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Chapter 1

Introduction

The last few years have seen a significant rise in the number of mobile computers like laptops
or PDAs. Advantages in chip technology have widened the range of their applications: mo-
bile WWW browsers, audio players or mobile phones with lots of additional features were
not available until recently. And this trend will probably continue for the next years. Mobile
video players or video phones may be future applications.

A mobile computer that deserves its name must be independent of external power supply for
a reasonable time period. To that aim, battery packs are used, which are, of course, very
limited in their capacity. To extend a mobile computer’s uptime, all its components should
be investigated for ways to reduce their power consumptions. There are two main types such
measures:

1. In the design process of a mobile computer, components should be selected that closely
match the requirements. This is rather easy if the mobile device is designed for one
single purpose. Oversized general-purpose processors, for example, are not only ex-
pensive, but their consumption might be more than an order of magnitude higher than
the consumption of a special-purpose processor.

2. A mobile computer should be able to adapt its power requirements to the current work-
load.

Newer mobile processors, for example, may reduce their clock rate and voltage to
adapt for changing performance demands, reducing their power consumption.

If a laptop is unused for some time, it may switch off some of its components like the
display or the hard disk.

Part of the electric circuitry, like RAM or the processor may be switched off after
saving its state on the hard disk.

Together with the processor and the display, the hard disk drive is a mobile computer’s main
energy drain. In 1998, Jacob Lorch and Alan Smith [11] stated:

Later models of portable computers seem to spend a greater percentage of their
power consumption on the hard disk than earlier models. Presumably, this is be-
cause later models have substantial relative savings in other components’ power
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but not as much savings in hard disk power. These forecasts suggest that as
time progresses, power-saving techniques might become more important for the
display and hard disk [. . . ]

The present paper will focus on power-saving strategies for hard disks which may be imple-
mented in an operating system.

Chapter 2 presents the basics of hard disk consumption reduction. A drive’s power con-
sumption depends on the pattern of the read/write accesses it has to serve. Additionally,
modern hard disks offerpower saving modeswhich may be activated by the drive itself or
by software.

The operating system can control disk accesses and power modes, considering information
from different sources, particularly from thedevice driver, thefile systemandapplications.
In chapter 3, I will present an integrated concept, called Coop-I/O, that uses information
from all these sources. It consists of the following components:

1. A power mode control that uses an adaptive algorithm to shut down the disk when it is
not needed.

2. An update policy that is trimmed to reduce the number of write access bundles.

3. Cooperative file operations (open, readandwrite) that may be delayed or cancelled
when activating the hard disk immediately is too energy-expensive. These operations
can be used by applications.

Chapter 4 describes an exemplary implementation of that concept which is based on the
Linux kernel, version 2.4.10.

Chapter 5 reports the energy-saving results when testing that implementation, using real-
world applications as well as parameterised tests.

Chapter 6 gives hints how applications may use the cooperative file operations. Possible
future work is also suggested.

The Coop-I/O concept may be embedded in a larger energy-saving concept that encompasses
all components of a computer system. For example, Heng Zeng, Xiaobo Fan, Carla Ellis,
Alvin Lebeck and Amin Vahdat [10] have proposed to introduce an energy account system
that “[. . . ] unifies energy accounting over diverse hardware components and enables fair
allocation of available energy among applications.” A similar system has been suggested by
Gaurav Banga, Peter Druschel and Jeffrey Mogul [9]. The present work is complementary
to theirs and should fit in nicely.
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Chapter 2

Background

Operating systems may reduce a hard disk’s power consumption by switching between the
disk’s power-saving modes.

2.1 Power-Saving Modes

Modern hard disks make use of several modes that are associated with different levels of
power consumption. The ATA standard, also known as IDE, defines three power saving
modes [5]:

Idle: The hard disk is rotating and the hard disk interface is active. Typical power consump-
tion for new-generation mobile hard disks is 0.75–2 W.

Standby:The hard disk spindle motor is off, but the hard disk interface is active. Typical
power consumption is 0.25 W.

Sleep: The hard disk spindle motor is on, and the hard disk interface is inactive. It can only
be activated by a reset command. Typical power consumption is 0.1 W.

The ATA standard furthermore defines theactivemode, in which the hard disk resides when
reading, writing or seeking. I will subsume standby mode and sleep mode asrestingmodes;
active mode and idle mode will be subsumed asrunningmodes.

Some of the mobile hard disks on market split up the idle mode into 2–3 modes that have
different power consumption and need different time intervals to go back to active mode.
They switch autonomously between these power saving modes, using fixed time-outs or
adaptive algorithms.

A non-negligible amount of time and energy is needed to enter and leave resting modes.
Therefore, resting modes should be activated as soon as possible, and the resting period
should persist as long as possible. Of course, entering a resting mode is only worthwile if
the interval up to the next disk access will be long enough. The minimum interval between
two disk accesses for which switching pays off is called thebreak-eventime. It only depends
on the characteristics of the hard disk device.
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Figure 2.1:Power consumption of the IBM DCRA-22160 during an idle–standby–idle turnaround.

2.2 The IBM DCRA-22160 Drive

For all power measurements, I have used a 2.5-inch IBM DCRA-22160 drive, sold as Trav-
elstar 2XP, with the following characteristics, as reported by its manufacturer [4]:

Storage capacity 2160 MB
Number of disks 3
Rotational Speed 4900 rpm
Interface ATA-3
Dissipation in Idle mode 1.1 W
Dissipation in Standby mode0.3 W
Dissipation in Sleep mode 0.1 W
Time from Standby to Idle 2.3 s typical, 9.5 s maximal
Time from Idle to Standby 1.7 s typical, 5.0 s maximal

As the measurements have shown, the time from idle to standby, as reported by IBM, only
comprehends the time it takes to start or stop the spindle motor. The time to lock the heads
is not included.

The DCRA-22160 uses adaptive power management. It conforms to the ATA standard, but
it splits up the idle mode into two submodes:performance idleandlow power idle[4] [8].

In performance Idle mode, all electronic components remain powered and full
frequency servo remains operational. [. . . ]
In low power idle mode, additional electronics are powered off, and the head is
parked near the mid-diameter of the disk without servoing. [. . . ]
The transition time is dynamically managed by users recent access pattern,
instead of fixed times. [. . . ] [4]

Figure 2.1 shows the power consumption of the IBM DCRA-22160 during an idle–standby–
idle turnaround. The dissipation changes in reaction to the changing operating modes:

t = 0 s: The hard disk is in low power idle mode and dissipates about 1 W.

4



t = 2 s: The disk receives a shut-down command. The big shaded region in figure 2.1 is the
shut-down interval. First, the disk consumes up to 4 W to stop the spindle motor, but
only for a very short time period. Then, the disk stays in apre-standbystate, which is
not documented in the drive’s technical documentation. The disk draws about 0.75 W.
This state lasts for about 9 s. Finally, the power consumption reaches three peaks, each
one continuing for 0.5–1 s. This is caused by the head lock mechanism.

t = 14.8 s: After locking the heads, the disk has reached standby mode, and power con-
sumption falls to about 0.275 W.

t = 20s: The drive receives a write command and starts to spin up. The smaller shaded
region shows the hard disk switching from standby mode to active mode. Starting the
spindle motor is quite expensive, energetically. After 2.5 s, the disk has run up and
may execute read or write accesses.

t = 22.5 s: In the test scenario, only a single block gets written. Then, the disk stays in
performance idle mode for about 2 s, dissipating about 2 W. Finally, after a short
power peak, it switches to low power idle mode.

The duration of performance idle mode is controlled by the disk itself and is variable.
The time algorithm is not documented. I ran this “turnaround test” several times and
got results where the disk switched to low power idle immediately, and others where
the disk stayed in performance idle mode for 4 s.

Ideally, the disk should go to standby mode immediately at the beginning of a standby period.
Of course, when a disk operation has been processed, we do not know whether we are at
the beginning of a standby period or not. So what we need is an approximative algorithm
that estimates whether it pays off to shut down the hard disk. The easiest approximation is
to shut down when a fixed time period after the last disk access has elapsed. The ATA-5
standard supports such a fixed time-out. The standby timer is controlled by the drive without
intervention from the operating system. The user can set the time-out according to her needs.
Linux supports this via thehdparmcommand.

