A Microkernel API for Fine-Grained Decomposition

Sebastian Reichelt

Jan Stoess

Frank Bellosa

System Architecture Group, University of Karlsruhe, Germany
{reichelt,stoess,bellosa}@ira.uka.de

ABSTRACT

Microkernel-based operating systems typically require spe-
cial attention to issues that otherwise arise only in dis-
tributed systems. The resulting extra code degrades per-
formance and increases development effort, severely limiting
decomposition granularity.

We present a new microkernel design that enables OS devel-
opers to decompose systems into very fine-grained servers.
We avoid the typical obstacles by defining servers as light-
weight, passive objects. We replace complex ITPC mecha-
nisms by a simple function-call approach, and our passive,
module-like server model obviates the need to create threads
in every server. Server code is compiled into small self-
contained files, which can be loaded into the same address
space (for speed) or different address spaces (for safety).

For evaluation, we have developed a kernel according to
our design, and a networking-capable multi-server system
on top. Each driver is a separate server, and the networking
stack is split into individual layers. Benchmarks on TA-32
hardware indicate promising results regarding server granu-
larity and performance.

1. INTRODUCTION

An operating system (OS) can be designed either as a mono-
lithic kernel, or as a microkernel with individual servers run-
ning on top. While the technological benefits and challenges
of microkernel-based systems have been explored in research
and practice |15} |16], less attention has been spent on the
programming environment they provide to the OS devel-
oper. Monolithic kernel programming is comparatively sim-
ilar to regular application programming, albeit with special
concerns for low-level issues. In contrast, a microkernel-
based multi-server OS corresponds to a distributed system
consisting of many individual programs, all of which must
be programmed to interact correctly.

The similarity to distributed environments directly stems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PLOS 09, October 11, 2009, Big Sky, Montana, USA.

Copyright 2009 ACM 978-1-60558-844-5/09/10...$10.00

from the microkernel APIs in existence. The need, for in-
stance, to explicitly pass messages between servers, or the
need to set up threads and address spaces in every server for
parallelism or protection require OS developers to adopt the
mindset of a distributed-system programmer rather than to
take advantage of their knowledge on traditional OS design.

Distributed-system paradigms, though well-understood and
suited for physically (and, thus, coarsely) partitioned sys-
tems, present obstacles to the fine-grained decomposition
required to exploit the benefits of microkernels: First, a
lot of development effort must be spent into matching the
OS structure to the architecture of the selected microkernel,
which also hinders porting existing code from monolithic sys-
tems. Second, the more servers exist — a desired property
from the viewpoint of fault containment — the more addi-
tional effort is required to manage their increasingly complex
interaction. As a result, existing microkernel-based systems
are typically restricted to fairly coarse-grained decomposi-
tion, lest development overhead and performance penalties
render them unmaintainable or unusable.

We present an alternative microkernel design, which strives
to overcome the limits to OS decomposition by replac-
ing distributed-system concepts with a simple component
model. Although most multi-server systems employ some
component framework, it is usually built on top of an ex-
isting microkernel. Instead, we take the reverse direction:
First, we design a component framework with fine-grained
OS decomposition in mind, then we develop a microkernel
that directly implements the framework. This way, we are
able to keep the component model free of explicit, distrib-
uted-system-like concepts, and to handle isolation of com-
ponents, concurrency, etc. on a more abstract level. Servers
are not tasks but passive objects, whose code is executed in
the context of their callers. They usually neither create any
threads, nor wait for or send messages. Their interaction is
formalized in a way that permits marshaling for calls across
address spaces, but they can also be loaded into the same
address space and/or executed in kernel mode.

To demonstrate our approach, we have developed a compo-
nent model and a corresponding prototypical microkernel,
along with a multi-server OS running atop. The multi-server
OS includes an Ethernet driver ported from Linux and a net-
work stack based on the IwIP project [8]. We successfully
decomposed all drivers and network layers into individual
servers. On average, we achieved a granularity of about 300

lines of code per server. At present, we load all servers into
a single address space and execute them in kernel mode.
Benchmarks indicate that server invocation incurs an over-
head of 2.5 to 4 times the duration of regular function calls.
Reduction of this cost, as well as support for multiple ad-
dress spaces, are targets of our ongoing work.

