
Self-Learning Hard Disk Power Management for Mobile
Devices

Andreas Weissel
University of Erlangen-Nuremberg

Distributed Systems and Operating Systems

weissel@cs.fau.de

Frank Bellosa
University of Karlsruhe

System Architecture Group

bellosa@ira.uka.de

ABSTRACT
A multitude of different hard disk power management al-
gorithms exists—applied to real systems or proposed in the
literature. Energy savings can only be achieved if the hard
disk is idle for a minimum period of time. These algorithms
try to predict the length of each idle interval at runtime
and decide whether the disk should be switched to a low-
power mode or not. In this paper, we claim that there is no
general-purpose policy that maximizes energy savings for ev-
ery workload and present system services that dynamically
switch between different, specialized power management al-
gorithms. The operating system automatically learns which
policy performs best for a specific workload. Therefore, hard
disk accesses are monitored and fed into a simulator that es-
timates the drive’s energy consumption under different low-
power algorithms. In order to recognize workloads at run-
time, the system additionally monitors a set of I/O-related
parameters. Using techniques from machine learning, a set
of rules can be derived automatically which enable a power
management daemon to identify the current workload and
its optimum low-power algorithm on-line. Furthermore, the
user can train the system to consider application-specific
performance requirements. A prototype implementation for
Linux is presented and evaluated through experiments with
two different hard disks.

1. INTRODUCTION
For the area of mobile, battery-powered devices, hard disks
are still indispensable to meet the ever-increasing demand
for storage space. Hard disks provide higher capacities, but
unfortunately consume far more power and energy than al-
ternative storage media like flash memory [26]. Therefore,
power management becomes increasingly important in or-
der to avoid draining the batteries too fast. In the area of
high-performance computing and server clusters, the ever-
growing demand for storage capacity has created a different
problem, as the costs (in form of electricity bills) due to
energy consumption and cooling are increasing fast.

Hard disks feature several low power modes which switch
off parts of the electronics or mechanical components of the
drive (e. g., the spindle motor). Almost all drive models sup-
port the standby mode, which stops the spindle motor. En-
tering a low-power mode and resuming to the activate state
results in an overhead in time and energy which has to be
accounted for by power management algorithms. The time
spent in, e. g., standby mode has to exceed the break-even
time in order for the amount of energy saved to be higher

than the energy needed to perform the mode transitions.
This threshold is typically between 2 to 20 seconds for most
drives. Power management is usually focused on the standby
mode as it provides the highest energy savings. Therefore,
low-power algorithms are often referred to as “spin-down
policies”.

A multitude of spin-down policies has been proposed in the
literature. We argue that power management has to be task-
specific; their exists no algorithm that is optimal for every
workload. As an example, consider a multimedia player that
reads data from hard disk at constant intervals. If the pe-
riod exists the break-even time, the drive can be spun down
immediately after a disk access to maximize energy savings.
However, for irregular access patterns, a spin-down time-
out would be beneficial in order to avoid unnecessary mode
transitions.

In this paper, we present an automated approach to iden-
tify task-specific power management policies that achieve
maximum energy savings at runtime. The operating sys-
tem continuously records hard disk accesses and monitors
I/O related system parameters. Using the simulator envi-
ronment Dempsey, the system can autonomously test differ-
ent spin-down policies on the recorded trace files and derive
estimations for the hard disk’s energy consumption. This
way, the optimal policy for a specific access pattern is auto-
matically learned. In order to recognize access patterns, we
apply techniques from machine learning in order to derive a
classification algorithm that dynamically selects an appro-
priate spin-down algorithm at runtime. Spin-down policies
can degrade application performance as mode transitions
cause additional delays. If or to what degree these delays
have an influence on user experience depends on the specific
application and the expectations of the individual user. As a
consequence, we argue that the system cannot make optimal
trade-offs between energy savings and performance without
additional information from the user. The approach pre-
sented in this paper allows the user to specify performance
requirements of certain applications and train the system to
choose appropriate spin-down policies at runtime.

With the proposed infrastructure, the tedious job of devel-
oping “general purpose” power management algorithms that
behave correctly in every situation is made easier: depending
on the current task, the system automatically chooses one of
a set of policies that are optimized for a specific workload,
application scenario or computing platform.