2.3 The Break-Even Period

The hard disk can save an optimum of energy if it goes to sleep whenever the hard disk will
be not accessed for the so-calledbreak-even periodat least. This is the minimum time period
between two disk accesses when it pays off to change to standby mode (and back). A time
interval without any disk access that is longer than the break-even period is called astandby
period.

Let us suppose we have the following values for a specific hard disk drive:

Pi : The power consumption in idle mode.
Ps: The power consumption in standby mode.

Eis: The energy needed to change from idle mode to standby mode.
tis: The time needed to change from idle mode to standby mode.

Esi: The energy needed to change from standby mode to idle mode.
tsi: The time needed to change from standby mode to idle mode.
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For an intervalt ≥ tis + tsi in which no hard disk access takes place, we are interested in the
following values:

Ei(t): The energy needed to stay in idle mode.
Since the power consumption is (nearly) constant in idle mode, we haveEi(t) = tPi .

Es(t): The energy needed to switch to standby mode at the beginning of the interval, to stay
in standby mode, and to switch back to idle mode at the end of the interval.
Since the standby interval ist− tis− tsi and power consumption is constant in this interval,
we haveEs(t) = Eis +(t− tis− tsi)Ps+Esi.

tbe: The break-even time, which is the time for whichEs(tbe) = Ei(tbe).

Inserting into the last equation and resolving for the break-even time yields:

tbe =
Eis− (tis + tsi)Ps+Esi

Pi−Ps

For the IBM DCRA-22160 hard disk, I measured the following values, using the test envi-
ronment described in section 5.1:

Pi = 0.945W, Ps = 0.275W
tis = 12.8 s, tsi = 2.5 s
Eis = 16.8 J, Esi = 8.0 J

So the break-even time for that hard disk is 30.7 s. Note that this value is device-specific.
Yung-Hsiang Lu and Giovanni De Micheli [2] report break-even times of 6.39 s for a Fuijitsu
MHF 2043AT disk and 35.0 s for an Hitachi DK23AA-60 drive.

2.4 Existing Energy-Saving Strategies

Up to now, the following strategies have been used or researched to use hard disk mode
switching to reduce energy consumption:

- The hard disk device can switch to standby mode autonomously. For this aim, the ATA
standard provides a command to set a shut-down time-out. If the disk is idle for longer
than the time-out interval, it will go to standby mode automatically.

- The operating system can switch a hard disk to a resting mode using an ATA command.
Normally, this is done either on a fixed time-out basis or because a user action has
happened, such as closing the laptop or explicitly activating power saving mode.

- Applications can access the disk as rarely as possible by buffering the data they have
read or will write. This strategy is used, for example, by most MiniDisc players that
need about 2 s to read an audio data block. The playing time for such a block is 10 s.
In the meantime, the MiniDisc spindle motor can rest.
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2.5 A Cooperative Approach

In his pre-master’s thesis [3], Steffen Meyer has implemented a scheme that combines
energy-accounting with the concept of amarket place. He assumes that energy is a lim-
ited resource, as is true for battery-driven laptops or PDAs. For every process, the operating
system keeps an energy account, which holds the amount of energy the process is allowed
to spend for hard disk accesses. If a process creates a child, the parent can determine the
amount of energy it will transfer to the child. A file will also get its own account when being
opened; its initial amount will be transferred from the account of the creating process.

The system calls for file operations are substituted by energy-aware variants that have two
additional parameters, namely the amount of energy they may spend at most, and a time-out.
Every process that requests a hard disk operation has to go to the market place before the
operation is actually executed. Here, the process’ energy bid is compared with the estimated
amount of energy it takes to execute the operation. If the energy bid does not suffice, the
operation will be delayed until the time-out is reached. Meanwhile, bids for disk accesses of
other processes can arrive at the market place. If the sum of the bids reaches the amount of
energy needed, all operations are executed and the energy for the disk access is taken from
the files’ accounts in the order the bids have reached the market place.

Steffen Mayer implemented this concept on a Minix operating system. Since “real world
applications” are rare for Minix, the test programs were simulating the behaviour of such
applications. The concept of cooperative processes is appealing, and it was proven to save
energy. But the current implementation imposes many decisions on the user’s programs. An
application has to decide:

- How much energy it should bid for a certain disk access.

- How long it should wait until raising the bid or resigning.

- How much it should raise its bid.

- How much energy it will transfer to a child process when creating one.

Since energy consumption for hard disk accesses depends on the actual drive, the application
has to deal with aspects of specific devices. Furthermore, if an application’s energy account
runs out, the application’s file operations will almost certainly be blocked.

7



Chapter 3

An Integrated Power-Saving Concept

In this chapter, I will present an integrated concept to coordinate hard disk accesses which I
call Coop-I/O. It consists of three major parts:

- The operating system monitors and controls the hard disk modes; it will switch a hard
disk to standby mode when it assumes that the drive is in a standby period. This is done
by a simple adaptive algorithm calleddevice-dependent timeout with early shut-down
(DDT/ES).

- The operating system uses anupdatepolicy that is trimmed to save energy by the
following means:

1. Each drive is updated separately. If a drive is updated, all its dirty buffers are
written back.

2. Dirty buffers are written back preferably when another disk access happens.

3. When the operating system decides to shut down a hard disk drive, it will previ-
ously write back all dirty buffers of that drive.

- New cooperative file operationsopencoop(), read coop()andwrite coop()can wait
until another processes access the hard disk. They all get adelayand acancel flagas
additional parameters. If a file operation needs to access a hard disk, and that hard disk
is in standby mode, the operation will be suspended until either the disk drive has run
up by another I/O request or the delay has elapsed. When the delay has elapsed and
the file operationcancel flagis set, the operation will be cancelled. In all other cases,
it will finally be executed.

While working out this concept, I had to make certain conceptual decisions that I will present
and reason on in the following sections.

3.1 Use Sleep mode or Standby mode?

Sleep mode needs less power (0.1 W on a IBM DCRA-22160, compared to 0.275 W in
standby mode), but it deactivates the hard disk interface. So every hard disk access in the
operating system has to check whether the hard disk is currently in sleep mode and wake it
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DDT Policy

Shut down the hard disk iftla + tbe≤ t .

The variables have the following meanings:
t: The current time.

tla: The last hard disk access.
tbe: The break-even period.

Figure 3.1:Definition of the DDT Policy

up if necessary. Sleep mode can only be aborted by a software reset. After a software reset,
the disk is either in standby mode or in idle mode, depending on the hard disk model. If the
time for a software reset takes longer than just running up from standby mode, it is preferable
to use standby mode instead.

Since the reset time depends heavily on the drive type, and since the device is not signalling
via interrupt when the drive is ready after a reset, I decided to use standby mode as the only
resting mode.

3.2 When should the Hard Disk Shut Down?

Several shut-down policies have been suggested [1] [7]. Yung-Hsiang Lu and Giovanni De
Micheli [2] have compared some of them to the ideal “oracle” policy that shuts down the
hard disk at the beginning of every standby period and runs it up again so that it is just ready
at the end of that standby period. Their criteria were power consumption, the number of
shutdowns (the less the better), percentage of incorrect shutdowns, interactive performance,
and the algorithm’s memory and computation requirements.

The DDT Policy

As Lu and De Micheli have found out, the device-dependent time-out policy (DDT), which
uses the break-even time of a drive as its time-out parameter, has good power-saving facili-
ties, and its algorithm is fast, simple and storage-efficient. DDT uses the break-even period
as spin-down timeout. This policy is defined in figure 3.1.

The DDT/ES Policy

For scenarios with very short or regular disk accesses, this algorithm can be improved: As-
sume that disk accesses are bundled in time intervals of nearly the same length, separated by
standby periods. This regularity may be exploited to shut down the diskbeforethe break-
even interval that started with the last disk access has elapsed.

9



DDT/ES Policy

Shut down the hard disk if
tla + tbe≤ t

or
t f a + tlb ≤ t ≤ t f a + tlb + t1 andtla + t2≤ t .

The variables have the following meanings:
t: The current time.

tlb: The length of the last busy interval.
t f a: The first access in the current busy interval.
tla: The last hard disk access.
tbe: The break-even period.
t1: Tolerance when comparing last and current busy interval.
t2: Small timeout to detect the end of a busy interval.

Figure 3.2:Definition of the DDT/ES Policy

In chapter 2, we have seen that, ideally, the disk should shut down at the beginning of every
standby period. An intervall between two such periods will be called abusy period. It starts
and ends with a disk access.

