
L4-Based Real Virtual Machines
– An API Proposal –

Sebastian Biemueller and Uwe Dannowski
System Architecture Group

Universität Karlsruhe (TH), Germany

Abstract— Virtual machines (VMs) recently regained atten-
tion as a solution to problems not only in high-performance
computing, servers, and desktops, but in embedded systems
as well. For example, network-enabled embedded systems use
virtual machines to provide hardened subsystems for banking,
encryption, and digital rights management.

Virtual machine systems and microkernels share a common set
of goals such as reliability, security, isolation and, flexibility, so
that integrating VMs and microkernels is a promising approach.
In fact, modern microkernels already provide the abstractions
and mechanisms necessary to cater for virtual machines.

In this paper we show how virtual machine concepts map to
the concepts of a microkernel, the L4 microkernel. We identify
shortcomings of the current kernel API with respect to virtual
machine support and propose a minimalistic set of extensions.

I. INTRODUCTION

The microkernel approach is an ideal construction principle
for the design of embedded operating systems. It reduces
the amount of code that is executing in privileged mode and
generally improves security, reliability, and verifiability of the
system — aspects crucial for embedded systems [1]. Further-
more, the modular system structure on top of the small kernel
contributes flexibility and diversity to the operating system
design space and allows, for instance, an untrusted open-source
web browsing component to run safely besides a closed-source
banking module, or an entertainment console system to run
simultaneously with a system component controlling mission-
critical special-purpose hardware.

Application of the microkernel-based system construction
principle to existing software requires porting. However, soft-
ware reuse is an important aspect especially in embedded
systems where the whole system is often designed for decades
whereas rapid development of hardware often obsoletes the
underlying platform after only a few years.

Full virtualization bridges this gap. By creating the illusion
of a physical machine, a virtual machine monitor can provide
a stable interface to software inside the virtual machine despite
any changes in the underlying hardware. This is also its
weak point: With isolation at the granularity of complete
machines, flexible, modular, and efficient systems are hard to
build. The virtual machine approach lacks design principles for
the construction of the virtual machine monitor, the software
inside the virtual machine, and the virtual machine system as
a whole.

In this paper we propose the construction of a virtual
machine system based on the principles of microkernels.

We separate the virtual machine monitor into a necessarily
privileged part, the hypervisor, and an unprivileged part, the
user-level monitor. The hypervisor and a microkernel are
similar enough to justify integration of both. The resulting
system comprises a microkernel that also provides for virtual
machines and a microkernel-based system on top that includes
components for maintaining the virtual machines, as illustrated
in Figure 1.

Net

VM 1VM 1VM 1

MemApp A

Monitor

L4 Microkernel

Native L4 Applications Virtual Machines

unprivileged

privileged

Fig. 1. Native microkernel applications including the unprivileged part of
the virtual machine monitor run side-by-side with virtual machines.

Such a system combines the best of both worlds: Virtual
machines provide the stable, compatible interface, the platform
API, at the granularity of complete machines, whereas the
microkernel approach enables construction of arbitrary, well-
structured systems.

This paper is organized as follows: In Section II, we briefly
describe the operation of a virtual machine, followed by a
short introduction to the L4 microkernel. In Section III, we
discuss how virtual machine concepts map to L4 concepts and
identify shortcomings of the current kernel API. Section IV
formulates the necessary changes to the L4 API to support
virtual machines. We discuss related work in Section V and
conclude the paper in Section VI.

II. BACKGROUND

A. Virtual Machines

A Virtual Machine (VM) as defined by Goldberg [2] is
an “efficient hardware-software duplicate of a real machine”.
The idea of virtual machines is to create the illusion of a
physical machine at the lowest level, the platform API. At
this level, the communication between the guest (operating)
system executing inside the VM and the virtual machine

36



environment is completely defined by the behavior of the
hardware interface.

The virtual machine monitor (VMM) provides the illusion
of the VM’s environment using the resources of the host sys-
tem. It has full control of the virtual machine and can establish
full isolation or controlled sharing of resources between the
VM, itself, and the rest of the system. The environment of
the VM includes all resources of a physical machine: the
processor, memory, interrupt lines, IO ports and devices. These
resources can be provided either as pass-through access to a
physical resource or by software emulation.

Pass-through access of a physical resource provides the
guest with direct access at the full performance of native
operation. If the resource can not be securely multiplexed
between virtual machines, it must be assigned exclusively to
one VM.

