
Transparent, Power-Aware Migration in Virtualized Systems

Jan Stoess Christoph Klee Stefan Domthera Frank Bellosa

System Architecture Group, University of Karlsruhe, Germany

E-mail: {stoess, cklee, domthera, bellosa}@ira.uka.de

Abstract

This paper explores the use of hypervisor-based virtu-
alization technology as a means to enable power manage-
ment in server systems. Our approach focuses on the dy-
namic mapping of physical processors and hosts to virtual
machines. We have developed a multi-tiered infrastructure
that enables dynamic migration of virtual machine execu-
tion flow at two different levels: within and across computer
nodes. Within a node, our infrastructure dynamically allo-
cates and re-allocates virtual processors to their physical
counterparts. Across nodes, our infrastructure employs live
migration to relocate complete guest operating system in-
stances to distinct physical hosts.

1 Introduction

Power and thermal management continue to emerge as

critical factors in modern enterprise computing environ-

ments, and have evolved to a systemic challenge that needs

to be addressed by all involved components, including the

operating system (OS).

There exists a considerable body of research on OS-

based power and thermal management. However, the mono-

lithic structure of traditional OSes effectively hinders rapid

integration of advanced power management strategies into

mainline systems. Their lack of extensibility proves inade-

quate to respond to the demanding power and thermal chal-

lenges of modern computer systems.

Hypervisor-based Virtualization systems offer a way out

of the dilemma. With their advantageous structure based on

a small kernel and the rest of infrastructure running atop,

they permit the whole OS stack to be designed with power

and thermal management as inherent design criteria. Vir-

tualization thereby permits the power management to be

made available to the guest operating systems, but without

depending on their particular instances – and while still be-

ing careful to maintain application isolation, a key property

among many businesses.

This paper explores the use of hypervisor-based virtual-

ization technology as a means to enable power management

in server systems. In particular, our approach focuses on

the dynamic mapping of physical processors and hosts to

virtual machines (VMs). We have developed a multi-tiered

infrastructure that enables dynamic migration of VM execu-

tion flow at two different levels: within and across computer

nodes. Within a node, our infrastructure dynamically allo-

cates and re-allocates virtual processors (vCPUs) to their

physical counterparts. Across nodes, our infrastructure em-

ploys live migration [5, 16] to relocate complete guest OS

instances to distinct physical hosts.

There are plenty of power management goals that can be

achieved using migration techniques; they typically fall into

one of the categories workload consolidation or multi-core

thermal balancing. Migration can also be combined with

dynamic voltage and frequency scaling (DVFS) to yield

even more power savings. We are currently working on inte-

grating these algorithms into our prototype. We afterwards

describe in detail concepts and implementation of our intra-

and inter-node migration mechanisms.

Our multi-tiered migration prototype is based on the L4

micro-kernel as the hypervisor, and Linux 2.6 kernel in-

stances running on top of it. For guest OS management, the

prototype includes a user-level VM monitor (VMM) that

provides the virtualization based on L4’s core primitives.

Our prototype supports virtual and physical multiprocess-

ing on x86-based, medium-scale multiprocessing systems

with up to 16 processors. The guest kernel instances run

on dedicated L4 kernel threads, one per allocated vCPU.

Whenever the guest kernel creates a new address space to

run a task, the VMM spawns additional L4 threads for each

vCPU, which serve as vessels executing the program code.

When a guest OS kernel transfers control to the user level

task, the VMM dispatches the representative L4 thread on

that virtual processor.

For intra-node migration of vCPUs, our prototype dy-

namically changes the mapping of guest OS code to phys-

ical processors. Migration is transparent and does not in-

volve the guest OS. L4 provides a kernel primitive to mi-

grate a thread to a different processor. When migrating

a vCPU, the VMM simply migrates all representative L4

1



threads. Also, in case the guest already has a different vir-

tual CPU running on the destination processor, the VMM

effectively avoids the thread migration, and merely switches

the references to vCPU-specific data structures appropri-

ately. Switching references is a cheap operation, as all

vCPU-local state is accessed via a special processor seg-

ment. For synchronization and serialization, our prototype

uses memory locks and L4’s low-overhead cross-processor

messaging functionality.