The idea of the modified DDT policy, which I calldevice-dependent time-out with early
shut-down(DDT/ES), is the following: We use the original DDT policy. Additionally, when
the length of the current busy intervalso far is only somewhat longer than the length of the
last busy interval and we guess that the current busy interval has ended, then we shut down
the hard disk immediately. We can guess that the current busy interval has ended if the disk
is idle for a small timeout of 1–2 s.

This modification is based on the observation that consecutive busy periods often have sim-
ilar lengths, for example if disk accesses are rare or regular. Imagine that a disk is active
for 1–2 s in intervals of 1–5 minutes. The DDT policy would spend the break-even interval
after disk activity in idle mode until switching to standby mode. The DDT/ES policy will
switch to standby mode already after 3–4 s. The algorithm adapts very fast to changing busy
intervals. It is defined in figure 3.2.

The hard disk driver has to keep track oftlb, t f a, andtla. Furthermore, it should knowtbe for
the drives under its control.

The effects of DDT/ES on the disk mode switching for some test applications are shown in
chapter 5.

3.3 Bundling Write Accesses

After a disk access, the hard disk stays in active or performance idle mode for some time. In
these modes, energy consumption is higher than in low power idle mode or in standby mode.
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So write accesses should be bundled to maximise the time the hard disk spends in energy
saving modes.

For efficiency reasons, the Linux operating system, like most modern operating systems,
does not execute write accesses immediately. Instead, it writes the data into theblock buffer
in main memory and marks the buffer as dirty. The buffer will be written later to disk, when
one of the following conditions applies:

- An explicit update command likesync()or fsync()forces the system to write back the
buffers of a filesystem or a file, respectively.

- The buffer is dirty for a certain period (30 s for Linux) and is written back to prevent
data loss in case of a crash. That period is calleddirty buffer lifespan. This is the most
frequent cause for writing back when there is few I/O traffic. In Linux, a dirty buffer
whose lifespan has elapsed is not written back immediately, but when it is found by
the update kernel task, which wakes up every 5 s. This means a buffer may be dirty
for 30–35 s.

- A certain percentage (30% in Linux) of block buffers is dirty. To avoid I/O jams, some
of them are written back. This is the most frequent cause for dirty buffer updates when
there is heavy I/O traffic.

- The system needs main memory and writes back some dirty buffers that it will reclaim
as free memory later.

This policy is not optimal to save energy. Imagine a Linux user process that constantly
writes to a file with a rate of one disk block per second, for example a voice recorder. In
every second, a new buffer gets dirty. After some time, the update kernel task finds old dirty
blocks that it writes back. This will happen each time the update kernel task wakes up again,
so the disk has to write in intervals of 5 s although the maximum write-back time for a buffer
is 30 s. This may prevent standby periods.

File-Dependent Update Intervals

To make updates less frequent, one could introduce different file categories with different
update timings:

- Temporary files do not need to be written to hard disk, since they are of no use after
a system crash. But since they may share some block buffers with other files (i-node
buffers, bitmap buffers, i-node bitmap buffers, directory entries) that must be written
back to disk, they will be not as efficient as a filesystem solely dedicated for disk based
temporary files. In Linux 2.5, such a file system will presumably be introduced. That
would be useful for data base servers that need huge intermediate files.

- A file that is only of use if it is complete could be handled like this: First, treat the file
like a temporary file. If the file has been written completely, the user process either
calls fsync()to update synchronously, or it calls a derivation offsync()that does not
wait for the update to complete, but that guarantees that the update will complete in a
time period given as argument.
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- A “regular” file is updated in regular periods. Otherwise too much information could
be lost when the system crashes. In current file systems, all dirty buffers get the same
update interval. Setting the update time on a per-file basis could be an interesting idea.

I will not implement any of these file categories since it would be difficult to mix files with
different update timings on the same file system. A mixture of different update policies on
the same drive could perhaps even worsen the energetic behaviour.

Drive-Specific Cooperative Update

I will use another policy that is calledDrive-Specific Cooperative Update, because it updates
each drive independently of all others and is preferably executed when another disk access
takes place. It is composed of four strategies:

Write back all buffers.We write back all dirty buffers instead of only the oldest ones, so we
have to update at most once perdirty buffer lifespan, which is 60 s in our implemen-
tation. Original Linux may update some buffers each time when its update task wakes
up, so it may update every 5 s.

Of course, there might be buffers which just got dirty and which are currently busy, i.e.
under frequent modification by, for example, numerous small sequential write system
calls. On the one hand, these buffers could be written back later, avoiding a redundant
write access. This is what Linux currently does. On the other hand, being young is
only a very vague symptom of a busy buffer: Many buffers are only modified once
over a long period, and older dirty buffers may be busy as well. Besides, an additional
write access has only marginal costs if it is bundled with other accesses.

Update each drive separately.Updates are treated separately for each drive. This will not
compromise file system consistency and it may increase the update interval for a sin-
gle drive even more. It may also balance system I/O load since different drives will
probably updated at different times. Besides, this is a prerequisite for cooperative
updates.

For each drive, we have to watch the age of the oldest dirty buffer. If it has reached the
dirty buffer lifespan, we write back all buffers for that drive.

Update cooperatively.The operating system can choose, within thedirty buffer lifespan,
when it will write back the buffers for a drive. We exploit this to update cooperatively:
When half of the lifespan has passed, we wait for a disk access on that drive. This or
the expiration of the full lifespan will trigger the update process.

By attaching to a disk access that has to happen anyway, we can update at very little
costs.

Update on shut-down.If the operating system has decided to shut down a drive, it first writes
back all dirty buffers that contain blocks of that drive. This minimises the risk that the
disk has to spin up again soon solely because there are some old dirty buffers that must
be updated.
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3.4 Bundling Read Accesses

What is good for write accesses is not necessarily good for read accesses. When an appli-
cation reads some data from disk, it probably needs that data for further processing. If an
interactive program had to wait because the operating system delays a read operation to save
energy, the user would irritated. Furthermore, the operating system can only delay one file
operation per process (disregarding asynchronous file operations), so the number of accesses
to be delayed simultaneously is quite limited.

Hence, read accesses should only be delayed if the application permits. For that aim, I will
introduce cooperative system calls.

3.5 Cooperative Read Operations

The essential file operations in most operating systems are theopen(), the read() and the
write() system call. The system callsclose()and lseek()usually do not access the disk
directly, but operate on data in main memory. So we have to introduce three cooperative
variants:opencoop(), read coop()andwrite coop().

We assume that a file is situated on a single disk. This may not be true for a RAID (Redundant
Array if Inexpensive Disks) or if a file system is spread across multiple partitions vialogical
volume management(LVM).

A read coop()operation is quite straightforward. It behaves like the ordinary read operation
most of the time, working on data blocks and indirect blocks. The i-node data of an open
file is already buffered, so we need not care about it. If the operation needs the data of a
hard disk block, it will probably find it in main memory already, residing in a block buffer.
If it needs a block that is not buffered in memory, the operation must check if the relative
hard disk is in running mode. If it is, the read access can take place immediately. If not, the
operation has to block itself until either the hard disk is spinning up or until the time-out has
elapsed. If the time-out has elapsed, the operation is to be cancelled if thecancel flagwas
set. In all other cases, the operation will proceed.

The same strategy applies foropencoop(), provided that the operation will not create a new
file or truncate an existing one. Note that the operation may access several disk drives via
mount points and symbolic links when walking along the file name’s path. This is handled
properly by our approach.

3.6 Cooperative Write Operations

When a cooperative write operation might be cancelled to save energy, it is essential to assure
the consistency of the file system. Imagine a write operation that will enlarge the file so that it
needs a new block for its data. In a traditional Unix file system, this will cause the following
write accesses to take place (not necessarily in this order):

- In the block bitmap, a free block is found and marked as occupied.
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- The new data block is registered in the block list of the i-node or in an indirect block
that is owned by that i-node. If a new indirect block is needed, the same steps are taken
as for a new data block.

- The new data block is written.

- The block containing the i-node is written to reflect the new file length as well as the
newm-time.

If, for example, the operating system would only modify the block bitmap and cancel after-
wards, a data block would be marked as occupied although it is not used. Of course, a file
system check would reclaim that block, but if this scenario recurs many times without any
file system checks in between, the file system could run out of blocks. Other combinations
of committed and aborted block writes could also corrupt the file system.