Software emulation of a resource is needed for a physical
resource which cannot be securely multiplexed, when strong
monitoring of the virtual machine’s interaction is wanted, or
when no physical instance of the resource is available in
the host machine. In the virtual machine, each instruction
that accesses an emulated resource has to be prevented from
execution [3]. Fully virtualizable architectures have the ability
to generate traps on such instructions [4]. The VMM catches
the trap, and emulates the effects of the instruction on the
virtual machine’s state and the software model of the resource.

To emulate active components, for instance, a network
device, the VMM has to inject interrupts into the virtual
machine. The VMM must respect the virtual machine’s state
which may require to delay the delivery, e .g ., the guest has
its interrupts disabled.

A virtual machine, while running on the physical processor,
needs to be sheltered from events on the physical machine.
For example, physical interrupts must not enter directly the
virtual machine. Fully virtualizable architectures support this
by strongly separating the virtual machine’s context from the
physical environment, e .g ., by performing a world switch
before delivering the event.

B. The L4 Microkernel

The L4 microkernel [5] is a second generation microkernel
originally developed by Jochen Liedtke at GMD, IBM, and
Karlsruhe University. Various versions exist at Karlsruhe Uni-
versity [6], UNSW/NICTA Sydney, and Dresden University of
Technology. The kernel offers two abstractions and two major
mechanisms.

Threads are the abstraction of an activity. CPU time is
multiplexed between threads bound to the same processor.
An L4 thread is represented by its register state (processor
registers and virtual registers), a unique global identifier, and
an associated address space.

Address spaces provide the abstraction for protection and
isolation; resource permissions are bound to an address space.
L4 address spaces are no first class object; they are indirectly
identified via a thread associated to this particular space. All

threads in an address space have the same rights and can freely
manipulate each other.

Inter process communication (IPC) is the mechanism
for data transfer and controlled execution transfer between
threads. Message transfers are synchronous and involve ex-
actly two threads. Both sender and receiver have to agree on
the format of the message.

Mapping is the mechanism for controlled transfer of re-
source permissions between address spaces. Access to a
resource is granted by transferring a map or grant item
identifying a region of the sender’s (virtual) address space
in an IPC message. Mapping requires mutual agreement of
the sender and receiver thread and thus allows save user-level
management of address spaces. Map duplicates the resource
permissions from the sender’s into the receiver’s address space;
grant moves the permission. The receiver’s permissions can
only be a subset of the sender’s permissions. Mapping can
be applied recursively. Revocation of resource rights is done
asynchronously through the unmap primitive and does not
require explicit consent from the receiver of the mapping.
L4 implements the address space abstraction with whatever
hardware mechanisms available, such as TLBs, page tables,
and permission bitmaps. The minimum granularity of mapping
operations on address spaces is subject to the hardware’s
capabilities.

L4 has an in-kernel round-robin scheduler that allocates
time to threads according to their priority and time-slice
length. If the time slice of a thread expires, L4 preempts the
thread and schedules the next runnable thread.

Hardware generated events such as exceptions and inter-
rupts are translated into kernel-generated IPC messages. On
a hardware interrupt, the kernel synthesizes a message to a
thread that is registered as the handler for that interrupt. The
sender appears to be a thread with a special per-interrupt thread
identifier. Hardware exceptions are transparent to the faulting
thread; the kernel preserves the thread’s context. The hardware
exceptions are mapped onto an IPC based fault protocol. In the
name of the faulting thread, the kernel synthesizes a message
with information about the cause of the fault and sends it to
the faulting thread’s exception handler. The faulting thread
is automatically set into a blocking IPC receive operation,
waiting for a reply from its exception handler to resume
execution. On a page fault exception, the fault message is
sent to the pager of the thread, expecting a memory mapping
in the reply. The special treatment of the page fault exception
has historical reasons.

These protocols allow easy virtualization of physical re-
sources, e.g., paged virtual memory: Under memory pressure,
the provider of a page unmaps it from the address space it
was mapped to. If a thread now accesses the removed page,
a page-fault IPC is sent so that the pager can transparently
re-establish the mapping and resume the faulting thread.

37



III. DESIGN

This section discusses how L4 concepts can be used to
provide a virtual machine environment. We first present the
general architecture and then discuss selected aspects of VM
support in slightly more detail. In fact, L4 already provides
the right abstractions and mechanisms to cater for virtual
machines; where necessary, we propose minimal extensions
or generalizations.

