
Event–Driven Thermal Management in SMP Systems

Andreas Merkel Frank Bellosa
University of Karlsruhe

System Architecture Group
76128 Karlsruhe, Germany

{merkela, bellosa}@ira.uka.de

Andreas Weissel
University of Erlangen

Department of Computer Sciences 4
91058 Erlangen, Germany

weissel@cs.fau.de

Abstract

Actions usually taken to prevent processors from over-
heating, such as decreasing the frequency or stopping the
execution flow, also degrade performance. Multiprocessor
systems, however, offer the possibility of moving the task
which caused a CPU to overheat away to some other, cooler
CPU, so throttling becomes only a last resort taken if all of
a system’s processors are hot. Additionally, the different en-
ergy characteristics that different tasks are showing can be
exploited and hot tasks as well as cool tasks can be dis-
tributed evenly among all CPUs.

This work presents a mechanism for determining the en-
ergy characteristics of tasks by means of event monitoring
counters, and an energy–aware scheduling policy, which
strives to assign tasks to CPUs in a way that avoids over-
heating individual CPUs. We implemented energy–aware
scheduling for the Linux kernel. Evaluations show that the
overhead incurred by additional task migrations is negligi-
ble compared to the benefit of avoiding throttling.

1. Introduction

With increasing clock speed and circuit density, power
dissipation has become an issue in todays high-performance
microprocessors. Currently, cooling facilities are designed
for the worst case, i.e., a situation in which the CPUs are
executing tasks that produce a maximum of heat.

However, most ordinary tasks do not reach this maxi-
mum. Therefore, the alternative is to design cooling facil-
ities for a more moderate maximum power, and to throt-
tle a processor if it executes tasks which exceed this power
and becomes too hot. In multiprocessor systems, such situa-
tions can be avoided if the right decisions concerning which
task to run on which CPU are taken.

In an operating system, the scheduler is the component
responsible for deciding which task runs on which CPU. To
get maximum performance out of a multiprocessor system

under constraints imposed by the limited ability of each pro-
cessor to dissipate energy without overheating, the sched-
uler has to know how much energy each task is consuming
and how much energy can safely be dissipated on each pro-
cessor per time unit, so it is able to make the right schedul-
ing decisions and assign tasks to CPUs appropriately; it has
to be energy–aware.

Schedulers found in contemporary operating systems try
to maximize the throughput and the responsiveness per-
ceived by the user. To make them energy–aware, they have
to be extended to take the energy criterion into account,
without neglecting their conventional criteria.

Therefore, we identify the following prerequisites:
Firstly, we need a mechanism for determining the en-
ergy characteristics of a task, which means, how much
energy a task is currently consuming and is expected to con-
sume in the future. Secondly, we need a policy for deciding
which task shall run on which CPU respecting the crite-
ria of throughput, responsiveness, and energy.

Event monitoring counters included in modern micro-
processors can be used to estimate the energy a proces-
sor spent during a certain period of time [3]. We use these
counters to create task energy profiles describing the energy
characteristics of the individual tasks. Our energy–aware
scheduling policy is based on these profiles and strives to
distribute energy consumption evenly among all CPUs of a
system in order to minimize the need for throttling. We im-
plemented this policy for the Linux kernel and integrated it
with Linux’s load balancer.

The rest of the paper is structured as follows: Section
2 reviews related work. Section 3 describes how task en-
ergy profiles are derived from event monitoring counter val-
ues. Section 4 presents the energy–aware scheduling pol-
icy. Section 5 briefly describes the changes done to Linux
in order to integrate both the task energy estimator and
the energy–aware scheduling policy. Section 6 shows some
evaluations which have been done using the Linux imple-
mentation. Section 7 discusses directions for future work
and the limitations of our approach. Section 8 concludes.



2. Related Work

2.1. Online Energy Estimation

Online energy estimation of the processor as a whole or
of each individual task by means of event monitoring coun-
ters has been utilized in different ways to estimate and to
control the chip temperature of the microprocessor.

For processors supporting frequency and voltage scaling,
the energy characteristics of a task can be used to determine
the optimal frequency at which the task should be run in or-
der to reduce energy consumption without decreasing per-
formance substantially [13]. However, frequency and volt-
age scaling is not available on most of todays high perfor-
mance processors used in multiprocessor server machines.

The energy estimation of the processor as a whole can
be used as input for a thermal model of the processor and
its cooling facility [3]. This alleviates the need for read-
ing the thermal diode to determine the current temperature,
which is a time consuming operation. Additionally, the ther-
mal model can be used to calculate the amount of energy
that may be dissipated during a certain period of time with-
out overheating the processor. This information is of vital
interest for an energy–aware scheduler.

Combining compact models [7] of the processor with en-
ergy estimation from event monitoring counters allows the
estimation of multiple temperature values for the different
functional units on a processor chip [9]. However, consider-
ing more than one temperature value per chip for schedul-
ing is beyond the scope of this work.

Macromodels [12] are another method for online en-
ergy estimation. A macromodel relates the energy consump-
tion of a function or a block of code to various parameters
that can either be observed or calculated from a high–level
programming language description. However, the construc-
tion of macromodels is done off–line, so the applications in
question must be known and analyzed in advance.