To solve this problem, I have considered three strategies. All these strategies may be ex-
plained in terms oftransactional operations. A transactional write operation can be in one
of three states:

Preliminary: The effects of the write operation are not yet visible to other processes.

Committed:The write operation cannot be cancelled any more and its effects are visible
to other processes. In contrast to database semantics, I will not necessarily assume
that the operation is completed. This deviation reflects the semantics of Unix file
operations.

Aborted: The effects of the write operation will never be visible to other processes and are
going to be reversed.

Private Buffer State

Theprivate buffer statestrategy uses a new state for block buffers, theprivate state. A private
buffer is owned by the process that has invoked the write operation. It must not be written to
the hard disk as long as it is private. A buffer can only be private during the execution of a
preliminary write operation.

- If a process, while executing a preliminary write, creates or modifies a buffer, the buffer
will be marked as private and will be owned by that process. If the buffer is already
dirty, it has to be written back to disk before marking it as private. Alternatively, the
process can decide to delay the modification or to commit or abort the transactional
operation.

- If another process is going to read or write a private buffer, the owner process of
that buffer must either commit or abort the transactional write immediately, or the
other process must be suspended until the owner process’ write has been committed or
aborted.

- If a processcommitsa transactional write, all its private buffers are changed to the
non-private state.

- If a processabortsa transactional write, all its private buffers must be deleted.
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Shadow Buffers

Theshadow bufferstrategy is similar to the first, but instead of an additional buffer state, it
uses ashadow buffer, which is a private block buffer that may coexist with the normal, public
buffer of that block. No block can have more than one shadow buffer. Shadow buffers only
exist during a preliminary write. A shadow buffer is owned by the process that has created
it.

- If a preliminary write operation is going to modify a block without a shadow buffer, a
shadow-buffer copy of that block will be created.

- If another process is going to modify a block that has a shadow buffer, then either
the owner process must commit or abort its write operation immediately or the other
process must be suspended until the write operation of the owner process has been
committed or aborted.

- If another process is going to read a block that has a shadow buffer, it may simply
ignore the shadow buffer.

- If a processcommitsa write operation, all its shadow buffers become public buffers,
replacing the old public buffers for these blocks.

- If a processabortsa write operation, all its shadow buffers have to be deleted.

Note that “modifying a block” starts when the block content is examined for the purpose of
changing it. This is called anupdate. For example, if a file needs a new data block, a bitmap
block must be searched for a free block and the bit representing the new data block must be
set. The search and the modification must be delayed if another process is already modifying
that block.

Early Commit/Abort

A cooperative write operation is preliminary in the beginning. When the first modification
of a block buffer is going to take place, the operation has to decide if it will commit or abort.
Using this strategy, there is no need for private buffers or private buffer states. This strategy
is calledearly commit/abort.

When reading a block, thewrite coop()operation will wait for the drive the same way as
theread coop()operation does. But if it has to modify a buffer, it can exploit the fact that a
modified buffer is not written back to disk immediately, but somewhen before its dirty buffer
lifespan has expired:

Assume we are going to modify a buffer and the drive is in standby mode. If there is another
dirty buffer for the same drive (or the buffer to be modified is already dirty), the drive must
run up in the near future anyway to write back that buffer. So we can immediately modify
our buffer at almost no cost: When the other buffer is updated to disk, our buffer will be
updated in the same sweep, as described in section 3.3.

Therefore, a write to a block buffer should be only delayed as long as the drive is in standby
modeand there are no dirty buffers for the relative drive. Since a write operation’s first

15



buffer modification involves committing the operation, a write can be committed even when
the hard disk is not running.

Unfortunately, this strategy may not be optimal in a scenario when a cancellable write op-
eration is already committed although the drive is in standby mode. If the write operation
subsequently has to read a block from disk, it may need to spin up the disk, although its
cancel flag is set.

Fortunately, the energy waste in this case is not that big, since the hard disk would run up
anyway in the near future to save the dirty buffers. Besides, if the file is written sequentially
and has been modified previously, the blocks that are needed by the write operation are most
probably already buffered.

Use Simplest Approach

For Coop-I/O, I have chosen the early commit/abort strategy, although non-optimal, because
it allows write operations that have not yet been committed to be cancelled without much
effort. The two other strategies need source code modifications in many more places – for
example for file access via memory mapping – to prevent a mix of preliminary and effective
data in block buffers. Changing the Ext2 file system file semantics to a transactional concept
would be too time-consuming for a thesis. Some transactional file systems for Linux already
exist, like Ext3, JBD and ReiserFS. It might be easier to adapt one of them.

An opencoop() operation that has to create or truncate a file uses the same strategy as
write coop().
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Chapter 4

Implementation

The concept presented in chapter 3 has been implemented in the SuSE derivative of the
Linux Kernel, version 2.4.10. Originally, I modified the official kernel sources provided on
http://www.kernel.org , but when I used the SuSE 7.3 distribution for testing, I had to
realise that they do not cooperate properly.

The Linux kernel supports a variety of file systems via its internalvirtual file systemlayer
(VFS). Most of them are disk-based, but there are also network-based file systems like NFS,
and special-purpose file systems likeproc. Most Linux systems use theExt2file system as
their primary filesystem. It has been developed especially for Linux and has been optimised
for speed. I chose to implement cooperative file operations in this file system only. Since the
VFS and a particular file system closely interact, the VFS has also been changed in many
places. As a consequence, adding cooperative file operations to another file system type
should not be too hard.

Furthermore, the kernel supports several hard disk interfaces. The most popular one is the
ATA interface. It is mostly called IDE in the Linux society, so I will use that term from now
on. The SCSI interface is also supported, and there are several other hard disk drivers. I
decided to implement power mode control only in the IDE hard disk driver.

The kernel changes can be divided into three parts:

- The IDE driver has been enhanced by a power mode control for hard disk drives, which
includes the DDT/ES algorithm of section 3.2.

- The VFS and the Ext2 file system have been modified to support the drive-specific
cooperative update policy of section 3.3. I have also introduced cooperative system
calls using the concept of sections 3.5 and 3.6.

- The block device code, which is the glue between a particular block device driver
and the file system, has been augmented to enable cooperation of the disk drivers’
power mode control with the file system’s update mechanism and the cooperative file
operations.
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#ifdef COOP_IO
static int write_some_buffers_coop (kdev_t first_dev, kdev_t last_dev)
#else
static int write_some_buffers (kdev_t dev)
#endif
{

...
#ifdef COOP_IO

if (first_dev && bh->b_dev < first_dev || last_dev && bh->b_dev > last_dev)
#else

if (dev && bh->b_dev != dev)
#endif

...
}

#ifdef COOP_IO
static inline int write_some_buffers (kdev_t dev)
{

return write_some_buffers_coop (dev, dev);
}
#endif

Figure 4.1:A Cooperative Version of a Linux Function.

Practices

Since the changes are spread in source files that sum up to about 30 000 lines, I have marked
all source code changes by enclosing them with “#ifdef COOPIO” and “#endif” preproces-
sor directives, so they can be found more easily. In the file system code, I often had to write
a cooperative version of a function. The cooperative version gets the name of the original
function with the suffix “coop”. If the function is rather short, I have written a new coop-
erative version. If the function is lengthy, I have changed the name of the original function,
added any necessary new parameters and changed the function body, and I have written a
dummy version of the original function that calls the new cooperative version. Figure 4.1
shows an example.

The call graphs for some file system operations are quite extensive and the functions involved
are spread across multiple files in multiple directories in the Linux source tree. So some of
these call graphs are visualised in this paper for a better understanding. Only the calls that
are relevant for our purposes are included.

When the VFS operates on an object (like an i-node or a super block) of an actual file system
(like Ext2), it sometimes has to call a function that depends on the actual file system. To this
end, the VFS uses a function pointer provided by the object it is working on. This is what
is called amethod callor virtual function call in object oriented programming. In the call
graphs, a virtual function call is shown as a dotted line.
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4.1 Power Mode Control for ATA/IDE Drives

Drive-Specific Information

The Linux IDE driver may control multiple hardware interfaces. Each hardware interface
may be connected to amasterdevice and aslavedevice via the same line. For each hard
disk, the driver has a description that reflects the properties and state of that device. I have
augmented that description by the following entries:

breakevenperiod: This is the device-specific break-even period needed for the DDT/ES
algorithm. Since there is only one drive for which I could compute its break-even
period, I have hard-coded it into the initialisation code. A full grown-driver would
need a table with known hard disk drives and their break-even periods.

last access, firstaccess, busyperiod: These values are also needed for the DDT/ES algo-
rithm.

powermode: Since the power mode is checked very frequently, it will be remembered here.

newpowermode: If a power mode change of the disk is requested, the new power mode is
put here.