A. Architecture

The architecture is microkernel-based and consists of three
major components: the virtual machine, its monitor, and the
microkernel.

The virtual machine consists of an L4 address space,
containing all directly accessible physical resources and one or
more L4 threads representing the virtual machine’s processors
(VCPUs).

The monitor defines and maintains the virtual machine’s
environment. It guarantees isolation by securely controlling the
VM’s access to physical resources and implements all complex
aspects of virtualization, such as emulating instructions access-
ing resources not directly available to the VM. As a normal
L4 thread, the monitor can benefit from the services of other
user-level components to build the environment of the virtual
machine, for example disk storage or network connectivity.

The microkernel provides the execution environment for
the VM, the monitor, and the rest of the system. It ensures
controlled execution of the guest in the VM, using hardware-
supported virtualization techniques where necessary.

B. Resources

To securely isolate a virtual machine, the VM must not have
uncontrolled direct access to the physical hardware resources
of the host machine. L4’s resource mapping mechanism al-
ready provides a way to control the permissions of an address
space. The monitor simply uses mappings to selectively grant
a VM access to a physical resource. In the following, we
illustrate this in the context of memory. Some architectures
have additional resource spaces, e .g . x86’s IO port space. In
L4, they are part of the address space abstraction and thus
subject to the same mapping mechanism.

Physical Memory: A virtual machine can not have direct
access to physical memory as it would circumvent protection.
Instead, virtual memory is used [7]. An L4 address space
represents the virtual machine’s physical memory address
space. The monitor populates this space by mapping parts of
its own address space into it.

For efficiency reasons, L4 does not offer the complete
architecturally defined virtual address space to user level; the
kernel keeps part of it for its own purposes. There is, however,
no conceptual limitation in L4’s mapping mechanism that
would prevent managing the whole address space. A guest
may require the complete physical address space of the virtual
machine, and hardware support for virtualization makes it easy
to provide the full address space.

The L4 API defines two mandatory objects in each address
space: the kernel interface page and the UTCB area. Their
location is determined by the creator of the address space.
Being part of the L4 virtual address space, they will appear as
objects in the VM’s physical address space. The monitor can
freely define their position and thereby effectively hide them
from the guest. Removing these objects would create special
cases for VM address spaces resulting in larger changes to the
API, and it would preclude later optimizations.

Virtual Memory: We use L4’s virtual memory management
to provide the VM’s physical address space. However, the
guest operating system in the VM may want to use virtual
memory itself. To maintain the illusion of direct access to
memory, the virtual machine system must resolve a guest-
virtual address into a host-physical address [7]. This translation
consists of two stages. The first stage translates the guest-
virtual address to a guest-physical address via page tables
maintained by the guest operating system located in guest-
physical memory. The second stage is determined by the mon-
itor’s mapping of guest-physical addresses to host-physical
addresses. Current hardware lacks support for such a cascaded
memory translation, called nested paging. Thus, both stages
have to be merged into a single translation, the shadow page
table, which directly translates a guest-virtual address into a
host-physical address. The shadow page table can also be seen
as a virtual TLB (vTLB) managed in software and located
between the guest’s page table and the hardware TLB.

One way to establish the guest-virtual to host-physical trans-
lation is to represent the VM’s virtual address space as an L4
address space, containing the contents defined by the shadow
page table. VM-internal translation faults are propagated to
the monitor which then walks the guest operating system’s
page-table to find the guest-physical address. It then maps
pages from its own address space directly into the virtual
address space of the virtual machine. However, this approach
has several drawbacks:
• L4’s mapping mechanism abstracts from the underlying

hardware page table. To allow user-level management of
address spaces, it includes access rights such as read,
write, and execute, but does not expose the distinction
between user- and kernel-accessible memory. Extending
L4’s mapping mechanism accordingly would require to
disable this feature for all but VM-address spaces.

• L4 threads are associated with exactly one L4 address
space. As a result only the currently active guest virtual
address space can be described by the L4 address space.
An address space switch in the VM requires a complete
flush and repopulation of the vTLB via mapping by
the monitor. Since updates to the virtual TLB are very
frequent operations, efficiency of the vTLB is paramount
to the virtual machine’s overall performance. We consider
the cost of two address space switches and a map
operation for every vTLB update too expensive.

