I/0O-FlexPages

on the z£86-Architecture

Study Thesis
(Studienarbeit)

Jan Stof3
System Architecture Group
Universitat Karlsruhe

stoess@ira.uka.de

May 31, 2002

Abstract

One of the essential issues of an operating system is address space
management. For main memory, the Lj p-kernel supports hierarchical
user-level memory management based on FlexPages. FlexPages are
memory objects of variable size that form an abstraction of pages of
the virtual address space. To establish a management structure for 10-
ports, FlexPages are not only defined as regions of the virtual memory,
but also as regions of the 10 address space, which is a separate address-
space on the £86-Architecture. Via I0-FlexPages, management of 10-
ports can be organised in the same hierarchical manner as memory
at user-level. This Study thesis (Studienarbeit) details the design and
the functionality of 10 space management on the x86-architecture via
10-FlexPages, and presents an implementation for the L4 p-kernel
Hazelnut.

Contents
1 Introduction

2 Background
2.1 Objects And Operations On Memory
2.1.1 Virtual Memory
2.1.2 FlexPage Descriptors
2.1.3 Operations On FlexPages
2.14 (o Y
2.2 10-Space On the x86-Architecture
2.2.1 10 instructions
2.2.2 10 protection

3 The Mapping Model For 10-Ports
3.1 I0-FlexPage
3.2 Operations On 10-FlexPages
3.3 L0
3.4 RPC Protocol For IO-Port Faults
3.5 Legacy Support

4 Implementation
4.1 TImplementing The Hardware Aspects
4.1.1 10 Privilege Levels
4.1.2 10 Permission Bitmap
4.2 The cli/sti Problem
4.2.1 Protected Mode Virtual Interrupts . . .
4.2.2 Interrupt And Exception Handlers . . .
4.3 1O Mapping Database
4.3.1 Referencing IO Mapping Nodes

4.3.2 Data Structure For The Mapping Database

4.3.3 Mapping Algorithms
4.3.4 Mapping Database Memory Management,

5 Results and Conclusion
6 Future Work

A Testing

10
11
11
13
13
14

14
15
15
15
17
17
18
19
20
21
22
26

27

27

29

1 Introduction

From the user-level point of view, a u-kernel has to serve several purposes:
Enable trustworthy and fast inter process communication (IPC) between
components, provide a flexible concept to manage the available memory and
support control and protection of the underlying hardware.

The peripheral hardware is - at least in size - the biggest part of a com-
puter system. IO-ports are a method to interface the processor with its
hardware environment and can be seen as the processor’s door to communi-
cate to the peripheral devices: From the operating system’s point of view,
an external device is a range of IO ports, which bytes can be read from or
written to.

Obviously, abuse of 10 ports can easily lead to system crashes or even
irreparable hardware damages. Thus, protection and access control of 10
space are essential parts of an operating system.

On the x86-architecture, I/O space is a separate address space in addition
to main memory. The hardware itself provides a management scheme for
control and protection of IO ports: by privilege levels, access to IO ports can
be granted or denied as a whole, and a bitmap can be used to control access
to individual ports.

In monolithic systems like Linux, the kernel has access to the whole 10
space. This all-or-nothing scheme can easily be implemented; however, it is
rather unsafe, as it results in a mouse driver being able to reset the box or
to manipulate the harddisk.

On the L4 p-kernel, drivers are user-level processes. As a driver should
only have access to the IO-ports it needs, the p-kernel has to provide a
concept to protect and to distribute the available IO-space at user level.
Furthermore, this concept should be completely policy-free, allowing user-
space components to decide themselves, who has access to IO space.

On could consider many concepts for IO protection; however, L4 has a
mature concept for main memory. The basic idea is to treat IO ports like
memory, that is, to use the structures and operations provided from main
memory for IO space. The essential data structure for memory is the Flex-
Page: A FlexPage is a memory object in an address space with a given
base address and a given size. FlexPages can be used to establish mappings
between address spaces. Thereby, address spaces can be constructed recur-
siwely by mapping and revoking parts of one address space to another. Similar
to normal FlexPages, I0-FlexPages are defined to refer to IO ports. Via

[IO0-FlexPages, 10 space can be treated like main memory and the mapping
concept can be used for 10 ports as well; that is, regions of the IO address
space can be mapped and revoked in the same manner as virtual memory at
user level. An example is given in figure 1.

This concept ensures on one hand, that IO space can be distributed only
to selected components, but on the other hand leaves policy completely out-
side the kernel.

This study thesis (Studienarbeit) details the design, functionality and
implementation of the support for 10 access and IO protection manage-
ment via IO-FlexPages for the L/Ka / Hazelnut implementation on the x86-
architecture.

To understand the mapping concept of the 10 address space of the 1.4
p-kernel, a short introduction into the mapping scheme of virtual memory
and a description of the [O-space hardware features of the x86-architecture
is given in the first section. The second section presents the extension of the
model from main memory to I/O space and details the data structures and
operations related to I/O space management. The last section details the
implementation of the model, and how the concept was mapped to the given
hardware protection features for I/O space. The environment used to test
the implementation is presented in the appendix.

I0-Pager

64K

HDD Floppy Serial
0x1F0-0x1F7 0x3f0-0x3f5 0x2f8-0x2fF, 0x3f8-0x3ff
Coml Com?2
0x2f8-0x2fF 0x3f8-0x3fF

Figure 1: Hierarchical 10 space

2 Background

This section provides the background to understand the mapping concept
and the hardware support for IO space. The first subsection will introduce
the mapping model, its data structures and its operations, and the second
subsection details the IO space management on the hardware layer of the
x86-architecture.

