Automated Object Layout Optimization
In a Portable Microkernel

Uwe Dannowski
System Architecture Group, Universitat Karlsruhe (THgr@any

Abstract—In a portable microkernel, the increasing diversity This approach solves problems regarding code duplication
of target configurations can lead to software complexity prb- and code selection. However, the language implementafion o
lems. Insufficiencies of current kernel programming techngues j,haritance imposes high run-time overheads that are epéacc
manifest in excessive preprocessor use for code selectiémcode
duplication, and in suboptimal performance. Object-orierted able in a m|crokerqel. Whereas in a simple glass, the o_rder of
programming can solve the portability problems. However, he data members (or fields) in the class declaration deterrtiiges
language implementation of inheritance often enforces a nmory layout of the object [7], the object memory layout of classes
layout of objects that is governed by inheritance relationsnot ysing inheritance is governed by the inheritance relakigms
by access patterns, resulting in suboptimal cache usage ohe 4.4 ynnamed pointers (vtable pointers) may be added to the
kernel’s critical path. . ; . . .

In this paper we present an automated approach to eliminatig ,ObJECt — both in §upport of dynamic polymorphlsm. Figure 1
inheritance-induced overheads in selected performanceitical illustrates the object memory representation of a C++ class

data structures. We combine class flattening and profile-gaied using inheritance.
data member reordering and heavily rely on microkernel char
acteristics. Evaluation in the L4 microkernel indicates that we

. 1
can use fine-grained class hierarchies in the kernel at no cbs =
and still optimize for the target system, allowing for portable yet s o | * =
efficient microkernels. cuptr. BL = OYE0ABBZe
- tr.B2 = 0x8048840
|. INTRODUCTION <= b i
c =12 Il

Microkernels can and must be fast. A successful micro-

kernel must have minimal cache footprint and execution tlrﬁ@ A class hierarchy (b) The object layout of C. Addresses increase
tg a virtual base by four per line. Data members are located in

[11]. Any unnecessary overhead reduces the performance;Qfs gach class con- inseparable subobjects. Three vtable pointers are
the system on top of the microkernel. At the same timgjins an int data added, inflating the object from 16 to 28 bytes.

microkernels, at core of the system, must be maintainalde gRemPer-
portable — traditionally considered a contradiction to fingt Fig. 1. Object memory representation in C++ (gcc)
objective [10].

The diversity of target configurations is the root cause of The superclassed, B1, and B2 form subobjects in the
portability problems. Modularity is the key to configuratyil object of the inheriting clas€’, allowing to treat an object of
and thus to portability: Code that is specific to one cormlass C as an object of a superclass. To call the appropriate
figuration or a group of configurations must be separatedrsion of a virtual function for an object without statiyal
from generic code. Placed in different modules they akamowing its exact type, some sort of run-time type identifier
combined when building for the particular configuration. Wes required. The compiler therefore adds a pointer to a table
followed this principle in our initial implementation of ¢h of function pointers, the virtual function table, to eachjem
L4Ka::Pistachio microkernel [17]. We identified configuoat and invokes the function via a double indirection [16].
dimensions, such as the architecture, the processor familBoth, the inheritance-dictated placement of data members
member, the platform, the amount of parallelism, or even tlad the introduction of vtable pointers take away control
kernel API, and let the build system choose the appropriadeer the memory layout from the programmer, resulting in
fragments for the particular point in the configuration spacpoor cache usage on the kernel's critical path. The optimal
However, we found that insufficiencies of current kernel-prdayout of data structures accessed on the kernel’s cripiati
gramming techniques lead to excessive preprocessor usedepends on many factors, such as the architecture [10], [13]
code selection, code duplication, or suboptimal perforrean the particular choice of algorithms in the kernel, and the