2.2. Energy–Aware Scheduling

The energy spent by individual tasks can be used to in-
fluence the decisions of an operating system’s scheduler. Up
to now, most of the work on energy–aware scheduling did
not take multiple processors into account.

The abstraction of resource containers [1] allows the
management of energy as a first class resource in distributed
systems [14]. Only tasks whose corresponding energy con-
tainer is non–empty may be chosen by the scheduler. Since
this work’s focus is not on choosing which tasks are allowed
to be scheduled, but rather on where they are scheduled,
the two approaches are fully compatible and could easily be
combined.

The principle of moving computation away when tem-
perature gets too high is part of the Heat–and–Run schedul-
ing policy developed for simultaneously multithreaded
(SMT) chip multiprocessors (CMP) [5]. Heat–and–Run
characterizes tasks by their IPC value (instructions per cy-
cle) and uses this characterization to co–schedule tasks
on SMT sibling processors in a way that produces max-
imum heat. When a certain temperature limit is reached,
tasks are migrated to another core on the CMP. How-
ever, Heat–and–Run was not implemented on real hard-
ware, but uses the Wattch [4] architectural–level simula-
tor.

Another approach consists in including spare resources
like register files, ALUs, or issue queues on the processor
chip and migrating computation to one of those spare re-
sources when the original resource reaches a critical tem-
perature [6, 11]. Our approach works on a more coarse
grained level, moving computation not within a chip but be-
tween chips.

3. Task Energy Estimation

The decisions of an energy–aware scheduler are based on
the energy characteristics of individual tasks, i.e. how much
energy a task is currently consuming per time unit, and is
expected to be consuming in the near future. This section
describes a mechanism which allows the operating system
to create an energy profile for each of the tasks it manages.
This profile is an estimation for the energy the task will con-
sume if it is allowed to run on a CPU for one timeslice.

3.1. The Need for Online Energy Estimation

On modern microprocessors, the energy characteristics
of two tasks can differ substantially, depending on the type
of instructions executed [3, 8]. An analysis of the proces-
sor’s power consumption while running a particular task
shows that power consumption is fairly static most of the
time, but exhibits changes as the task experiences differ-
ent phases of execution, e.g. runs different algorithms suc-
cessively [2]. The sequence and the duration of these phases
depends on the task’s input data. Therefore, the energy char-
acteristic of a task cannot be known in advance and thus
cannot be determined by off–line analysis.

Energy consumption caused by tasks results in in-
creased processor temperature. With the energy consump-
tion known, it is possible to estimate temperature using a
thermal model. Conversely, with temperature known, it is
possible to estimate energy consumption — but not at the
granularity in terms of time needed for attributing this en-
ergy consumption to distinct tasks. In general purpose
operating systems, the length of a timeslice ranges be-
tween 10 and 100 milliseconds. Because of the huge ther-



mal capacitance of the processor’s heat sink and the low
resolution of the thermal diodes found in contemporary sys-
tems, the amount of energy dissipated during one timeslice
is by orders of magnitudes too small for the diode to reg-
ister a change in temperature. Additionally, reading the
thermal diode has significant overhead (several millisec-
onds for reading the thermal diode via the system manage-
ment bus [3]).

However, to characterize individual tasks, energy con-
sumption must be known at timeslice granularity, since the
CPU might be executing a different task each timeslice. As
a solution, we apply online estimation of a task’s energy
consumption. Event monitoring counters found in contem-
porary processors like the Pentium 4 allow the estimation
of the energy consumed during a period of time as short as
one timeslice.

3.2. Transforming Events to Energy

We estimate the energy a processor spends by count-
ing certain processor–internal events. We associate a fixed
amount of energy with each event, and calculate the energy
spent during a period of time using a linear combination of
the counter values. This method for estimating energy has
been implemented for the Linux kernel and yields an esti-
mation error of less than 10% for real–world applications
[3].

We determine the energy a task spends during one times-
lice by reading the event counters at the beginning and at
the end of the timeslice, calculating the difference for each
event and weighting it with the corresponding amount of en-
ergy.

3.3. Energy Profiles

To make the optimal decision regarding on which CPU
to run a task for the next time, the scheduler would have to
know how much energy this task is going to consume dur-
ing its next timeslice. This is not possible, since input data
influence the behavior of tasks in a non–deterministic way.
However, tasks show phases of different but static power
consumption most of the time. Therefore, the energy a task
consumed the last time it was executed is a good guess for
the energy that the task will consume the next time it is al-
lowed to run.

Considering the consequences a change in a task’s en-
ergy profile might have, i.e. the migration of the task to
another CPU (see section 4), we should avoid changing a
task’s energy profile too often and too drastically. There-
fore, we do not only take the energy spent during the last
timeslice into account, but use an exponential average of
the task’s past energy consumption. As a result, short term
changes in a task’s behavior do not cause the task’s energy

profile to change significantly, whereas a permanent change
is reflected by the energy profile after an appropriate time.