The rest of this paper is structured as follows: In section
EL we compare our approach to existing microkernels. In
section[3] we explain the key aspects of our design. In section
@, we discuss our implementation and evaluation results.

2. RELATED WORK

The primary goal of microkernels is to separate OSes into
independent servers that can be isolated from each other,
while enabling the resulting multi-server systems to provide
at least the same features as existing monolithic systems.
Purported benefits include robustness and security due to
containment of faults and malicious code, easier extensibil-
ity and maintainability by strict enforcement of roles and
interfaces, as well as flexible verbatim server reuse in the
face of changing system requirements (5| |13} 21 [25].

Early microkernels such as Mach implemented a stripped-
down variant of a fully-fledged kernel, including drivers, file
systems, process management, etc., aiming at gradually re-
placing some kernel features by user-mode daemon processes
[1]. Complex abstractions, however, limit the performance
of microkernel operations, and consequently the achievable
system granularity. Later microkernels such as L4 and Exok-
ernel reduced the number of abstractions and mechanisms to
the bare minimum required for the implementation of secure
and fast multi-server systems |9} |20], typically comprising:
i) support for protection via address spaces, ii) execution
of code in protection domains, and iii) communication and
data sharing across protection boundaries.

These abstractions manifest themselves as additional con-
cepts lacking any equivalent in monolithic kernels. Active,
task-based architectures, as seen in early microkernels, are
still the most common (and have also found their way into
language-based approaches such as Singularity [2]). But
even in systems without tasks (e.g., in Hydra [7] or Peb-
ble [6]), there are other new concepts such as access rights,
indirect manipulation of data, or explicit setup of communi-
cation paths. If the OS consists of a few large servers, as in
L4Linux [15], ExOS [17], or virtual machine monitors |14],
such additional microkernel-specific concepts can be largely
ignored. However, developers of true multi-server systems,
such as Workplace OS (23], Hurd [26], SawMill [13], or K42
[18], always face the problem of having to adapt every part
of the system accordingly.

Existing attempts to keep the effort manageable include
remote procedure calls (RPC) built on top of microkernel
mechanisms |18, |24], support libraries for memory man-
agement or binding in servers [4], or advanced distributed-
system concepts such as Clustered Objects [3]. However,
hiding the microkernel behind a facade does not free OS de-
velopers from the need to tailor the system to microkernel
paradigms at all times. For instance, the use of RPC re-
duces client code to simple function calls, but does not solve
interaction and coordination problems when servers become

clients themselves; nor does it help in splitting data struc-
tures across multiple servers. The case of SawMill shows
that such bold semantic changes easily outweigh the poten-
tial benefits of a multi-server system. Particularly, every
necessary step requires detailed knowledge of both microker-
nel and OS semantics.

Finally, in contrast to mere component frameworks such as
OSKit [11] or Think |10], our model explicitly allows for com-
ponent isolation, supporting all the benefits of microkernel-
based systems by design.

3. DESIGNING FOR DECOMPOSITION

The core of our microkernel architecture is a specially crafted
component model. In existing multi-server systems, servers
can be regarded as components only to some extent; they
are still tasks that consist of address spaces and threads, and
interact by sending and receiving messages. Our servers,
however, are components and nothing else. The component
model is simple enough to be implemented directly by a
microkernel, but also expressive enough for servers to be
loaded into different protection domains.

Our microkernel’s main purpose is to load components and
manage their interaction according to the rules defined by
the model. In contrast to usual APIs, which define a set
of kernel features, our model tells developers how to write
servers. These are compiled into tiny files, which the kernel
can load and connect. The kernel’s exact behavior is an
implementation detail; it just needs to satisfy the rules of the
component model. Specific kernel features, such as memory
management, security, hardware access, etc., are not part of
the component model itself, but can be defined on top.

Before writing a server, one needs to define an interface it
will implement. Its function signatures are attached to the
server in machine-readable form; there is no global interface
registry. Figure [I] shows an interface of a hypothetical file
system server, with a single function returning the root di-
rectory. A directory is also represented by an interface, as
shown in Figure

The component model defines three different parameter and
return value types: i) scalars (up to machine word size), ii)
references to interfaces (as returned by getRootDirectory
in Figure|l)), and iii) blocks of memory referenced by point-
ers, which are copied between the caller and callee in one or
both directions. Such a parameter, as seen in the getName,

‘ Directory getRootDirectory();

Figure 1: Filesystem interface.