Many power management algorithms found in today’s soft-
and hardware are based on heuristics and implicit assump-
tions. By observing the use of the device, these policies
dynamically decide when to switch between idle and low-
power modes. An example is Hitachi’s Adaptive Battery
Life Extender (ABLE) technology, which was introduced by
IBM in 1995 [10, 9]. ABLE estimates the time of the next
hard disk command based on the frequency and the inter-
val between I/O requests. This algorithm chooses the most
efficient low-power mode based on the expected energy sav-
ings and response delays. The user can configure a limit
on the response delay by specifying the deepest low-power
mode. However, application scenarios can exist for which
the built-in heuristics will reach wrong decisions or the im-
plicit assumptions may not apply. As a consequence, energy
can be wasted. In these cases, an adaptation, i. e., replace-
ment or modification of the heuristics is often not feasible.

A prototype implementation for Linux is presented and eval-
uated with trace files and energy measurements of two hard
disks—an IBM/Hitachi Microdrive (1GB) and a 2.5-inch
Travelstar 40 GN hard disk (20GB). The proposed approach
to adaptive power management is compared with the disks’
internal algorithm ABLE.

In the next section, we will discuss related work. Our ap-
proach will be presented in detail in section 3, followed by
an overview of the Linux implementation. In section 5, we
will discuss preliminary results.

2. RELATED WORK
2.1 Hard Disk Power Management
Spin-down policies can be grouped into on-line and off-line
policies. Off-line policies are assumed to be omniscient and
optimal, having access to complete information on past and
future hard disk accesses.

The non-adaptive device dependent time-out policy (DDT),
which uses the break-even time of the drive as the spin-down
time-out, is proven to achieve comparably high energy sav-
ings (see [18]), and its algorithm is fast, simple and storage-
efficient. DDT records the time of the last hard disk access
and periodically checks if the difference between the access
time and the current time exceeds the break-even time. If
this is the case, the hard disk is set to standby mode. It can
be proven that DDT will consume at most twice as much en-
ergy as the omniscient oracle policy. If the length of an idle
period as less than the break-even time, the hard disk will
be kept in idle mode. As a consequence, the same amount
of energy is consumed as under the oracle policy. If an idle
period exceeds the break-even time, the energy consumption
is at most twice as high as under oracle.

A multitude of spin down policies has been proposed in the
literature [4, 7, 13, 15, 17]. They all differ in their decisions
when to perform mode transitions. More sophisticated al-
gorithms try to predict the timing of future requests by ob-
serving the use of the device, dynamically adapt their deci-
sion rules, involve techniques from machine learning or rely
on statistical models. Lu et al. analyze and compare sev-
eral hard disk power management policies with respect to
the number of spin-downs, the accuracy of the prediction
(i. e., the number of incorrect shutdowns), interactive per-

formance and memory and computational requirements [18].
Policies based on time-index semi-Markov models, together
with DDT, achieve the best results over all categories.

Helmbold et al. present an approach to adaptive hard disk
power management based on a machine learning technique
[8]. Several experts representing different spin-down policies
periodically estimate the length of the next idle period. For
each expert, a weight is maintained which is increased if
its prediction matches the observed idle phase length. A
spin-down time-out is computed as a weighted average of all
experts.

While traditional power management schemes in operating
systems do not distinguish different sources of requests, Lu
et al. introduce an approach that uses information on con-
currently running tasks as an accurate system-level model
of requesters [16]. The utilization of the device and the pro-
cessor are monitored for each process. A device is shut down
if the overall utilization is low.

In this paper, approaches to modify the timing of disk ac-
cesses as proposed in [25] or by Papathanasiou and Scott
[20] are not addressed. Additional energy savings can be
achieved by grouping devices accesses, which results in in-
creased idle times and a reduced number of mode transitions.

2.2 Workload Characterization
Several research projects investigate methods to workload
classification.

Isci and Martonosi [12] present an approach to identify char-
acteristic program phases at runtime and derive predictions
on program behavior. Two key aspects of the presented
phase analysis are identified: the prediction of a single value,
e. g. the instructions per cycle or a compound value, and
the estimation of the duration of program phases (i. e., for
how long will the value prediction be valid). Short- and
long-term predictions and their applications are discussed.
Methods are introduced to apply duration predictions to dy-
namic power management in order to account for the extra
costs of transitions between operating modes or processor
frequency/voltage settings.

Dynamic, phase-based power management distinguishes dif-
ferent program phases at runtime [11]. Representative ex-
ecution regions can be observed and identified via differ-
ent features: control flow information (program counter sig-
natures of the executed instructions) or performance char-
acteristics (obtained from hardware counters). With live
power measurements, the energy consumption of representa-
tive program phases is determined. Phase-based approaches
allow to distinguish characteristic workloads at runtime and
optimize the power/performance trade-off. As the power
behavior is summarized by representative execution regions,
large-scale simulations can be avoided.