The exponential averaging algorithm is intended for cal-
culating the average of a value which is sampled over con-
stant periods of time. Some operating systems, like Linux,
give longer timeslices to tasks with higher priorities. Even
if subsequent timeslices given to a task are of equal length,
the actual time a task executes until the next one is sched-
uled may still differ from the duration of a timeslice. A task
may block any time or be deprived of the CPU by a higher
priority task in preemptively scheduled systems.

There are two solutions to this problem: Firstly, we can
shorten the interval for calculating the exponential average,
so the average is recalculated not only at the end of each
timeslice but, for instance, on every timer tick. This way,
the energy profile of a task is up to date even if it stops ex-
ecuting in the middle of a timeslice. Secondly, we can ex-
tend the exponential averaging algorithm to support vari-
able periods, so we can calculate the exponential average
at any time a task stops executing. We chose the latter ap-
proach, since it incurs less overhead (the exponential aver-
age must be recalculated less often) and is more flexible (a
task might stop executing even between two timer ticks).

The conventional exponential average xi for sampling
period i is calculated by weighting the current sample value
vi (in our case, this is the energy spent during the sampling
period) with a weight p. The exponential average of the pre-
vious sampling period xi−1 is weighted with (1 − p):

xi = p · vi + (1 − p) · xi−1 (1)

Instead of using a constant weight p, we use a flexible
weight which depends on the length of the sampling period.
If the sampling period is shorter than a standard timeslice,
we give the past a bigger weight, which compensates for
calculating the exponential average more frequently. (The
past values are weighted down with every iteration.) Vice
versa, if the sampling period is longer than a standard times-
lice, we give the past a smaller weight, because with longer
timeslices the average is calculated less frequently.

4. Energy–Aware Scheduling

This section deals with the energy–aware scheduling pol-
icy and its implementation. We distinguish two cases: In sit-
uations where there is only one or less runnable task per
CPU in the system, we use a technique called hot task mi-
gration to move tasks away from processors which threaten
to overheat. In situations with more than one task per CPU,
we employ energy balancing, a form of load balancing
which takes the tasks’ energy profiles into account and tries
to distribute energy consumption evenly among all CPUs.



4.1. Scheduling in SMP systems

In SMP systems, each task is allowed to run on every
CPU. However, there are reasons to avoid moving a task
from one CPU to another one, unless this is really neces-
sary. After a task has been running on a CPU for some time,
it has warmed up the CPU’s cache. Therefore, it is com-
mon practice in today’s multiprocessor operating systems
to distribute the set of all runnable tasks in a system among
the system’s CPUs. A subset of the tasks is assigned to
each CPU and each CPU runs a scheduler of its own which
chooses the task to be run next on the CPU out of this sub-
set.

For each CPU, the scheduler must organize the corre-
sponding subset of tasks in some kind of data structure, so
it can keep track of these tasks. In Linux, this data struc-
ture is called the runqueue. Since every task belongs to one
runqueue only, it is always executed on the same CPU un-
less it is transfered from one runqueue to another one.

The more tasks a runqueue consists of, the smaller is
the share of CPU time each task gets. Since general pur-
pose operating systems strive to provide fairness to their
tasks, all runqueues should be of equal length. If we take
SMP scheduling in its simplest form, equalizing the run-
queue length (commonly referred to as load balancing) is
the only reason why tasks should be moved between run-
queues.

4.2. Scheduler Domains

In NUMA (non uniform memory access) systems, there
is one more reason why tasks should be kept local to one
CPU. If a task is moved to some CPU residing on another
node, the memory this task is referencing must either be
transfered to the new node, or the task has to do inter–
node accesses. Both possibilities incur performance penal-
ties. Therefore, if load balancing can be done between CPUs
belonging to the same node, this should be preferred to load
balancing between CPUs belonging to different nodes. Sim-
ilarly, in SMT systems, load balancing should preferably be
done between sibling CPUs, because they share the same
cache.

To make optimal load balancing decisions, the scheduler
has to know about the CPU topology of the system, i.e. who
is whose sibling and who shares the same node with whom.
Linux introduces an abstraction called scheduler domains
to represent this topology [10].

A scheduler domain consists of two or more CPU
groups. A CPU group is a set of CPUs. Load balanc-
ing in a scheduler domain is done between the do-
main’s groups. This means the goal of load balanc-
ing is to have the same average runqueue length for
all CPU groups. If group A has a greater average run-

queue length than group B, tasks have to be migrated from
some CPU in group A to some CPU in group B. To rep-
resent a system’s topology, scheduler domains are stacked
in a hierarchical fashion. The higher the level in this do-
main hierarchy, the costlier are the balancing operations in
a domain. Therefore, load balancing is done on the low-
est level possible.

An example: In an eight–way SMP system consisting
of two NUMA nodes and with each processor being two–
way simultaneously multithreaded (16 logical CPUs in to-
tal), there are three levels in the domain hierarchy: The do-
mains on the lowest level each span one physical CPU and
possess two groups consisting of one logical CPU. The do-
mains on the second level span one node each, with each
group consisting of two logical processors residing on the
same physical CPU. Finally, the top level domain consists of
two groups, and each group consists of eight logical CPUs
whose corresponding physical CPUs all reside on one node.

