updated interface only requires
the implementation of a single interface mapping. We val-
idated our approach for a variety of hypervisors, on two
very different hardware platforms (x86 and Itanium), with
multiple generations of Linux as guests. We found that pre-
virtualization achieves essentially the same performance as
para-virtualization, at a fraction of the engineering cost.

1. INTRODUCTION

Virtual machines, originally introduced in the '70s [§],
have recently gained immense popularity. The reason is

*National ICT Australia is funded by the Australian Gov-
ernment’s Backing Australia’s Ability initiative, in part
through the Australian Research Council.

Technical Report 2005-30, November 2005, Fakultét fur Informatik, Uni-
versitat Karlsruhe (TH)

that they provide an attractive approach to solving a vari-
ety of problems arising in a number of quite dissimilar con-
texts. These include server consolidation [2,31], migration
of users’ complete operating environments between physi-
cal machines [9,26], intrusion detection [14], debugging [15],
secure computing platforms with strictly controlled infor-
mation flow [4,7,20,25], co-existence of realtime and non-
realtime applications [19], and backward compatibility with
older or out-of-production hardware.

Notwithstanding their popularity, virtual machine (VM)
technologies have significant cost, and different approaches
to virtualization differ primarily in how they trade off engi-
neering cost against run-time overheads.

Pure virtualization, the classical approach, employs a VM
API that is a faithful copy of the platform API (i.e., instruc-
tion set and devices). This approach has the great benefit
that there is zero cost for porting and maintaining a guest
operating system (OS) to run on the VM; the only engineer-
ing cost of this approach is for the development and main-
tenance of the VM itself. This cost is also minimized by
virtue of the enormous stability of a typical platform API.
In exchange, pure virtualization has a high run-time over-
head, resulting from frequent switches between user mode
and privileged mode, which severely limits the use of this
technology. Furthermore, most contemporary instruction
sets are not fully virtualizable, making pure virtualization
extremely hard.

The popular alternative to pure virtualization is to replace
the low-level platform API by a high-level API that requires
far fewer mode switches when running a de-privileged guest
OS — an approach called para-virtualization [31]. Para-
virtualization mostly eliminates the run-time cost of the VM
[2], at the expense of high engineering cost, which comes in
several guises:

e the high cost of porting a guest OS to the virtual ma-
chine, and maintaining the port as the guest OS de-
velops. Para-virtualization adds a new architecture (or
several) to the guest for each hypervisor API. This cost
is amplified by evolution of the hypervisor API;

e the cost of distributing more separate guest binaries for
VM execution. While pure virtualization runs a stan-
dard guest binary (built for native execution), para-
virtualization requires the distribution of separate bi-
naries for each VM and thus extra testing, mainte-
nance, and support. This is a particular deterrent for
companies whose business is built on packaging and

distributing open-source operating systems and com-
panies that only provide binary extensions;

e the cost for integrating new processor features into the
hypervisor API is higher than for pure virtualization,
as the hardware and hypervisor interfaces evolve inde-
pendently. A bad design choice in the hypervisor API
(including the binary interface) has long-term reper-
cussions: In order to preserve backward compatibil-
ity to already deployed OSes — a prime benefit of
virtualization — requires the hypervisor to support
all previous interfaces. Besides the additional main-
tainance cost, interface backward compatibility may
lead to structural (and performance) compromises in
the hypervisor and increases the trusted computing
base. A small code base is particularly critical for for-
mal verification of a hypervisor [28].

While some of those costs can be mitigated by standard-
izing on a single platform API, the significant changes in
successive versions of Xen [2,22] (the at present arguably
most popular para-virtualization hypervisor) indicate that
the technology is far away from a single, stable API. In fact,
we consider it unlikely that — in the foreseeable future —
a single VM API will be able to support the wide range of
uses of virtualization.

VMware’s approach of rewriting the guest OS binary [29]
(necessitated by the unvirtualizable x86 architecture) is
somewhere in between: it eliminates the cost of porting to
the VM, but cannot eliminate the run-time overhead to the
same extent as with para-virtualization, still depends on as-
sumptions or inside-knowledge about the guest implemen-
tation, and has high engineering cost for the VM supplier.

Ideally, one would like to combine the advantages of pure
and para-virtualization by an approach that

e retains the low-level hardware API of pure virtualiza-
tion, and thus avoids the engineering cost of porting
to a hypervisor

performance of para-

e achieves the run-time

virtualization.

Such an approach dramatically reduces the overall cost of
virtualization. In this paper we argue that what sounds like
the holy grail of virtualization is not impossible. We present
a constructive proof in the form of a new technique we call
pre-virtualization, which comes very close to achieving the
goal. Specifically we show that pre-virtualization mostly
eliminates the guest-side engineering cost, yet matches the
run-time performance of para-virtualization.

The remainder of this paper presents pre-virtualization,
our implementation of it, an evaluation, and a discussion of
its advantages and limitations.

2. PRE-VIRTUALIZATION

2.1 Overview

If pre-virtualization is to deliver on the above goals, it
must be able to utilize powerful high-level hypervisor mech-
anisms in a similar fashion as para-virtualization. The re-
quirement to retain the low-level hardware API, as seen by
the guest, implies that the use of such high-level mechanisms

must be transparent to the guest. In other words, pre-
virtualization must perform a translation from the guest-
visible platform API to a hypervisor API, in order to main-
tain overall API transparency.

The API translation layer must be invoked by the guest
OS with minimal overhead, in particular without mode or
context switches. This implies that it must reside in the
guest’s protection domain. We call this layer, which trans-
lates between the guest-visible platform API and the under-
lying hypervisor API, the in-place VMM. Figure 1 compares
the architectures of different approaches to virtualization.

In a sense, the in-place VMM operates in the opposite way
of more familiar translation layers (e.g. system libraries),
by mapping a low-level API used by the application to an
underlying higher-level API.

The in-place VMM is unprivileged and part of the guest’s
address space. This means it can be invoked via a function-
call interface, avoiding the overhead of protection-level
(trap) or protection-domain switches, and supporting opti-
mizations similar to para-virtualization. As it only performs
an interface transformation, the unprivileged nature of the
in-place VMM does not create a security problem.

The high-level view of pre-virtualization presented so far
does not explain how the two critical steps of any vir-
tual machine are performed — (1) locating and identifying
virtualization-sensitive instructions, and (2) emulating the
instructions.

2.2 Locating and Identifying I nstructions

Pure virtualization locates sensitive instructions by re-
lying on them being privileged [21], so their execution by
the guest causes a trap into the hypervisor — the source
of the high run-time overhead of pure virtualization. Para-
virtualization manually locates sensitive instructions and re-
places them (including potentially many non-sensitive in-
structions) by explicit hypervisor calls, a transformation at
the source-code level which is responsible for the high engi-
neering cost of para-virtualization.

A way to avoid this engineering cost is to perform an au-
tomated scan of the guest kernel for sensitive instructions.
While VMware makes a heroic effort to perform this scan on
the kernel at run time, we perform it when detailed knowl-
edge of the source code is available: the assembler stage, as
pioneered by Eiraku and Shinjo [6]. In contrast to binary
scanning, the assembler files (whether written by hand or
generated by the compiler) clearly differentiate between code
and data, and the instructions are by definition parseable.

Additionally, the assembler files provide supplementary
information, including basic block boundaries and function
boundaries. For assembler files generated by the compiler,
richer information is available such as register data flow be-
tween basic blocks (if the compiler is designed to share the
information; gce can emit supplementary information). This
supplementary information is valuable for the later emula-
tion of the instruction.

One problem is that some instructions which are not in-
herently virtualization-sensitive can be sensitive in certain
contexts. This includes simple mov instructions used to ac-
cess architecture-defined memory objects, such as page ta-
bles and device registers. In particular x86 has many types
of memory objects, such as the TSS, the GDT, and the LDT.
Updates to the memory objects often generate synchronous
side effects, such as enabling an interrupt, or reading the

Guest
Guest Guest in-place VMM
AVVAVAVASIIIS 318 TS S ST S|
ANV VAN
oS Hypervisor Hypervisor Hypervisor
AR VNV VANV 22020222 AR
ANV AN AV NV AN AN
Hardware Hardware Hardware Hardware
Figure 1: Comparison of virtualization strategies (left to right): (a) native execution — no virtual machine;

(b) pure virtualization — VM /hypervisor is API-transparent; (c) para-virtualization — VM /hypervisor
presents a changed API; (d) pre-virtualization — a para-virtualizing hypervisor API is mapped back to the
hardware API by the in-place VMM, making the overall VM API-transparent (thin lines indicate an interface

without privilege change).

status bits from a page table entry. While in native execu-
tion those side effects are generated by the hardware, under
virtualization they must be emulated by the VMM. We call
such operations sensitive memory operations, since the illu-
sion of virtualization is sensitive to the emulation of such
instructions.