Object-oriented programming strongly encourages modwerkload atop the kernel.
larity [4]. With inheritance, classes can be constructenfr Dynamic polymorphism is, however, not necessary when
other classes, enabling fine-grained combination and stepwinheritance is solely used as a tool to efficiently compose
refinement of functionality. In earlier work [6] we showectlasses. This is exactly the case for the way we proposed to
how inheritance can be used to construct classes for kernehstruct kernel objects from a set of configuration-specifi
objects from configuration-specific super-classes to managuperclasses. Code using such a class makes no assumptions
the configuration diversity in the microkernel. about how the class was constructed, and inheritance can be

22

safely removed without changing the interface to the class.shadowing data members in a derived class hide their irgderit

In this paper we present an automated approach to elimersions, so that shadowed data members and overridden
nating inheritance-induced overheads in selected pedgioca+ functions become inaccessible and can simply be removed.
critical kernel data structures. We combine class flatgnin Class flattening can be applied as a transparent optimizatio
and profile-guided data member reordering, and heavily reduch that the code using the class does not need to be modified.
on microkernel characteristics to customize the optinvrat The conditions that enable transparent class flattening are
process. Class flattening removes inheritance, turnsabirtuliscussed in [14].
functions into normal functions, and prepares the class for
data member reordering. Member reordering arranges data
members in the class declaration for optimal cache usageData member reordering attempts to optimize the memory
Profiling determines data member access patterns on lagout of compound objects (records, structs, classegjrdec
kernel's critical path under workload. We integrate flaitbgry ing to certain criteria by manipulating the location of data
profiling, and member reordering into the kernel build psscemembers inside the binary object representation. Type-saf

IIl. DATA MEMBER REORDERING

as illustrated in Figure 2. languages abstract from the physical storage layout ane lea
placement of members to the compiler or run-time system. All
Modular layout optimizations are thus automatically valid withpest
Sotiree code | weave 'c":r"gl:tuf:t‘fg: to program correctness. In contrast, type-unsafe language
flatten expose the locations of members and allow (limited) control
e—— reorder [Optimized of member placement, for example by order of appearance in
source code sourcecode | the compound type declaration. Compound types that are used
buid Member build to represent data structures with a predefined layout such as
offsets . .
device registers, hardware-walked tables, API data types,
Binary O%ti‘n";‘rzye" structured storage in files must not have their data members
Ee— reordered. However, when code makes no assumption about
(sm:‘d?ate) access trace the internal organization of a type, program correctnesmts

. - . . affected by reordering members. In such cases, data member
Fig. 2. The optimization embedded into the kernel build pesc A kernel . . .
with flattened classes is built and profiled to collect acqestterns on the reorde”_ng IS transparent to the code using the type and can
critical path. In a second step, members in the flattenedsesaare reordered be applied automatically.
for optimal cache usage. Reordering can even be applied automatically in the pres-

]] ence of programmer-written assembly code that references
Class flattening and data member reordering are WhQygjects defined in the high-level language, as it is often

program transformations. We implement them as source-{gynd in kernels, for example in inline assembly fragments
source transformations that replace the preprocessigg §2 and entry and exit stubs of exception handlers and system
the usual per-file preprocess-compile-assemble buildessoc ¢4)is. Such assembly code can automatically adapt to changi
Not integrating both thgse_transformations into the Com'pilolbject layouts when it uses symbolic instead of literal etfis
has the benefit of compiler independence, and does not eeqyy address fields in objects. The respective symbols can be
a custom-built toolchain for using them. automatically derived from the high-level object definitiat

In previous work [6], we have already demonstrated hoyjig time, appear as constant displacements in the asgembl
class flattening can be successfully used to eliminate t8gde and thus will cause no run-time overhead.
overhead of virtual function calls in a microkernel. Due t0 pata member reordering maximizes spatial locality of com-
space constraints, we will omit a detailed discussion oflapound data structures larger than a cache block in order to
flattening in this paper and focus on field reordering anghtimize cache behavior. Memory reference traces provide
profiling in the context of a portable microkernel. information about a program’s memory access behavior. Data