Figure 1. An example for scheduler domains

4.3. Objectives

What is true for load balancing also applies to energy
balancing, i.e. migrating tasks for energy reasons: Mov-
ing tasks from one CPU to another should only be done
when really necessary and within the lowest domain possi-
ble. However, an energy–aware scheduler may find reasons
for moving tasks different from unequal runqueue lengths:
For instance, hot tasks might have to leave hot processors,
so these processors do not become even hotter and have
to be throttled. If this is not done exceedingly often, the
penalty incurred by moving tasks is redeemed by having
all processors running at full speed.

Therefore, the main objective of energy–aware schedul-
ing is: No processor should become so hot it has to be throt-
tled. However, this can be achieved in different ways. The
probably easiest solution is to wait until it is too late: An



energy–hungry task is allowed to run on a processor until
the processor overheats and is then evacuated to some other
processor. On systems with only few runnable tasks (one
task or less per runqueue), and with a slight modification,
this is even the best strategy: We do not wait exactly un-
til it is too late, but only until it is nearly too late and move
a hot task away from a processor slightly before the proces-
sor gets so hot it has to be throttled. The hot task can con-
tinue to run on a cooler processor which has either been
idle before, or has been running a cool task that can con-
tinue to run on the hot processor. Since tasks are moved at
the last possible moment, this method minimizes the num-
ber of task movements.

On systems with two or more tasks per runqueue, the be-
fore mentioned solution is no longer the best. Imagine a sys-
tem with two CPUs and one runqueue consisting of two hot
tasks and the other consisting of two cool tasks. Overheat-
ing a CPU could be avoided by moving the two hot tasks to
the cool CPU and thus exchanging them with the two cool
tasks from time to time. However, it is better to combine
the tasks in a way that a cool one and a hot one are run-
ning on each CPU. We can eliminate the need for moving
tasks if we distribute the tasks in such a way that the aver-
age power is the same for all runqueues.

However, this is only true if all processors possess the
same energy characteristics. Actually, one processor may be
located closer to some cooling facility like a fan or an air in-
let than another one and may thus be able to dissipate more
energy per time unit without overheating. So not the av-
erage power, but rather the ratio between this average and
the maximum power a processor is able to dissipate with-
out overheating should be equalized. This way, we can keep
all processors at the same temperature.

The two objectives of energy–aware scheduling can be
summarized as follows:

• If possible, the tasks of a system should be distributed
among the different runqueues in a way that keeps all
CPUs on the same temperature level.

• If a CPU running a hot task will overheat in the near
future, and there is a cooler CPU, the hot task should
be transfered to that CPU.

4.4. Thermal Model

We use a thermal model of the processor chip and its heat
sink to estimate chip temperature from power consumption.
The error resulting from estimating energy and then esti-
mating temperature based on the energy estimate is smaller
than 1 degree for real–world applications.

We model chip temperature with an exponential function
which depends on the thermal capacitance and thermal re-
sistance of the chip and heat sink as well as on ambient tem-
perature. The model is described in detail in [3].

To determine the coefficients of this exponential func-
tion, we started a task which produces a maximum of heat
on a processor formerly idle, recorded the temperature val-
ues over time and fitted an exponential function to the ex-
perimental data.

4.5. Measures

We will now introduce some measures on which the
energy–aware scheduler’s decisions are based. First of all,
the scheduler needs to know how much energy each CPU
is currently consuming, because we want to balance energy
consumption between the CPUs. Since the scheduling inter-
vals are much shorter than the time it takes for the proces-
sor and the heat sink to warm up noticeably, we calculate
the energy consumption of a CPU by averaging the energy
values taken from the energy profiles of all tasks in the run-
queue.

However, the calculated consumption rate obtained this
way is only of limited accuracy. The timeslice length might
be different for different tasks; higher priority tasks might
get longer timeslices, as is the case in Linux. Additionally,
the scheduler can never know whether all of the tasks in a
runqueue will fully utilize their timeslice, or whether some
of the tasks will block in the middle of a timeslice and will
no longer be runnable. Hence the calculated consumption
rate is only an approximation for the energy that is currently
consumed by a CPU and will likely be consumed in the fu-
ture.

Another shortcoming of the calculated consumption rate
is that it only considers tasks which are currently members
of the runqueue. This is insufficient for two reasons: Firstly,
there may be tasks which are blocking and unblocking fre-
quently, e.g. a web server. Since such tasks usually resume
executing on the same CPU, they should also be considered
when they are blocked and thus not members of the queue.
Secondly, the energy dissipated by tasks which were exe-
cuting on a CPU in the past is still partly stored in the pro-
cessor chip and the heat sink. The scheduler must therefore
not only consider current and future energy consumption,
but also chip temperature, which is determined by past en-
ergy consumption.