The IDE Power Task

A power mode switch might take rather a long time, since it may write all dirty buffers back
to that drive, or it may execute an IDE command that actually changes the drive’s mode, and
wait for its completion. For that purpose, I have introduced a kernel thread calledidepower,
which serves all IDE drives.

The idepowerthread normally sleeps and waits for a semaphore that signals that a power
mode change has been requested. If some function wants to change the power mode, either
explicitly or implicitly (for example, because it starts a disk access), it setsnewpowermode
to the new power mode and increases the semaphore value. So the power task will wake
up and search all IDE drives for a new value innewpowermode. Then it emits a power
mode command to the hard disk, changes its internal power state variables and waits for
the semaphore again. Note that this scheme also works if several drives have to change
their power modes simultaneously, since the semaphore’s value always reflects the number
of power mode changes that the power task still has to handle. When changing the power
mode, the power task also informs the file system when dirty buffers must be written back or
cooperative file operations that are blocked must be awoken.

But things are yet a little bit more difficult. The value ofnewpowermodemight be changed
several times until the power task takes notice of it. The semaphore must only be increased
for the first change. Besides, some functions, like disk accesses, change the power mode
implicitly by emitting other IDE commands, so they must inform the power task. Finally,
sincenewpowermodemight be changed in interrupt code, race conditions must be avoided.
These difficulties are all handled in the power task and in the function that requests a new
power mode. This function may setnewpowermodeto one of the following values:
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ide powerstandby: The drive’s mode has changed tostandby, and the power task should
know that (not used).

ide power running: The drive’s mode has changed torunning, and the power task should
know that.

ide powerchanged:The drive’s mode may have changed, but the caller is not sure about it,
so the power task has to find out. This must be used, for example, after sending an IDE
reset command or an IDE raw command viaioctl().

ide powergo to standby: The power task shall emit an IDE command to switch to standby
mode.

ide powergo to running: The power task shall emit an IDE command to switch to idle
mode.

There are two main reasons why a new power mode might be requested:

1. A hard disk access is sent to the device driver. This implicitly changes the disk’s power
mode torunning.

2. The drive must be explicitly shut down as decided by the DDT/ES standby algorithm.

Besides, some special IDE commands leave the disk in an undefined power mode, so they re-
quest the power task to check. Finally, the newioctl() commandHDIO SETPOWERMODE
may explicitly change the power mode.

Going to Standby

The DDT/ES algorithm, which depends on the time of the last disk access (see section 3.2),
is implemented inide checkfor standby(), which is a timer-based function that is called
once per second. Since disk accesses may be very frequent, this is more efficient than to
use a dedicated timer for each drive that has to be restarted when a disk access has taken
place. The standby function has to check every IDE drive for the standby trigger conditions
of section 3.2 and shuts down the drive if the conditions apply.

The time information that is needed by the DDT/ES algorithm is updated by the function
ide notify access(). This function is called for each disk access and it updates the time of the
last access as well as the time of the first access in the current busy period and the length of
the drive’s last busy period. It also implicitly changes the power mode torunning.

When the IDE power control, in response to a shut down request, causes the file system to
write back dirty buffers,ide notify access()should not be executed, since this would restart
the disk immediately. Furthermore, updating the time information would degrade the perfor-
mance of the DDT/ES algorithm.

It is a little bit tricky to makeide notify access()not be executed in that context. If it were
called by the IDE driver itself, we had no hint for the origin of the write request, since the
request is processed in an interrupt handler and not in the context of the calling task. The
file system could pass a shut-down indicator in the buffer head, but this is dangerous, since
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other tasks might access (and even write to disk) the buffer at the same time. Alternatively,
the block device interface could pass a shut-down indicator in the I/O request struct, but then
the file system and the block device had to pass it across a long function call chain.

I decided to callide notify access()from the block device interface where all the file system’s
disk accesses have to go through. We even do not need to pass a shut-down indicator from
the file system:ide notify access()can check whether it is called in the power task’s context.
If it is, it must not execute, since the power task only writes blocks when shutting down the
drive.

4.2 Disk Update

In section 3.3, I have introduced the drive-specific cooperative update policy. The file system
does not know about drives, it only deals with device numbers. To implement the update
policy, I had to introduce a mapping of device numbers to drives as part of the file system.
For each drive, the file system must also keep track of the number of dirty buffers and of
the time when the oldest dirty buffer got dirty. I have implemented the mapping as a list of
drives. Since the list must be searched for every hard disk access, the run-time costs must be
modest. In fact they are, because the list is very short.

The device numbers of the partitions on a drive are stored as a range fromfirst devto last dev.
This works, since the device numbers that belong to one drive are contiguous. It would not be
sufficient to store the first device number only, since the range length depends on the device
driver. The SCSI driver, for example, uses 4 bits of the device number for the partition
number, while the IDE driver uses 6 bits.

The following functions deal with the file system’s drive list:

fs add drive (kdevt first dev, kdevt last dev): Registers a drive that maps the device num-
bers fromfirst dev to last dev. This is called from every device driver that supports
Coop-I/O.

fs removedrive (kdevt first dev): Unregisters a drive that maps the device number range
that starts atfirst dev.

get dirty buffer count (kdevt dev): Get the number of dirty buffers for the drive that con-
tains partitiondev. This may be called by a cooperative file operation to check if it
should block or cancel. See section 4.3 for more information.

changedirty buffer count (kdevt dev, int increment):Adds increment to the number of
dirty buffers for the drive that contains partitiondev. The incrementmay be nega-
tive. This function is called by the buffer manager. If the number of dirty buffers
changes from 0 to a positive value, all cooperative file operations that are blocked are
woken up. See section 4.3 for more information.
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sync_buffers_coop
(fs/buffer.c)

sync_inodes_sb_coop
(fs/inode.c)

ext2_write_super
(fs/ext2/super.c)

write_unlocked_buffers_coop
(fs/buffer.c)

wait_for_locked_buffers_coop
(fs/buffer.c)

sync_inode_coop
(fs/inode.c)

write_inode
(fs/inode.c)

write_some_buffers_coop
(fs/buffer.c)

write_locked_buffers_coop
(fs/buffer.c)

submit_bh
(drivers/block/ll_rw_blk.c)

wait_for_buffers_coop
(fs/buffer.c)

wait_on_buffer
(include/linux/locks.h)

Figure 4.2:Call Graph forsyncbufferscoop().

Updating a Single Drive

Data that must be rewritten to disk may reside in one of three buffer types:block buffers,
i-node buffersand thesuper blocks. Each of them has a mechanism to be marked as dirty
or clean. For each drive, we keep track of the number of its dirty buffers in that drive’s
dirty buffer count.

Actually, the early commit/abort algorithm of section 3.6 only needs to know if the file
system has some data to be written back to a certain drive. But we cannot simply use the
number of dirty block buffers, since an i-node is only written to its block buffer (which it
shares with other i-nodes) when an update function is called. So the i-node’s block buffer
may be clean before updating, although the i-node itself is already dirty. Thus we have to
consider the i-node buffers for thedirty buffer count.

A super block is only written to its block buffer when updating, too. But this block buffer is
marked as dirty as soon as the internal super block has changed, so we do not need to take
the internal super block into account.

The functionsyncbuffer coop() writes back all dirty buffers for a drive that is specified
by a range of device numbers. When this function is called by the update task, it returns
immediately after the writes have been requested, so other drives that concurrently wait to be
updated are served earlier. When this function is called by the drive’s power mode control,
because it intends to shut down a drive, it waits until all dirty buffers are written back, so the
power mode control will not shut down the drive too early. Figure 4.2 shows the call graph
of syncbuffer coop().

The Update Task

I also had to modify the update task, which in the original Linux wakes up every 5 s. The
Coop-I/O version of the update task also wakes up when a drive is accessed and the file
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system finds out that it is opportune to update that drive, as explained in section 3.3. In either
case, the update task checks each drive: When the file system has requested an update for it
or when its dirty buffer lifespan has elapsed, the drive is updated usingsyncbuffer coop().