Sensitive memory operations can be forced to trap by pro-
tecting the memory objects from access, but this creates sig-
nificant overhead. Automated scanning for sensitive mem-
ory operations, e.g. via compiler data-flow analysis, might
be possible but is certainly difficult. Instead we propose a
profile-feedback loop: Execute the guest OS in a VM, stim-
ulate it to generate a sufficient coverage of sensitive memory
operations, emulate them by trapping, and record their in-
struction locations. The OS can then be re-compiled, using
the profiling data to identify additional instructions that
need to be prepared for virtualization. No harm is done
by incomplete profile coverage, as sensitive memory opera-
tions which have been overlooked will just create traps and
be emulated as normal. As long as the profiling run de-
tected all frequently-executed sensitive memory operations,
the performance impact will be minimal.

This approach supports a fully-automated discovery of
sensitive operations. For guest OSes which abstract opera-
tions on memory objects through a function interface (which
can be determined via a quick inspection of the source code),
it is possible to identify the sensitive memory operations by
adding annotations directly to the guest OS’s abstractions.
Note that such manual annotations do not interfere with
the platform API as they only record the locations of the
instructions. They are also not required for correctness, only
for performance — a missed annotation will result in a trap
leading to correct (but expensive) virtualization. The engi-
neering cost of inserting those annotations is tiny compared
to the invasive para-virtualization approach.

2.3 Instruction Emulation

In pre-virtualization it is possible to emit the instruction
emulation code directly from the compiler, thus using the
compiler to statically translate from one API to another [6].
However, this generates a different API, leading to an OS
executable that will only run on a particular hypervisor, and

hence incomplete virtualization. For complete virtualization
the emulation must be enabled only during or after loading
of the OS binary into the VM.

We rewrite the instructions with emulation code when the
VMM loads the guest OS (and when a guest OS later loads a
dynamic module). In order to avoid a VMware-style brute-
force rewrite of the code, we require access to some of the
original compiler state. We collect this state in a database
during compilation. The database is stored in a separate
ELF section of the binary and is provided to the VMM for
translating the sensitive instructions from the original plat-
form API to the target APL.

In general it is difficult to rewrite instructions in situ, in
particular for architectures with variable instruction length.
We therefore use the compiler to prepare the output binary
for later rewriting and in a manner that maintains the plat-
form API: Sensitive instructions are padded with innocuous
NOPs.! The NOP instructions provide space to write the
emulation instructions, or at least enough space to branch
to emulation code in the in-place VMM.

2.4 Performance Optimizations

We observed that the quality of the emulation code greatly
influences the performance of the OS. The instruction em-
ulation leads to code expansion: We replace a single sen-
sitive instruction with several, or perhaps many, emulation
instructions. Linux executes a small subset of x86 sensi-
tive instructions very frequently, and we observe on kernel-
intensive benchmarks (such as Netperf) a noticeable increase
in CPU utilization with careless code expansion. Such per-
formance-critical instructions include enabling and disabling
interrupts and reading and writing segment registers.

Para-virtualization addresses this issue via normal com-
piler optimizations. We instead employ heuristics to reduce
the code expansion, by ensuring that performance-critical
sensitive instructions are replaced by just one or two emu-
lation instructions.

Another performance issue arises from the need of in-

nstruction padding must not violate sequence-sensitive
transitions on raw hardware, such as x86’s interrupt win-
dow or branch delay slots.

struction emulation to interface with a VMM state ma-
chine. In pure virtualization, each individual sensitive in-
structions causes a trap, leading to poor performance. Para-
virtualization replaces whole instruction sequences with
macro operations involving a single hypervisor call. In
pre-virtualization we keep emulation of individual instruc-
tions separate, but replace traps by function calls to the
in-place VMM’s state machine. The in-place VMM applies
heuristics for converting the individual emulation operations
into the equivalent of accumulated hypervisor calls of para-
virtualization. In the following we summarize the most im-
portant heuristics.

2.4.1 Codelnlining

To minimize instruction expansion, we convert the high-
frequency operations into inlined emulation code. For x86,
the critical instructions are those that manipulate segment
registers, and enable and disable interrupts. The segment
register operations are simple to inline within the original
instruction stream: The emulated code directly accesses the
virtual CPU of the in-place VMM with a mov instruction,
or a mov and push/pop. The cli instruction is also easy to
inline, with a simple btr instruction for disabling interrupts
in the virtual CPU. The sti instruction, which enables in-
terrupts, is a problem because on real hardware it immedi-
ately delivers pending interrupts, requiring substantial emu-
lation code. We replace sti with a single bts instruction, to
perform the opposite of cli, and use a heuristic to deliver
pending interrupts.

2.4.2 Heurigtic: Interrupt Enable

Since the sti instruction is critical to performance, we
optimize for the common case and thus avoid delivery of
pending interrupts when sti is executed. It is pretty rare
to encounter a pending interrupt at the time of sti, and
thus the instruction expansion is unjustifiable.? Instead we
have found it sufficient to deliver all pending interrupts dur-
ing the idle loop, when transitioning to user mode, and when
returning from an interrupt handler. It turns out that these
are excellent times to deliver synchronous interrupts, since
the kernel is completely finished with its other operations
and the delivery of an interrupt will not preempt other ker-
nel activity. Our heuristic may increase interrupt latency,
but running within a VM environment already increases the
latency due to arbitrary preemption of the virtual CPU.

To support efficient virtualization of the interrupt flag,
our in-place VMM always accepts asynchronous interrupts
from the hypervisor, even if the guest OS disabled interrupt
delivery. The interrupts are buffered by the in-place VMM,
and asynchronous traps are delivered to the guest OS only
if the virtual interrupt flag is enabled. Otherwise, the inter-
rupts are delivered synchronously, as described.

2.4.3 Heurigtic: Page Table Operations

Page table operations often happen in batches, such as
at fork() and exec(). The updates are batchable and can
be delayed, since page table updates have TLB semantics:
Their side effects are enabled at the time of a page fault,
or when explicitly invalidating the TLB. Thus fork() and
exec() can be fairly efficient. The problem is when the

2We detect special cases, such as sti;nop;cli (which en-
ables interrupts for a single cycle), and rewrite them for
synchronous delivery.

OS reads from a page table entry, since it may want to
examine access bits. Reads therefore need to be synchronous
operations, but the access bits can be prefetched. Access-bit
checks tend to be infrequent operations, though.

The Xen hypervisor [2] does not provide virtualized page
tables, instead it relies on cooperative page table sharing
between the hypervisor and the guest OS. For pass-through
page tables we use completely different heuristics. Most
writes must be synchronous, since the guest OS may im-
mediately afterward read the updated page-table entry (a
read-after-write hazard). In order to enable batching for
fork() and exec() on Xen, we disconnect page tables from
the page directory, so that they are no longer active, and
are permitted to be efficiently read and written by the guest
OS. We reconnect the page table upon a page fault in the
virtual address range covered by the page table, and restart
the faulting instruction. We avoid disconnecting page ta-
bles if the guest OS appears to be updating a page table in
response to a normal page fault, since the appropriate Xen
hypercall is cheaper.

2.4.4 Heuristic: Device Emulation

Pre-virtualization is unique for its ability to efficiently
model a real device. All other virtualization approaches re-
quire special device drivers for performance, which inher-
ently tie the guest OS to a particular hypervisor. We avoid
this problem by emulating standard devices, thus obeying
the platform API in line with our goal of providing the full
benefits of virtualization.

Device drivers are notorious for frequent execution of sen-
sitive operations (device register accesses), leading to a mas-
sive performance bottleneck when emulated via traps [27].
Pre-virtualization avoids those traps by replacing the device-
sensitive instructions with emulation instructions. We con-
vert the individual updates into function calls, and then
batch state changes. For example, we add outbound net-
work packets to a producer/consumer ring, so if the guest
OS is sending a file via the network, we batch all the pack-
ets for the file into the ring, and occasionally inform the
hypervisor that pending packets are ready for transmission.
Choosing the proper time for packet delivery is critical for
network throughput and latency, and we have found return-
ing from interrupt and entering user mode are perfect times
for this. These are typically times when the kernel is finished
processing packets and has nothing more to send.