2.1 Objects And Operations On Memory

L4 supports multiple address spaces on user-level: Based on the initial ad-
dress space - called oy - representing the whole physical memory, address
spaces can be constructed recursively. The pages of an address space are
regions of the virtual memory and can be described by FlezPages. Different
hardware architectures have different page sizes, and FlexPages form an ab-
straction to pages of virtual memory: A FlexPage describes a memory object
in an address space. It has a given base address and a size; it consists of all
valid virtual pages in this region. FlexPages are used to specify the source
and the destination of a mapping between adress spaces: Mapping a send
FlexPage to a receive FlexPage means, that the virtual memory region in
the sender’s address space described by the send FlexPage is made accessible
in the receiver’s address space in the receive FlexPage. Figure 2 illustrates
that.

The mapping can be revoked by unmapping the given source FlexPage.

(o} TASK

rcv.
FPage

rcv.
FPage
snd.
FPage
Physical Virtual Virtual
Memory Memory Memory

Figure 2: A Memory Mapping Example

The idea behind FlexPages is to ensure, that any mapping from the
sender’s into the receiver’s address space only contains pages which are al-
ready mapped to the sender. This concept is flexible enough to support
smooth memory management, paging or copy-on-write, but leaves the real
management outside the u-kernel.

2.1.1 Virtual Memory

To support multiple address spaces on main memory, L4 uses the translation
of virtual into physical addresses. An attempt to access a location in virtual
memory with no physical mapping behind will lead to a page fault. All
physical memory originally belongs to an initial address space called oy, and
can be mapped and revoked to other address spaces by operations described
later on.

2.1.2 FlexPage Descriptors

Regions of the virtual memory can be described by FlexPages: A FlexPage
has a given base address and a size, which is a power of 2.

This definition is taken from [Lie99]:

A FlexPage of size 2° has a 2°-aligned base address, i.e. b mod 2° = (. On the
286 processors, the smallest possible value for s is 12, since hardware pages
are at least JK. [...] A FlexPage with base address b and size 2° is denoted
by a 32-bit word:

fpage (b, 28) 6/210 (22) S (6) Owrzx

2.1.3 Operations On FlexPages

To support mapping and revoking from one address space into another, ba-
sically three operations on FlexPages are supported by the p-kernel:

map: maps the memory region in the sender’s address space described by
the specified send FlexPage into the receiver’s address space. The spec-
ified receive FlexPage indicates the memory region, where the source
FlexPage is mapped to. The memory region afterwards is accesible in
the receiver’s address space on the address given by the receive Flex-
Page. The sender’s address space however remains unchanged. This
operation is synchronous and bound to ipc.

grant: The semantics of grant is similar to map, except that the sender
revokes his own rights to access the memory regions.
It is synchronous and bound to IPC, too. It is required only in special
situations (See [Lie95]).

unmap: revokes all given mappings referring to the memory region described
by the FlexPage.
unmap is asynchronous and an own system call; every task can revoke
formerly given mappings from its own address space without agreement
from clients. The clients receiving mappings agree implicitly to this
fact.

2.1.4 o

09 is the initial address space owning all available memory at system initial-
ization. It maps the available memory tasks requesting it, and only once.
The idea behind oy is, that the memory can be distributed at boot time to
all initial user-level memory managers. If a page already has been mapped,
subsequent requests of this page to oy will automatically be denied.

00

whole phys mem

- 1.:equest denied

~
-
-

\

Pager 1 Pager 2 Evil Task
lower phys mem upper phys mem

Figure 3: Memory Distribution Based On o

2.2 T0O-Space On the x86-Architecture

This subsection details the properties of IO space and IO instructions on the
x86-archtitecture, and explains the hardware support to protect 10 ports.

2.2.1 IO instructions

On the x86-architecture, IO space forms a separate and distinct address space
in addition to main memory address space. Peripheral hardware is connected
to the processor in the IO address space, and ports can be used as well to
transmit data as to control the particular devices.

The size of the 10-space is 64 KByte, consisting of 64K 8-bit IO ports,
which are individually addressable. A port is denoted by a 16bit word; the
processor can transfer data from and to IO ports by four instructions:

in(port): read from a port to register
out (port): write to a port from register
ins(port): read from a port into memory
outs(port): write to a port from memory

The IO instructions move data from or to IO ports. The number of
bytes to read or write can be specified from 1 byte up to 4 bytes. The
source destination can be the general purpose register EAX or a memory
location respectively. The rep instruction can be used to repeat the string 10
instructions ins and outs several times. There exists no virtual to physical
hardware translation for [O-ports.

Further information on IO instructions is available in [TA32-1].

2.2.2 10O protection

In protected mode, IO protection can be established by two mechanisms,
the IO Privilege Level (IOPL), and the IO Permission Bitmap (IOPBM). In
contrast to virtual memory, access violations on IO-ports will not result in a
pagefault, but in a general protection exception (GP).