The remainder of this paper is structured as follows: Segrembers accessed contemporaneously are placed close to-
tion Il briefly introduces class flattening. In Section Il Wegether to minimize the number of cache blocks used.
discuss strategies for data member reordering in micrekern The mapping of data members to cache blocks depends on
objects. Section IV presents a profiling approach tailored gye |ocation of the member in the object and the location of
extracting access patterns for the critical path from therosi he opject relative to the cache block boundaries. Allocati
kernel. In Section V we evaluate our optimization approacfpjects at cache block boundaries or at a fixed offset to them
Section VI discusses related work and Section VII concludegiows to minimize the number of cache blocks used. For
arbitrarily allocated objects, the worst case cache faatpr
after reordering is one cache block more than the minimum.

Class flattening produces a single flat class from a clafhe performance gained by aligning objects at cache block
hierarchy by copying all inherited members from base cksdaoundaries may well make up for the potential waste of mem-
into the most derived class and removing the inheritanae rebry due to fragmentation. Furthermore, alignment resomst
tionship. Following standard lookup, overriding functioand of data members may already dictate minimum alignment of a

Il. TRANSPARENTCLASS FLATTENING

23

compound object. Also, when an object is known to be alignedmpletely unrelated code. While not beneficial for the enir
at its size (or the next higher power of two), an object’s bagperation, minimizing the number of dirty cache lines may
address can be derived by masking a pointer to an arbitramyprove overall performance.

location inside the object. A minimum number of dirty lines can be achieved by pack-

The remainder of this section describes strategies driviimgy the written fields closely together within the refereshce
data member reordering that have not been considered figyjds and aligning them on a cache line boundary.
previous work. These strategies may lead to higher opti-3) Field Alignment: Proper alignment of fields can be a
mization potential or can simplify the reordering algomith matter of performance (penalties due to cache-line splits)
Depending on hardware configuration and usage scenarios, worse, a matter of correctness (for example, unaligned
not all strategies are necessarily applicable at the sam® ti accesses with LDR and STR instructions on ARM).
Strategies may also, at least partially, contradict eabbrott However, strict natural alignment of fields is unnecessary a
is left to the actual reordering algorithm to choose or fitime long as all accesses are aligned. For example, a 64-bitenteg
them. can safely be 4-byte aligned when it is only ever accessed

1) Object Roles:Based on the observation that objects of m 32-bit words. The requirement for natural alignment can
class show similar access behavior [5], previous work dogés e relaxed when the generated cod&nswnto be safe, i.e.
distinguish objects of the same class when reordering fieldy configuring the compiler to not use so-called multimedia
This certainly holds true for programs that operate on aelar@istructions. Operating systems kernels rarely and marok
number of objects such as nodes in a tree. A microkernegls never contain such complex instructions because of the
however, typically manipulates only very few objects dgrinextremely expensive management of the associated hardware
its short, performance-critical operations. state.

Objects of the same class that are referenced during arRelaxed alignment requirements for large fields increase
operation may actually expose very different access pettethe flexibility in placing these fields and may simplify the
for their fields. In the example shown in Figure 3, all fields gflacement algorithm or allow a higher level of optimization
a class worth two cache lines are accessed in a first object, X,
whereas only half of the fields (i.e., worth one cache line) ar
accessed in a second object, Y. Ignoring differences insacce Reordering fields for optimal cache usage requires precise
characteristics of different objects may result in four keac information about field accesses. The actual code that seses
lines referenced for both objects (Figure 3(a)). The mimimufields is not very interesting; the memory accesses it gener-
of three cache lines can be achieved by clustering the fielkes carry the required information. To drive optimizatas
accessed in the second object into one cache line within gescribed in the previous section, field access informatiost
cluster of fields accessed in the first object (Figure 3(b)). include the order in which fields are accessed, the access mod
(read or write), and the access width.