These problems can be avoided by emulating guest-virtual
address spaces transparently inside the kernel. The VM’s
physical address space is represented by the L4 address space

38



which is maintained by the monitor. Only faults caused by
non-present guest-physical memory are propagated to the
monitor. Of course, this approach has some disadvantages, too:

• The in-kernel shadow page-table management can per-
form only very limited optimizations. Without introduc-
ing awkward configuration protocols, optimizations based
on the knowledge of a specific guest’s behavior are not
possible.

• The complexity of shadow page-table management is
rather high: The vTLB algorithm needs to walk the VM’s
guest physical memory, which may cause in-kernel page
faults (that can be handled like faults during an IPC
though.) Furthermore, L4 uses one page table format
while the guest operating system may use one of many,
increasing complexity of the page table walker for the
guest page table.

However, we expect upcoming hardware to natively support
nested paging which will remove the need for shadow page
tables altogether. Therefore, we prefer in-kernel vTLB man-
agement as a temporary, clean solution at the API level: If
hardware support is present, L4 simply uses it without any
further changes to the API.

C. Processor

The processor of a virtual machine is represented by an L4
thread with its associated state (identifier, priority, scheduler,
pager, exception handler) extended by the complete archi-
tecturally defined processor state. The VCPU behaves like a
native L4 thread; especially, the VCPU is scheduled like all
other threads in L4.

To emulate the virtual machine’s resources such as privi-
leged registers, the monitor needs to emulate the instructions
accessing these resources. Fully virtualizable hardware allows
to generate traps on these instructions, which cause an exit out
of the virtual machine into the privileged part of the virtual
machine monitor (here the L4 microkernel). L4 already pro-
vides an abstraction for these hardware events: the exception
protocol. L4 synthesizes a fault message to the associated
user-level handler thread in order to report the reason of the
fault, including selected user-visible CPU state. The handler
resolves the fault, i .e ., by emulating the behavior of the
faulting instruction, and sends a reply message back to resume
the thread. This message contains the updated CPU register
state to be established before resuming the thread.

For virtualization, this static protocol is too inflexible be-
cause the VCPU’s state is much larger and the relevant state
heavily depends on the exact fault reason. Similar to the
exception protocol, we propose a virtualization fault protocol.
For each virtualization fault reason, a pre-defined part of the
VCPU state is transferred in the fault message. In the rare case
that the monitor requires more or different state than was sent
in the fault message, the virtualization fault protocol provides
a no-resume item. This item contains a request for additional
VCPU state; it causes the VCPU to immediately generate
another virtualization fault without resuming the guest. Thus

the monitor can iteratively access the complete VCPU register
state.

D. Asynchronous Events

To emulate the behavior of active devices, e .g . to inject
virtual device interrupts, the monitor has to asynchronously
modify the VCPU’s state.

L4 already provides a way to asynchronously manipulate an-
other thread through the EXCHANGEREGISTERS system call.
EXCHANGEREGISTERS allows manipulation of the thread’s
instruction, stack pointer and flags register, but only from
within the same address space. Access to the complete register
state has to be emulated by user-level protocols, for example,
by inserting a helper thread into the destination address space,
reachable via IPC, to do EXCHANGEREGISTERS locally.

Inserting an L4 thread transparently into the virtual ma-
chine’s address space is a major intrusion. The thread needs
stub code for its protocol logic mapped into the VM’s virtual
address space, it needs the ability to invoke IPC, and its
presence must not induce any side-effects in the guest.

To avoid this model, the monitor can delay asynchronous
events and piggyback them on the next virtualization fault
reply. However, this is no general solution, because it may
delay asynchronous events for too long. Yet, it is an efficient
optimization for high workload situations. As a minimally
invasive method to asynchronously access the VCPU state,
we favor the extension of EXCHANGEREGISTERS across
address space boundaries as already required by the L4Ka
Virtual Machine Technology projects [8], yet with one further
extension, a possibility to asynchronously force a virtualization
event:
• An immediate fault causes the VCPU to immediately

raise a virtualization fault. The monitor can use this
to unconditionally inject events such as non-maskable
interrupts or exceptions, or to inspect the VM’s state,
e .g ., for debugging purposes.

• A delayed fault causes the VCPU to raise a virtualization
fault on a certain event, for example, the next time the
guest is able to receive interrupts. The monitor can then
inject pending virtual interrupts.