To overcome these shortcomings, the scheduler bases its
decisions on a second consumption rate as well, which is
determined in an empirical way and is hence called empiri-
cal consumption rate. This empirical consumption rate mir-
rors the current CPU temperature. Whenever a task has used
up its timeslice, is deprived of the CPU for some other rea-
son, or releases it voluntarily, the scheduler looks at how
much energy the task has consumed. It uses this value to
calculate an exponential average similar to the task energy
profiles, but considering any task running on a CPU instead
of being task specific.



Since we determine this consumption rate in an empir-
ical way, the rate only considers the tasks to the extent of
their real runtime and is therefore more accurate. Since we
calculate an exponential average, the empirical consump-
tion rate also considers tasks which ran in the past but are
no longer members of the runqueue.

The empirical consumption rate mirrors the en-
ergy which was dissipated by tasks in the past and is still
stored in the processor and the heat sink. Therefore we fit
the exponential average used to calculate this consump-
tion rate to the exponential function of our thermal model.
If a hot task has just been migrated away from a proces-
sor and the temperature of the processor as well as the em-
pirical consumption rate are at their upper limits, the con-
sumption rate should be halfway down to the consumption
rate of a processor being idle just when the processor’s tem-
perature is. We calibrate the empirical consumption rate
by choosing an appropriate weight p for the exponen-
tial average (see equation 1) which corresponds to the
time constant of the exponential function from the ther-
mal model.

However, we cannot do without the calculated consump-
tion rate, which has one advantage over the empirical one:
Since the calculated rate is the average of the energy pro-
files of all tasks in a runqueue, it immediately considers a
task that is migrated to or started on a CPU, whereas the em-
pirical rate does not consider such a task until it has used up
its timeslice for the first time. This is important to avoid
over–balancing, i.e. migrating too many tasks so one imbal-
ance is replaced by another imbalance into the opposite di-
rection.

As motivated in the preceding subsection, we do not nec-
essarily want to balance the consumption rates, but rather
their ratios with respect to a CPU–specific maximum con-
sumption rate. Therefore, this maximum rate must be
known to the scheduler, so it can calculate the ratios
of both the exponential and the calculated consump-
tion rate with respect to the maximum rate.

4.6. Energy Balancing

For scalability reasons, energy balancing uses a dis-
tributed algorithm similar to Linux’s load balancing algo-
rithm. The algorithm runs on every CPU, possibly in par-
allel, and works in two steps: During the first step, the al-
gorithm searches for another queue to do balancing with.
The second step consists of moving tasks between the two
queues in order to resolve imbalances.

Only tasks which are currently not executing but wait-
ing until it is their turn to get a timeslice of CPU time are
transfered this way. This is called passive balancing.

As the balancing algorithm is executed on every CPU,
balancing needs only be done in one direction: The Linux

load balancer, e.g., only pulls in tasks from remote run-
queues in order to resolve imbalances. If there is an im-
balance which would require pushing out tasks, this imbal-
ance is resolved when the load balancer runs on the remote
CPU. Similarly, we do energy balancing only by pulling in
“heat” from other runqueues (with some exceptions, as we
will see later).

To avoid ping–pong effects (tasks being migrated back
and forth), balancing should be done rather conservatively.
This is where our two consumption rates described in the
preceding subsection come into play: A remote queue is
considered hotter than the local queue only if the minimum
of both remote rates is bigger than the maximum of the local
rates. Since the empirical consumption rate is only chang-
ing slowly, this creates a hysteresis effect, while the calcu-
lated rate, changing immediately, forbids to pull over an un-
due number of tasks. Similarly, when comparing ratios, we
use the maximum of the local and the minimum of the re-
mote ratios.

Energy balancing decisions must be consistent with the
load balancing ones and vice versa. Otherwise, a task move-
ment made for energy reasons might be undone again for
load balancing reasons. Therefore, the energy balancer must
always strive not to create load imbalances and the load bal-
ancer must strive not to create energy imbalances. Since
load and energy balancing are intertwined (energy con-
sumption is always bound to tasks), we decided to merge the
existing Linux load balancing algorithm with energy bal-
ancing into one algorithm.

The following steps are executed for every scheduler do-
main a CPU doing balancing belongs to, beginning with the
lowermost:

• First we search for the CPU group with the highest av-
erage energy ratio in order to do energy balancing.

• If the group containing the local CPU is found to be
the one with the highest ratio, which is quite probable
because we are comparing conservatively, there is no
need to do energy balancing.

• Otherwise, we search for the queue with the highest ra-
tio among the queues in the remote group and do bal-
ancing with this queue.

• We pull over tasks having energy profile values higher
than the consumption rate of the remote queue in order
to cool down the queue. However we do only pull such
a number of tasks that

– No load imbalance is created.

– No energy imbalance in the wrong direction is
created.

Sometimes it might not be possible to pull over tasks
without creating a load imbalance, e.g. if both queues



are of equal length. In this case, we exchange a low en-
ergy task from the local queue for a high energy task
from the remote queue.

• Then we search for the most loaded CPU group in or-
der to do load balancing.

• If the local CPU belongs to the most loaded group,
there is no need to do load balancing.

• Else we search for the longest runqueue in the most
loaded group.

• Again, we pull over tasks
– Without creating a load imbalance in the oppo-

site direction.
– Without creating an energy imbalance.