For inter-node migration, we have implemented a live

VM migration facility capable of relocating the state of a

VM to a different node. Before migration, the VMM sus-

pends all threads associated with the VM, stores their ex-

ecution state in a special memory object, and generates a

snapshot of the guest physical memory. Via a special man-

agement VM, it then transfers VM memory and state across

the network to the destination, where it is unmarshaled and

brought to execution again.

As an initial evaluation, we have developed a thermal

balancing policy for vCPUs of single guest OS instances.

Based on energy profiles of individual vCPUS, which we

estimate based on processor performance counters [1], our

policy strives to prevent overheating by assigning vCPUs

to physical processors in a way that the processor energy

dissipations are equalized.

In the rest of the paper, we first present the design of our

migration prototype in Section 2, and its initial performance

evaluation in Section 3. We discuss related approaches in

Section 4, and finally conclude in Section 5.

2 Design

The following section presents the core design of our

multi-tiered migration prototype. We begin with describ-

ing the basic architecture of our migration facility. We then

describe power management algorithms that decide when

and where to migrate virtual CPUs or computers according

to power or thermal considerations; we are currently work-

ing on integrating these algorithms into our prototype. We

afterwards describe in detail concepts and implementation

of our intra- and inter-node migration mechanisms.

2.1 Basic Architecture

Our multi-tiered migration prototype is based on the L4

micro-kernel and Linux 2.6 kernel instances running on top

of it. It supports virtual and physical multiprocessing on

x86-based, medium-scale multiprocessing systems with up

to 16 processors.

As a minimalistic kernel endeavor, L4 only provides

three basic kernel abstractions: threads, address spaces and

inter-process communication (IPC); richer and more com-

plex operating system functionality is implemented on top

of L4, at user level [18]. Although different in conception

and goals [10, 14], micro-kernels can also serve as hyper-

visors for virtual machine systems, and there exist several

approaches to provide virtualization on top of L4 [3,13,17].

We uses a recent implementation of the L4 -kernel, code-

named L4Ka::Pistachio. We will hence use the term L4

for both the abstract kernel and concrete implementation.

The virtualization is based on a user-level virtual machine

monitor (VMM) component running on top of L4, which

provides the virtualization services based on the core prim-

itives of the micro-kernel. For improved performance, the

VMM is split into an in-place component running within

the address-space of the guest OS, and an external mod-

ule named resource monitor running in a separate address

space, with extended privileges. A large fraction of the

VMM code executes in place; only if unavoidable, for in-

stance for reasons of security, the in-place part calls into the

external module.

Figure 1. L4-Based Virtualization architecture

Our VMM maps each guest’s virtual processor to a set

of corresponding L4 threads (Figure 1, which serve as ves-

sels for guest kernel and applications. The guest kernel is

represented by two L4 thread, with one thread serving as

the main context for the virtualized guest operating sys-

tem code, and the other thread acting as the in-place re-

source monitor, exception handler, and scheduler of the

main thread. To execute guest user code, the afterburner

spawns an additional L4 thread per user level address space

and virtual processor. Whenever the guest kernel transfers

control to an application, the VMM on that virtual processor

dispatches the appropriate L4 user thread.

2.2 Power-Aware Migration Algorithms

The primary goal of power management is to reduce en-

ergy and heat consumption of a computer systems. OS-

directed power management thereby attempts to achieve

that reduction by means of software running a the lowest

layer of the computer system. Spatial migration of compu-

tation across processors and nodes bears plenty of opportu-

nities for OS-directed energy management, particularly in

the context of workload consolidation and heat reduction:

Workload consolidation. Migration can dynamically con-

2



solidate VMs or vCPUs during phases of underutiliza-

tion, and re-allot them during phases of high load.