3. IMPLEMENTATION

We implemented a pre-virtualization environment accord-
ing to the principles and architecture described in the prior
sections on x86, and a slight variant on Itanium. We
describe in detail virtualization automation, our in-place
VMM, and our pre-virtualized network device model as used
on x86. We describe implementations for two x86 hypervi-
sors that have very different APIs, the LL4Ka::Pistachio mi-
crokernel and the Xen 2.0 hypervisor, to demonstrate the
versatility of virtualizing at the platform API. We also de-
scribe the [tanium versions, where we support three hypervi-
sors, also with very different APIs: Xen/ia64 [22], vNUMA
[3] and Linux.

3.1 Instruction Scanning

We use macro replacement at the assembler level to locate
and transform sensitive instructions, with one macro defined

for each sensitive instruction. The macro replacement is
performed on the intermediate output of gcc independent of
whether the file is compiled C code or hand written assem-
bler. In contrast to para-virtualization, there is no danger of
missing a sensitive instruction via this automated process;
bugs are only possible if the macros and tools are misconfig-
ured. The assembler macros limit us to extracting only the
locations of the instructions; they do not support extraction
of further supplementary information, such as basic block
boundaries.

Some guest kernels compile code that is mapped into and
executed by the guest’s applications, such as Linux 2.6’s sys-
tem call trampoline page; we apply a different set of macros
for these files, permitting optimization of the application’s
system call path.

The macros append a sufficient number of NOP instruc-
tions to the sensitive instruction for later rewriting, and
record the instruction’s location in a dedicated ELF section
of the kernel’s binary; see Figure 2 for an example macro.
The additional NOPs are compatible with the OS code, be-
cause symbols are still relative at the assembler phase, and
thus the NOPs expand the size of their surrounding basic
blocks.

One issue is that certain basic blocks may be limited to
an absolute size. This is the case for interrupt vectors on
some CPU architectures such as Itanium. In practice, by
carefully implementing the macros used in such contexts to
minimize code expansion, we were able to avoid overflowing
those blocks. A related issue is that hand-written assembly
code may make assumptions about code layout. For in-
stance, on x86 a software interrupt handler typically decre-
ments the caller IP by two bytes to restart a system call;
this can be handled by careful code construction. In one in-
stance, an IP-relative calculation in the Itanium kernel pro-
duced incorrect results; it was possible to modify the code
to eliminate the assumption, without adversely impacting
the function or performance of the kernel on real hardware.

3.2 Annotationsfor Sensitive Memory

In some OSes, such as Linux, the sensitive memory op-
erations are adequately abstracted, enabling simple manual
annotations of the sensitive memory instructions; i.e., we
manually apply our annotation as inlined assembler to the
macro that wraps the operation. Our annotations also force
the memory operation to use an easily decodable instruc-
tion.

For Linux 2.4 and 2.6, we use manual annotations, which
avoids enabling the runtime support required by profiling to
supplement incomplete profiles. We have not yet completed
our profiler support; currently we have only enhanced the
assembler to apply macros based on profiler feedback.

3.3 Instruction Rewriting

At boot time, and when loading dynamic kernel modules,
the VMM rewrites the sensitive instructions with emulation
code. The VMM obtains the locations of the sensitive in-
structions from the ELF sections added by the assembler to
the guest binary.

The rewriter decodes each sensitive instruction to deter-
mine intention, scratch registers, and register data flow, for
writing optimized substitute code. For sensitive memory op-
erations, the rewriter decodes the instruction to determine
register flow, but the intention of the operation was origi-

.macro 1lldt seg .macro 1lldt seg

push \seg 114t \seg
call emul_11dt nop

add $4,%esp nop

.endm .endm

Figure 2: Example of assembler macros for virtual-
ization of a sensitive x86 instruction (11dt). Static
translation (left) replaces the instruction by a jump
to emulation code, while dynamic translation (right)
only adds sufficient NOP instructions to leave space
for boot-time substitution.

nally determined by the person that added the annotation
(and is easily determined by a profiler too), and is thus read
from the ELF section (i.e., does the memory operation read
a page table entry or access the interrupt controller?). We
could keep the instruction decoder quite simple, 3 since our
manual annotations force the use of an easily decodable in-
struction.

3.4 In-Place VMM Implementation

In contrast to para-virtualization, the structure of the in-
place VMM is independent of guest OS source code. The in-
place VMM can use different coding techniques, an alterna-
tive language (we use C++ for x86, assembler for Itanium),
and avoids licensing conflicts (e.g., can use a proprietary
license while running a GPL-ed guest OS).

The in-place VMM is divided into a front-end and a back-
end. The front-end emulates the platform architecture; the
sensitive instructions of the guest OS are rewritten to inter-
act with the front-end. The back-end translates platform
operations to the hypervisor API, when visible side effects
become necessary, such as invalidating a TLB entry. The
back-end also translates asynchronous events from the hy-
pervisor, such as interrupts, into calls to the front-end. The
performance of pre-virtualization relies on the division be-
tween front-end and back-end; the in-place VMM maps the
micro operations of the platform API into the macro oper-
ations typical of para-virtualization.

The modularity permits easy adaptation of the in-place
VMM to new architectures and hypervisors. A front-end can
service different back-ends, so that adding a new hypervisor
only requires a new back-end. And a back-end is useable
across a variety of front-ends, e.g., the L4Ka::Pistachio API
is portable across many architectures and so the back-end is
also portable across architectures.

All of our x86 in-place VMMs execute the same, pre-
virtualized guest OS binary.

3.4.1 x86 Xen In-Place VMM

We support Xen on two different platforms, x86 and Ita-
nium. We only discuss the x86-specifics here, and leave Ita-
nium to Section 3.4.3.

The x86 Xen API closely resembles the hardware API.
Still, the in-place VMM must intercept all Xen API inter-
actions to enforce the actual virtualization of the guest OS.
Interrupts, exceptions, and x86 traps are delivered to the in-
place VMM which updates the virtual CPU state machine
and then transitions to the installed handler of the guest OS.

3 At this point, dynamic instruction rewriting is only sup-
ported on x86; on Itanium we use static binding of in-place
VMM and guest OS.

When the guest OS transitions to user-mode, the in-place
VMM intercepts the operation, updates the virtual CPU,
and then completes the transition.

Xen’s API for constructing page mappings uses the guest
OS’s page table as the actual x86 hardware page table. The
in-place VMM virtualizes the hardware page table for the
guest OS, and thus intercepts all accesses to the page ta-
ble. This is the most complicated aspect of the API, since
Xen must ensure that its applications never insert mappings
that could compromise the Xen hypervisor. The in-place
VMM transparently write-protects security-vulnerable map-
pings to protect the hardware page tables.

3.4.2 L4Ka::Pistachio In-Place VMM

The L4Ka::Pistachio API consists of a set of portable
microkernel abstractions, and thus are high-level. The
API is very different from Xen’s x86-specific API, yet pre-
virtualization works in both cases for mapping the platform
API to the hypervisor API, and the same x86 front-end is
used for both in-place VMMs.

For performance reasons, an address space switch of the
guest OS is mapped to an address space switch in L4. The
in-place VMM associates one 1.4 address space with each
guest address space; 14 is shadowing the page tables of the
guest OS.

The shadow page tables are updated lazily: Mappings are
created upon a miss and are destroyed when the guest OS
overwrites the page tables and updates the TLB. Shadow
page tables resemble the classical virtual machine model
where memory can be revoked transparently. This model
differs from Xen, where page tables are shared between guest
and hypervisor and therefore requires a cooperating guest
OS for memory revocation.

L4 does not support asynchronous signal delivery but re-
quires a rendezvous of two threads via IPC; hardware in-
terrupts and timer events are mapped onto IPC. Within
the in-place VMM, we instantiate an additional L4 thread
that receives asynchronous event notifications and either di-
rectly manipulates the state of the VM thread or updates
the virtual CPU model accordingly (e.g., register a pending
interrupt when interrupts are disabled).

As described in Section 5.3, we added several transparent
hooks to the guest OS, to accommodate inefficiencies in the
L4 API for virtualization.

3.4.3 Itanium In-Place VMMs

We implemented multiple in-place VMMs for Itanium: for
Xen, for vNUMA, and for Linux as a hypervisor.