Note that, as opposed to energy balancing, load bal-
ancing can always be done without creating an energy
imbalance: If the remote queue is hotter than the lo-
cal one, we pull over a task which is hotter than the re-
mote runqueue’s consumption rate. If the remote queue
is cooler, we pull over a task cooler than the remote
runqueue’s consumption rate.

4.7. Hot Task Migration

Passive balancing, as described above, works well if we
want to equalize the energy ratios of CPUs running several
tasks. However, if we are dealing with a runqueue which
consists of one task only, passive balancing cannot be ap-
plied: We cannot transfer a task which is currently executed.

However, as described in subsection 4.3, a task must be
moved to another CPU (assuming there is a suitable one) if
it has caused the CPU it is running on nearly to overheat.
So if a CPU’s empirical consumption rate comes closer to
the maximum consumption rate than a predefined threshold
— which, due to the calibration of this rate to the CPU’s
thermal characteristics, is coterminous with the CPU nearly
having reached its temperature limit — and the CPU’s run-
queue consists of one task only, we use active migration
to transfer the task elsewhere. Since a task cannot be mi-
grated while running, active migration has to be done by a
special task, which is woken up in order to preempt the cur-
rently running task and to transfer it to its destination CPU.
Again, if the destination CPU is already running a task, we
transfer this task to the local CPU in return to avoid creat-
ing a load imbalance.

The destination CPU should be a CPU which is signifi-
cantly cooler than the source CPU and which is either idle
or running a low–energy task. But unless necessary, migra-
tions across node boundaries should be avoided in NUMA
systems. Therefore, we traverse the scheduler domain hi-
erarchy similarly to energy balancing bottom–up, search-
ing for the coolest runqueue within the domain. If the dif-
ference of the empirical consumption rates of this coolest

queue and the local one is bigger than a predefined con-
stant, we take this queue as the destination, else we con-
tinue searching one level higher in the domain hierarchy. If
no suitable CPU is found after searching the top–level do-
main, all of the system’s CPUs are hot and the hot task must
remain on the hot CPU, which in turn will have to be throt-
tled.

4.8. SMT Issues

Since the logical CPUs of a simultaneously multi-
threaded processor mainly use the same functional units
on the same physical chip, there is no need to do en-
ergy balancing between them. We take care of this by
means of the scheduler domain abstraction: The sched-
uler domains on the lowest level, which encompass
all logical CPUs belonging to the same physical pro-
cessor, are marked with a special flag, which tells the
scheduler not to do energy balancing, so the energy bal-
ancing step is skipped for those domains. Load balanc-
ing, on the other hand, must still be done between sibling
CPUs, but the energy restrictions for load balancing men-
tioned above do not apply.

Since energy balancing must be done between logical
CPUs belonging to different physical processors, we still
need the measures for energy–aware scheduling. Further-
more, because of the logical CPUs running independently
of each other, we need them for every runqueue. Therefore,
we divide the maximum energy consumption rate a phys-
ical processor can endure without overheating between all
logical CPUs.

Note that due to energy balancing not being done be-
tween sibling CPUs, it may be that one logical CPU oper-
ates above the maximum consumption rate while another
one operates below. However, on the next higher schedul-
ing domain level, where energy balancing is done, all logi-
cal CPUs of one processor are collected in one group. Only
the average of the group matters, so hot tasks from the over–
hot logical CPU are not necessarily transfered to some other
CPU.

Similarly, since not logical but only physical processors
can overheat, we only migrate a hot task actively from a log-
ical CPU belonging to a simultaneously multithreaded pro-
cessor, if the sum of the empirical consumption rates of all
logical CPUs belonging to a physical processor is greater
than the allowed maximum rate for that processor. Again,
we skip the lowermost level of the scheduler domain hierar-
chy when searching for a destination CPU, since migrating
the hot task to a sibling CPU does not improve the situa-
tion.



5. Integration into the Linux Kernel

We did the following modifications to the Linux kernel
to incorporate energy–aware scheduling:

• We integrated an energy estimation mechanism, which
transforms event counter values to energy values.

• We extended the runqueue data structure to encompass
the two consumption rate values as well as the allowed
maximum rate.

• We enhanced the task_struct data structure,
which Linux uses to describe tasks, by a field hold-
ing the task’s energy profile.

• We implemented a mechanism for calculating the con-
sumption rates and the task energy profiles from the
energy values delivered by the estimator.

• We replaced Linux’s load balancing algorithm with the
combined energy–load balancing algorithm described
in section 4.6.

• We added active migration for hot tasks.

All those modifications sum up to roughly 1800 lines of C–
code.

6. Evaluation

For testing, we ran our modified Linux kernel on an 8–
way Pentium 4 Xeon multiprocessor (2.2 GHz each proces-
sor) consisting of two NUMA nodes with four 2–way mul-
tithreaded processors each.

program energy description
bitcnts 61W bit counting operations
memrw 38W memory reads/writes
aluadd 50W integer additions
pushpop 47W stack push/pop
openssl 42W − 57W OpenSSL benchmark
bzip2 48W file compression

Table 1. Programs used for the tests

6.1. Energy Balancing

To test energy balancing, we set the energy limit of all
CPUs to 60W , so energy consumption should be balanced
evenly across all CPUs.