The need of a cooperative update is checked for every time a drive is read from or written to.
If there are any dirty buffers for the drive and the drive’s oldest dirty buffer is older than half
of the dirty buffer lifespan, the update task is woken up and induced to update that drive.

4.3 Cooperative File Operations

The concept of cooperative file operations has been introduced in sections 3.5 and 3.6. As
stated there, a file operation may block whenever it is going to access a disk or to make a
clean block buffer dirty by modifying it. I wrote a functionwait for drive() that handles the
blocking mechanism. It is used throughout the cooperative file code.

The functionwait for drive() usually waits until a certain drive is running. Additionally, it
may wait until there exists at least one dirty buffer for that drive. This facility is used when
blocking a write access, as explained in section 3.6. Besides,wait for drive() can be told
whether it should cancel on timeout.

When blocked inwait for drive(), a task may be awoken by one of four events:

The timer has elapsed.If wait for drive()should cancel on timeout, it returns with-ETIME.
Else it returns without error.

The drive has run up.The file operation can go on, sowait for drive() returns without error.

The number of dirty buffers for the drive has become non-zero.If wait for drive() is also
waiting for that event, it simply returns without error. If not, it is ignored.

A signal has arrived.The blocked file operation should be aborted with-EINTR, so
wait for drive() returns with that error code. The cooperative operation should not
use Linux’ implicit restart mechanism, since the signal could be sent to abort it.

The implementation of the cooperative file operations is straightforward: The functions that
implement the standard file operations have to be enhanced by the timeout parameter and the
cancel flag. When a block is going to be read from disk, the functionwait for drive() has
to be called. For a write operation, or an open operation that truncates an old file or creates
a new one, a point has to be found where the operation decides to commit or to abort. But
the changes are extensive nevertheless, because the whole call hierarchy of the file functions
must be examined, taking into account the interactions between VFS and Ext2, to find the
code lines and functions to be changed.

4.4 read coop()

The call syntax for a cooperative read operation is as follows:
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sys_read_coop
(fs/read_write.c)

generic_file_read_coop
(mm/filemap.c)

__do_generic_file_read_coop
(mm/filemap.c)

generic_file_readahead
(mm/filemap.c)

UPDATE_ATIME
(include/linux/fs.h)

ext2_readpage_coop
(fs/ext2/inode.c)

update_atime
(fs/inode.c)

Figure 4.3:Call Graph forsysread coop().

int read coop (int fd, void *buf, sizet count, int delay, int cancelflag);

The first three parameters have the same meaning as forread(). The parameterdelayis the
maximum delay (in seconds) that the read may be blocked for energy-saving issues. The
parametercancelflag can be non-zero to indicate that the operation should be cancelled
with errno = ETIME if it could not be executed without spinning up the drive untildelayhas
passed.

When aread coop()system call has reached the kernel via a software interrupt, its entry
point within the kernel (the functionsysread coop()) is looked up in a table defined in
“arch/i386/kernel/entry.S”. In the entry point function, the delay time, which is relative to
the invokation time, is translated into the equivalent number of ticks (orjiffies) since system
startup, because it is easier to have a time point relative to a global reference point.

Then sysread coop() does its job as sketched by its call graph in figure 4.3. It may try
to read ahead some blocks that are not yet needed, which improves system performance.
When the drive is in standby mode, we do not read ahead, since this could unnecessarily
run up the drive. It may also update the time of the i-node’s last access (a-time). This
could be inefficient, since the i-node will be made dirty and has to be written to disk later. I
recommend to mount the file systems with the mount optionnoatime, because thea-timeis
normally not needed.

In Linux 2.4, the read/write operations operate on memory pages in order to use the same data
structures as are used for memory mapping. The functionext2 readpagecoop()assures that
a full page, which consists of a device-dependent number of blocks, is resident in memory. If
some blocks of that page are not yet buffered, it waits for the drive and reads them in, using
the interface functionsubmitbh() to the block device, as shown in figure 4.4. The function
ext2get block coop()maps the file’s block index to a block number on the drive, using the
i-node and indirect blocks. You can read more about it in section 4.5.
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ext2_readpage_coop
(fs/ext2/inode.c)

block_read_full_page_coop
(fs/buffer.c)

ext2_get_block_coop
(fs/ext2/inode.c)

wait_for_drive
(fs/buffer.c)

submit_bh
(drivers/block/ll_rw_blk.c)

Figure 4.4:Call Graph forext2 readpagecoop().

ext2_get_block_coop
(fs/ext2/inode.c)

wait_for_drive
(fs/buffer.c)

ll_rw_block
(drivers/block/ll_rw_blk.c)

__mark_dirty
(fs/buffer.c)

mark_inode_dirty
(include/linux/fs.h)

ext2_prepare_write_coop
(fs/ext2/inode.c)

block_prepare_write_coop
(fs/buffer.c)

__block_prepare_write_coop
(fs/buffer.c)

sys_write_coop
(fs/read_write.c)

generic_file_write_coop
(mm/filemap.c)

mark_inode_dirty_sync
(include/linux/fs.h)

generic_commit_write
(fs/buffer.c)

__block_commit_write
(fs/buffer.c)

Figure 4.5:Call Graph forsyswrite coop().

4.5 write coop()

The call syntax for a cooperative write operation is as follows:

int write coop (int fd, void *buf, sizet count, int delay, int cancelflag);

The first three parameters and the return value have the same meaning as forwrite(). The
parametersdelayandcancelflagare the same as forread coop()in section 4.4.

The entry point for a cooperative write operation issyswrite coop(), whose call graph is
shown in figure 4.5. The Ext2 file system uses the page structure for writing (starting with
Linux 2.4). Before committing the write operation, we have to test that the drive is ready
or that there are at least any dirty buffers. If the write operation is committed, we have
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ext2_get_block_coop
(fs/ext2/inode.c)

ext2_get_branch_coop
(fs/ext2/inode.c)

ext2_alloc_branch_coop
(fs/ext2/inode.c)

ext2_splice_branch_coop
(fs/ext2/inode.c)

bread_coop
(fs/buffer.c)

ext2_alloc_block_coop
(fs/ext2/inode.c)

mark_buffer_dirty_inode
(include/linux/fs.h)

ext2_free_blocks_coop
(fs/ext2/balloc.c)

mark_inode_dirty
(include/linux/fs.h)

ext2_new_block_coop
(fs/ext2/balloc.c)

load_block_bitmap_coop
(fs/ext2/balloc.c)

__load_block_bitmap_coop
(fs/ext2/balloc.c)

mark_buffer_dirty
(fs/buffer.c)

read_block_bitmap_coop
(fs/ext2/balloc.c)

Figure 4.6:Call Graph forext2get block coop().

to update the i-node’s time of last modification (m-time) and mark the i-node as dirty us-
ing mark inodedirty sync(). Then the page is read in byext2preparewrite coop(), it is
changed in main memory, and the block buffers that have been modified are marked as dirty
by ext2commitwrite(). This might change the i-node’ssizefield.

The function that maps a file’s block index (which is the byte index in that file divided by
the block size) to the sector number of an Ext2 file system is calledext2get block coop().
It can also look up a yet non-existing block, adding a new block to the file. Its call graph is
diplayed in figure 4.6. For simplicity, I have omitted the calls that may block when the file
or the file system is in synchronous mode.

Normally, an existing buffer is found byext2get branchcoop(). This function starts with
the i-node (which is always in memory for an open file) and finds the block number on the
drive. If it needs to follow single, double, or triple indirect block, it asks the buffer cache for
it, which in turn may read the block if it is not cached.