2.2.2.1 Protection Via Privilege Levels

Every piece of running code has a current privilege level (CPL). The CPL
is a number between 0 and 3; user-level code runs with a CPL of 3, kernel
level code runs with a CPL of 0. To support IO protection, every piece of

code has an 10 privilege level (IOPL), a number between 0 and 3, too. The
IOPL defines the CPL allowed at most to access IO-ports without any further
check. The CPL normally is equal to the privilege level of the code segment,
from which instructions are fetched at the moment. The IOPL is located in
the EFLAGS register. The IOPL can be used to permit access to IO ports as
a whole. On any 10 access, the processor checks, if CPL < IOPL. If so, the
IO operation is permitted without any further checking. If not, the processor
will check the IO Permission Bitmap.

2.2.2.2 Protection Via IO Permission Bitmap

The IO permission bitmap (IOPBM) is a feature to give access to individual
IO ports. Every task has its own IOPBM. The bitmap is located in the
task state segment (TSS) for the currently running program. Every IO byte
port is represented by one bit in the IOPBM. The size of the IOPBM is
variable, up to 8 KByte (representing 64K ports). The IOPBM can be used
for protection of individual ports. If a task performing an IO operation on
a certain IO-port is less privileged (i.e. if the privilege level check fails), the
processor checks all bits corresponding to the IO-port in the task’s IOPBM.
For a doubleword (4 Byte) access, for instance, the processor will check the
4 bits corresponding to the four port addresses.

> proceed ...

4
yes unset

Bits
I0 .
instruction IOPBM

PROCESSOR

set

A

exception 13

Figure 4: Processor Checking 10 Access

3 The Mapping Model For 10-Ports

This section details the issues in using the mapping concept for 10 space.
The basic goal is to treat the IO address space like memory and to use the
mapping model to enable protection and access control for IO devices. For
this purpose, FlexPages have to be defined for 10 space. They will be called
[O-FlexPages hence. Instead of inventing new system calls for IO space, the
operations map, grant and flush are used to handle both main memory and
IO ports. Necessarily, these operations need to know, which address space
is meant in each particular case. However, only a 32-bit word, denoting
a FlexPage, is passed to the operation to identify the memory portion to
map, to grant or to unmap, and every possible 32-bit word identifies a valid
memory FlexPage.

Obviously, a possibility would be to add address space identifiers to the
function definitions. This would require a redefinition of the operations, lead-
ing to a new specification of the L4 API. This is considered to be too com-
plicated, firstly as the .4 API specification is cross platform, and secondly
because it would require a reimplementation of already existing software run-
ning on top of L4.

The solution we pursued is to use a particular range of 32-bit words to
denote operations on IO ports. Therefore, a certain range of kernel space is
used to indicate operations on IO ports. Of course, these addresses cannot
be used anymore to denote main memory portions.

o)) 10- SERIAL
PAGER DRIVER
0x3f8 0x3f8 0x3f8
- > - > -
0x3ff map() 0x3fF map() 0x3ff
IS(;;ice Isop;ice IS(;;ice

Figure 5: An IO Mapping Example

The following subsections will firstly define the IO-FlexPage and describe
the functionality of the operations map, grant and flush concerning 10

10

ports in detail. Further on, the extended behaviour of oy is presented, and
an RPC protocol is invented to handle IO requests between tasks and og.
The current I0-FlexPages implementation provides two different initial task
states concerning their ownership of IO ports. This will be presented finally.

3.1 I0-FlexPage

The basic goal is to treat 1O-ports like memory, i.e. to use the same oper-
ations map, grant and unmap for IO-ports. For this purpose, FlexPages
are defined for IO-space:

An 10-FlexPage is an object with a variable size referring to a range of
[O0-ports. An 1O-FlexPage has a size, which is a power of 2, and a 16-bit
wide base address p, referring to a range of IO-ports. An IO-FlexPage with
port address p and size 2° is denoted by a 32-bit word:

10-fpage (p, 2°) F (4 P (16) Ow | sw© M

The smallest possible value for s is 0, the highest is 16.

64K IO—Space (0, 216) F (4) 0 (16) 0 (4) 16 6 ™M

Note, that an IO-FlexPage can have a base address not aligned to the size.
An IO-FlexPage consists of all valid ports inside its domain.

In fact, handling IO-ports by FlexPages results in utilizing a part of the
virtual memory of each address space to denote operations on IO Ports. As
mentioned, this model avoids adding address space identifiers and allows 10
port management without modifying the specification of .4 X.0.

3.2 Operations On IO-FlexPages

The operations map, grant and unmap support handling IO-ports with
basically the same semantics:

!An IO-FlexPage with ceiling above 64 KByte will consist of all valid ports, that is,
all ports below 64 KByte. (Effectively, such an I0-FlexPage could be needed. Think of
mapping the ports from 0xFFFA to 0xFFFF).

11

TASK PAGER

fault address

in (0x3£8) access 10 0xF3F80000
viola- port
tion fault

PROCESSOR I H-KERNEL
exception 13

Figure 6: Translating the Exception into a Pagefault

map: maps the region of IO-ports described by the IO-FlexPage to the re-

ceiver. Previous mappings inside the [O-FlexPage will be unmapped
beforehand. As there is no virtual to physical address translation for
[O-ports on the x86-architecture, the mapping always is idempotent.
Therefore, the whole IO-space (64K) should always be specified as the
receive FlexPage.?

Since partial access rights are not supported by the hardware, too, the
receiver always will have full (i.e. read and write) access to the mapped
IO-ports.

The sender’s address space remains unchanged.