DFVS algorithms distinguish memory- and compute-
intensive workloads (or “on-chip”and“off-chip”accesses) us-
ing information from event monitoring counters [24, 3, 22].

A lot of research has been conducted in the area of work-
load characterization to better understand which functions

or operations are performance-critical, to optimize the per-
formance of systems and to ease capacity planning [21, 2].

The Program Counter Access Predictor dynamically learns
the access patterns of applications and predicts when a stor-
age device can be switched to a low-power mode to save en-
ergy [6]. The technique to use the program counter to derive
a prediction was originally applied to branch prediction for
high performance processors. Here, I/O operations are cor-
related to particular program behavior. If a long idle period
is detected the program counters following the last I/O op-
eration are recorded to be able to identify future occurrences
of this program phase before the idle interval starts.

3. TRAINING AND CLASSIFICATION
3.1 Principle of Operation
Our approach to adaptive power management is presented
in figure 1.

• A set of events related to hard disk I/O is monitored
by the operating system. Based on this data, features
are derived by computing averages, deviations etc. A
new trace file is started if the idle period exceeds a
specific threshold (10 minutes).

• First, the system has to be trained. Therefore, differ-
ent power management algorithms are integrated into
Dempsey. For each of these algorithms, the simulator
replays the disk accesses and derives the drive’s energy
consumption. This way, the policy which minimizes
the energy consumption of a specific trace file is au-
tomatically derived. The recorded features, together
with the spin-down policy, are fed into the training al-
gorithm. As a result, a classification tree is generated.

• Second, the classification tree is integrated into a
power management daemon. At runtime, this daemon
monitors I/O related system parameters, traverses the
classification tree and identifies the spin-down policy
which was found to be optimal for the current access
pattern. As a consequence, hard disk power manage-
ment is dynamically adapted with respect to the work-
load.

For the process of supervised learning, application runs
(training data) have to be classified by specifying the pre-
ferred power management policy. Our approach is illus-
trated in figure 2. This training process is automated with
Dempsey: hard disk access traces are fed into the simulator.
As a result, the energy consumption of the hard disk exe-
cuting each trace log is estimated. This process is repeated
several times with Dempsey executing different spin-down
policies in order to derive the policy that maximizes energy
savings for the specific workload. Alternatively, the user
can specify appropriate operating modes or spin-down poli-
cies for specific applications using a configuration file. With
this information, the training algorithm is invoked to com-
pute a Classification and Regression Tree (see next section),
representing the borders of the feature space. This tree is
incorporated into an on-line classification algorithm that dy-
namically selects the spin-down policy that is optimal for the

power
management

extraction
feature

preprocessing
&

data
acquisition

supervised
learning

of
f−

lin
e

or
 o

n−
lin

e

on
−

lin
e

run−time

classification

management

kernel

user−space

training
power

simulation
hard disk

Figure 1: Training & classification: principle of op-
eration

current workload. The whole process can be performed off-
line or on-line if the system is idling or on request by the
user.

3.2 Hard Disk Simulation
We integrated Dempsey by Zedlewski et al. [26] into our
power management infrastructure. Dempsey is an extension
to the DiskSim simulator (version 2.0) [5] to estimate the
energy consumed by executing a trace file of disk accesses.
Therefore, in addition to performance characteristics, the
power consumption of the operating modes of the specific
hard disk drive have to be known.

In order to extract the power characteristics of a specific
drive, Dempsey provides a bunch of C++ programs that
access a multimeter via the serial port. We are currently
adapting these programs to run with our own measure-
ment hardware. For the tests in this paper, we determined

classification
tree

hard disk
control

management
power

daemon

features

user

Dempsey
simulation

operating
system

traces
policies

training

Figure 2: Supervised learning

the power characteristics using manually triggered measure-
ments. An automated solution would definitely ease this
process.

Dempsey is rather fast: on a 2GHz machine, it takes ap-
proximately 100ms to estimate the energy consumption of
1000 s of disk accesses.