Profiling the actual kernel with workload on top has a
major advantage over analyzing the kernel source code: the
programming language (or languages), compiler, optiriurat
level, etc. determine the resulting kernel and its datacgiras,
but they are of no concern for the process of gathering field
@) access information. Also, the set of fields that are acc_:ermsed

the critical path can be a rather small subset of the fields tha
Fig. 3. Two objects,X andY’, of the same class are accessed with differercan possibly be accessed by the kernel source.
T e B oy oy T Various methods for analyzing a running program are
objects can be minimized by field reordering if the objecistess pattens MOre or less suitable for recording memory references of
are considered separately (b). kernel code on the critical path: Statistical or event-dase

sampling easily identifies hot paths, but requires insioact

Although all objects of a class share one internal layowind register analysis to infer the target of a memory oparati
considering access patterns to different objects of theesamstrumentation provides exact information, but — like sam
class separately may yield a higher optimization potential pling — requires substantial infrastructure: Code for liogg

2) Field Access ModeThe set of fields of a data structureand extracting the data from the kernel reside in (and psjllut
that are referenced during an operation can be divided irttee space the target code runs in. In contrast, an extensible
the two subsets of fields that are only read and fields that dnd system simulator can execute the unmodified targetddern
written. Fields that are read as well as written belong to tlaad its workload without any infrastructure to the system to
written set. be profiled. A simulator extension that collects and exports

Assuming a write-back cache, the number of cache linpsofiling data is likely to be portable across various sirtiata
marked dirty by an operation has no direct influence on thigrgets.
operation’s execution time (assuming no self-interfeecoc- A slowdown of the target system due to run-time overhead
curs.) Instead, deferred write-back of dirty lines will pdime of profiling may result in false identification of critical {hes.

IV. DETERMINING FIELD ACCESSPATTERNS

Sl |lo|ola
HKlowlo|lo|a
< |

24

For example, a network server as workload may experientese classes. Addresses of statically allocated kernettsb
massive packet losses and behave differently, markingr otlage known at kernel build time. Addresses of dynamically
paths as critical. However, these problems can be sid@etepallocated objects can only be determined at run-time, byt ma
by replacing the actual workload with a workload simulatdoe easy to track in certain cases. For example, almost all L4
causing a representative mix of kernel activities. kernels store TCBs in a linear virtual array. At the time of
i . writing, only one L4 kernel [13] allocates thread contraldits

A. Microkemel Specifics dynamically from the kernel heap. However, it then storesrth

Complete system address traces are huge and require afresses in a statically allocated table. Memory refe®nc
nificant amounts of time for postprocessing. Often only a fewan be filtered by address range immediately to further aealy
seconds of program execution result in gigabytes of traoaly references to objects of target classes.
data. Field access information can be extracted from a full _) _)
address trace. However, customized tracing targeted at hePrecise Tracing for Field Reordering
specific problem of collecting field access information for Complete memory reference traces of programs are precise
field reordering in a microkernel can significantly reduce thin the sense that they do not omit information. However, they
amount of trace data and the required processing. often contain large amounts of useless information. Inremt

The key to reducing trace data is to aggressively customiteld affinity graphs [5] and member transition graphs [9]
the tracing process by incorporating knowledge about the tatore only pairwise temporal information about field acesss
get. Part of this knowledge is inherent in the way microkkrnePrior research has shown that such pairwise information is
are designed and used, part is available in the kernel soutiteoretically insufficient for finding an optimal field planent
and/or configuration information. [15], and has suggested to keep complete traces when the

1) Processor ModeKernel objects store state informatiorsequence of memory references is short.
pertaining to API objects or kernel-internal resource nggaa The remainder of this section describes a tracing approach
ment. Kernel objects are accessed by kernel code. Code floatcollecting field access information to drive field rearidg
accesses kernel objects is executing in the processovi prfor selected target classes in a microkernel. The tracicigitfa
leged mode. Consequently, for collecting access infonatiperforms aggressive online compression of memory referenc
to kernel object fields, the tracing facility needs to cossidtrace data to customize tracing by exploiting the microkérn
memory accesses only while the processor is executing specifics described above. For static customization, Hung
privileged mode. facility uses information from various sources: definison