One very useful feature of the Itanium architecture is the
epc instruction (enter privileged code). epc raises the priv-
ilege level without a stall or pipeline flush, and thus enters
the hypervisor in a single cycle. This enables efficient hyper-
calls, and greatly reduces the need for complicated batching
logic. Since it does require hypervisor co-design, this mech-
anism is currently only used in the vNUMA backend.

On the other hand, the RISC nature of the Itanium ar-
chitecture makes implementing a transparent in-place VMM
somewhat more complicated than on an architecture such as
x86. It is not possible to load or store to memory without
first loading the address into a register. Nor is it possible
to simply save and restore registers on the stack, since the
stack pointer may be invalid in low-level code.

This makes it both necessary and difficult to find tem-

porary registers for the in-place VMM. For sensitive in-
structions with a destination-register operand, the destina-
tion register can be considered scratch until the final result
is generated. However, many instructions do not have a
destination-register operand. It would also be preferable to
have more than one scratch register available, to avoid costly
saving and restoring of further needed registers.

Our solution is to virtualize a subset of the machine regis-
ters that are rarely used by compiler-generated code, specif-
ically r4-r7 and b2. We replace all references to these regis-
ters with memory-based emulation code and save and restore
them when transitioning in and out of the pre-virtualized
code.

Instruction rewriting replaces a single, non-interruptible
instruction with an instruction sequence. Interruptions of
the sequence may clobber the scratch register state. We
avoid this problem by a convention: the emulation block
uses one of the scratch registers to indicate a roll-back point
in case of preemption. The last instruction of the sequence
clears the roll-back register.

Xen/TA64 and vNUMA are both designed so that the hy-
pervisor can be hidden in a small architecturally-reserved
portion of the address space. This is not the case for Linux,
which assumes that the whole address space is available.
Thus, to run Linux-on-Linux it is necessary to modify one
of the kernels to avoid address-space conflicts with the other.
In our case we relocate the guest so that it lies wholly within
the user address space of the host, which requires a number
of non-trivial source changes. This precludes using the same
pre-virtualized Linux kernel both as a host and a guest.

3.5 Network Device Emulation

A prime advantage of pre-virtualization is the ability to
efficiently model a real device, and conform to the platform
API. We implemented a device model for the DP83820 gi-
gabit network card. The DP83820 has a thoroughly docu-
mented interface, which is simple to emulate efficiently. Ad-
ditionally, the device is designed for high-throughput packet
streams, and thus uses producer-consumer rings to trans-
fer packets, where packets are guaranteed to be pinned in
memory for the DMA operation. We chose to model this de-
vice with the intention of matching the performance of the
typical custom network drivers used in VM environments.
A drawback is that only recent operating systems, such as
Linux 2.4 and Linux 2.6, support this gigabit card; Linux
2.2 does not.

To pre-virtualize the guest OS’s DP83820 driver, we anno-
tate the memory-sensitive instructions of the guest OS that
manipulate the DP83820 device registers, and rewrite the
instructions when loading the guest OS in the VMM.

The DP83820 model is also split between a front-end and
a back-end. The front-end models the device registers, while
the back-end translates device operations into the network-
ing API of the hypervisor.

The driver’s micro updates to the device registers are
rewritten into function calls to the in-place VMM’s front-
end, thus avoiding the trap bottleneck common in virtual-
ization. The front-end applies heuristics to determine when
to transmit packets via the back-end. Network devices asyn-
chronously receive packets; the back-end receives packets
from the hypervisor, and passes them to the front-end, which
inserts them into the DP83820’s producer-consumer ring.

Outbound network packet delivery requires synchroniza-

tion of state with an external process, adding overhead to
the packet delivery due to the protection-domain crossing
(even if only performing a hypercall). The standard ap-
proach is to amortize the cost of the protection domain cross-
ing across multiple packets, by batching outgoing packets.
With performance analysis, we have found that good points
to synchronize are when returning from the guest kernel’s
interrupt handler, transitioning to user, and entering idle.

4. EVALUATION

We assessed the performance and engineering costs of our
implementation, and contrast to high-performance para-vir-
tualization projects that use the same hypervisors. We also
contrast the performance of our pre-virtualized binaries run-
ning on raw hardware to the performance of native binaries
running on raw hardware.

4.1 Performance

We perform a comparative performance analysis, using
the guest OS running natively on raw hardware as the base-
line. The comparative performance analysis requires similar
configurations across benchmarks. Since the baseline ran a
single OS on the hardware, with direct device access, we used
a similar configuration for the hypervisor environments: A
single guest OS ran on the hypervisor, and had direct device
access. The exception is the evaluation of our network device
model; the baseline is a para-virtualized device driver reuse
environment [16], running two virtual machines, one pro-
viding device services to the other. Our pre-virtualization
network device evaluation used the same architecture.

The benchmark setups used identical configurations as
much as possible, in order to ensure that any performance
differences were the result of the techniques of virtualization.
We compiled Linux with minimal feature sets, and config-
ured the x86 systems to use the XT-PIC. Additionally, on
x86 we used the slow legacy int system call invocation, as
required by some virtualization environments. On Itanium,
there was no problem using the epc fast system call mech-
anism, which is the default when using a recent kernel and
C library.

The x86 test machine was a 2.8GHz Pentium 4, con-
strained to 256MB of RAM, and ran Debian 3.1 from the
local SATA disk. The Itanium test machine was a 1.5Ghz
Itanium 2, constrained to 768MB of RAM, running a recent
snapshot of Debian ‘sid’ from the local SCSI disk.

Most performance numbers are reported with an approx-
imate 95% confidence interval, calculated using Student’s t
distribution with 9 degrees of freedom (i.e., 10 independent
benchmark runs).

4.1.1 Linux Kernel Build

We used a Linux kernel build as a macro benchmark. It
executed many processes, thus exercising fork () and exec()
and the normal page fault handling code, and accessed many
files and used pipes, thus stressing the system call interface.
When running on Linux 2.6.9 on x86, the benchmark created
around 4050 new processes, generated around 24k address
space switches (of which 19.4k were process switches), 4.56M
system calls, 3.3M page faults, and between 3.6k and 5.2k
device interrupts.

Each kernel build started from a freshly unpacked archive
of the source code, to normalize the buffer cache. The build
used a predefined Linux kernel configuration.

Time | CPU O/H
System [s] util [%]
Linux 2.6.9 x86
native, raw 211.5 | 98.6%
NOPs, raw 209.5 | 98.5% | -0.98%
XenoLinux 218.8 | 97.8% | 3.44%
Xen in-place VMM 226.2 | 98.4% 6.96%
L4Ka::Linux 235.9 | 97.9% 11.5%
L4Ka in-place VMM 239.6 | 98.7% | 13.3%
Linux 2.4.31 x86
native, raw 206.8 | 98.6%
NOPs, raw 206.8 | 98.7% 0.00%
Xen in-place VMM 224.0 | 98.8% | 8.31%
Linux 2.6.12 Itanium
native, raw 434.7 | 99.6%
XenoLinux 452.1 | 99.5% 4.00%
Xen in-place VMM 448.7 | 99.5% | 3.22%
vNUMA in-place VMM | 449.1 | 99.4% | 3.31%
Linux 2.6.14 Itanium
native, raw 435.1 | 99.5%
Linux in-place VMM 635.0 | 98.4% | 45.94%

Table 1: Linux kernel build benchmark. The “O/H”
column is the performance penalty relative to the
native baseline for the respective kernel version.
Data for x86 have a 95% confidence interval of no
more than + 0.43%.

Table 1 shows the results for both Linux 2.6 and 2.4.
The baseline for comparison is native Linux running on raw
hardware (native, raw). Also of interest is comparing pre-
virtualized Linux (Xen in-place VMM) to para-virtualized
Linux (XenoLinux), and comparing a pre-virtualized binary
on raw hardware (NOPS, raw) to the native Linux binary
running on raw hardware. We do not include data for Xeno-
Linux 2.4, because Xen has discontinued its support.

The 3.4% performance difference between XenoLinux and
the Xen in-place VMM for Linux 2.6.9 seems to be due
mainly to execution of more page table hypercalls when run-
ning a pre-virtualized Linux. For example, according to the
microbenchmarks in Section 4.1.4, the process creation over-
head is 693 cycles higher than in XenoLinux, which alone
contributes about 3s to the entire kernel build benchmark.
We have pending optimizations to batch more operations
across hypercalls, which will hopefully address this issue.

The annotated and padded binary showed a performance
anomaly: When running the padded binary on bare hard-
ware, the performance slightly improved over the original
binary. We account this effect to the Pentium 4’s microar-
chitecture, specifically the tightly integrated trace cache and
branch-prediction unit.