Size getName (char xname, Size nameSize);
Directory getDirectory

(const char *name, Size nameSize);
File getFile (const char *name, Size nameSize);
Iterator listDirectories();
Iterator listFiles();

Figure 2: Directory interface.

getDirectory, and getFile functions in Figure is ac-
companied by an additional size parameter (and optionally
a return value) specifying the amount of data to copy.

A server implementing the Filesystem interface will need
to return an interface reference from getRootDirectory. It
can obtain such a reference by loading another server im-
plementing the Directory interface, or by calling a function
(of some server) returning such a reference. In a file sys-
tem, however, the root directory is fundamentally part of
the same server. In fact, individual files and directories of
a file system can never be regarded as isolated components,
but are interrelated parts of a single data structure. In this
(common) scenario, the server can construct a local object
implementing an interface. It is able to access the data of
this object via a locally valid pointer, but it also receives an
interface reference, which it can pass to another server.

In addition to implementing an interface, a server can spec-
ify required interfaces. When the server is loaded, the entity
loading it must provide a reference for each of these inter-
faces. For example, a file system server will specify an in-
terface to a block device; loading the file system server is
equivalent to mounting the file system on that device. Since
all external dependencies have to be specified in this way,
servers are self-contained; they do not have any global re-
quirements. This property obviates the need for a general
naming subsystem, as typically found in distributed systems.

So far, what we have described is merely a component model.
Its only direct relation to a microkernel is that servers can be
loaded into different address spaces due to the restrictions
we placed on function signatures. These restrictions also en-
sure that the component model can feasibly be implemented
directly, without any additional abstraction layer on top of
the kernel. However, since the component model is meant to
fully replace the microkernel API, it must encompass more
of the features necessary for OS development; we describe
the most important ones in the following paragraphs.

3.1 Concurrency

Existing microkernels handle concurrency by letting servers
create multiple threads. This is very different from mono-
lithic kernels, where modules can simply be used by multiple
threads in parallel, provided that they use appropriate lock-
ing mechanisms internally. Our passive components work
exactly like modules in a monolithic kernel: They can be
declared as “thread-safe” and equipped with locks, and con-
sequently will be called in parallel if two or more threads
invoke the same servers concurrently.

In microkernel-based systems, such a threading architecture
is referred to as a “migrating thread” model [12] (see Figure
. In our case, however, it arises naturally from the pas-
sivity of the components. In other words, we did not apply
any specific threading model, but merely avoided all micro-
kernel-specific requirements to deal with threads in the first
place. The result is equivalent to the model used implicitly
in any component architecture that is not distributed. Thus,
in our design, threading and isolation are orthogonal.

Having a foreign thread execute code of a server may seem to
raise security issues. However, we can resolve them easily by

Application 5-\,,

File system

Application 5—/’5

Figure 3: Passive servers and migrating threads en-
able implicit concurrency within servers.

ensuring that all threads entering a server are treated equally
from the server’s point of view. In fact, the same model is
employed in virtually every monolithic kernel, when user-
level code makes a system call: The thread that has been
running at user level continues to execute kernel code. Our
model simply extends the vertical structuring of monolithic
kernel and user space to the multi-server system domain [19].

For the OS developer, making a server thread-safe in our
system works very similarly to developing a thread-safe class
in a high-level language such as Java: Just like individual
methods of the class need to be protected against concur-
rent execution, locks must be placed around the bodies of
server functions that are externally accessible via an inter-
face. Since the kernel manages all incoming and outgoing
calls, this can actually be automated in a straightforward
manner, so that explicit locking code is usually not needed
in the server. The kernel is free to use the most appropriate
locking mechanism, or even omit the locks if it can guaran-
tee that the locked regions are never executed concurrently.
We tolerate the implications on kernel complexity if that
enables us to eliminate the same complexity in server code,
where we consider it much more harmful.

3.2 Protection

The restrictions we place on interface definitions ensure that
servers can be isolated from each other by hardware means.
Access control, i.e. management of the right to call other
servers, is a separate issue, but does not require any new
concepts in the component model: Since interface references
are local handles managed by the microkernel, they can act
as capabilities [22]. The only requirement on the kernel is
that it manages them on a per-server basis, like UNIX file
descriptors are managed on a per-process basis.