Allowing a thread’s pager and exception handler to invoke
EXCHANGEREGISTERS does not introduce any (additional)
security issues, as a pager is already trusted strongly.

Apart from the VCPU register state, the monitor may
need to access the VM’s memory. Accessing guest physical
memory is not problematic for the monitor since it provided
the memory from its own address space or knows the providing
component.

E. Memory Mapped Devices

Memory mapped-devices are located in the guest physical
address space. They are accessed by normal load/store op-
erations which cannot be trapped even by fully virtualizable
hardware. Instead, access to memory-mapped devices can be
tracked by page-faults that should not be satisfied with a
mapping but trigger an emulation of the accessing instruction.

39



Therefore, page faults should also use the virtualization fault
protocol. Unifying page faults and exception handling is
already under discussion in the context of the L4Ka Virtual
Machine Technology [8] projects for other reasons such as
orthogonality.

IV. CHANGES TO THE L4 API

This section describes the changes to the L4 API that enable
the design presented in the previous section. The goal is to
allow for user-level management of virtual machines with
minimal extensions to the L4 API.

The changes fit harmonically into L4’s interface; the re-
sulting API is fully backward compatible. No changes to
the thread as the abstraction for a multiplexed CPU were
necessary. The address space still is the abstraction for isola-
tion and contains the accessible resources. All virtualization-
related hardware events are abstracted as kernel-synthesized
IPC messages. To handle a virtual machine no further fault
handlers had to be added.

A. SPACECONTROL

The API now differentiates between three modes of an
address space. Backwards compatibility is achieved by using
two formerly should-be-zero bits to select the mode.
• Native Mode This is the normal address space for native

L4 threads. No virtualization is used. All L4 services are
available.

• User-Level Virtualization Mode This mode supports
user-level virtualization such as para-virtualization and
pre-virtualization. This type of space is not discussed
here.

• Full Virtualization Mode In full virtualization mode, the
physical processor supports virtualization in hardware,
the mode addressed in this paper. The address space holds
all physical resources of the virtual machine. Initially it
is empty, only KIP and UTCB are mapped as parts of the
physical address space.

B. EXCHANGEREGISTERS

EXCHANGEREGISTERS uses two additional flags to raise
an asynchronous virtualization fault: One flag, when set,
forces the VCPU to raise the fault. A second flag, when set,
delays generation of the fault until the VCPU enters a state
where interrupts can be accepted. The EXCHANGEREGISTERS
system call returns, even though generation of the fault may
be delayed.

This extension relies on the experimental feature that allows
a thread to invoke EXCHANGEREGISTERS on all threads for
which it is registered as the pager, even in a different address
space.

C. Virtualization Fault Protocol

The virtualization fault protocol unifies the page fault and
exception protocol for VCPUs. As such, it is based on IPC.
The virtualization fault protocol is defined between the faulting
VCPU and the thread registered as its pager. It allows the

pager to get notifications on virtualization-critical events and
to access the VCPU register state.

A virtualization fault message is synthesized by the kernel
when the VCPU raises a virtualization event. The message
contains a word specifying the reason followed by a subset of
the VCPU register state. The exact set of registers depends on
the fault reason and the architecture.

The pager answers the virtualization fault with a virtual-
ization reply message. This message can contain the already
available typed items for resource mapping, for example,
memory mappings. The reply message can also be used to
modify or request more VCPU state. Similar to the general
IPC protocol, several new items are defined:
• The set item changes exactly one register of the VCPU.

The target register is encoded in the item, followed by
the new value.

• A group item sets a predefined, fixed group of VCPU
registers.

• The set-multiple item sets an arbitrary subset of VCPU
registers. The target registers are identified by a dense
encoding, such as a bit-field, followed by the values.

• The no-resume item requests additional VCPU register
state; it uses the encoding of the set multiple item to
identify registers to be sent. This item, if present, must
be the last item in the reply message. It forces the
VCPU to immediately send the requested state in another
virtualization fault message without resuming the VCPU.

D. Thread-Startup-Protocol

The startup message of a VCPU thread requires a virtual-
ization reply. This message initializes the VCPU register state
and activates the VCPU.

V. RELATED WORK

Related work can be found in three areas: virtual machine
monitors, microkernels, and integrations of both.