We ran a mixed workload consisting of six differ-
ent programs (see Table 1) and started each program
three times, for a total of 18 running tasks. All tasks
showed fairly static energy characteristics, with the excep-
tion of OpenSSL, which we ran in benchmark mode. Due

to the different encryption and checksum algorithms bench-
marked successively, the energy profile of OpenSSL varied
between 42W and 57W .

For comparison, we first ran the workload with energy
balancing disabled. Figure 2 depicts the experimental con-
sumption rates for the eight processors. Because of the ex-
ponential average used for calculating these rates, the rates
rise exponentially first. This mirrors the exponential rise of
the processors’ temperatures. During the further course of
the experiment, the curves diverge because of the different
energy characteristics of the tasks running on each CPU.
There were 44 task migrations during the 14 minutes the
test was run, mainly because of interactive tasks waking up
and thus creating load imbalances.

20W

40W

60W

0 100 200 300 400 500 600 700 800

time [s]

Figure 2. Energy balancing disabled

Figure 3 shows the energy consumption of the eight pro-
cessors with energy balancing enabled. Although there is a
variation in the overall energy consumption because of the
non–static behavior of the OpenSSL benchmark, the width
of the array of curves is limited. With the combined energy–
load balancer, 193 task migrations happened, so there was
roughly one migration every four seconds. Considering the
total of 18 running tasks, each task was migrated on aver-
age every 78 seconds.

6.2. Hot Task Migration

For the next test,each physical processor was allowed to
consume 40W at most, yielding a 20W limit for each log-
ical CPU. We started a single instance of the bitcnts pro-
gram, consuming about 60W .

Since we have only one running task, the sibling of the
logical CPU the task is running on is always idle. If the bitc-
nts task is started on or migrated to a CPU which was for-
merly idle, it takes approximately ten seconds for the sum
of the experimental consumption rates of the two sibling
CPUs (one idle, one executing bitcnts) to rise above 40W .



20W

40W

60W

0 100 200 300 400 500 600 700 800

time [s]

Figure 3. Energy balancing enabled

The bitcnts task is then migrated elsewhere by the hot task
migration mechanism.

If bitcnts were executed on one processor all of the time,
as is the case without energy–aware scheduling, this proces-
sor would have to be throttled 33% of the time to enforce the
40W limit, assuming that a processor is consuming no en-
ergy when throttled.

0
2
4
6
8

10
12
14

0 50 100 150 200

C
PU

time [s]

Figure 4. Hot task migration

Two more things are worth noting: Firstly, bitcnts is
never migrated from one sibling to the other one, as you can
see from Figure 4: The CPU IDs of two sibling CPUs dif-
fer in the most significant bit. Thus, CPU 0 is the sibling of
CPU 8, CPU 1 is the sibling of CPU 9, and so forth.

Secondly, bitcnts is never migrated across the node
boundary: CPUs 0 to 3 (with their siblings 8 to 11) re-
side on node 0, whereas CPUs 4 to 7 (with their siblings
12 to 15) reside on node 1. The bitcnts task visits the phys-
ical CPUs of node 0 nearly in round robin fashion, be-
cause the CPU least recently visited is always the coolest
one. However, after bitcnts has taken one full turn, the CPU

on which it executed first has cooled down enough to avoid
inter–node migration.

6.3. Temperature Control

For this last test, we ran the workload consisting of the
programs listed in Table 1 again. Without temperature con-
trol, the maximum processor temperature measured for this
workload was 45°C. We employed a throttling mechanism
to control the processors’ temperatures: Whenever a CPU’s
experimental consumption rate rose above the value corre-
sponding to a temperature of 38°C, we throttled the proces-
sor by executing the hlt instruction.

Again, we ran the test first with energy balancing dis-
abled and then with energy balancing enabled. Table 2
shows the percentages of the time the CPUs were throt-
tled for the two runs. The CPUs not shown in the table had
to be throttled in neither of the test runs due to their good
thermal characteristics. (Their temperature does not exceed
38°C even if the hottest task, bitcnts, is executed on them.)

CPU energy balancing energy balancing
disabled enabled

0 51.5% 35.1%
3 54.1% 39.7%
4 10.8% 0.0%
8 61.1% 35.7%

11 54.7% 51.9%
12 11.0% 0.0%

average 15.2% 10.2%

Table 2. CPU throttling percentage

As expected, if energy balancing is enabled, the throt-
tling percentage is lower for all CPUs (except for the ones
that do not have to be throttled even with energy balanc-
ing disabled), because the balancing policy moves hot tasks
to the processors with better thermal characteristics. The
processors with poorer thermal characteristics, on the other
hand, have to be throttled less often, because they are ex-
ecuting cooler tasks. The reduced throttling percentage re-
sults in shorter execution times for the test programs. The
throughput (number of tasks finished per time unit) in-
creased by 4.7% percent with energy–aware scheduling en-
abled.