Idle machines or processors are put into low-power

sleep states, saving energy and avoiding server sprawl

[2, 21].

Thermal balancing. Migration can balance heat produc-

tion across cores, chips, or complete nodes. In com-

bination with a profiling step determining heat char-

acteristics of individual virtual CPUs or guest OSes,

migration helps to either move hot execution streams

to colder processors [7, 19], or conversely, to co-

schedule execution streams that are complementary in

their heat profiles, in order to remedy thermal hot spots

[9]. Finally, core hopping policies can move execu-

tions streams across cores to distribute the heat over a

greater area [15].

Combined Migration and DVFS. Emerging generations

of x86-based processors will feature multiple clock

and voltage domains, where frequencies and voltages

of different cores and chips can be adjusted indepen-

dently. Depending on the clock and voltage interde-

pendencies of individual cores and the transition costs

of frequency and voltage scaling, intra-node migration

can dynamically arrange virtual CPUs among physi-

cal cores or chips, which, combined with dynamic fre-

quency and voltage scaling, allows to actually con-

serve power. For instance, virtual processors can be

spread among multiple spare cores, which are then run

with slower voltage and frequency. As power and volt-

age are related in a cubic fashion, spreading computa-

tion saves power without losing actually performance.

2.3 Migrating virtual CPUs

In our L4-based virtualization architecture, each virtual

CPU is represented by a set of L4 threads hosting the execu-

tion flow of that CPU. In order to migrate a virtual CPU, it is

therefore principally sufficient to relocate all corresponding

L4 threads to the destination processor. L4 already provides

a system call to modify the particular processor a given

thread should run on. Changing the processor will cause

L4 to migrate the thread to a different processor instantly.

However, virtual CPU migration is expected to take

place frequently, in the time frame of normal scheduling

and load balancing intervals. Furthermore, single virtual

CPU may consist of a magnitude of L4 threads,depending

on the number of guest applications currently executing. L4

thread relocation is therefore a performance-critical factor

in our migration facility, and we have developed two impor-

tant improvements over the original L4 version, which en-

able our virtual CPU migration to scale well with increasing

number of L4 threads: The first technique, batch migration,

extends the L4 interface to allow migrate of multiple threads

in a single blow. The second technique, pure user-level mi-
gration, applies if the guest already has a set of represen-

tative threads on the destination processor; it then avoids

the kernel-provided migration path and resorts to a scheme

implemented completely at user-level.

2.3.1 Batch Migration

The current L4 version permits migration on a per-thread

base only; to migrate multiple threads, the system call must

be invoked several times subsequently. Such a solution

has two serious implications on the migration performance:

first, the migration path crosses the kernel-user boundary

for every single thread; second, migration requires synchro-

nized access to thread control blocks and other data struc-

tures, thus the kernel must issue cross processor interrupts,

again for every thread. In presence of the substantial costs

of system call transitions and interrupt handling on x86-

based processors, such an implementation causes intoler-

able overhead when migrating multiple threads.

We have therefore developed a kernel-based batching

migration scheme, which allows a user-level scheduler

component to relocate multiple threads in a single shot. To

migrate a set of threads simultaneously, the user-level VMM

passes thread identifiers and their prospective destination

processors to the L4 kernel migration system call. The ker-

nel then constructs per source processor lists of the threads

to be migrated and sends them, by means of its internal

cross processor mailbox subsystem, to the respective pro-

cessors (see Figure 2). Once notified, each source proces-

sor releases its local thread subset from the processor-local

run queues, and updates all thread-local data structures ap-

propriately. It then requests, again via cross processor mes-

saging, the respective destination processors to integrate the

migrated threads into their local queues. In contrast to the

original migration scheme requiring a kernel-user transition

and a inter-processor interrupt per thread, our new scheme

requires only a single kernel-user transition and as many

inter-processor interrupts as there are different source/des-

tination processor tuples.