L4Linux [9], a para-virtualized Linux running on the L4
microkernel, was created to evaluate the microkernel’s perfor-
mance. Since then, L4Linux served various projects targeting
efficient, secure subsystems using virtualization [10], [11].

LeVasseur et. al introduced pre-virtualization [12], an au-
tomated para-virtualization technique, to reduce the effort of
porting new guests to their virtualization environment. The
guest operating system is compiled with a pre-virtualization
compiler that locates virtualization-sensitive instructions and
inserts pad bytes for runtime instruction rewriting. The re-
sulting binary can execute on raw hardware as well as in a
pre-virtualization environment.

In contrast, binary translation, as used, for example, by
VMware to fully virtualize the x86 architecture, transparently
traps and patches virtualization-sensitive guest instructions.
It achieves good performance but introduces high complex-
ity into the privileged virtual machine monitor [13]. Recent
VMware products can also use hardware virtualization exten-
sions where available.

40



The Xen [14] system is a para-virtualizing VMM for the
x86 architecture. Xen’s virtual machines are managed by the
Xen hypervisor, but all IO is performed on their behalf by
a privileged VM. Currently, only a modified Linux operating
system is supported as a guest for such a privileged VM. With
Xen 3.0, the hypervisor includes mechanisms for memory
sharing and efficient communication between virtual machines
to allow running each device driver in its own privileged VM
in order to achieve stronger isolation [15]. In recent releases,
Xen also added support for full virtualization using the x86
hardware virtualization extensions.

The KVM project [16] is another VMM for full virtualiza-
tion. It adds a kernel driver to the Linux operating system and
exports the hardware virtualization features through a special
device file. Each virtual machine is represented as a Linux
process. A second, associated process maintains the platform
environment for the virtual machine. With the driver being a
part of the Linux kernel, the VM’s trusted computing base
includes the whole Linux kernel.

Fluke [17] is a software-based virtualizable architecture. It
combines the concepts of microkernels and virtual machines
to increase the operating system’s extensibility. Operating
system functionality is decomposed vertically into layers,
called nesters, that allow the environment provided to the
application to be stepwise refined. The application’s execution
environment consists of the hierarchy of nesters the application
runs on and thus only includes the operating system services
required.

The close relationship between microkernels and virtual
machine monitors has been discussed by Hand et . al [18] and
Heiser et . al [19]. The authors argue, that microkernels and
virtual machines, although their definitions are quite different,
follow similar goals. The work presented in [20] reasons
towards microkernel-based virtual machine systems for high
performance computing.

The work of Hohmuth et . al [21] explores the design space
of hybrid virtual machine/microkernel systems with the goal
to minimize the trusted computing base (TCB) required to
implement the virtual machine environment. It is found that
a VMM extended by mechanisms for memory sharing and
communication can reach a very small TCB.

Our work implements the same point in that design space,
yet we reach it by including support for hardware-assisted
full virtualization into a microkernel. The microkernel design
allows for fine-grained, component-based systems with a small
trusted computing base whereas support for full virtualization
enables reuse of legacy (operating) systems only known from
purely virtual machine systems.

VI. CONCLUSION & FUTURE WORK

In this paper we presented a minimalistic set of extensions
to the API of the L4 microkernel. They enable user-level
management of virtual machines based on L4 abstractions
and mechanisms and are fully transparent to threads which
do not require these virtualization features. This is achieved
by defining minimal, backwards-compatible extensions. This

work shows that a microkernel and the privileged part of
a virtual machine monitor can be integrated, providing the
advantages of both worlds in one system without affecting
the microkernel’s overall performance. Especially, there are
no changes to the carefully crafted IPC path.

Currently, a prototype implementation of the proposed API
is under development. The target architecture is IA-32 using
Intel’s virtualization extensions (VT-x) [22].

Since this paper is an API proposal, we encourage any type
of constructive feedback.

REFERENCES

[1] G. Heiser, “Secure embedded systems need microkernels,” The USENIX
Magazine, vol. 30, no. 6, pp. 9–13, Dec. 2005.

[2] R. P. Goldberg, “Survey of virtual machine research,” IEEE Computer
Magazine, vol. 7, no. 6, June 1974.

[3] J. Sugerman, G. Venkitachalam, and B.-H. Lim, “Virtualizing I/O
devices on VMware Workstation’s hosted virtual machine monitor,” in
Proceedings of the General Track: 2002 USENIX Annual Technical
Conference. Berkeley, CA, USA: USENIX Association, June 2001,
pp. 1–14.