The operation is synchronous and bound to ipc: a general protection
exception due to missing IO access rights is translated by the p-kernel
into an 10 port fault on the 10-FlexPage, which is refering to the 10-
port. This page fault is brought to the pager via IPC. Thereby the
pager can determine the address and the size of the IO-port the client
tried to read from or write to (Figure 6). The pager then handles the
IO port fault like a normal memory page fault; either by mapping or
granting an 10-FlexPage or by ignoring the 1O port fault.

grant: Similar to map, except the sender revokes his own rights to access

the IO-ports. Like map, grant is synchronous and bound to IPC.

unmap: revokes all given mappings by the task referring to the 1O-ports

described by the IO-FlexPage. unmap is an asynchronous system call.

Note, that the p-kernel does not map memory and IO ports simultane-

ously within one map message. That is, mapping the whole memory address

2In fact, if referring to I0 Space, the receive FlexPage will be ignored completely, except

that it has to be a valid I0-FlexPage.

12

n

space does not cover the IO address space. 10 ports can only by mapped if
addressed directly by their IO-FlexPage descriptors.

3.3 (oN))

og distributes IO-ports in the same way as virtual memory: the first arbitrary
task claiming IO-ports will get them. The idea behind this is: As oy denies
subsequent requests on IO-ports, initial IO-pagers can request the [O-ports
they want to manage; thus, distribution and control of IO-space is handled
by the initial IO pagers.

3.4 RPC Protocol For I0-Port Faults

As illustrated in figure 6, if a task wants to request IO space from its pager,
it can perform an IO instruction to raise an IO port fault. The message
sent to the pager denotes an 10-FlexPage, whose port and size is given by
the attempted IO instruction. The pager can grant access to the implicitly
requested 1O-ports. However, since the maximum size to read or write by
in and out is 4 bytes, the maximum size of bytes to request through the
p-kernel by an 10 port fault is 4 bytes. Therefore, instead of raising a port
fault by an IO instruction, a task can send an explicit IPC to the pager,
wherein the requested port and size are specified. According to the memory
pagefault protocol in [Lie99], the following IO port fault RPC protocol can
be used to implement explicit IO requests:

To Pager:
w0 (EDX) F () port (16) 0 (4 56 ™M
wl (EBX) ~ (32)
w2 (EDI) 0 (32)

Intended Action: For reply, the pager should map the range of 10-ports
specified by the port and the size 2°.

The initial pager oy has been modified to implement the 1O port fault RPC
protocol described above. That is, if a thread sends an 10O request according

13

to the IO port fault RPC protocol, oy will map the requested 10-ports. If
the IO-ports are not available anymore, o replies a 0-word instead.

3.5 Legacy Support

To support unmodified ”legacy software” running on top of a u-kernel with
[O-FlexPages, two different initial states of tasks can be configured at compile
time of the L4 p-kernel:

Implicit IO-Mapping: Implicit mapping of all 64k IO-ports to a task on
its creation by its pager, iff the pager has full access rights itself; to deny
a task to access [O-ports, the ports have to be unmapped explicitly in
the tasks IO address space.
Implicit mapping is nested and depends on the IO permissions of the
creating task: only tasks with full permissions to all IO-ports can create
new tasks with full permissions to 10-ports, whereas a task lacking or
having only partial permissions to 1O-ports creating a new task will
result in the new task having no access to [O-ports at all.

No implicit IO-Mapping: Every task has no access to 10-ports by de-
fault. Access to IO-ports can be given through mapping and granting.
This is the more intuitive mode, as a task’s initial state concerning ac-
cess to IO-ports is like the state concerning virtual memory: no map-
pings at all.

4 Implementation

First of all, an issue implementing 1O-FlexPages is to use the given hardware
features to protect IO-ports. The x86-architecture supports the protection of
[O-ports by two mechanisms: privilege levels and the IO permission bitmap.
By privilege levels, access to IO-ports can be generally permitted or denied
to user-level tasks. The IO permission bitmap (IOPBM), a per task data
structure, can be used to handle access to individual IO-ports. The first
subsection details, how the the hardware features were enabled and how the
mapping concept is implemented at hardware layer.

IO protection by the hardware does not only affect in and out, but also
clearing and setting the interrupt flag by cli and sti are protected by the
IOPL. That is, only tasks with an IOPL numerically greater than the CPL

14

are allowed to perform cli and sti. This a rather unwanted side effect, as
user-level drivers are not allowed to control the interrupt flag anymore. A
possible solution to this problem is presented in the second subsection.

Obviously, the hardware does not now anything about multiple address
space and their construction, and does not provide features for hierarchical
IO protection. The mapping model requires that given mappings of IO-ports
can be revoked subsequently. For this reason a mapping database is needed
to keep track of all given mappings, thus enabling, that IO space can be
mapped and unmapped properly. The design of the database is presented in
the final subsection.

4.1 Implementing The Hardware Aspects
4.1.1 IO Privilege Levels

Since privilege levels only permit or deny access to IO-ports in general, the
only user-level task with an IOPL of 3 is gy. All other user-level tasks have
an IOPL of 0; thus, the processor will check the IOPBM every time a task
tries to access an [O-port, excluding oy.

4.1.2 IO Permission Bitmap

To protect the available IO Space, every task must have its own IOPBM. It
seems to be appropriate to use 8 KByte for every task, in order to support
control and protection for all 64K ports.

The IOPBM itself is located in the task state segment (TSS). The x86-
architecture supports a hardware-based task switch, causing a reload of the
TSS and thus a reload of the IOPBM. However, L4 does not use the hardware
task switch, as it is much more expensive than a well designed software
switch. In L[4, all tasks share the same task state segment.