3.3 Classification and Regression Trees
Classification algorithms have to assign observed patterns
or features to classes. Classification and Regression Trees
(CART) introduced by Breiman et al. [1] base these deci-
sions on answers to binary questions. Questions are asked
to arbitrary elements of the feature vector, e. g.:

if (average number of disk reads per time window) < 5

The questions are ordered in a tree structure. The first
question forms the root node. Each answer to this question
represents an edge to the next level of nodes and questions.
The leafs of the tree represent the classes.

The tree is traversed from the root in order to classify a fea-
ture vector. The answer to a question directs the classifica-
tion algorithm to the next sub tree. Questions are processed
until a leaf, representing a class, is reached.

A quality factor is needed to define the order of questions.
We chose the impurity of a set, defined by [14]: a set is pure
if all elements belong to the same class. Impurity is maximal
for uniformly distributed classes. A measure for purity is the
entropy of sets according to [19]:

H(S) =−∑
i

P(i|S) log2 P(i|S)

This equation is only valid for uniform costs of classification
errors. P(i|S) is the percentage of class i in set S.

The tree is built as follows. All feature vectors are assigned
to the root of the tree. Then the best question according to
the quality factor is chosen. This question is used for split-
ting the set into two parts of maximal purity. Recursively,
for each of the resulting new nodes, the best question is
identified and the subset, again, is split into two parts. This
process continues until all elements of each node belong to
the same class or until the improvement of the error rate or
the number of elements per node is below some threshold.
A positive side-effect of taking the best question first and
then successively the best questions for each subset is that
features are already ordered by their significance: features
used near the root are superior to features used at deeper
levels.

3.4 On-line Classification
Based on the events monitored by the kernel, several dif-
ferent features can be derived, using averages, standard de-
viations and differences over a sliding time window of 10
seconds. In our implementation, 12 different events are cap-
tured by the operating system, resulting in a large number
of features. Only a subset of all possible features is used for
classification in order to avoid the effect of over-training and

Number of disk accesses
Number of disk reads
Number of disk writes
Amount of data read or written
Amount of data read (bytes)
Amount of data written (bytes)
Number of syscall invocations to read or write data
Number of syscall invocations to read data
Number of syscall invocations to write data
Average time between two hard disk accesses
Average time between two read operations
Average time between two write operations

Table 1: Features used for classification

to keep the overhead of a runtime classification to a reason-
able level. Using the training algorithm, the most significant
features—the features that lead to the highest purity of each
subset—are automatically identified.

Table 1 shows the subset of features used for classification
of the hard disk spin-down policy. The numbers of disk
accesses and the amount of data read or written are per
time window, i. e., the differences between the first and the
last value in the sliding time window are computed.

The time to react to changed resource usage, that is the
time the system needs to recognize the start, end or switch
to another workload, is influenced by the length of the time
window over which the features are computed. A short win-
dow of only a few seconds results in a fast speed of adap-
tation of the power management algorithm. In contrast to
that, short variations in the hard disk access pattern are
smoothed out over larger time windows and the low-power
policy gains more stability. For our tests, we chose a value
of 10 s which turned out to be a good compromise between
these two diametrical effects.

Classification and Regression Trees are implemented as a
sequence of if-statements, comparing the processed features
with thresholds representing class borders. The if-cascade
maps the features to classes.

4. IMPLEMENTATION
Altogether, 12 events from different levels in the operat-
ing system are distinguished. We added hooks to the sys-
tem calls that read data from or write data to the hard
disk (read() and write() with the variants readv() and
writev()). In addition to that, the time between I/O re-
quests is recorded.

The amount of data read and written and the number of
disk accesses is captured in the block device driver switch
(generic_make_request()). This information is also used
to create disk access traces.

The kernel captures I/O-related information in ring buffers.
A system call is provided to retrieve this data from the ker-
nel, flushing the ring buffer. In section 5.4, we discuss an
extended kernel service and interface that allows to distin-
guish hard disk access patterns of different tasks running

concurrently. A user land daemon is responsible for fur-
ther processing of the collected events, replaying hard disk
accesses in the simulator, deriving features and classifying
workloads. Data is retrieved from the kernel every 100ms.
Access logs are maintained in files on a ramdisk. These logs
are stored in the format“time device sector size flags”, which
is also used by DiskSim.

Dempsey computes the energy consumption of a hard disk
through replaying a disk access log in the simulator DiskSim.
Spin-down policies can be implemented in the module
disksim_power. Policies with fixed spin-down time-outs are
already supported. As on-going work, we are currently im-
plementing more sophisticated policies, e. g., the adaptive
learning tree algorithm proposed by Lu and De Micheli [18].
The actual spin-down policy to be used by Dempsey can be
specified through a command line parameter. A Perl script
was written that invokes Dempsey to simulate a set of trace
files under different power management policies. This pro-
gram records the output of the simulator (the total energy
consumption), identifies the policy which maximizes energy
savings for a given disk trace and creates configuration files
for the training algorithm.