We have not yet investigated the reason for the additional
1.35% performance penalty of Linux 2.4.31 running on the
Xen in-place VMM, compared to Linux 2.6.9 running on the
Xen in-place VMM.

412 Netperf

We used the Netperf send and receive network bench-
marks to analyze I/O performance. Our benchmark trans-
fered a gigabyte of data at standard Ethernet packet size,
with 256kB socket buffers. These are I/O-intensive bench-

Xput | CPU | cyc/B
System [Mb/s] util
Linux 2.6.9 x86
native, raw 866.1 | 28.8% 7.10
NOPs, raw 867.7 | 27.3% 6.73
XenoLinux 867.6 | 33.8% 8.32
Xen in-place VMM 866.2 | 33.8% 8.35
L4Ka::Linux 775.7 | 34.5% 9.50

L4Ka in-place VMM 866.5 | 30.2% 7.45
Linux 2.4.31 x86
native, raw 779.6 | 39.7% 10.88
NOPs, raw 779.7 | 39.6% 10.85
Xen in-place VMM 778.3 | 44.8% 12.29

Table 2: Netperf send performance of various sys-
tems. The column “cyc/B” represents the number
of non-idle cycles necessary to transfer a byte of
data, and is a single figure of merit to help compare
between cases of different throughput. Data have a
95% confidence interval of no more than + 0.25%.

marks, producing around 82k device interrupts while send-
ing, and 93k device interrupts while receiving — an order
of magnitude more device interrupts than during the Linux
kernel build. There were two orders of magnitude fewer sys-
tem calls than for the kernel build: around 33k for send,
and 92k for receive. The client machine was a 1.4GHz Pen-
tium 4, configured for 256 MB of RAM, and ran Debian 3.1
from the local disk. Each machine used an Intel 82540 giga-
bit network card, connected via a gigabit network switch.

Table 2 shows the send performance and Table 3 the
receive performance for Netperf. The first rows apply to
Linux 2.6.9. They compare native Linux on raw hardware, a
pre-virtualized Linux (with NOPs) on raw hardware, Xeno-
Linux and pre-virtualized Linux on Xen 2.0.2, and para-
virtualized Linux (L4Ka::Linux) and pre-virtualized Linux
on the L4Ka::Pistachio microkernel. The three last rows
repeat several of the experiments for Linux 2.4.31.

In general, the performance of the pre-virtualized setups
matched that of the para-virtualized setups. In regards to
system behavior, and mapping of micro operations to macro
operations, our L4 system offers kernel event counters cov-
ering a variety of events such as interrupts, protection do-
main crossings, and traps caused by guest OSes. The event-
counter signature of the para-virtualized Linux on L4 was
nearly identical to the even-counter signature for the pre-
virtualized Linux on L4.

4.1.3 Network Device Model

We also used Netperf to evaluate the DP83820 network
device model, and in this case, the Netperf VM had to
have only indirect access to the network hardware. Thus
we used a device driver reuse environment [16] based on the
L4Ka::Pistachio microkernel, to connect the Netperf VM to
a second VM that had direct access to the network hard-
ware. The second VM used the Linux 1000 gigabit driver
to control the hardware, and hosted a kernel module com-
municating via L4 IPC with the Netperf VM, to convert the
DP83820 device requests into Linux internal network oper-
ations.

In the baseline case, the Netperf VM used the para-
virtualized L4Ka::Linux, and a custom Linux network driver

Xput | CPU | cyc/B

System [Mb/s] util

Linux 2.6.9 x86

native, raw 780.9 | 35.2% 9.64
NOPs, raw 780.2 | 33.5% 9.17
XenoLinux 780.7 | 41.3% 11.29
Xen in-place VMM 778.7 | 41.1% 11.28
L4Ka::Linux 780.1 | 35.7% 9.77

L4Ka in-place VMM 779.8 | 37.3% 10.22
Linux 2.4.31 x86

native, raw 740.8 | 36.0% 10.39
NOPs, raw 740.8 | 36.4% 10.49
Xen in-place VMM 739.6 | 43.2% 12.48

Table 3: Netperf receive performance of various sys-
tems. Throughput numbers have a 95% confidence
interval of + 0.12%, while the remaining have a 95%
confidence interval of no more than + 1.09%.

Xput | CPU | cyc/B
System [Mb/s] util
Send
L4Ka::Linux 772.4 | 51.4% 14.21
L4Ka in-place VMM 771.4 | 49.1% 13.59
Receive
L4Ka::Linux 707.5 | 60.3% 18.21
L4Ka in-place VMM 707.1 | 59.8% 18.06

Table 4: Netperf send and receive performance of
device driver reuse systems.

to provide virtualized network access. To evaluate the
DP83820 network device model, we ran Netperf in a VM
using a pre-virtualized Linux 2.6.

Table 4 shows the Netperf send and receive results. Per-
formance is similar, although the pre-virtualized device
model required slightly less CPU resource, confirming that
it is possible to match the performance of a customized vir-
tual driver, by rewriting fine-grained device register accesses
into function calls to emulation code. The number of device
register accesses during Netperf receive was 551k (around
48k/s), and during Netperf send was 1.2M (around 116k/s).

4.1.4 LMbench2

Table 5 summarizes the results from several of the LM-
bench2 micro benchmarks, for x86 and Itanium.

On x86, the null system call for pre-virtualized Linux is
0.11ps more costly than on raw hardware, and is reflected
in many of the micro benchmarks. It executes more instruc-
tions at two code paths: when the trap vector for a system
call is delivered, and when returning to user mode. The
delivery updates virtual CPU state, and is optimized. The
return is described in Section 4.2.2; and is unoptimized. The
extra expense for fork(), exec(), and for starting /bin/sh
seem to be due to an excessive number of hypercalls; as
noted earlier we are working on addressing this.

On Itanium, our pre-virtualized Linux has a clear advan-
tage over the manually para-virtualized XenoLinux. The
reason is that Itanium XenoLinux is not completely para-
virtualized; only certain sensitive or performance critical
paths have been modified (a technique referred to as opti-

null null open sig sig
type | call I/O stat close inst hndl fork exec sh
Linux 2.6.9 on x86
raw | 0.46 0.53 1.38 2.00 0.91 3.01 77 312 5958
NOP | 0.46 0.52 1.40 2.03 0.91 3.19 83 324 5938
Xeno | 0.45 0.52 1.29 1.83 0.89 0.97 182 545 6711
pre 0.57 0.64 1.39 2.07 1.03 1.73 221 696 7404
Linux 2.6.12 on Itanium
raw | 0.04 0.27 1.10 1.99 0.33 1.69 56 316 1451
pure | 0.96 6.32 10.69 20.43 7.34 19.26 513 2084 7790
Xeno | 0.50 2.91 4.14 7.71 2.89 2.36 164 578 2360
pre 0.04 0.42 1.43 2.60 0.50 2.23 152 566 2231
Table 5: Partial LMbench2 results. All are mi-

croseconds, and smaller is better. raw is native
Linux on raw hardware, NOP is pre-virtualized
Linux on raw hardware, Xeno is XenoLinux, and
pre is pre-virtualized Linux on Xen. For Itanium,
we also show a minimally modified Linux on Xen,
which models pure virtualization (pure). The 95%
confidence interval is at worst + 1.59%.

mised para-virtualization [18]). The remaining privileged in-
structions fault and are emulated by the hypervisor, which is
expensive (as can be seen from the pure virtualization results
shown in the same table). In contrast, pre-virtualization can
replace all of the sensitive instructions in the guest kernel.

4.2 Pre-Virtualization M echanisms

Pre-virtualization has two steps for achieving virtualiza-
tion: locating the sensitive instructions, and rewriting the
instructions to invoke emulation code. We evaluated the re-
sult of locating the sensitive operations, and the code rewrit-
ing quality.

421 Annotations

The assembler automatically added annotations for the
sensitive instructions, and we added manual annotations to
the sensitive memory instructions in the C code that were
then instantiated by the compiler. Our pre-virtualized Linux
2.6.9 for x86 had the following annotations: 5181 sensitive
instructions (including port accesses to the XT-PIC and
other devices via the in and out instructions), 17 page direc-
tory writes, 33 page table entry (PTE) writes, 8 PTE read-
and-clears via the xchg instruction, 5 PTE test-and-clears
via the btr instruction, and 103 device register accesses for
the DP83820 driver model.