3.3 Data Sharing

Along with protection, most microkernels provide means to
share data across protection boundaries, using the proces-
sor’s memory management unit (MMU). The primary rea-
son is performance: data that is shared does not need to be
copied. In the presence of memory-mapped I/O and direct
memory access (DMA), sharing virtual or physical memory
with hardware devices can also become a necessity.

We use regular interface references to denote blocks of
sharable memory, so that memory can be treated exactly
like other resources in terms of protection. Mapping a mem-
ory block is a special feature of the component model (per-
haps the first fundamentally microkernel-related aspect we
describe). Similarly to the Unix mmap call (using an inter-
face reference in place of the file descriptor), the mapping
request results in a pointer that can be used to access the
memory. In contrast to most microkernels, explicit address
space management is not required.

|Minimum Maximum Average

LOC 27 1363 306
Bytes 280 13588 2907

Table 1: Server sizes in our prototype system.

References representing actual physical memory can be ob-
tained from the kernel. However, to achieve the flexibility
expected from microkernel memory management, we also
permit the client to specify a reference to an arbitrary server
implementing a certain interface. On a page fault, the kernel
calls a function of this interface, passing the fault location
and details as arguments. The target server (which rep-
resents the “virtual” memory block) then specifies another
interface reference to redirect the access to. It, in turn, can
either represent physical memory handed out by the kernel,
or be a user-implemented server. Using this scheme, we are
able to implement common memory management paradigms
such as on-demand allocation and copy-on-write semantics.

3.4 Object Lifetime

Since a microkernel implementing our component model is
required to manage references between servers, it knows
when servers or individual objects are no longer referenced.
Therefore, the component model mandates that unrefer-
enced objects are destroyed automatically. This enables
servers to return references to newly created objects without
having to manage their lifetime. In distributed-system-like
environments, object lifetime management can become a se-
rious problem: For instance, a server that creates an object
on behalf of another server typically needs to be notified
when that server ceases to exist.

4. EVALUATION

We have developed a kernel that implements the compo-
nent model on the IA-32 architecture, as well as a proto-
typical multi-server system. Drivers for standard PC hard-
ware, PCI, and a Realtek RTL-8139 100 MBit/s Ethernet
adapter are implemented as servers, the RTL-8139 driver
being ported from Linux. Furthermore, we have built a
TCP/IP stack using code from the lwIP project [8], but
separated into individual servers per networking layer.

An analysis of the source code shows that we are able to
achieve a consistently fine server granularity (see Table .
First of all, this indicates that the restrictions we place on
interfaces between servers do not impact the ability to sepa-
rate servers where appropriate. Second, it is a level of gran-
ularity that is difficult to achieve in a system based on tasks,
because part of the code will always be related to additional
issues such as starting and stopping, communication, etc.

Furthermore, we were able to achieve good results reusing
individual pieces of code, particularly in the network device
driver we ported. Figure E| shows the amount of unmodi-
fied, adapted, and new code in the resulting server. 75 per
cent of the code was reusable either without modification or
with an often straightforward adaption to the server model
(for example, the use of specific interfaces instead of direct
calls to kernel subsystems, or the conversion from pointers
to interface references). The largest change was the intro-
duction of queues instead of immediate packet processing,

503 (59%)

original
~ 132 (16%) modified

H new

Figure 4: Reuse of code in the RTL-8139 driver.

which was necessary to achieve satisfactory performance in
an arbitrary microkernel environment.

We performed micro-benchmarks on two Intel processors, a
Pentium 4 and a Core 2 (see Table . Since our prototype
kernel loads all servers into the kernel, a call from one server
to another only takes about 2.5 to 4 times as long as a regular
function call. The additional cost stems from the need to
build additional stack frames containing information about
the called servers, in order to satisfy core properties of the
component model such as the lifetime of references. The
overhead is kept low by dynamically generating custom code
for each server function at load time, as seen in Pebble [6].
Another frequent server operation is obtaining and releasing
a reference, e.g. if referenced objects are individual network
packets. The duration in the prototype implementation is
in the same range as a call between servers.