Next, the training algorithm is invoked. These routines
are based on the Edinburgh Speech Tools Library, a library
of C++ classes and utility programs frequently used in
speech recognition software1. Classification and Regres-
sion Trees are implemented as a sequence of if-statements,
comparing the processed features with thresholds represent-
ing class borders. The if-cascade maps the features to
classes. The resulting classification and regression tree is
converted into Perl code and integrated into another Perl
script (classify.pl). This program is used for runtime clas-
sification and power management: it periodically queries the
kernel to retrieve I/O-related parameters, computes the fea-
tures used for classification, invokes the classification tree
and activates the identified spin-down policy. The policies
used in our experiments are implemented in the IDE device
driver and can be selected through the /proc filesystem.

5. EVALUATION
5.1 Spin-Down Policies
As a first approach, we implemented a group of simple power
management policies with fixed time-outs ranging from 0 to
2 seconds. Dempsey already supports this type of spin-down
policies.

The Microdrive is connected to a PC via an extender card to
measure the power consumption. The extender card allows
the isolation of the power buses, so we attached a 4-terminal
precision resistor of 100mOhm to the 5V supply line. Anal-
ogously, a 50mOhm resistor is put in the power lines to the
Travelstar hard disk. The voltage drop at the sense resistor
was measured with an A/D-converter at 5000 samples per
second and a resolution of 256 steps. Tables 2 and 3 list the
energy characteristics of the hard disks used in our tests.

Figures 3 and 4 show the energy consumption of different
tasks under a variety of spin-down policies. Besides tests
with disabled power management (“always-idle”) and the

1see http://www.cstr.ed.ac.uk/projects/speech_tools

mode power
performance idle 839mW
low-power idle 333mW
standby 91mW

transition energy time
standby → performance idle 721mJ 792ms
performance idle → standby 360mJ 330ms

break-even time = 1.94 s

Table 2: Energy characteristics of the IBM/Hitachi
Microdrive (1GB); 5V power supply.

mode power
performance idle 1.59W
low-power idle 730mW
standby 220mW

transition energy time
standby → performance idle 3336mJ 1305ms
performance idle → standby 792mJ 338ms

break-even time = 2.75 s

Table 3: Energy characteristics of the IBM/Hitachi
Travelstar 40GN (20GB)

internal, adaptive algorithm, we evaluated fixed spin-down
policies with different time-outs: 0 s, i. e., switch to standby
mode immediately after a disk access, 1 s and 2 s. For all
tests with the Microdrive, the energy consumption increases
with time-outs of 3 s or longer (i. e., time-outs that exceed
the break-even time). Analogously, energy savings cannot be
achieved for the Travelstar drive with time-outs longer than
3 s. The drive’s built-in, adaptive power management pol-
icy (“ABLE”) was configured to minimize power consump-
tion by setting it to the most aggressive level. The results
demonstrate that even in this mode, the policy is less ef-
ficient (regarding energy savings) than the fixed time-out
rules for almost all workloads. In the following, we report
on results of test runs on the Microdrive (figure 3).

First, we tested a Linux kernel compile job. We executed
gcc 3.4 on the modified kernel of our prototype implementa-
tion (version 2.6.4). It can be seen that the always-idle pol-
icy achieves the highest energy savings. Power management
has an extreme effect when running gcc with the immedi-
ate spin-down policy. In this case, the runtime is increased
from 452 s to over 1060 s. The reason for this dramatic slow-
down is that hard disk accesses arrive at intervals of less
than 1 s, while the disk needs more time to spin down and
up again. A lot of time is spent waiting for the hard disk to
become active. As a consequence, the execution time of the
compilation process is increased. The power consumption
during the first 25 seconds is shown in figure 5: after the
startup sequence, the disk switches frequently between idle
and standby mode. If the internal, adaptive power man-
agement algorithm is active, the disk spins down only once
during the whole kernel compile run. With a time-out of 2 s,
the number of mode transitions is increased to eight and up
to 14 if the time-out is set to 1 second.

gcc mpg123 gthumb cello file manager
0

100

200

300

400

500

en
er

gy
 c

on
su

m
pt

io
n

[J
]

idle
0s
1s
2s
ABLE

891.1 J

Figure 3: Energy consumption of different tests on
a 1GB Microdrive hard disk.

gcc mpg123 gthumb cello file manager
0

200

400

600

800

en
er

gy
 c

on
su

m
pt

io
n

[J
]

idle
0s
1s
2s
3s
ABLE

1639.5 J

Figure 4: Energy consumption of different tests on
a 20GB Travelstar hard disk.