[4] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Communications of the ACM, vol. 17,
no. 7, pp. 412–421, July 1974.

[5] J. Liedtke, “Toward real microkernels,” Communications of the ACM,
vol. 39, no. 9, pp. 70–77, Sept. 1996.

[6] University of Karlsruhe, System Architecture Group, “L4 experimental
kernel reference manual,” Feb. 2006.

[7] C. A. Waldspurger, “Memory resource management in VMware ESX
server,” in Proceedings of the 5th Symposium on Operating System
Design and Implementation. Boston, MA, USA: USENIX Association,
Dec. 2002, pp. 181–194.

[8] The L4Ka Team, “The l4ka virtual machine technology.
http://www.l4ka.org/projects/virtualization.”

[9] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter,
“The performance of microkernel-based systems,” in Proceedings of
the 16th Symposium on Operating System Principles (SOSP), St.
Malo, France. ACM Press, Oct. 5–8 1997. [Online]. Available:
http://l4ka.org/publications/

[10] H. Härtig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzynski,
F. Mehnert, and M. Peter, “The Nizza secure-system architecture,” in
Proceedings of the The First International Conference on Collaborative
Computing: Networking, Applications and Worksharing, December 19–
21, 2005, San Jose, CA, USA. San Jose, CA, USA: IEEE Press, Dec.
2005.

[11] C. Helmuth, A. Warg, and N. Freske, “Micro-sina – hands-on expe-
riences with the Nizza security architecture,” in Proceedings of the
D.A.CH Security 2005, Darmstadt, Germany, Mar. 2005.

[12] J. LeVasseur, V. Uhlig, M. Chapman, P. Chubb, B. Leslie, and G. Heiser,
“Pre-virtualization: Slashing the cost of virtualization,” Fakultät für
Informatik, Universität Karlsruhe (TH), Tech. Rep. 2005-30, Nov. 2005.

[13] K. Adams and O. Agesen, “A comparison of software and hardware tech-
niques for x86 virtualization,” in Proceedings of the Second International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), San Jose, CA, USA, Oct. 21–25 2006.

[14] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer, “Xen and the art of virtualization,” in
Proceedings of the 19th Symposium on Operating System Principles.
Bolton Landing, New York, USA: ACM Press, Oct. 2003, pp. 164–177.

[15] I. Pratt, K. Fraser, S. Hand, C. Limpach, A. Warfield, D. Magenheimer,
J. Nakajima, and A. Mallik, “Xen 3.0 and the art of virtualization,”
in Proceedings of the Linux Symposium, Ottawa, Ontario, Canada,
July 20–23 2005, pp. 65–77.

[16] Qumranet, “KVM: Kernel-based virtual maschine for linux.
http://kvm.sourceforge.net.”

[17] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and S. Clawson,
“Microkernels meet recursive virtual machines,” in Proceedins of the 2nd
Symposium on Operating System Design and Implementation (OSDI),
Seattle, Washington, USA. USENIX Association, Oct. 1996, pp. 137–
151.

41



[18] S. Hand, A. Warfield, K. Fraser, E. Kotsovinos, and D. Magenheimer,
“Are virtual machine monitors microkernels done right?” in Proceedings
of the Workshop on Hot Topics in Operating Systems (HotOS X), Santa
Fe, NM, USA. USENIX Association, June 2005.

[19] G. Heiser, V. Uhlig, and J. LeVasseur, “Are virtual-machine monitors
microkernels done right?” National ITC Australia and University of New
South Wales, Tech. Rep. PA0005103, Oct. 2005.

[20] M. F. Mergen, V. Uhlig, O. Krieger, and J. Xenidis, “Virtualization for
high-performance computing,” ACM Sigops Operating System Review,
vol. 40, no. 2, pp. 8–11, Apr. 2006.

[21] M. Hohmuth, M. Peter, H. Hartig, and J. S. Shapiro, “Reducing tcb
size by using untrusted components – small kernels versus virtual-
machine monitors,” in Proceedings of the 11th ACM SIGOPS European
Workshop. Leuven, Belgium: ACM Press, Aug. 2004.

[22] Intel Corporation, Intel IA-32 Architecture Software Developer’s Man-
ual: Volume 3B: System Programming Guide, Part 2, Santa Clara, CA,
USA, Jan. 2006, order number 253669.

42