Although we have not yet implemented a complete micro-
kernel with user-mode server support, we can predict the
potential performance of calls across address spaces (“inter-
AS”) by setting up two address spaces with appropriate con-
tents and kernel data structures, and implementing the nec-
essary part of the kernel call/return path. This includes all
required run-time checks and data structure modifications.
The results are promising: A call and return between ad-
dress spaces is faster than two IPCs on the L4Ka p-kernel,
which is explicitly designed for good IPC performance [15].

As a more real-world benchmark, we measured network data
transfer performance using our ported (and decomposed)
TCP/IP stack and Ethernet adapter driver, and compared
it against the performance of the same card under Linux.
We were able to achieve equal throughput, but the CPU
load turned out to be approximately twice as large. This
number needs to be taken with a grain of salt, however,
since the TCP /IP stack we ported is very different from the
highly optimized Linux equivalent.

S. CONCLUSION

We presented a microkernel API specifically designed for
fine-grained decomposition, in the form of a specialized
component architecture. We discarded distributed-system

Pentium 4 Core 2
Kernel-mode call/return 46 23
Reference management 60 31
(Function call/return) 11 9
Inter-AS call/return 1965 771
(L4Ka round-trip IPC) 2262 1052

Table 2: Number of cycles of kernel operations.

paradigms in favor of passive objects communicating via
function calls. Restrictions on the function signatures en-
sure that we are able to load servers into different address
spaces and manage their communication.

To evaluate the feasibility and costs of fine-grained servers,
we developed a prototype kernel and multi-server OS. We
succeeded in separating all internal system components, in-
dividual drivers, and even different layers of a TCP/IP stack
into servers. Our servers average around 300 lines of code.

Communication across servers does carry a performance cost
compared to regular function calls, even if no address space
switches are involved. The overhead is much lower than
the cost of hardware address space switches, which implies
that being able to load servers into the same address space
is a worthwhile feature. However, for fine-grained systems
that require a lot of server communication, the overhead can
still become significant. Better performance is a goal of our
ongoing work.

6. REFERENCES

[1] M. Accetta, R. Baron, D. Golub, R. Rashid,

A. Tevanian, and M. Young. Mach: A New Kernel
Foundation for UNIX Development. In Proceedings of
the Summer 1986 USENIX Technical Conference and
Ezhibition, June 1986.

[2] M. Aiken, M. Fiahndrich, C. Hawblitzel, G. Hunt, and
J. Larus. Deconstructing process isolation. In
Proceedings of the 2006 workshop on Memory system
performance and correctness, pages 1-10, San Jose,
CA, 2006.

[3] J. Appavoo. Clustered objects. PhD thesis, University
of Toronto, Ontario, Canada, 2005.

[4] M. Aron, L. Deller, K. Elphinstone, T. Jaeger,

J. Liedtke, and Y. Park. The SawMill framework for
virtual memory diversity. In Proceedings of the 6th
Asia-Pacific Computer Systems Architecture
Conference, Bond University, Gold Coast, QLD,
Australia, Jan. 2001.

[5] B. N. Bershad, C. Chambers, D. Becker, E. G. Sirer,
M. Fiuczynski, S. Savage, and S. Eggers. Extensibility,
safety and performance in the SPIN operating system.
In Proceedings of the 15th Symposium on Operating
System Principles, pages 267-284, Copper Mountain,
CO, Dec. 1995.

[6] J. Bruno, J. Brustoloni, E. Gabber, A. Silberschatz,
and C. Small. Pebble: A component-based operating
systems for embedded applications. In Proceedings of
the USENIX Workshop on Embedded Systems, pages
55—-65, Cambridge, MA, Mar. 29-31 1999.

[7] E. Cohen and D. Jefferson. Protection in the Hydra
operating system. In Proceedings of the 5th
Symposium on Operating System Principles, pages
141-160, Austin, TX, 1975.

[8] A. Dunkels. Full TCP/IP for 8-bit architectures. In
Proceedings of the 1st International Conference on
Mobile Applications, Systems and Services, San
Francisco, CA, May 2003.

[9] D. R. Engler, M. F. Kaashoek, and J. O’Toole.
Exokernel: An operating system architecture for
application-level resource management. In Proceedings
of the 15th Symposium on Operating System
Principles, Copper Mountain, CO, Dec. 1995.