Next, we recorded the energy consumption of mpg123 play-
ing a MP3 file (128 kbit/s) from hard disk. For this work-
load, the immediate spin-down policy achieves maximum
energy savings. The execution time of this test is 536 s inde-
pendent of the spin-down policy. There is no impact of hard
disk power management on the application quality, i. e., the
audio playback is not delayed.

Furthermore, we ran the image viewer gthumb on a directory
with 140 pictures from a digital camera. These pictures were
viewed in slide show mode with a period of 3 seconds. In
addition to that, we recorded the hard disk accesses from
a user session of 10 minutes. The user worked on different
directories using the file manager nautilus. In particular,
PDF files were viewed, text documents edited and file access
rights changed. For these tests, the total energy consump-
tion was minimized when running a spin-down policy with
a time-out of 1 s.

Finally, the first 10 minutes of one of the cello trace files
from HP Labs (April 18th, 1992) were replayed [23]. These
traces were also used in the evaluation of Dempsey. Again,

0 5 10 15 20 25
time [s]

0

0,5

1

1,5

2

po
w

er
 [W

]

Figure 5: Power consumption of the Microdrive dur-
ing a kernel compile run. The first 25 seconds are
shown.

a fixed time-out of 1 s outperforms other spin-down policies.

For some tests on the Travelstar hard disk, other optimal
spin-down policies were identified than for the Microdrive
(see figure 4). For instance, the adaptive policy ABLE min-
imizes total energy consumption when running gthumb in
slideshow mode.

5.2 Runtime Classification
In addition to the trace files of the five application scenarios
discussed above, a dummy workload with no disk accesses
at all and the disk’s own adaptive algorithm (ABLE) as
the preferred spin-down policy was used for training. The
resulting classification tree that was automatically generated
for the Microdrive is shown in figure 6. These rules are
exported as a Perl module which can easily be incorporated
into the power management daemon in user space.

We repeated the tests and recorded the classification results
of the power management daemon. The classification was
also evaluated with variations of the tests: gcc was run on
the Dempsey source code instead of the Linux kernel, dif-
ferent MP3 files were played with mpg123 and gthumb was
tested with different slide show periods. If a new application
is started, the start-up activity in the first few seconds dif-
fers from the typical runtime “behavior” of this application.
In addition to that, it takes some time until the sliding time
window of the classification algorithm is filled with charac-
teristic values. As a consequence, the first 10 s of most tests
were classified wrongly. In 93% of the time, the workloads
were identified correctly. The best results were obtained for
the kernel compile run and the audio playback with less than
3% wrong classifications.

5.3 User-Guided Power Management
Hard disk power management can cause additional delays
due to the overhead of accelerating the spindle motor and
reactivating the drive. Depending on the application, there
can be an effect on the execution time or other quality-of-
service aspects. For instance, we did not experience any
influence of spin-down policies on the playback of MP3 files.
In contrast to that, considerable delays were observed for
some interactive tasks. For instance, the overhead of spin-
up operations when working with the file manager nautilus
can irritate the user. It is obvious that performance require-
ments depend on the specific application and the user and
cannot be derived by the operating system automatically.

This issue is addressed by the proposed solution: The classi-

i f (time between read a c c e s s e s < 0 .96 s)
i f (time between I /O ac c e s s e s < 0 .66 s)

i f (number o f I /O s y s c a l l s < 1329)
i f (number o f I /O ac e s s e s < 87)

c l a s s i f y (”ABLE”)
else

c l a s s i f y (”always− i d l e ”)
endif

else
i f (kbytes read < 5188)

c l a s s i f y (”always− i d l e ”)
else

c l a s s i f y (”time−out=1s ”)
endif

endif
else

i f (number o f read a c c e s s e s < 981)
c l a s s i f y (”time−out=0s ”)

else
c l a s s i f y (”always− i d l e ”)

endif
endif

else
i f (number o f read a c c e s s e s < 484)

c l a s s i f y (”time−out=1s ”)
else

i f (time between wr i t e a c c e s s e s
< 1 .41 s)
c l a s s i f y (”always− i d l e ”)

else
c l a s s i f y (”time−out=1s ”)

endif
endif

endif

Figure 6: Classification and Regression Tree for the
Microdrive hard disk. All parameters are per time
window (10 s).

fication of the recorded training data can also be performed
by the user. Therefore, appropriate spin-down policies or,
alternatively, a limit on the performance degradation can be
specified in a configuration file which is read by the train-
ing algorithm. This way, user- and application-specific pow-
er/performance trade-offs can be made at runtime.