6.4. Benefits

To assess the benefits of energy–aware scheduling, we
must weigh the performance penalties incurred by addi-
tional task migrations against the performance boost gained



by avoiding the throttling of CPUs. We argue that the per-
formance penalties are negligible compared to the perfor-
mance boost.

If a task is migrated every ten seconds, it executes in
the order of ten billion instructions between two migrations
on a recent processor. Caches however, can be considered
warm after executing some millions of instructions. This
is by three orders of magnitude less, so the performance
penalty is within the sub percent range. Throttling times, on
the other hand, can be reduced by several percent by means
of energy–aware scheduling.

7. Limitations and Future Work

The main limitation of energy–aware scheduling is that
it is only applicable for workloads consisting of tasks with
different energy characteristics. If all tasks possess the same
characteristics, there is no need to do energy balancing,
since energy is inherently balanced.

Currently, most processors are equipped with a single
thermal diode. Throttling mechanisms are engaged by the
system BIOS or some monitoring hardware when the tem-
perature value reported by this diode exceeds a certain
threshold. Since energy is dissipated at individual functional
units of a processor, the temperature of the chip may be dis-
tributed non–uniformly, so decisions about throttling should
be based on multiple temperature values. As a consequence,
the goal of an energy–aware scheduling policy should be to
keep the temperature of all functional units below the throt-
tling threshold. Future work on energy–aware scheduling
could incorporate a more elaborate thermal model featur-
ing multiple temperatures.

8. Conclusions

We introduced a mechanism for estimating the energy
consumption of a computer’s microprocessor on a per–task
level. We presented an energy–aware scheduling policy,
which based on these energy profiles, strives to equalize the
energy consumption with respect to a certain CPU–specific
maximum consumption rate across all of a system’s CPUs.
In situations in which this is not possible due to a limited
number of tasks in the system, the scheduler keeps hot tasks
running on a CPU as long as possible and migrates them
elsewhere if the processor threatens to overheat.

Evaluations show that the policy achieves its goal. Com-
pared to the benefit of avoiding the throttling of CPUs
whenever possible and the resulting performance boost, the
overhead incurred by hot task migration or the task migra-
tions required for energy balancing is negligible.

References

[1] G. Banga, P. Druschel, and J. Mogul. Resource containers:
A new facility for resource management in server systems.
In Proceedings of the Third Symposium on Operating System
Design and Implementation OSDI’99, Feb. 1999.

[2] F. Bellosa. The case for event-driven energy accounting.
Technical Report TR-I4-01-07, University of Erlangen, De-
partment of Computer Science, June 2001.

[3] F. Bellosa, A. Weissel, M. Waitz, and S. Kellner. Event–
driven energy accounting for dynamic thermal management.
In Proceedings of the Workshop on Compilers and Operat-
ing Systems for Low Power (COLP’03), Sept. 27 2003.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a frame-
work for architectural–level power analysis and optimiza-
tions. In ISCA ’00: Proceedings of the 27th Annual Inter-
national Symposium on Computer Architecture. ACM Press,
2000.

[5] M. Gomaa, M. D. Powell, and T. N. Vijaykumar. Heat-
and-run: leveraging SMT and CMP to manage power den-
sity through the operating system. SIGARCH Comput. Ar-
chit. News, 32(5), 2004.

[6] S. Heo, K. Barr, and K. Asanovic. Reducing power den-
sity through activity migration. In Proceedings of the Inter-
national Symposium on Low Power Electronics and Design,
Aug. 2003.

[7] W. Huang, S. Ghosh, K. Sankaranarayanan, K. Skadron, and
M. R. Stan. Compact thermal modeling for temperature-
aware design. In Proceedings of the 41st ACM/IEEE De-
sign Automation Conference (DAC), June 2004.

[8] C. Isci and M. Martonosi. Runtime power monitoring in
high-end processors: Methodology and empirical data. In
Proceedings of the 36th Annual ACM/IEEE International
Symposium on Microarchitecture, Dec. 2003.

[9] K.-J. Lee and K. Skadron. Using performance counters for
runtime temperature sensing in high–performance proces-
sors. In Proceedings of the Workshop on High-Performance,
Power–Aware Computing (HP-PAC), Apr. 2005.

[10] linux/Documentation/sched-domains.txt.
Documentation shipped with the Linux source code.

[11] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan. Temperature-aware microarchitec-
ture. In Proceedings of the 30th International Symposium on
Computer Architecture (ISCA’03), June 2003.

[12] T. K. Tan, A. Raghunathan, G. Lakshminarayana, and N. K.
Jha. High-level energy macro-modeling of embedded soft-
ware. In IEEE Transactions on Computer-Aided Design,
Sept. 2002.

[13] A. Weissel and F. Bellosa. Process cruise control — event–
driven clock scaling for dynamic power management. In
Proceedings of the International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES
2002), Oct. 8–11 2002.

[14] A. Weissel and F. Bellosa. Dynamic thermal management
for distributed systems. In Proceedings of the First Work-
shop on Temperature-Aware Computer Systems (TACS’04),
June 2004.