[10] J.-P. Fassino, J.-B. Stefani, J. Lawall, and G. Muller.
THINK: A software framework for component-based
operating system kernels. In Proceedings of the
USENIX 2002 Annual Technical Conference,
Monterey, CA, June 2002.

[11] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers. The Flux OSKit: A substrate for kernel
and language research. In Proceedings of the 16th
Sympositum on Operating System Principles, pages
38-51, Saint Malo, France, Oct. 5-8 1997.

[12] B. Ford and J. Lepreau. Evolving Mach 3.0 to a
migrating threads model. In Proceedings of the Winter
USENIX Conference, San Francisco, CA, Jan. 1994.

[13] A. GefHlaut, T. Jaeger, Y. Park, J. Liedtke,

K. Elphinstone, V. Uhlig, J. E. Tidswell, L. Deller,
and L. Reuther. The SawMill multiserver approach. In
Proceedings of the 9th ACM SIGOPS European
Workshop, Kolding, Denmark, Sept.17—20 2000.

[14] S. Hand, A. Warfield, K. Fraser, E. Kotsovinos, and
D. Magenheimer. Are virtual machine monitors
microkernels done right? In Proceedings of 10th
Workshop on Hot Topics in Operating Systems, Santa
Fe, NM, June 2005.

[15] H. Hértig, M. Hohmuth, J. Liedtke, and S. Schénberg.
The performance of p-kernel based systems. In
Proceedings of the 16th Symposium on Operating
System Principles, pages 66—77, Saint Malo, France,
Oct. 5-8 1997.

[16] G. Heiser. Secure embedded systems need
microkernels. ;login: the USENIX Association
newsletter, 30(6), Dec. 2005.

[17] M. F. Kaashoek, D. R. Engler, G. R. Ganger,

H. Briceno, R. Hunt, D. Mazieres, T. Pinckney,

R. Grimm, J. Jannotti, and K. Mackenzie. Application
performance and flexibility on exokernel systems. In
Proceedings of the 16th Symposium on Operating
System Principles, pages 66—77, Saint Malo, France,
Oct. 5-8 1997.

[18] O. Krieger, M. Auslander, B. Rosenburg, R. W.
Wisniewski, J. Xenidis, D. D. Silva, M. Ostrowski,

J. Appavoo, M. Butrico, M. Mergen, A. Waterland,
and V. Uhlig. K42: Building a complete operating
system. In Proceedings of the 1st ACM SIGOPS
EuroSys conference, Leuven, Belgium, Apr. 2006.

[19] 1. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. T.
Barham, D. Evers, R. Fairbairns, and E. Hyden. The
design and implementation of an operating system to
support distributed multimedia applications. IEEFE
Journal of Selected Areas in Communications,
14(7):1280-1297, Sept. 1996.

[20] J. Liedtke. Improving IPC by kernel design. In
Proceedings of the 14th Symposium on Operating
System Principles, pages 175188, Asheville, NC,
Dec. 5-8 1993.

[21] J. Liedtke. On p-kernel construction. In Proceedings of
the 15th Symposium on Operating System Principles,
pages 237-250, Copper Mountain, CO, Dec. 3—6 1995.

[22] M. S. Miller, K.-P. Yee, and J. Shapiro. Capability
myths demolished. Technical Report SRL2003-02,
Systems Research Laboratory, Department of
Computer Science, Johns Hopkins University, Mar.
2003.

[23] F. L. Rawson III. Experience with the development of
a microkernel-based, multi-server operating system. In
Proceedings of 6th Workshop on Hot Topics in
Operating Systems, Cape Cod, MA, May 5-6 1997.

[24] L. Reuther, V. Uhlig, and R. Aigner. Component
interfaces in a microkernel-based system. In
Proceedings of the Third Workshop on System Design
Automation (SDA), Rathen, Germany, Mar. 2000.

[25] A. S. Tanenbaum, J. N. Herder, and H. Bos. Can We
Make Operating Systems Reliable and Secure? IEFE
Computer, 39(5):44-51, May 2006.

[26] N. H. Walfield and M. Brinkmann. A critique of the
GNU Hurd multi-server operating system. ACM
SIGOPS Operating Systems Review, 41(4):3-11, July
2007.

	Introduction
	Related Work
	Designing for Decomposition
	Concurrency
	Protection
	Data Sharing
	Object Lifetime

	Evaluation
	Conclusion
	References