2) Path Length: Microkernel invocations can be thoughthe kernel source, addresses from the kernel binary’s symbo
of as separate, short runs of the program “microkernetgble, and debug information from the kernel binary. This
interspersed with executions of user code. Performaritieatr information is embedded when the tracing facility is built.
system call handlers in a microkernel are rather shortcallyi The tracing facility produces sequences of field references
in the order of tens or a few hundreds of instructions. Witfor different kernel invocations and their frequency of wec
such a limited code path length, a complete trace of one kernence, whereby invocations that differ only in the addressge
invocation is limited in size, too. For example, all pathissta referenced objects are considered identical. These segsien
through the L4Ka::Pistachio microkernel during a run of theontain all the necessary information for field reordering.
pingpong IPC benchmark perform between 2 and 85 accesse$) Address Filtering and Type Inferencédemory refer-
to kernel objects. ences are filtered by processor privilege mode and address

3) Similarity: Kernel invocations that perform the sameaange as discussed in the previous section, so that thadraci
operation on different kernel objects produce similar ésac facility receives only memory references to kernel objects
For example, a trace of an IPC system call transferring thréeat are objects of a target class for field reordering. From
words between thread4 and B will not differ from a trace the address of the memory reference, the type of the object
for that IPC call between threads and D, except for the accessed can be inferred. Along with the information abtwait t
thread identifiers and hence the respective kernel objettgb memory access, the address filter delivers the base addss a
referenced. Short traces with an expected high similaaty cthe type of the referenced object.
be efficiently processed and compressed online instead oSupporting large padding between objects in an array is
generating a complete trace for offline analysis. necessary as this space is often abused. For example, most L4

4) Number of ObjectsOften-called and thus performancekernels keep the kernel stack of a thread in the unused part of
critical microkernel invocations typically reference pnlery the memory block (usually 1KB or 2KB) that is allocated for
few kernel objects. For example, a simple IPC message trapach TCB in the linear virtual array of TCBs.
fer between two threads in the L4Ka::Pistachio microkernel 2) Address AbstractionThe actual addresses of referenced
involves two, at most three thread control blocks (TCBs)rélo objects are not relevant for field reordering. However, ases
complex operations involving many kernel objects, such &3 fields of different objects still need to be tracked sefedya
address space deletion, tend to be invoked less frequently.to allow optimizing for differing field usage patterns.

5) Address RangesThe target classes for field reordering To distinguish between the kernel objects used during
are known in advance and so is the size of objects ah invocation, the tracing facility assigns sequentialeobj

25

numbers as different objects are encountered. Objects wathtry point of the IPC path. This instruction writes backdir
different addresses that are used in the same place in simdache lines before invalidating all data caches.

invocations will be assigned the same object numbers: FolWe apply automatic field reordering to thecb_t class
example, the first TCB referenced during an IPC operation ihat stores the kernel state of an L4 thread and is thus used
the L4Ka::Pistachio microkernel belongs to the targetatire heavily during an IPC operation. Member access patterns for
of the send phase, while the second TCB referenced belomigs class are collected in the Simics extensible full system
to the source. Substituting object numbers for object astdr® simulator [20] using a custom profiling extension as desttib
abstracts from the actual object in favor of an “object folein Section IV. Ther eor der tool, sharing its code base
The number of objects is small so that object addresses wgith the col | apse class flattening tool [14], performs field

be tracked efficiently. reordering as a source-to-source transformation.

Memory references are converted to quadruples, s, m), On the fastpath, a kernel with an optimizedb_t class
with n being the number of the distinct object instanc&ansfers IPC messages 21-25 cycles faster than the drigina
encountered since kernel entry (not the actual addres}, of itkernel, about the cost of a cache miss on all levels without
the offset of the reference into that instane¢he access size, prior write-back. A cache analysis of the original kernel,
andm the access mode (read vs. write.) shown in Figure 4, supports this: There is an outlier refeedn

3) Per-class Sequencesising the type information from data member in the fifth cache line of the destination TCB.
address filtering, quadruples are recorded in sequences of @ur field reordering algorithm moves all referenced members
cesses since the kernel was entered. For every field reogdetp the start of the class declaration and thereby reduces the
target class a sequence of references to objects of thatislasiumber of cache lines for the destination TCB from three to
built. two.