A write operation may also askext2get block coop() for a yet non-existing block. (Since
Ext2 files may have holes in them, this is not necessarily a block beyond the current file size.)
Depending on the file’s current configuration, that block may also need a new single, double,
and even triple indirect block. These new blocks are allocated byext2alloc branchcoop().
This function looks for free blocks in the partition. They are found and allocated in the block
bitmap. If something went wrong during allocation, all blocks that are already allocated must
be freed again. The functionext2splicebranchcoop()inserts the newly allocated blocks in
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sys_open_coop
(fs/open.c)

filp_open_coop
(fs/open.c)

open_namei_coop
(fs/namei.c)

dentry_open
(fs/open.c)

path_init_coop
(fs/namei.c)

path_walk_coop
(fs/namei.c)

lookup_hash_coop
(fs/namei.c)

wait_for_drive
(fs/buffer.c)

vfs_create
(fs/namei.c)

do_truncate
(fs/open.c)

walk_init_root_coop
(fs/namei.c)

real_lookup_coop
(fs/namei.c)

do_follow_link_coop
(fs/namei.c)

ext2_lookup_coop
(fs/ext2/namei.c)

__emul_lookup_dentry_coop
(fs/namei.c)

ext2_follow_link_coop
(fs/ext2/symlink.c)

UPDATE_ATIME
(include/linux/fs.h)

vfs_follow_link_coop
(fs/namei.c)

update_atime
(fs/inode.c)

Figure 4.7:Call Graph forsysopencoop().

the i-node structure, obeying the structure of indirect blocks.

4.6 opencoop()

The call syntax for a cooperative open operation is as follows:

int opencoop (char *name, int flags, modet mode, int delay, int cancelflag);

The first three parameters and the return value have the same meaning as foropen(). The
parametersdelayandcancelflagare the same as forread coop()in section 4.4.

The entry point for a cooperative open operation issysopencoop(). Figure 4.7 shows its call
graph. The main work is done in the functionopennameicoop()which traverses the path
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name and loads the i-node of that name into the i-node buffer. If the file has to be created
or truncated, this will also be done here. The functiondentryopen()will create the process’
file structure for the i-node.

The start directory for the file search is set bypath init coop(). If the path is relative, the
current directory will be used. If the path is absolute, the start directory will be set to the root
directory inwalk init root coop().

Then the path is walked along inpath walk coop(). The directory entries are buffered in the
dentry cache. If a directory entry has yet not been read, it is looked up byreal lookupcoop().
If a path element to be followed is a symbolic link, this is done by recursively calling
walk init root coop()for an absolute symbolic link orpath walk coop()for a relative sym-
bolic link. When a symbolic link is followed, thea-timeof that link is updated. This can be
prevented by mounting the file system with the optionnoatime.

Normally, callingwalk init root coop()simply has the effect that the directory from which
the path walk is started is the root directory. But Linux is able to emulate other operating
system environments for non-Linux processes, like Solaris on SPARC-Linux. Such an em-
ulated environment is called aflavour. Since a non-Linux application may expect certain
non-Linux files at standard places, for example shared libraries, Linux has to use a flavor
specific root when executing such an application. This flavor specific root is stored as a
path name relative to Linux’ native root. It is made the start directory for the path walk by

emul lookupdentrycoop().

If the i-node to be opened has been found and theopencoop()has to truncate the file, we
must commit the operation before actually truncating. So we callwait for drive() to check
(and maybe wait for) the conditions of theearly commit/abortconcept as established in
section 3.6. We only truncate the file if we have committed the operation.

If opencoop()has been called with thecreateflag set, and the file does not yet exist, we
also have to decide whether to commit or abort by callingwait for drive(). If we commit,
we must create the file.

In the current implementation, I have decidednot to write cooperative versions of
do truncate()and vfs create(). This does not strictly follow the early commit/abort con-
cept, since these functions may have to read in blocks from the disk and might delay in that
case. But if the concept were implemented thoroughly, many additional functions had to be
changed for a small expected energy-saving effect: When truncating a file, we must modify
the i-node, the block bitmap, and them-timeof the parent directory. If the file is currently
memory mapped, special care is needed. File creation is even more complex.

The functionext2 lookupcoop(), whose call graph is shown in figure 4.8, looks up a
file name in a directory. It is called when walking along a path name. First, it loads
the directory’s i-node by callingiget coop(). Then, it traverses the directory entries in
ext2find entry coop(). Since directories are very similar to ordinary files and since ordi-
nary files are accessed using the memory mapping data structures, the Ext2 file system uses
these data structures as well when accessing a directory file.
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ext2_lookup_coop
(fs/ext2/namei.c)

ext2_inode_by_name_coop
(fs/ext2/dir.c)

iget_coop
(fs/inode.c)

ext2_find_entry_coop
(fs/ext2/dir.c)

ext2_get_page_coop
(fs/ext2/dir.c)

read_cache_page_coop
(mm/filemap.c)

__read_cache_page_coop
(mm/filemap.c)

ext2_readpage_coop
(fs/ext2/inode.c)

get_new_inode_coop
(fs/inode.c)

ext2_read_inode_coop
(fs/ext2/inode.c)

bread_coop
(fs/buffer.c)

Figure 4.8:Call Graph forext2 lookupcoop().

4.7 Changed Source Files

These are the files that I changed in the Linux Kernel 2.4.10:

arch/i386/kernel/entry.S
drivers/block/ll rw blk.c
drivers/ide/ide-disk.c
drivers/ide/ide-probe.c
drivers/ide/ide.c
fs/buffer.c
fs/inode.c
fs/namei.c
fs/open.c
fs/readwrite.c
fs/ext2/balloc.c
fs/ext2/dir.c
fs/ext2/file.c

fs/ext2/inode.c
fs/ext2/namei.c
fs/ext2/symlink.c
mm/filemap.c
include/config.h
include/asm-i386/unistd.h
include/linux/blkdev.h
include/linux/coop.h
include/linux/ext2fs.h
include/linux/fs.h
include/linux/hdreg.h
include/linux/ide.h
include/linux/pagemap.h
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Chapter 5

Validation

5.1 Test Environment

To validate the Coop-I/O concept, a power measuring configuration was needed. I have used
a monitoring computer that was equipped with a four-channel analog-to-digital converter
(ADC) developed at the University of Erlangen-Nürnberg. It measures the voltage drop at
defined resistors in the power supply lines with a resolution of 256 steps and at a rate of up to
20 000 samples per second. The maximum voltage drop that is correctly converted is 50 mV.
The samples are read in via the standard parallel port. The software driver to read the data
from the interface has been written by Christian Winter [6].

I used only one ADC channel with a rate of 10 000 samples per second to measure the power
dissipation of the IBM DCRA-22160 hard disk. Since its maximum power consumption lies
at about 4 W, I used a resistor of0.05Ω, so the maximum voltage drop was equivalent to an
amperage of 1 A or to a dissipation of 5 W.

The target computer was a Siemens SCENIC Edition Mi7 desktop with a Pentium II proces-
sor clocked at 350 MHz and 128 MBytes of main memory. It was running SuSE Linux 7.3,
either the original kernel, version 2.4.10, or the modified Coop-I/O kernel. The system was
equipped with a Fujitsu MPG3204AT hard disk and an IBM DCRA-22160 hard disk, which
was used as the test drive.

5.2 Testing a Cooperative Audio Player

The first test step was to examine whether Cooperative I/O is able to save energy in a real-
world application at all. Since hard disk power management works best for regular file
accesses, I have tested the system with a modified version of AMP, an MPEG audio layer
3 player. In the modified version, AMP creates a thread that reads from hard disk and puts
the data into a 1 MB buffer. When the player thread needs some data, it reads them from
the buffer. The read thread and the player thread synchronise by the use of semaphores. The
buffer is divided into two semi-buffers. When a semi-buffer is empty, the reader refills it by
the use of a system read call which might be cooperative, while the player get data from the
other semi-buffer. I had to add about 150 source lines to incorporate the changes.
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Figure 5.1:Energy consumption for three sound files played with four different policies.

AMP has been tested under the following four strategies:

Cooperative:Use the DDT/ES standby algorithm. To read in new data, use theread coop()
system call with a delay that is equivalent to the playing time for one semi-buffer.

Adaptive: Use the DDT/ES standby algorithm. Useread()to read in new data.

Timeout: Use the fixed timeout standby of the ATA standard with a timeout interval of 30 s.

None: Do not use any power-saving measures at all.

Every strategy has been tested by playing the following three audio files.Delay is the time
interval in which one semi-buffer is played.

Audio File Bitrate Delay Duration

Toccata 64 kb/s 64 s 534 s
Pastorale128 kb/s 32 s 719 s

Brandenburg160 kb/s 25 s 598 s

I have also examined how well the power-saving strategies work when an asynchronous
second application runs while playing an audio file. For that aim, the test computer has
concurrently executed a mail reader that examined the input mailbox of a remote computer
via POP3 every 2 minutes. If there was any mail in it, the mail was stored in the local
mailbox on the test hard disk. Mail was sent in intervals of 60–265 seconds, controlled by
a pseudo-random generator. For every test pass, the random generator was initialised to the
same value, so the timely sequence of read/write operations was the same for every test, with
a tolerance of about one second. Figure 5.1 shows the results.