Figure 2. Batch migration

3



2.3.2 Pure User-Space Migration

Our second important optimization enables a pure user level

implementation in case the guest already has another vir-

tual CPU running on the destination processor. Our VMM

then effectively skips thread migration and merely switches

the user-level references to virtual processor specific data

structures appropriately. Our VMM currently accesses all

processor-specific data via a special processor segment set

to a different value for each virtual processor. Under the

presumption that two virtual processors run within the same

address space, the VMM can switch the two processors’

location by simply preempting the guest kernel threads at

a well-defined code location, switching the reference to

vCPU local data, and reactivating the threads again (see Fig-

ure 3).

In theory, pure user space migration a very simple and

cheap operation, since it only requires exchange of a simple

segment register and allows all L4 threads to stay on their

original physical location. However, it also requires the ex-

ecution stream of both virtual processors to be serialized,

which we currently achieve by defining explicit points in the

execution stream where the switching may take place. For

the synchronization, we must use memory locks and L4’s

cross-processor messaging system. Furthermore, the pure

user-level solution can only be performed between proces-

sors of the same guest OS, and only if the processors run

within the same address space. This is only the case if, the

VMM and guest kernel access vCPU-local data using an

indirection scheme as described above, rather than private

mappings and separate address spaces. For all other cases,

we must resort to the default kernel-provided batch migra-

tion scheme.

%fs%fs

Figure 3. Pure User-Level Migration

2.4 Migrating virtual Computers

For inter-node migration, we have implemented a live

VM migration facility capable of relocating the state of a

VM to a different node. Our migration mechanism runs

within the VMM, and no modifications to guest OSes are

necessary. Our prototype currently supports the rather sim-

ple stop-and-copy migration; an effort to implement more

elaborate pre-copy migration [5, 20] and to integrate live

migration of virtual network devices [6] is underway. Stop-

and-copy migration basically consists of the three phases i)

suspending the VM, ii) migrating the VM execution state

to the destination node, and finally iii) resuming the VM

on that node. The VM execution transferred during migra-

tion consists of the guest physical memory, the contents of

the virtual processor registers, and VMM meta information

such as L4 thread identifiers of guest kernel threads.

As described previously, the L4 VMM spawns a set of L4

threads per vCPU, to host kernel and application code. The

threads of a guest application run within their own address

space, which is constructed recursively from the address

space of the guest kernel [18]. That is, whenever an ap-

plication suffers a page-fault, the in-place VMM parses the

guest kernel’s page table hierarchy. If it finds a valid trans-

lation, it transparently inserts the translation into the appli-

cation’s address space, by means of L4’s memory mapping

primitives. When migrating the guest, it is therefore suffi-

cient to transfer the guest physical memory, since it includes

the guest’s page table hierarchy. The VMM on the destina-

tion reconstructs the application’s address spaces lazily, by

again reading the page tables on page-faults and inserting

the mappings when necessary.

Similar to the memory state, the execution state of the

application threads is stored within the guest kernel’s data

structures – that is, in guest physical memory – and thus

does not need to be migrated. It is therefore sufficient to

transfer the execution state of the main kernel threads to the

destination node. On the destination, the VMM will spawn

new L4 threads and address spaces whenever the migrated

the guest kernel tries to run an application that does not have

a L4 thread representative yet.

However, previous approaches to live migration of an

L4-based VM have shown, that quite a lot of cooperation

with the micro-kernel is required to extract and insert valid

execution to and from L4 threads [11, 12]. The root cause

of that overhead lies within L4 itself: some parts of L4’s

thread control blocks that are required when checkpointing

and restoring L4 threads – register frames saved on the ker-

nel stack, and information on attempted or ongoing IPC op-

erations, to give examples – cannot be extracted easily from

the L4 directly; they are rather available to L4 itself only.