Our pre-virtualized Linux 2.4.31 for x86 had the follow-
ing annotations: 3072 sensitive instructions (including port
accesses), 20 page directory writes, 30 PTE writes, 6 PTE
read-and-clears, 3 PTE test-and-clears, and 111 device reg-
ister access for the DP83820 driver model.

4.2.2 Code Expansion

Table 6 lists the most frequently executed sensitive in-
structions during the Netperf receive benchmark. Of the
instructions, cli, sti, pushf, and popf are by far the most
frequently executed and therefore most performance-critical
virtualizations.

The pushf and popf instructions read and write the x86
flags register. Their primary use in the OS is to toggle inter-
rupt delivery, and rarely to manipulate the other flag bits.
OS code compiled with gcc invokes these instructions via

Count per

Instruction | Count interrupt
cli | 6772992 73.9

pushf | 6715828 73.3

popf | 5290060 57.7

sti | 1572769 17.2

write segment | 739040 8.0
read segment 735252 8.0
port out 278737 3.0
iret 184760 2.0

hlt 91528 1.0

Table 6: Execution profile of the most popular sen-
sitive instructions during the Netperf receive bench-
mark. Each column lists the number of invocations,
where the count column is for the entire benchmark.

inlined assembler, which clobbers the application flag bits,
and thus we ignore these bits. It is sufficient to replace these
instructions with a single push or pop instruction that di-
rectly accesses the virtual CPU, and to rely on heuristics for
delivering pending interrupts.

The cl1i and sti instructions disable and enable inter-
rupts. We replace them with a single bit clear or set instruc-
tion each, relying on heuristics to deliver pending interrupts.

The less frequently-executed instructions are primarily a
concern for micro benchmarks, such as LMbench2, and do
not execute often enough in our macro benchmarks to war-
rant severe optimization (for example, the system call over-
head using the in-place VMM on Xen is 0.23% of the total
kernel build time on raw Linux, and iret is partially respon-
sible for this overhead). Of interest are those instructions
which expand significantly during virtualization, which are
iret, hlt and out. The remaining instructions, for read-
ing and writing segment registers, translate into one or two
instructions for manipulating the virtual CPU.

The iret instruction returns from interrupt. Its emu-
lation code checks for pending interrupts, updates virtual
CPU state, updates the iret stack frame, and checks for
pending device activity. Thus the single iret instruction
expands considerably.

The idle loop uses hlt to transfer the processor into a low
power state. While this operation is not performance critical
outside a VM environment, it can penalize a VM system via
wasted cycles which ought to be used to run other VMs. Its
emulation code checks for pending interrupts, and puts the
VM to sleep via a hypercall if necessary.

The out instruction writes to device ports, and thus has
code expansion for the device emulation. If the port number
is an immediate value, as for the XT-PIC, then the rewritten
code directly calls the target device model. Otherwise the
emulation code executes a table lookup on the port number.
The out instruction costs over 1k cycles on a Pentium 4,
masking the performance costs of the emulation code in
many cases.

Our optimizations avoid code expansion problems for the
critical instructions. The less critical instructions do not
execute frequently enough to penalize system performance
in macro workloads. In several cases, we substitute faster
instructions for the privileged instructions (e.g., replacing
sti/cli with bit-set and bit-clear instructions).

Type Headers Source
Common 686 746
Device 745 1621
x86 front-end 840 4464
L4 back-end 640 3730
Linux back-end 168 4271
Xen back-end 679 2753

Table 7: The distribution of code for the x86 in-place
VMMs, expressed as source lines of code, counted
by SLOCcount.

Type Linux 2.6.9 | Linux 2.4.31
Device and page table 52 60
Kernel relink 18 21
Build system 21 16
DMA translation hooks 53 26
L4 performance hooks 103 19
Loadable kernel module 10 n/a
Total 257 142
Table 8: The number of lines of manual anno-

tations, functional modifications, and performance
hooks added to the Linux kernels.

4.3 Engineering Effort

The first in-place VMM supported x86 and the
L4Ka::Pistachio microkernel, and provided some basic de-
vice models (e.g., the XT-PIC). The x86 front-end, L4 back-
end, device models, assembler macros, and assembler en-
hancements were developed over three person months. The
Xen in-place VMM became functional with a further one-
half person month of effort. Optimizations and heuristics
involved further effort.

Table 7 shows the source code distribution for the individ-
ual x86 in-place VMMSs and shared code for each platform.
The DP83820 network device model is 1055 source lines of
code, compared to 958 SLOC for the custom virtual network
driver. They are very similar in structure since the DP83820
uses producer/consumer rings; they primarily differ in their
interfaces to the guest OS.

In comparison to our past experience applying para-
virtualization to Linux 2.2, 24, and 2.6 for the
L4Ka::Pistachio microkernel, we observe that the effort of
pre-virtualization is far less, and more rewarding. The Linux
code was often obfuscated (e.g., behind untyped macros)
and undocumented, in contrast to the well-defined and docu-
mented x86 architecture against which we wrote the in-place
VMM. The pre-virtualization approach has the disadvantage
that it must emulate the platform devices; occasionally they
are complicated state machines, defined by hard-to-obtain
specifications.

After completion of the initial infrastructure, developed
while using Linux 2.6.9, we pre-virtualized Linux 2.4.31 in
a few hours, so that a single binary could boot on both
the x86 Xen and L4 in-place VMMs. In both Linux 2.6
and 2.4 we applied manual annotations, relinked the kernel,
added DMA translation support, and added L4 performance
hooks, as described in Table 8, totalling 257 lines for Linux
2.6.9 and 142 lines for Linux 2.4.31. The required lines of
modifications without support for pass-through devices and
L4-specific optimizations are 91 and 97 respectively.

10

In contrast, in Xen [2], the authors report that they mod-
ified and added 1441 sources lines to Linux (while their pub-
licly available XenoLinux 2.6.9 sparse source tree contains
a maintenance nightmare of 28104 lines of code), and 4620
source lines to Windows XP. In L4Linux [10], the authors re-
port that they modified and added 6500 source lines to Linux
2.0. Our para-virtualized Linux 2.6 port to L4Ka::Pistachio
with a focus on small changes still required about 3000 mod-
ified lines of code [16].

5. DISCUSSION
5.1 Achievements

5.1.1 Performance

Our macro benchmarks show that for Linux as a guest,
pre-virtualization roughly matches the performance of
highly-optimized para-virtualized approaches on both the
x86 and Itanium architectures. A small (3.5%) performance
gap for kernel compiles in the case of the Xen hypervisor
shows that minor gains are possible with (highly invasive)
para-virtualization, but we expect that this can be addressed
by improved annotations or virtualization expansions, once
the reasons are identified. Profiling so far at least indicates
that the problem does not seem to be structural.

The Netperf results are particularly encouraging, as they
show that even device drivers, which are characterized by
very frequent execution of sensitive instructions, can be pre-
virtualized very efficiently. Furthermore, the benchmarks of
the virtual-device model show that pre-virtualization effi-
ciently supports the use of standardized virtual devices.

Our benchmarks also established that pre-virtualization
does indeed allow us to run a single OS binary on bare
hardware as well as on several supported hypervisors; in
this sense, pre-virtualization behaves exactly like pure vir-
tualization.

5.1.2 Engineering cost

Our experience shows that the engineering cost of pre-
virtualization is orders of magnitude less than that of para-
virtualization. While we are quite aware that development
times are notoriously difficult to measure in a research envi-
ronment, and there is a strong tendency among researchers
to under-estimate and under-report their development cost,
there is a combination of independent evidence to support
this assertion:

e the number of lines of guest code touched by our an-
notations is several orders of magnitude less than the
patches to Linux required for para-virtualizing on Xen
or L4;

e the annotations apply to internal abstractions of the
guest, rather than implementation details. This not
only means that far less understanding of the guest
internals is required for applying them, but also that
there is dramatically less maintenance cost. This is
clearly supported by the ease of pre-virtualizing ear-
lier versions of Linux once a recent version had been
successfully pre-virtualized, compared to the Xen team
discontinuing support for the (still widely-used) Linux
2.4 kernels, apparently due to the high maintenance
cost;

e the same guest binary runs on all supported hypervi-
sors as well as on bare hardware;

e pre-virtualization outperformed para-virtualization of
Linux on Xen on Itanium (where Xen is less mature
than on x86), which indicates how much easier it is to
get good performance from pre-virtualization;

e device virtualization supports the unmodified re-use of
existing device drivers for virtual devices.