When exiting the kernel (or on the next entry), the sequence -
is compared with previously recorded sequences. On a match,
a counter associated with the matching sequence is inctease
Otherwise, the sequence is added to the list of known se-
guences with a counter value of one. Runaway sequences
of long-running operations in the kernel (idle loop, kernel
debugger, etc.) are cut off when reaching an unreasonable =
length.

4) Sequence Weightsthe value of an access sequence’s
counter in relation to the sum of all counters represents..
the weight of that access sequence in the profile. Without
information about the actual code paths taken, the seqaence ~
describe precisely the access patterns to fields in the afabs
the probability of the pattern during the tracing sessione T
sequence with the highest weight should be used to determine
a new field ordering.

A sequence with a lower weight may be a subset of a
sequence with a higher weight in terms of field footprint. fTha
is, optimization goals do not contradict, and optimizingtfee i EE &
latter also optimizes for the former, although potentiaityt e
as much as possible. By comparing only the footprint, n@ly 4. Accesses to members of the_totlass on the IPC system call path.
the sequence of accesses, inclusion signals a possihblity Time progresses in units of memory accesses from left tat.righe object

; ; ; ; out is shown vertically, with thin horizontal lines marg cache block
merging both sequences, thereby increasing the weighteof Eigundaries. R=read, W=write, gray=source TCB, whitesdatbn TCB.
more frequent sequence.

The memory layout of thé cb_t class in the original
kernel has been manually optimized by the kernel developers

We evaluate data member reordering for kernel objects tim use as few cache lines as possible. Yet, its layout was not
the context of the L4Ka::Pistachio microkernel. Our woddo optimal for the particular workload we happened to choose
is the standard L4i ngpong IPC benchmark which sendsin our evaluation: IPC between threads in different address
simple IPC messages back and forth between two threads. Shaces — the most frequent kernel operation in well-stredtu
measurement system is a 450MHz Intel Pentium Ill processuicrokernel-based systems.
with a cache line size of 32 bytes. The kernel is configured tolnheritance will result in a much less compact memory
use the assembly implementation of the IPC path (the seetallayout of the referenced members and thus in many more
“fastpath”) whenever it sees fit. To simulate cache presswrache misses. However, we have not yet completed the trans-
from user code, we inserted a WBINVD instruction at théormation of the Pistachio source code to use fine-grained