The TSS is located in the kernel space of every task, which is, of course,
a part of the virtual memory. Virtual memory is translated to physical
memory by the memory management unit (MMU). For every page in virtual
memory of a task, the MMU parses the task’s page tables. To share the TSS
among different tasks, the page table entries of the TSS point to the same
physical page frames in memory. Thus, by default, all virtual addresses of
the IOPBM point to a default bitmap in physical memory. Depending on the
configuration of L4 (see section 3.5), the default bitmap is initialized with 0,

15

which means access to all IO ports, or 1, wich means no access on all ports.

The following trick makes it possible to use different permission bitmaps
for different tasks without using the slower hardware task switch: To assign
different IOPBMs to different tasks, retaining however the rest of the TSS,
the bitmap is placed on an address aligned to the size of a hardware page
(4KByte). The pagetable entries for the IOPBM are set to different page
frames for different tasks, whereas the pagetable entry for the rest of the
TSS points, as before, to the same destination. By this means, the task state
segment remains at the same virtual address, but the physical frames for the
bitmap are different. Thus, different tasks can have different bitmaps while
still sharing the rest of the task state segment.

Note, that the IO permission bits are not cached by the hardware. Thus,
if pagetable entries are exchanged due to a task switch, the processor always
will parse the correct bitmap.

- FRAME 5 47 -
T(IOPBM - » , — IOPBM | T
- RAME 4—‘ R
> I0PBM I0PBM >
S - - _0x4000 FRAME 3 04000 _ - - S
#- -Hr\-RE[z :\RT- | - | H:\RE-D -AR-T _L
~0z3000 FRAME 2 0x3000
TAsk 1 > FRAME 1 - TASK 2

Physical Memory
Figure 7: Same TSS, Different IOPBMs
Implementing the mapping concept at hardware layer tackles the follow-
ing issues:

- From the hardware perspective, to map, to grant or to unmap IO space
is nothing more than to change the corresponding bits in the IOPBM
of the receiver’s task (and in the sender’s, if IO-ports are granted re-
spectively removed from the sender’s 1O-space).

- On an exception 13, the u-kernel has to determine the reason; if the
reason was lacking IO permission, the p-kernel has to translate the

16

exception into an IO-port fault, and to send that fault to the pager of
the current thread.

4.2 The cli/sti Problem

in and out are not the only instructions protected by the privilege levels
CPL and IOPL, but also cli (clear interrupt flag) and sti (set interrupt
flag). If the IOPL is less than the CPL, an attempt to execute cli or sti,
will result in a general protection exception (GP).

This implies that any task, whose IO-ports are individually protected by its
CPL/IOPL and its IOPBM, cannot clear or set the interrupt flag anymore.
Since clearing and enabling interrupts at user level could be needed, for in-
stance for synchronisation methods or for drivers in general, support for both
IO protection and disabling/enabling interrupts is an issue of the u-kernel.
A solution to the problem is to enable protected mode virtual interrupts.

4.2.1 Protected Mode Virtual Interrupts

By enabling protected mode virtual interrupts (PVI), the operating system
can virtualize masking and unmasking interrupts in an inexpensive way. Pro-
tected mode virtual interrupts can be enabled by setting a flag (PVI flag) in
a processor specific register.

4.2.1.1 Normal hardware interrupt handling: Normal hardware in-
terrupt handling is quite simple; clearing the interrupt flag (IF) by c1i causes
the processor to ignore all external hardware interrupts. After the interrupt
flag is reset by sti, the processor begins to respond on external maskable
interrupts again. However, as mentioned, cli and sti cause an exception, if
executed in user mode (CPL=3) and the IOPL is less than 3 and if protected
mode virtual interrupts are not enabled. Of course, the exception could be
used to emulate the interrupts completely in software. As exceptions are
expensive, however, we preferred to use the PVI approach.

4.2.1.2 Protected mode virtual interrupt handling: When the PVI
flag is set, the current code is running in user mode (CPL=3), and the IOPL
is less than 3, cli and sti will not cause an exception anymore. Instead,
they clear and set the virtual interrupt flag (VIF), leaving the real interrupt
flag (IF) unaffected.

17

The behaviour of the normal interrupt handling can be simulated by modi-
fication of the interrupt and exception handlers:

A task running in user mode executes cli to indicate, that it does not want
to be interrupted now. This clears the VIF flag. If an interrupt occurs, the
processor calls the interrupt handler, since the real interrupt flag (IF) was
not cleared. The invoked handler checks the state of the virtual interrupt
flag (VIF). If it is clear, indicating, that the active task does not want to
have interrupts handled at the time, the interrupt handler sets another flag,
the virtual interrupt pending (VIP) flag, and returns to the task. If the task
finally resets the virtual interrupt flag (VIF) by sti, the processor checks the
VIP flag. If the flag is set, it will automatically call the exception handler.
Then the exception handler can handle the pending interrupt(s).

4.2.2 Interrupt And Exception Handlers

To explain the concept behind protected mode virtual interrupts, the modi-
fied interrupt and exception handlers are presented in pseudocode.

INTERRUPT_HANDLER()
1 if VIF == unset then

2 enqueue_interrupt|()
3 mask_interrupt()

4 VIP = set

5 return()

6 else

7 handle_interrupt ()

EXCEPTION_13_HANDLER()
1 switch instruction

2

3 case sti

4 dequeue_interrupts()
5 unmask_interrupts()
6 handle_interrupts()
7 VIP = unset

8

In PVI mode, the processor automatically calls handle_interrupt on an

18

ocurring interrupt. If the user level task does not want to be interrupted,
it saves the occuring interrupt, indicates the pending interrupt by setting
the VIP flag, and returns to the task. As the VIP flag is set, enabling the
interrupts will raise an exception 13, and the handler finds the reason to be
sti. The pending interrupts are handled at this time.