This dramatic reduction in engineering cost was achieved
with the present semi-automated approach based on au-
tomatic macro expansion by the assembler and aided by
manual annotations to identify sensitive memory operations
(otherwise innocuous instructions). A great deal more au-
tomation is possible with the profiling approach discussed
in Section 2.2, and if VMware’s recent VMI proposal for
virtualization-friendly internal OS interfaces [30] is adopted,
it may completely eliminate the need for manual interference
with the guest source. Hence, a further significant reduction
of engineering effort is possible, to the point where the en-
gineering cost approximates that of pure virtualization.

5.2 Implications

We believe that our results make a compelling cost case
in favor of pre-virtualization: the performance of para-
virtualization is achieved at a fraction of the engineering
cost. Let us examine what this buys us.

5.2.1 Snglebinary distribution

A very obvious consequence of our results is that
operating-system vendors, who at present typically dis-
tribute a single OS version per architecture (built for native
execution) can continue to do so, but support virtual ma-
chines as well. The only change is that they would distribute
a pre-virtualized OS. As we found, this can be run on bare
hardware without loss of performance.

We imagine that this is an attractive proposition particu-
larly for vendors of open-source operating systems, for whom
the distribution of versions of additional platforms must be
a significant part of their overheads. Here the manual anno-
tation (as opposed to the profiling-based) approach to pre-
virtualization enables users to build their own kernels from
the sources used by the distributeos, and to generate the
same final binary.

5.2.2 Hypervisor neutrality and support for VM in-
novation

A very powerful feature of pre-virtualization is that it
makes the guest OS (source and binary) independent of
the hypervisor it is to run on. Given the changes the Xen
APT went through over the last two years (e.g., splitting the
MMU hypercall into two new hypercalls), it seems obvious
that there is massive benefit from insulating the guest from
evolution of the hypervisor, by means of the API indirection
provided by the in-place VMM.

However, it goes much further. Each hypervisor repre-
sents a trade-off between many conflicting requirements, and
is inherently optimized for particular application scenarios.
It is unlikely that a single hypervisor API will be able to ad-
equately serve all likely application scenarios, particularly
given the fact that innovative uses of VM technology are
being discovered all the time. Pre-virtualization makes it

11

possible for hypervisors with different APIs, serving differ-
ent application domains, to co-exist without an increase of
cost to the guest OS developer/supplier. This avoids stifling
VM research by premature API standardization.

5.2.3 Improved legacy reuse and support for OSin-
novation

Besides the specific case of virtual machines, pre-
virtualization has the potential of helping OS research in
general. One of the toughest practical problems facing ex-
perimental operating systems is the lack of support for ap-
plications, devices and user environments. Our experiences
with using multiple hypervisors, and in particular the ex-
treme example of using Linux itself as a hypervisor, show
that it is possible to use pre-virtualization to run a guest OS
on almost any OS kernel, even one that was never meant to
be used as a hypervisor. This provides immediate access to
applications and user environments on a new kernel.

Furthermore, our experiences with device virtualization
show that it is possible to use pre-existing legacy device
drivers to efficiently drive virtual devices, and to map those
to real devices: The guest kernel only needs to be provided
with one virtual device driver for each class of devices. This
dramatically lowers the threshold for making experimental
OS kernels useful.

5.3 LessonsLearned

While pre-virtualization significantly lowers the engineer-
ing effort for adapting an operating system to a hypervisor,
achieving a well-performing system remains a complex task
and the quality of the inserted code fragments has a strong
impact on overall performance.

We found that a small set of explicit transparent call-
backs provided by the guest OS significantly simplify re-
source tracking within the in-place VMM. For the L4 mi-
crokernel we identified two important hooks: (1) thread and
process exits, and (2) functions for setting and retrieving an
opaque pointer that is associated with the OS’s abstraction
of threads. These hooks help hypervisors that have their
own notion of threads and need to map guest threads to
host threads (e.g., L4, Linux, and Windows). Additionally,
for such hypervisors, a third hook to copy data between
the guest kernel and its applications is important for perfor-
mance. The hooks do not interfere with execution on raw
hardware, nor with migrations between incompatible hyper-
visors at runtime.

Manual annotation of page table and device accesses pro-
vides 100% coverage for all sensitive memory operations,
and avoids the additional overhead of the supplementary
trapping model for uncovered corner cases. Most operat-
ing systems already encapsulate device accesses in special
functions and thus only require minimal code changes.

Supporting dynamically loadable kernel modules requires
that the in-place VMM rewrites the kernel modules at load
time, supported by access to the annotations in the module’s
ELF binary. Thus dynamic kernel modules require loading
support from the guest system, either via a guest user ap-
plication, or a guest kernel hook. For Linux 2.6, we use a
hook, which points the in-place VMM to an in-kernel copy of
the ELF file. Linux 2.4 likely requires a user-level solution,
which executes system calls directly to the in-place VMM.

Code replacements may violate self-modifying and self-
analyzing code. While for pre-virtualization this property

is more apparent, self-modifying code is a general problem
of all impure virtualization approaches. In Linux we found
a case where code makes assumptions about the instruction
length of the system call instruction in order to restart a
syscall after signal delivery. Careful encoding of the rewrit-
ten instruction preserves the semantics, but requires detailed
knowledge of the guest’s assumptions.

6. RELATED WORK

Hardware virtualization is a well-known technique, and
lately found wide attention in research and industry. Pre-
virtualization combines techniques from multiple areas that
we contrast here.

6.1 Code Transformation

Code transformation is a common technique for auto-
matically enhancing and optimizing code. For example,
MPTrace [5] incorporates data flow analysis of the com-
piler whereas Etch [23] allows for binary rewriting of x86
libraries. However, most rewriting tools target application
binaries and lack support for the sensitive instructions of an
OS kernel. SimOS [24] uses a binary translator for system
code on the MIPS architecture. A similar code translator
for x86 is productized by VMware [29].

Eiraku and Shinjo [6] use a static rewriting model similar
to our assembler-level instruction substitution, to permit a
guest OS to run on BSD. They either prefix every sensitive
x86 instruction with a trapping instruction to permit pure
virtualization, or they replace the sensitive instruction with
a subroutine call.

6.2 Virtualization Optimizations

Binary rewriting and native execution of OS code are usu-
ally imperfect and use trapping on sensitive or tagged op-
erations. Sugerman et al. [27] report more than 77 per-
cent of the overall execution time for NIC processing to
VMware’s virtualization layer. The typical solution are
para-virtualized drivers in the guest OS which communicate
directly with the hypervisor, avoiding the trap overhead.
However, those drivers are tied to a particular guest and
hypervisor, and as such abandon the platform API and in-
crease engineering cost.

The vBlades [18] project attempts to address the engi-
neering problems related to para-virtualization by using a
technique they call optimized para-virtualization. In order
to minimize modifications to the guest OS they use an it-
erative process, using benchmarks to identify performance
bottlenecks which are then para-virtualized. Unprivileged
sensitive instructions are dealt with by techniques proposed
by Denali [31], manually substituting alternative and trap-
pable instructions for the sensitive instructions. vBlades is
able to use a single binary for both native and virtualized
execution, by employing run-time checks at each virtualiza-
tion point. Pre-virtualization avoids run-time checks.

Lowell et al. [17] propose a technique for installing a virtu-
alization layer under a running OS, and to then devirtualize
the OS when the services of the hypervisor are no longer nec-
essary. The technique is applicable to the problem of site
maintenance, where the hypervisor is used only temporar-
ily, under constrained circumstances, and cooperatively. It
achieves its goals primarily via resource partitioning rather
than virtualization. We can achieve similar goals by rewrit-
ing our annotated instructions.

12

6.3 Software Structuring

Customization of software for alternative interfaces is a
widely used technique, e.g. PowerPC Linux uses a function
vector that encapsulates and abstracts the machine inter-
face. The manually introduced indirection allows running
the same kernel binary on bare hardware and on IBM’s com-
mercial hypervisor.

VMware’s recent proposal [30] for a virtual machine in-
terface (VMI) introduces a similar indirection for x86’s sen-
sitive instructions. Instead of using a function vector, VMI
uses a fixed code page that gets replaced with a hypervi-
sor specific implementation. VMI has similarities to pre-
virtualization, except that it does not support inline code
replacements. While VMI is aimed at manual modifications,
we believe that it will be beneficial to pre-virtualization, as
it would allow us to mechanize some of our sensitive memory
annotations.