To test this approach, “always-idle”was specified as the pre-
ferred spin-down policy for the file manager test and the ker-
nel compile run, while the immediate spin-down was config-
ured for mpg123 and a fixed time-out of 1 s for the slideshow.
Again, an error rate of less than 10% resulted for the clas-
sification of the test cases.

5.4 Applications Running in Parallel
We extended the implementation to account statistics on
hard disk accesses per process. Therefore, additional fields
were added to the task structure. If a hard disk access is ob-
served, the statistics of the current process are updated. The
kernel interface was extended in order to allow the user land
daemon to query the process ids of the tasks that issue hard

disk requests and retrieve statistics on disk accesses of a spe-
cific process. This way, an appropriate spin-down policy can
be identified independently for each process that operates on
data on the hard disk. If different, optimal spin-down poli-
cies are determined, the power management daemon has to
choose one of them that is appropriate for all applications
currently active. A policy should not be activated if it in-
creases the execution time and energy consumption of one
of the tasks significantly. The simple policies used in our
tests can be ordered with respect to their time-outs.

In order to evaluate the workload classification of a mixture
of access patterns, we repeated the gcc compile run of the
Linux kernel in parallel to the playback of an MP3 file from
hard disk using mpg123. Except for the first few seconds, the
compile job was correctly identified throughout the whole
test run of 9 minutes. For short periods of time, the audio
player was classified as gcc, resulting in an error rate of 4.8%
for this process. The two processes probably influence the
hard disk access patterns of each other. However, the clas-
sification was sufficiently stable. While a spin-down policy
achieves energy savings when running mpg123, the hard disk
should be set to always-idle when executing the compile job.
Therefore, the power management daemon left the hard disk
in idle mode throughout the whole test run. As soon as the
Linux kernel was built, the policy that switches to standby
mode immediately after a disk access was activated.

6. CONCLUSION
In this paper, an approach to adaptive, self-learning hard
disk power management is presented. The operating sys-
tem learns automatically which spin-down policy achieves
maximum energy savings for a specific disk access pattern.
Techniques from machine learning enable the system to de-
rive a set of rules in order to identify workloads and their
optimum low-power algorithm at runtime. A prototype im-
plementation for the Linux kernel is presented. Prelimi-
nary results demonstrate that a runtime classification of the
hard disk workload is feasible. We are currently applying
this approach to power management of other system com-
ponents like the wireless network interface and the CPU. As
future work, more sophisticated, application-specific spin-
down policies can be examined that reorder or group hard
disk operations.

7. ACKNOWLEDGEMENTS
The anonymous reviewers helped us to improve this paper
with their useful feedback.

8. REFERENCES
[1] L. Breiman, J. Friedman, R. Olshen, and C. J. Stone.

Classification and Regression Trees. Wadsworth,
Monterey, 1984.

[2] M. Calzarossa, L. Massari, and D. Tessera. Workload
characterization issues and methodologies. In
G. Haring, C. Lindemann, and M. Reiser, editors,
Performance Evaluation: Origins and Directions,
pages 459–482. Springer-Verlag, 2000.

[3] K. Choi, R. Soma, and M. Pedram. Dynamic voltage
and frequency scaling based on workload
decomposition. In Proceedings of the International
Symposium on Low-Power Electronics and Design
(ISLPED’04), August 2004.

[4] F. Douglis, P. Krishnan, and B. Bershad. Adaptive
disk spindown policies for mobile computers. In
Proceedings of the Second USENIX Symposium on
Mobile and Location Independent Computing, Apr
1995.

[5] G. Ganger, B. Worthington, and Y. Patt. The
DiskSim simulation environment version 2.0 reference
manual, December 1999.

[6] C. Gniady, A. R. Butt, Y. C. Hu, and Y.-H. Lu.
Program counter-based prediction techniques for
dynamic power management. IEEE Transactions on
Computers, 55(6):641–658, June 2006.