Further information on protected mode virtual interrupts can be obtained
in [TA32-3].

If a task switch occurs from a task with cleared VIF flag to a task with
set, VIF flag, for instance if the pagefault handler is called due to a pagefault,
the pending interrupts are handled by the p-kernel before switching to the
new task.

4.2.2.1 pushf / popf

pushf and popf can be used to save the EFLAGS register on the stack
respectively to pop the EFLAGS from the stack. If the EFLAGS image on
the stack has a set IF flag, the IF will be set implicitly by popf. This is
a method used frequently (for instance by Linux) to set the interrupt flag
to the old value. Unfortunately, popf cannot be virtualized completely: if
running in PVI mode, popf neither sets or clears the VIF flag independent of
the value in the EFLAGS image on the stack, nor does it cause an exception
like sti. Therefore, popf has to be substituted by assembler instructions
testing the VIF flag on the EFLAGS image first, and calling sti explicitly,
if it is set.

4.3 10 Mapping Database

To enable hierarchical IO address spaces involving mapping and revoking
ports, the kernel has to keep track of existing [O-mappings in order to ensure
that they can be unmapped correctly afterwards. In other words, a database
is needed to store the mappings. The mapping database will store every
given mapping. If a user-level task calls the p-kernel to unmap a given set
of 10-ports, the mapping database will restore the associated mappings and
revoke them subsequently.

Since mapping and revoking IO Ports are hierarchical operations, a tree
seems to be the appropriate data structure for the mapping. Every node
in this tree would represent a mapped IO-region, and every directed edge
between a parent and a child node would indicate a mapping. The number
of children is completely variable (1 : n relationship)

19

Furthermore, there must be a method to reference mapnodes by a given
[IO0-FlexPage, that is, a method returning a task’s mapping nodes correspond-
ing to a given range of IO-ports in the mapping tree.

The first subsection will discuss an approach to reference given mapnodes.
The conclusions made in this subsection lead to a data structure presented
in the following subsection. Finally, the mapping algorithms are presented
and detailed.

4.3.1 Referencing I0 Mapping Nodes

While the implementation of the mapping tree itself is quite straight forward
and similar to a mapping tree for virtual we considered many possible dif-
ferent approaches to implement a method returning all mappings to a task
inside a given region of IO-ports. For main memory, it seems to be appro-
priate to use mapping nodes representing a fixed size of virtual memory, as
page sizes are not completely variable. (x86-architecture supports two differ-
ent page sizes: 4 KByte and 4 MByte). Consequently, referencing mapping
nodes associated to a certain hardware page can be done through an index
of the fixed sized mapnodes, for instance in a shadow page or a hash ta-
ble. Different approaches for main memory are detailed [SU98] and [Elp98].
However, the situation for IO-ports is different, the reasons for that are as
follows:

- Variable Size/ 1-Byte-Granularity: The granularity of IO FlexPages is
1 Byte. Therefore, mappings can range from 1 Byte up to 64 KByte.
Using a fixed node size in the mapping tree would lead to a huge map-
ping tree. For instance, 1 byte mapnodes would waste 65536 mapnodes
for a 64K mapping.

- Predictable mapping behaviour: In most cases, distributing IO-space is
done initially, at boot time of an OS. Furthermore, a sensible handling
of IO-ports would grant dedicated access to [O-ports to dedicated tasks
(drivers) only. Also, the mapping tree is expected not to be very deep.

For this reasons, completely flexible sized mapping nodes were favorized for
the IO mapping database. This implies, that a shadow page table or a hash
table cannot be used to reference mapping nodes: a given region of IO-ports
can be represented by a mapping node with a completely different address
and size - for instance, searching for the mapping node representing one byte

20

in a tasks IO-space could return a mapping node representing the whole 64K
[O0-space. The most simple solution is to hold the mapping nodes of a task
in a sorted linked list. This can increase the search time, but a predictable
mapping behaviour should lead to few entries in the per task linked list.
Additionally, using completely flexible-sized mapnodes reduces the number
of mapnodes for a task - for instance a 64K mapping takes 1 node in the
mapping tree. Of course, the flexible size makes parsing of the mapping tree
more complicated, and increases the code size. This should be traded off by
the lower run time memory consumption.

4.3.2 Data Structure For The Mapping Database

The mapping tree consists of io mapping nodes. As well they are used to
examine the IO-ports mapped to a task. An io mapping node contains the
following members:

iomnode_t{

taskID ID of the task, which the node is associated with

lo Lower bound of the associated range of ports

hi Higher bound of the associated range of ports

depth Tree depth in the mapping tree

prev, next Previous and next mapping node in the mapping tree

prev_st, next_st Previous and next mapping node in the list of
mappings to the task

parent parent mapping node
}0
1
2 2F:8—BQFF —>—>—>

Figure 8: Database Subtree

The mapping nodes are both held in the mapping tree and in the respec-
tive thread list.

21

—————————————————

THREAD 3

THREAD 3

THREAD 3

Figure 9: Task List

Instead of using a pointer per child, the tree depth and the next and prev
pointers are used to determine the actual location of a node in the tree.?