6.4 Hardware Support

All major processor vendors announced virtualization ex-
tensions to their processor lines: Intel’s Virtualization Tech-
nology (VT) for x86 and Itanium [12,13], AMD’s Pacifica [1],
and IBM’s LPAR for PowerPC [11]. These proposals fix the
unvirtualizable features of the x86 and Itanium architectures
and reduce the virtualization overheads.

The hardware extensions are not a substitute for pre-
virtualization: They still require expensive trapping, and
require modifications to the hypervisor to support each vir-
tualization model. Sophisticated state machines executed
within the domain of the guest OS allow for better heuris-
tics without requiring hypervisor intervention. Furthermore,
the extensions only address virtualization of processor oper-
ations and thus still require hypervisor intervention for all
other virtualized hardware.

7. CONCLUSIONSAND FUTURE WORK

We presented pre-virtualization, an approach to virtual-
izing operating systems based on automatic re-writing of
sensitive operations. We have demonstrated that our pre-
virtualization technique achieves nearly the same perfor-
mance as established para-virtualization approaches. How-
ever, it does so at significantly reduced engineering effort,
and without requiring intimate knowledge of the guest OS.
This not only reduces the cost of virtualizing a system, it
also maintains confidence in the correctness of the virtual-
ized OS, and makes it easy to keep the virtualized guest in
sync with on-going development.

Besides cost, pre-virtualization has a number of benefits
which are a direct result of preserving the hardware platform
API. These are the ability to run the same binary on all sup-
ported hypervisors as well as on bare hardware, making OS
development independent of specific hypervisor APIs, and
supporting re-use of legacy OS environments, thereby fos-
tering OS innovation. The decoupling of the OS from the
hypervisor supports the development of a variety of hyper-
visors based on domain-specific trade-offs.

We were able to demonstrate the feasibility of pre-
virtualization by supporting a variety of very dissimilar hy-
pervisors with the same approach and infrastructure. We
believe that pre-virtualization will enable other exciting ap-
proaches we would like to explore in the future. This in-
cludes migration of live guests between incompatible hyper-
visors, after serializing the CPU and device state in a canon-

ical format. The target hypervisor would rewrite the anno-
tated instructions, and then restore the CPU and device
state, using its own in-place VMM. For a fully transparent
in-place VMM, the state serialization is obviously trivial,
but it needs to be tested in cases where resources are not
fully virtualized, such as Xen’s page tables.

We also see promise for applying techniques similar to pre-
virtualization to the task of translating operating system
source code between CPU architectures.

8.
1]

2]

[5]

REFERENCES

Advanced Micro Devices. AMDG6/ Virtualization
Codenamed “Pacifica” Technology, Secure Virtual
Machine Architecture Reference Manual, May 2005.
P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, et al. Xen and the art of
virtualization. In Proc. of the 19th ACM Symposium
on Operating System Principles, Bolton Landing, NY,
Oct. 2003.

M. Chapman and G. Heiser. Implementing
transparent shared memory on clusters using virtual
machines. In USENIX Annual Technical Conference,
Anaheim, CA, USA, Apr. 2005.

P. M. Chen and B. D. Noble. When virtual is better
than real. In The 8th Workshop on Hot Topics in
Operating Systems, Elmau/Oberbayern, Germany,
May 2001.

S. Eggers, D. Keppel, E. Koldinger, and H. Levy.
Techniques for efficient inline tracing on a
shared-memory multiprocessor. In In Proc. of the
1990 SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, Boulder, CO, 1990.
ACM.

H. Eiraku and Y. Shinjo. Running BSD kernels as
user processes by partial emulation and rewriting of
machine instructions. In Proc. of BSDCon 03, San
Mateo, CA, Sept. 2003.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform
for trusted computing. In Proc. of the 19th ACM
Symposium on Operating System Principles, Oct.
2003.

R. P. Goldberg. Survey of virtual machine research.
IEEE Computer Magazine, 7(6), 1974.

J. G. Hansen and E. Jul. Self-migration of operating
systems. In The 11th ACM SIGOPS European
Workshop, Leuven, Belgium, Sept. 2004.

H. Hartig, M. Hohmuth, J. Liedtke, S. Schénberg, and
J. Wolter. The performance of microkernel-based
systems. In Proc. of the 16th ACM Symposium on
Operating System Principles, Saint-Malo, France, Oct.
1997.

IBM. PowerPC Operating Environment Architecture,
Book II1, 2005.

Intel Corp. Intel Vanderpool Technology for IA-32
Processors (VT-z) Preliminary Specification, 2005.
Intel Corp. Intel Vanderpool Technology for Intel
Itansum Architecture (VT-i) Preliminary Specification,
2005.

A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen.
Detecting past and present intrusions through
vulnerability-specific predicates. In Proc. of the 20th

(16]

(17]

(18]

(19]

20]

(21]

24]

(25]

(26]

27]

ACM Symposium on Operating System Principles,
Brighton, UK, Oct. 2005.

S. T. King, G. W. Dunlap, and P. M. Chen.
Debugging operating systems with time-traveling
virtual machines. In Useniz Annual Technical
Conference, pages 1-15, Annaheim, CA, USA, Apr.
2005.

J. LeVasseur, V. Uhlig, J. Stoess, and S. Gétz.
Unmodified device driver reuse and improved system
dependability via virtual machines. In Proc. of the 6th
Symposium on Operating Systems Design and
Implementation, San Francisco, CA, Dec. 2004.

D. E. Lowell, Y. Saito, and E. J. Samberg.
Devirtualizable virtual machines enabling general,
single-node, online maintenance. In The 11th
Conference on Architectural Support for Programming
Languages and Operating Systems, Boston, MA, Oct.
2004.

D. J. Magenheimer and T. W. Christian. vBlades:
Optimized paravirtualization for the Itanium
Processor Family. In Proc. of the 3rd Virtual Machine
Research and Technology Symposium, San Jose, CA,
May 2004.

F. Mehnert, M. Hohmuth, S. Schénberg, and

H. Héartig. RTLinux with address spaces. In Proc. of
the 3rd Real-Time Linux Workshop, Milano, Italy,
Nov. 2001.

R. Meushaw and D. Simard. NetTop: Commercial
technology in high assurance applications. Tech Trend
Notes, 9, Fall 2000.

G. J. Popek and R. P. Goldberg. Formal requirements
for virtualizable third generation architectures. In
Proc. of the Fourth Symposium on Operating System
Principles, Yorktown Heights, New York, Oct. 1973.
I. Pratt, K. Fraser, S. Hand, C. Limpach, A. Warfield,
D. Magenheimer, J. Nakajima, and A. Malick. Xen 3.0
and the art of virtualization. In Proc. of the 2005
Ottawa Linuz Symposium, Ottawa, Canada, July 2005.
T. Romer, G. V. D. Lee, A. Wolman, W. Wong,

H. Levy, B. N. Bershad, and J. B. Chen.
Instrumentation and optimization of Win32/Intel
executables using etch. In Proc. of the USENIX
Workshop on Windows NT, Aug. 1997.

M. Rosenblum, S. A. Herrod, E. Witchel, and

A. Gupta. Complete computer system simulation: The
SimOS approach. IEEE Parallel € Distributed
Technology, (4), 1995.

R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. van
Doorn, J. L. Griffin, and S. Berger. sHype: Secure
hypervisor approach to trusted virtualized systems.
Technical Report RC23511, IBM T.J. Watson
Research Center, Yorktown Heights, NY, Feb. 2005.
C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow,

M. S. Lam, and M. Rosenblum. Optimizing the
migration of virtual computers. In Proc. of the 5th
Symposium on Operating Systems Design and
Implementation, Boston, MA, Dec. 2002.

J. Sugerman, G. Venkitachalam, and B. Lim.
Virtualizing I/O devices on VMware workstation’s
hosted virtual machine monitor. In Proc. of the 2001
USENIX Annual Technical Conference, Boston, MA,
June 2001.

[28]

[29]
[30]

[31]

H. Tuch, G. Klein, and G. Heiser. OS verification —
now! In The 10th Workshop on Hot Topics in
Operating Systems, Santa Fe, New Mexico, June 2005.
VMware, http://www.vmware.com/products/server/
esx_features.html. VMware ESX Server.

VWware, http://www.vmware.com/vmi. Virtual
Machine Interface Specification.

A. Whitaker, M. Shaw, and S. Gribble. Scale and
performance in the Denali isolation kernel. In Proc. of
the 5th Symposium on Operating Systems Design and
Implementation, Boston, MA, Dec. 2002.

14