V. EVALUATION

26

inheritance to the full extend described in the introductio probabilities and cache line survival probabilities. Fréme
For the purpose of evaluation we instead sort data membgraph, cache hit probabilities can be determined for any
alphabetically by their name, assuming that we achievengmber ordering. Based on the initial address trace, the new
similarly suboptimal layout as inheritance would produeer. ordering is subjected to a cache simulation to report the
a kernel with alphabetically sorteédcb _t data members, we reduced cache miss rates. Chilimbi et al. report performanc
measured IPC times 240 cycles worse than for the origirisdlprovements of 2-3% after reordering five of the most
kernel. frequently used data structures in Microsoft's SQL Server
Our evaluation shows that field reordering optimizes thghereas Zatloukal et al. achieved only 1.3% with optimizing
memory layout of kernel objects for minimum cache usagseven different structures. By focusing on type-safe @ogr
By automatically optimizing for the particular workload,i$ ming languages such as Oberon, Kistler and Franz [9] can
superior to manual optimization, which is precluded by gsirautomate field reordering. They identify memory interleavi
inheritance anyway. By enabling the fastpath in the kerrel vand cache line-fill buffer forwarding as source of different
showed that our optimization applies not only to C++ codatencies for the words in a cache line after a cache miss.
but to assembly code as well. Kistler and Franz also discuss optimizing the layout of i
objects. They reorder only the fields introduced in a derived
class, because encapsulation often restricts accessduatath
The flat form of a class was introduced by Meyer [12] infields and thus reduces temporal relations between fields fro
the context of Eiffel. Meyer sees two uses for the flat forndifferent levels. Kistler and Franz report combined sp@sdu
inspection of the full feature set of a class by a developaf 3%—-96% for their layout optimizations.
and distribution of a class without its history. Bellur et [l] Data packing for a given block size using pairwise infor-
describe a class flattening tool for C++, targeted at elitinga mation is NP-hard [8], [18]. However, for complete access
virtual functions calls. An automated approach for vagabltraces, for example from extremely short sequences that are
flattening (replacing the type of a variable with the flatéénereused many times, an algorithm can find the optimal layout in
version of the type) is suggested, but considered infeasileixponential time [15]. Algorithms targeted at specific asce
due to the high cost of a full data flow analysis. Bellur et apatterns can be more efficient [22].
also suggest use of class flattening in source code browsindexcept for type-safe languages, all field reordering ap-
to enhance program understanding, and as a debugging pidaches merely produce suggestions for a new ordering and
because execution no longer jumps up and down in the clasguire manual checking and implementation. We build on
hierarchy. Beyer et al. [2] discuss the impact of inheritaon programming conventions, class use restrictions, and pro-
software metrics like size, coupling, and cohesion. Birf[@gr grammer’s knowledge to automate field reordering for C++,
applies class flattening to reduce complexity in the conteixicluding rewriting the class declaration.
of software testing. In previous work [6], we used class
flattening to completely eliminate the run-time overhead of VIl. ConcLUsION
virtual functions calls in a portable microkernel. In thigsk, [N this paper we describe an automated approach to optimiz-
we apply class flattening to produce a flat version of a cla¥ the object memory layout of performance-critical céess
whose memory layout can subsequently be optimized Bya portable microkernel. Inheritance, used to improven&er
member reordering. portability through modularity, dictates suboptimal attjeay-
Truong et al. [19] introducefield reorderingas a technique outs unsuitable for a microkernel’s critical path. We congbi
to improve the cache behavior of dynamically allocated dafgnsparent class flattening and profile-based field rewrgler
structures in C. Truong leaves determining the optimal layof© Optimize classes composed from many small, configuration
to the programmer, because “At present, the automatic detépecific classes. We rely on microkernel characteristics to
tion of the most frequently used fields of a structure is belyoutomate and aggressively customize the optimizationgssoc
the possibility of current compiler technology.” In comation Evaluation indicates that we can eliminate inheritandated
with a second optimization technique, instance interlegyi overheads. We enable the use of fine-grained class hieearchi
Truong reports speedups of 1.08—2.53. Chilimbi et al. [5] ann the kernel at no cpst and can automaticlallly optimize fer th
Zatloukal et al. [21] describe algorithms for field reorderin target system, allowing for portable yet efficient micrateds.
C. Based on profiling input and static analysis, a tool preduc REFERENCES
recommendations for new field orderings that need to be . . .
. . - . [1] Umesh Bellur, Al Villarica, Kevin Shank, Imram Bashimé Doug Lea.
verified and implemented manually. Chilimbi et al. CONStSUC ™ Fjattening C++ classes. Technical Report TR-02-23, Nevk YOASE
a field affinity graph for every structure type. Nodes repnése Center, Syracuse NY 13244, August 21 1992.
fields and edge weights are proportional to the frequency @#] Dirk Beyer, Claus Lewerentz, and Frank Simon. Impactrdferitance
. . . . on metrics for size, coupling, and cohesion in object oedrdystems. In
contemporaneous field accesses. Fields with h'gh temporal R. Dumke and A. Abran, editor®roceedings of the 10th International
affinity are placed near each other; no assumption is made Workshop on Software Measurement (IWSM 2000): New Appesach
about structure alignment on cache-line boundaries, as thi g‘ersn(r)]ﬁ\gggel MeasurementNCS 2006, pages 1-17. Springer-Verlag,
“can Only be determined at run time”. Zatloukal et al. USq3] Rober’t V. B‘inder. Testing object-oriented systems: atust report.
member transition graphs, where edges represent transitio American Programmer7(4):22—28, April 1994.