Similar to intra-node migration, we have therefore again

added an enhancement to original L4 version that enables

effective control over thread execution from user-level. A

detailed description of our improved kernel version can be

found in a different paper [22]. Here, we restrict ourselves

to presenting the the improvements fundamental to thread

migration. Our new L4 versions gives user level schedulers

full control over dispatching, by vectoring out all thread pre-

emptions to the user-level. As a result, there is only one

thread running at a time per processor; all other threads

are waiting to receive reactivation messages from user-level

schedulers. Furthermore, our new L4 version propagates

4



all user-relevant execution state to the user-level, by means

of special IPC messages. Conversely, a user-level resource

manager can update thread execution state, also by means

of a special IPC to that thread; L4 then installs the state

update transparently into the thread’s control block before

activating that thread. Our VMM can therefore easily mi-

grate a thread by checkpointing the exported execution state

and transferring it to the destination; the VMM peer on the

destination then spawns a new thread and associated address

space, and reactivates the thread by sending an IPC contain-

ing the transferred execution state (see Figure 4).

Figure 4. Preemption IPC and reply

3 Initial Evaluation

We have conducted initial measurements on a 3 GHz

Pentium D830 with 2 cores and 2 GByte memory. The guest

kernel executes on 2 vCPUs dynamically balanced among

the two available cores. Table 5 shows the performance of a

full kernel compilation and of the netperf benchmark run

from an external client over a Gigabit NIC, under different

re-balancing frequencies.

F [Hz] KBuild [sec] Netperf [MB
sec ]

0 186 848.25

10 191 847.67

100 200 854.01

1000 206 851.24

Figure 5. Kernel Build and Netperf performance for dif-

ferent migration frequencies.

4 Related Approaches

Several research efforts focus like our approach on mi-

grating or balancing computational load across cores or

nodes in server systems and data centers. Except for

VMware’s recently announced distributed power manage-

ment software [23], which is closed-source and unpublished

as of yet, all of those approaches focus on migrating or bal-

ancing tasks, jobs, or network streams; none of them has

investigated virtual machine migration as a tool for energy

and temperature management server systems.

The Load Concentration approach by Pinheiro et al. [21]

proposes to distribute the load of server cluster in a way that

hardware resources can be put in low-power modes. Load

distribution is based on checkpointing and migrating whole

applications running on a special version of the Linux oper-

ating systems. Similarly, Chase et al. propose to use recon-

figurable switches to balance the network load offered to a

pool of servers so that individual servers can be powered

off [4].

Elnozay et al. propose and evaluate different volt-

age scaling policies for cluster power management in web

server farms [8]. We believe that virtual machine migra-

tion could serve as a cluster reconfiguration mechanism that

helps to extend the scope of such policies to other applica-

tions than specific web servers.

5 Conclusion

In this paper, we have proposed virtual machine migra-

tion as a means to pursue power management in virtualized

systems. Our approach focuses both on migrating virtual

among physical processors, and on migrating complete vir-

tual machines among different nodes. We have developed

a multi-tiered infrastructure that dynamically migrates vir-

tual machine execution within and across computer nodes,

and are currently exploring different power-aware migration

schemes that help to preserve power as well as to keep the

temperature of different processors and nodes balanced. Ini-

tial performance measurements indicate that our prototype

is a promising approach to OS-directed power management.

References

[1] F. Bellosa, A. Weissel, M. Waitz, and S. Kellner.

Event-driven energy accounting for dynamic thermal

management. In Proceedings of the Workshop on
Compilers and Operating Systems for Low Power,

New Orleans, LA, Sept. 2003.

[2] R. Bianchini and R. Rajamony. Power and energy

management for server systems. IEEE Computer,

37(11), Nov. 2004.

[3] S. Biemueller and U. Dannowski. L4-based real vir-

tual machines - an api proposal. In Proceedings of
the First International Workshop on MicroKernels for
Embedded Systems, Sydney, Australia, Jan. 2007.

[4] J. Chase, D. Anderson, P. Thakur, and A. Vahdat.

Managing energy and server resources in hosting cen-

5



ters. In Proceedings of the Eighteenth Symposium on
Operating System Principles (SOSP’01), Oct. 2001.