The task list is a doubly linked list sorted by the given lower and higher
bound of the nodes. Its entry is a dummy node; as threads of the same task
share their IO-space, an unused page table entry of the task is used to point
to dummy node marking the beginning of the task’s IO-space (See figure 9).
The dummy node avoids the check, if the pagetable entry has to be changed
during insertion of a new node. To make parsing of a thread easier, the last
mapping node in a task list points again to the dummy node. The pointer
to the parent is used to prevent cyclic mappings: For instance, the mapping
database has to check, if the receiver of a mapping tries to remap the 10-
space back to the sender. Such a mapping has to be ignored, otherwise the
map algorithm would run into an endless loop. For this purpose, the thread
IDs of all recursive senders’ parent nodes are compared with the receiver’s
thread ID. If any of them matches, the mapping will be ignored.

4.3.3 Mapping Algorithms

The following section describes the implementation of map, grant, flush for
[IO0-FlexPages. Varying in size, nodes are not only allocated and removed,
but in some special cases the they have to be resized or split correctly. This
is somewhat complicated, in fact, it should not be needed too often. The
algorithms are presented by simplified pseudocode and its explanation.

3 Actually, the next pointer would be sufficient to parse the mapping tree. The prev
pointer is needed to get the previous node, if a task unmaps parts of its own IO address
space.

22

map: Mapping an [0-FlexPage means to map all valid IO-ports mapped
inside the FlexPage in the sender’s IO-space to the receiver. Previous
mappings in the receiver’s IO-space have to be unmapped beforehand.*
Mapping an [O-FlexPage consists of four major steps:

1. Search the sender’s mapping nodes starting from the first valid
mapnode (line 1) for those relevant for mapping the given IO-
FlexPage. A mapnode is relevant, iff the intersection between the
represented 10-ports and those of the IO-FlexPage is not empty
(lines 2,3).

2. New mapnodes have to be created under the relevant mapnodes
(line 4). The actual size represented by the new mapnodes is the
respective intersection.

3. Former mappings inside the intersection have to be unmapped in
the receiver’s 10 space, including its own IO-space (line 5).

4. The new mapnodes have to be inserted in the subtree under their
respective parents and in the receiver’s list of mapnodes (lines 6,

7).
5. Finally, the receiver’s IOPBM has to be updated (line 8).

MAP_IO_FPAGE(from, to, fpage)
1 for m in from.io_mapnodes
2 i «—[m.lo, m.hi] N [fpage.port, fpage.port + fpage.size -1]
if i # ¢ then
¢ < create_io_mapnode(1)
unmap(to, 1)
insert_in_tree(c)
insert_in_task_list(to, c)
zero_iopbm(to, 1)

0O O W

4This behaviour differs from main memory, but is consistent with the specification
[Lie99]. The reason can be found in the implementation: If previous given mappings
would be ignored, the map algorithm had to place new children in the subtree around the
old mapnodess.

23

grant: granting an [0-FlexPage is very similar to mapping; several major
steps can be evolved:

1. Search the sender’s mapnodes starting from the first valid mapn-
ode (line 1) for those relevant for granting the given 10- FlexPage
(lines 2,3).

2. Unmap previously given mappings out of the receiver’s IO-Space
(line 4)

3. Grant the subtree below the mapnode to the receiver (line 5), i.e.
take the mapnodes in the subtree and transfer the parts relevant
for the granting operation (i.e. the instersection) to the receiver.
Granting a subtree is illustrated by figure 10.

4. unmap the IO-FlexPage in the sender (line 6).
5. Update the sender’s and receiver’s IOPBM (lines 7, 8)

GRANT_IO_FPAGE(from, to, fpage)
1 for m in from.io_mapnodes
2 i «—[m.lo, m.hi] N [fpage.port, fpage.port + fpage.size -1]
if i £ ¢ then
unmap(to, 1)
grant_subtree(m, i, from, to)
unmap(from, 1)
set_iopbm(from, i)
zero_iopbm(to, 1)

0O O W

grant_subtree(B, D, 3F8-3F8)

()

3F9-64K

64K

Figure 10: Granting A Subtree

24

unmap: This function gets a parameter named mapmask, indicating, if the
[IO0-FlexPage is to be unmapped out of the own IO-space, too. The
function calls the helper function unmap_subtree, which is also used by
map and grant. The following steps and the pseudocode detail that:

1. Search the sender’s mapnodes starting from the first valid mapn-
ode (line 1) for those relevant for mapping the given 10 FlexPage
(line 2,3).

2. unmap the whole subtree under the respective mapnode (line 4).
As the nodes are flexible sized, the nodes possibly are not removed
completely (figure 11.a) out of the subtree, but only resized (figure
11.b) or split (figure 11.c).

3. The parameter mapmask is passed to unmap_subtree, and the
called function has to remove, resize or split the subtree root,
too, if mapmask is true (line 4).

unmap_subtree(A4, 0-64K) unmap_subtree(A, 3F8-3F8)
1 1

1 1
1 1
a | @ | Q
1 1
1 1
1 1
1 1
1 1
1 1
B 1 B 1
2F8- . 3F8- .
2FF . 3FF .