VI. RELATED WORK

27

(4

(5]

(6]

(7]

(8]

El

[10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]
[21]

[22]

Gilad Bracha and Gary Lindstrom. Modularity meets intarce. In
Proceedings of the IEEE Computer Society International f@@mce
on Computer Languagepages 282-290, Washington, DC, 1992. IEEE
Computer Society.

Trishul M. Chilimbi, Bob Davidson, and James R. Larus. che
conscious structure definition. IRroceedings of the ACM SIGPLAN
1999 Conference on Programming Language Design and Impileme
tion (PLDI'99), pages 13-24, New York, NY, USA, 1999. ACM Press.
Uwe Dannowski. Managing code complexity in a portablenokernel.
In Proceedings of the ECOOP Workshop on Programming Languages
and Operating Systems at ECOOP 2004 (ECOOP-PLOS'@%)o,
Norway, June 2004.

International Organization for Standardization (ISO) ISO/IEC
14882:1998(E) Programming Languages — G+September 1998.
Ken Kennedy and Ulrich Kremer. Automatic data layout distributed-
memory machinesACM Transactions on Programming Languages and
Systems20(4):869—-916, 1998.

Thomas Kistler and Michael Franz. The case for dynamitinuigation:
Improving memory-hierarchy performance by continuousigting the
internal storage layout of heap objects at run-time. TextiiReport 99—
21, University of California, Irvine, May 1999.

J. Liedtke. Onu-kernel construction. IfProceedings of the 15th ACM
Symposium on Operating System Principles (SQO$Byes 237-250,
Copper Mountain Resort, CO, December 1995.

J. Liedtke. u-kernels must and can be small. §ih International
Workshop on Object Orientation in Operating Systems (IWSP@ages
152-155, Seattle, WA, October 1996.

Bertrand Meyer.Object-Oriented Software ConstructioRrentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

Abi Nourai. A physically-addressed L4 kernel. BE trgdiniversity of
NSW, Sydney 2052, Australia, March 2005.

Jan Oberlander. Applying source code transformationcollapse
class hierarchies in C++. Study Thesis, System Architect@roup,
University of Karlsruhe, Germany, December 2003.

Erez Petrank and Dror Rawitz. The hardness of cache cours
data placement. IfProceedings of the 29th Annual ACM Symposium
on Principles of Programming Languages (POPL'0Bortland, OR,
January 2002. Extended abstract.

Bjarne Stroustrup. Multiple inheritance for C++. Rroceeding of the
Spring '87 European Unix Systems User’'s Group Conferemeges
189-208, Helsinki, Finland, May 1987.

System Architecture Group. The L4Ka::Pistachio mienmel. White
paper, Karlsruhe University (TH), May 1 2003.

Khalid Omar Thabit.Cache management by the compil&hD thesis,
Dept. of Computer Science, Rice University, Houston, TX81.9

D. N. Truong, Francois Bodin, and André Seznec. Imprg cache
behavior of dynamically allocated data structures. Rroceedings
of the IEEE International Conference on Parallel Architeets and
Compilation Techniquepages 322+, October 1998.

Virtutech Inc. Simics — a full system simulator, 1998a8.

K. Zatloukal, A. Corduneanu, R. E. Ladner, V. Groverd&h Meacham.
Improving cache performance by structure reordering. iided Ab-
stract, November 1998.

Chengliang Zhang, Yutao Zhong, Mitsunori Ogihara, &@fen Ding.
Harness of modeling data locality and a sampling approxdrapproach.
Technical Report TR 877, Computer Science Department,ddsilty of
Rochester, September 2005.

28