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,

C. Limpach, I. Pratt, and A. Warfield. Live migra-

tion of virtual machines. In Proceedings of the 2nd
ACM/USENIX Symposium on Networked Systems De-
sign and Implementation, May 2005.

[6] S. Domthera. Live migration of virtual network de-

vices. Study thesis, System Architecture Group, Uni-

versity of Karlsruhe, Germany, July 2006.

[7] J. Donald and M. Martonosi. Techniques for multi-

core thermal management: Classification and new ex-

ploration. In Proceedings of the 30th annual interna-
tional symposium on Computer architecture, Boston,

MA, June 2006.

[8] M. Elnozahy, M. Kistler, and R. Rajamony. Energy-

efficient server clusters. In Proceedings of the Second
Workshop on Power Aware Computing Systems, Feb.

2002.

[9] M. Gomaa, M. D. Powell, and T. N. Vijaykumar. Heat-

and-run: leveraging SMT and CMP to manage power

density through the operating system. In Proceedings
of the 11th International Conference on Architectural
Support for Programming Languages and Operating
Systems, Boston, MA, Sept. 2004.

[10] S. Hand, A. Warfield, K. Fraser, E. Kotsovinos, and

D. Magenheimer. Are virtual machine monitors mi-

crokernels done right? In Proceedings of 10th Work-
shop on Hot Topics in Operating Systems, Santa Fe,

NM, June 2005.

[11] J. G. Hansen and A. K. Henriksen. Nomadic operating

systems. Master’s thesis, Dept. of Computer Science,

University of Copenhagen, Denmark, 2002.

[12] J. G. Hansen and E. Jul. Self-migration of operating

systems. In Proceedings of the 11th ACM SIGOPS
European Workshop, Leuven, Belgium, Sept. 2004.

[13] H. Härtig, M. Hohmuth, J. Liedtke, and S. Schönberg.

The performance of μ-kernel based systems. In Pro-
ceedings of the 16th Symposium on Operating System
Principles, Saint Malo, France, Oct. 1997.

[14] G. Heiser, V. Uhlig, and J. LeVasseur. Are virtual-

machine monitors microkernels done right? ACM Op-
erating Systems Review, 40(1):95–99, 2006.

[15] S. Heo, K. Barr, and K. Asanovic. Reducing power

density through activity migration. In I. Verbauwhede

and H. Roh, editors, Proceedings of the 2003 Inter-
national Symposium on Low Power Electronics and
Design, Seoul, Korea, Aug. 2003.

[16] O. Laadan and J. Nieh. Transparent checkpoint-restart

of multiple processes on commodity operating sys-

tems. In Proceedings of the USENIX 2007 Annual
Technical Conference, Santa Clara, CA, June 2007.

[17] J. LeVasseur, V. Uhlig, M. Chapman, P. Chubb,

B. Leslie, and G. Heiser. Pre-virtualization: soft lay-

ering for virtual machines. Technical Report 2006-15,

Fakultät für Informatik, Universität Karlsruhe (TH),

July 2006.

[18] J. Liedtke. On μ-kernel construction. In Proceedings
of the 15th Symposium on Operating System Princi-
ples, Copper Mountain, CO, Dec. 1995.

[19] A. Merkel and F. Bellosa. Balancing power consump-

tion in multiprocessor systems. In Proceedings of the
1st EuroSys conference, Leuven, Belgium, Apr. 18–21

2006.

[20] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transpar-

ent migration for virtual machines. In Proceedings of
the USENIX 2005 Annual Technical Conference, June

2005.

[21] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath.

Load balancing and unbalancing for power and per-

formance in cluster-based systems. In Proceedings
of the Workshop on Compilers and Operating Systems
for Low Power, Sept. 2001.

[22] J. Stoess. Towards effective user-controlled schedul-

ing for microkernel-based systems. ACM Operating
Systems Review, 41(4):59–68, 2007.

[23] VMWare. VMware Infrastructure 3 Key Features and
Benefits Summary. VMware, Inc., 2007.

6