11.a: removing nodes 11.b: resizing nodes

unmap-subtree(A, 3F8-3FF)

1

1

1

1
3 |
1

1

1

1

1

B 1
64K |
1

11.c: splitting nodes

Figure 11: Unmapping A Subtree

25

UNMAP _IO_FPAGE(task, fpage, mapmask)
1 for m in from.io_mapnodes

2 i <[m.lo, m.hi] N [fpage.port, fpage.port + fpage.size -1]
3 if 1 # ¢ then
4 unmap_subtree(m, i, mapmask)

4.3.4 Mapping Database Memory Management

The only data structure used in the IO mapping database is the io mapping
node. The IO mapping database simply uses the memory allocation routines
provided by the main memory mapping database.

26

5 Results and Conclusion

Since mapping, granting and unmapping of 10-space is far from being time
critical, the implementation focussed on functionality and feasibility, not on
speed.

With 10-FlexPages, the code size increases by about 6 KByte. Every task
with specific access rights to IO ports will need a bitmap. For default access
rights, the default bitmap is used. Thus the runtime memory consumption
for the bitmap is 8 KByte per driver task, which is inevitable. The mapping
database needs 28 Bytes per mapping. The dummy node is created for every
task, thus, 28 Bytes per task are needed additionally.

A running L4Linux effectively needs to access about a hundred different
ports. If every port is mapped in a single operation, this leads to a memory
consumtion of about 3 KByte. Mapped as the whole 64 KByte 10 space at
once it will need only one mapnode of 28 Bytes. However, since access to
ports is restricted to drivers and few other hardware related processes, there
should not exist too many mappings in a running system. In this case, the
memory consumption besides the IOPBM is more or less neglectible.

Handling IO-space is a crucial part of an OS, because access to IO ports
can be abused easily. Therefore, it should be granted only dedicated and
trusted components. By IO-FlexPages, IO0-ports can be distributed and pro-
tected like main memory. Using the same concept for IO-space, systems
designed to run upon the L4 pu-kernel can be extended easily to handle 10-
ports without too much additional code. Pagers can be used to handle both
main memory and IO-ports. Moreover, IO port faults can be used to de-
termine, if faulting or evil components try to access ports they should not
have access to. Thus, IO-FlexPages can lead to better protection and more
transparency in systems running upon L4.

The software is available in the CVS tree. To enable IO-FlexPages sup-
port, switch on the configuration variable CONFIG_IO_FLEXPAGES in the

configuration menu. Bug reports are welcome of course.

6 Future Work

Further work has to be done for the protected mode virtual interrupt han-
dling. The current version provides only a rudimentary handler, aiming to
show, that the concept works. Aspects such as potential priority problems

27

on task switches in PVI mode have not been examined. Furthermore, the
current implementation of IO FlexPages disregards the experimental SMP
support in Hazelnut.

28

A Testing

The I0-FlexPages implementation has been tested with L4Linux 2.4. The
initial pager og, the resource manager (RMGR), the Linux pager, and the

Linux system calls ioperm() and iopl() have been modified to work with
[O-FlexPages:

Boot Time
With enabled 10-FlexPages support, the boot sequence of L4Linux
running on Hazelnut will perform the following steps to handle the 10
space:

e Having started the p-kernel and oy, the resource manager (RMGR)
requests the whole 64K 1O-space from oy.

e Thereafter, RMGR boots L4Linux. During initialisation, L4Linux
will attempt to access I0-ports, which directly leads to an IO port
fault.

e The pager of the kernel will handle the first IO port fault by
requesting the whole [O-space from RMGR; whereupon RMGR
maps the whole IO0-space to L4Linux. The initialisation continues.

System Calls
Like in Linux, a task can get access IO-space by ioperm() and iopl(),
two system calls restricted to the superuser. Running original Linux,
ioperm() modifies the IOPBM of a task, while iopl() sets the 10
privilege level. Running L4Linux, the result of ioperm() and iopl()
is the same, the modified implementation and functionality is explained
shortly:

int ioperm(unsigned long from, unsigned long num, int turn_on)

will modify the task specific, L4Linux-internal IO permission bitmap,
like in Linux. In L4Linux, the size of internal bitmap is 8KByte,
not 1 KByte. If turn_on is 0, indicating the access to be to the
specific ports to be allowed, L4Linux will zero the respective bits
in this bitmap. If turn_on is 0, indicating the access to be denied
from now on, Linux will set the bits in the bitmap. Afterwards,

a FlexPage containing the ports to turn off will be unmapped by
L4Linux.

29

int iopl(unsigned long level)
As L4Linux is not allowed to change the real IOPL anymore, the
behaviour is simulated: iopl() sets a task specific variable to the
given IOPL, and the pager can map the whole [O-address-space
if the variable is 3.

IO Port Faults
If the process raises an IO port faults on a given address, L4Linux
kernel will check the L4Linux-internal IOPL and IOPBM. If the IOPL
is 3 or the adjacent bits in the bitmap are zeroed, the kernel will map
an 10-FlexPage to the task.

30

References

[Lie99] J. Liedtke: L4 Nucleus Version X Reference Manual (1999)
[Lie95] J. Liedtke: On p-kernel Construction (1995)

[SU98| S.Schénberg, V.Uhlig: p-kernel Memory Management (1998)
[Elp98] K. Elpinstone: Virtual Memory In A 64-Bit Microkernel (1999)

[TA32-1] TA-32 Intel Architecture Software Developer’s Manual, Volume 1:
Basic Architecture

[IA32-2] TA-32 Intel Architecture Software Developer’s Manual, Volume 2:
Instruction Set Reference

[IA32-3] TA-32 Intel Architecture Software Developer’s Manual, Volume 3:
System Programming Guide

31