[7] P. Greenawalt. Modeling power management for hard
disks. In Proceedings of the Symposium on Modeling
and Simulation of Computer and Telecommunication
Systems, January 1994.

[8] D. P. Helmbold, D. D. E. Long, and B. Sherrod. A
dynamic disk spin-down technique for mobile
computing. In Proceedings of the Second Annual
International Conference on Mobile Computing and
Networking (MOBICOM’96), pages 130–142, 1996.

[9] W. F. Heybruck. Enhanced adaptive battery life
extender (ABLE). White Paper. Hitachi Global
Storage Technologies, November 2005.

[10] IBM. Adaptive power management for mobile hard
drives. White Paper, January 99.

[11] C. Isci and M. Martonosi. Phase characterization for
power: Evaluating control-flow-based and
event-counter-based techniques. In Proceedings of the
Twelfth International Symposium on
High-Performance Computer Architecture (HPCA’06),
February 2006.

[12] C. Isci, M. Martonosi, and A. Buyuktosunoglu.
Long-term workload phases: Duration predictions and
applications applications to dvfs. IEEE Micro,
25(5):39–51, September 2005.

[13] P. Krishnan, P. Lon, and J. S. Vitter. Adaptive disk
spindown via optimal rent-to-buy in probabilistic
environments. Algorithmica, 23(1):31–56, 1999.

[14] R. Kuhn. Keyword Classification Trees for Speech
Understanding Systems. PhD thesis, School of
Computer Science, McGill University, Montreal, 1993.

[15] K. Li, R. Kumpf, P. Horton, and T. Anderson. A
quantitative analysis of disk drive power management
in portable computers. In Proceedings of the USENIX
Winter 1994 Technical Conference, January 1994.

[16] Y.-H. Lu, L. Benini, and G. D. Micheli.
Operating-system directed power reduction. In
Proceedings of the International Symposium on
Low-Power Electronics and Design (ISLPED’00),
pages 37–42, July 2000.

[17] Y.-H. Lu and G. D. Micheli. Adaptive hard disk power
management on personal computers. In Proceedings of
the IEEE Great Lakes Symposium, pages 50–53,
March 1999.

[18] Y.-H. Lu and G. D. Micheli. Comparing system-level
power management policies. IEEE Design & Test of
Computers special issue on Dynamic Power
Management of Electronic Systems, pages 10–19,
March/April 2001.

[19] D. M. Magerman. Natural Language Parsing as
Statistical Pattern Recognition. PhD thesis, Stanford
University, February 1994.

[20] A. E. Papathanasiou and M. L. Scott. Energy efficient
prefetching and caching. In Proceedings of the 2004
USENIX Annual Technical Conference, pages
255–268, June 2004.

[21] O. I. Pentakalos, D. A. Menascé, and Y. Yesha.
Automated clustering-based workload
characterization. In Proceedings of the 5th NASA
Goddard Mass Storage Systems and Technologies
Conference, September 1996.

[22] C. Poellabauer, L. Singleton, and K. Schwan.
Feedback-based dynamic frequency scaling for
memory-bound real-time applications. In Proceedings
of the Eleventh Real-Time and Embedded Technology
and Applications Symposium (RTAS’05), March 2005.

[23] C. Ruemmler and J. Wilkes. UNIX disk access
patterns. In Proceedings of the Winter USENIX
Conference, pages 405–420, January 1993.

[24] A. Weissel and F. Bellosa. Process cruise control:
Event-driven clock scaling for dynamic power
management. In Proceedings of the International
Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES’02), October 2002.

[25] A. Weissel, B. Beutel, and F. Bellosa. Cooperative
I/O: A novel I/O semantics for energy-aware
applications. In Proceedings of the Fifth Symposium on
Operating System Design and Implementation
OSDI’2002, December 2002.

[26] F. Zheng, N. Garg, S. Sobti, C. Zhang, R. Joseph,
A. Krishnamurthy, and R. Wang. Considering the
energy consumption of mobile storage alternatives. In
Proceedings of the 11th International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS’03), October
2003.

	Introduction
	Related Work
	Hard Disk Power Management
	Workload Characterization

	Training and Classification
	Principle of Operation
	Hard Disk Simulation
	Classification and Regression Trees
	On-line Classification

	Implementation
	Evaluation
	Spin-Down Policies
	Runtime Classification
	User-Guided Power Management
	Applications Running in Parallel

	Conclusion
	Acknowledgements
	References