The cooperative strategy is surprisingly power-efficient in these tests. This is not only caused
by the cooperation of multiple processes, because some tests have only one process doing
I/O. Instead, it can be explained by the following behaviour: When the drive is in standby
mode, a cooperative read is delayed until the data is really needed, i.e., the semi-buffer to
be read will soon be played. When the delayed read operation is eventually performed, the
other semi-buffer gets empty very soon and is read in immediately, since the hard disk drive
is still running. This effectively bundles two subsequent read operations. You can see this
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Figure 5.2: The hard disk’s power inputs when playing “Toccata” using the four energy saving
strategies. In the shaded regions, the program has calledread() or read coop() and waits for its
completion.

behaviour in figure 5.2.

In that figure, you may also note that AMP initiates a read operation att = 455 s when
using the Cooperative or Adaptive strategy, but not when applying the strategies Timeout
and None. This is caused by Linux’read-aheadpolicy. The original Linux kernel reads
ahead the remainder of the file as part of its file access att = 395 s. The modified kernel
omits the read ahead at that point since the disk is in standby mode when the file access is
started.

Playing “Brandenburg” needs nearly the same energy for the hard disk, regardless which
strategy is used. Because the delay for this audio file is only 25 s, no strategy will normally
try to shut down the hard disk in this test scenario. But there is an exception: When “Bran-
denburg” is played using the cooperative strategy, sometimes the power mode control shuts
down the drive soon after the test has started. This depends on the pattern of the previous
disk accesses. If the disk has shut down, the next read will be delayed, so the interval be-
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Figure 5.3:The hard disk’s power inputs when playing “Toccata”, receiving Mail or doing both using
Coop-I/O. In the shaded regions, the MP3 player has calledread coop()and waits for its completion.

tween two reads may be more than the break-even time. But if the power mode control does
not shut down the drive soon after test start, the reads will take place in 25 s intervals, so the
drive will never be idle for a standby period. So the power mode control’s behaviour depends
on the cooperative disk access delays which again depend on the power mode. This positive
feedback is hard to predict and control.

The Timeout strategy needs more energy even than the strategy “None” when playing “Toc-
cata & Mail”, “Pastorale” or “Pastorale & Mail”. This behaviour is caused by the unlucky
relation of the standby timeout and the hard disk access pattern, which makes the disk go
to standby shortly before the disk is used; in that case, switching to standby mode is more
expensive than staying in idle mode.

Figure 5.3 shows how disk accesses of two independent tasks may interact. The “Toccata”
task cooperatively reads one semi-buffer in every period of 64 s; the “Mail” task writes in
intervals of 2 minutes, provided that mail has arrived. The write accesses are delayed by the
cooperative update scheme. If the disk accesses were not coordinated, the hard disk’s energy
consumption would be about 400 J. This means that Coop-I/O is a working energy-saving
concept.
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ProcessPeriod Idle min. Idle max. Seed

1 100 s 20 s 100 s 10 001
2 160 s 40 s 160 s 10 002
3 200 s 50 s 180 s 10 003
4 260 s 60 s 160 s 10 004
5 300 s 100 s 220 s 10 005

Figure 5.4:The parameters used for the five processes in the parameterised tests.

5.3 Parameterised Tests

To get an idea under which circumstances Coop-I/O saves energy, I have written two little
test programs,test readandtestwrite, which simulate single tasks that periodically read or
write data, respectively. In a test set, five such test programs with different parameters are
simultaneously started and the overall disk power consumption is observed.

The C programstest read andtestwrite are very similar. They take the following parame-
ters:

mode: Cooperative mode or non-cooperative mode.

file name: The file to read from or to write to, respectively.

period: The length of a period in which a single read/write operation takes place, in seconds.

block size: The size of the data block to read or write during a period, in KBytes.

idle: The time to wait at the beginning of a period until the read/write operation is started,
in seconds.

idle min, idle max, seed:To get some non-regular behaviour, the fixedidle parameter may
be replaced by a range fromidle min to idle maxseconds which limits the idle time.
The idle time for each period is determined by the C library functionrand(), which
returns a pseudo-random number. To get reproducable results, the pseudo-random
number generator is initialised bysrand(seed).

The programs run for an integer number of periods, but at least for 1000 s. In each period,
they sleep foridle seconds, execute the read/write operation, and finally wait until the period
is over. When they run in cooperative mode, they callread coop()or write coop()with a
delay that ends when the current period also ends. In non-cooperative mode, they callread()
or write().

The running time of these test programs and the number of disk accesses only depend on
period, while the amount of data read or written depends onperiod andblock size. Both
values are independent of the power-saving strategy that is being used, so the work done by
these test programs is the same for all power-saving strategies. This helps in comparing the
energy consumptions. For all test series, I have used a group of five read/write processes
with the parameters shown in figure 5.4. Normally, all these processes read or write a chunk
of 256 KBytes in each period.
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Figure 5.5:Energy consumption for five read processes, varying the period length.

Reads with Varying Period Length

In the first test series, I have varied the period length for read operations. For each test, five
test readprocesses have been started, using the parameters of figure 5.4, butperiod, idle min
andidle maxwere multiplied by therelative period lengthof that test. I used relative period
lengths of 0.25, 0.37, 0.50, 0.62, 0.75, and 1.00. Each test has been executed in combination
with the four power-saving strategies. Figure 5.5 shows the measured consumptions.

Running with a relative period length of 0.25, the test’s consumption is nearly equal for all
four strategies. Here, the read requests are so frequent that the drive has no chance to shut
down. The longer the period length, the more often is the power mode control able to go to
standby mode for all strategies but “None”, as could be seen from the time dependent en-
ergy consumption (not shown). The Cooperative strategy is able to exploit these shutdowns
since following cooperative reads are delayed. This is the reason why energy consumption
drops steadily with increasing period length for “Cooperative”. Since the non-delayed disk
accesses are still too frequent, “Adaptive” and “Timeout” are unable to save power for rel-
ative period lengths from 0.37 to 0.75. They may even consume more power than “None”
by initiating disadvantageous shut-downs. For the test with relative period length 1.00, the
Adaptive strategy seems to outplay “Timeout” and “None”, although this is only a trend.

We may conclude that cooperative reads only save energy if the read accesses are not too
frequent.

Writes with Varying Period Length

Ordinary write operations are usually buffered and written back by the update daemon which
is trimmed to be cooperative. So one may wonder whether explicitly cooperative write oper-
ations have noteworthy energy-saving effects.

I have executed the same test series as in the previous test, only using write operations instead
of read operations. Again, the tests have been run under all four strategies. The results are
displayed in figure 5.6.
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Figure 5.6:Energy consumption for five write processes, varying the period length.

The frequency of write operations seems to have little effect on the energy consumption.
For the Cooperative and Adaptive strategies, the dissipation stays constantly on a low level
for all period lengths. This is caused by the cooperative update policy that writes back
quite regularly in intervals of 60 s, if no other disk access happens. The amount of data
written has almost no influence on the energy consumption. The small difference between
the Cooperative and the Adaptive strategy is an evidence that cooperative write operations
are not as effective as cooperative read operations. The strategies “Timeout” and “None”
have a persistently high dissipation. This shows that the original Linux 2.4 update strategy
does not match power-saving requirements.

Varying Number of Cooperative Processes

In the previous tests, the test programs were all cooperative. But in a real-world scenario,
the majority of running processes will be non-cooperative. Thus, I have also examined the
behaviour of a mixture of cooperative and non-cooperative processes. To this end, I have
run test sets, each with five reading processes using the parameters in figure 5.4, but only the
first n processes of them were running the Cooperative strategy, while the remaining5−n
processes used the Adaptive strategy. For the results, see figure 5.7.

The energy consumption steadily declines with increasing proportion of cooperative pro-
cesses. The decline is larger when all processes get cooperative (comparen = 4 to n = 5),
but having a single cooperative process suffices to save energy.

Varying Block Size

Linux may read ahead up to 128 KBytes of a file when it assumes that it is accessed sequen-
tially. In section 4.4, we have seen that the implementation of the cooperative read operation
refrains from reading ahead when the disk is not running, in contrast to standard Linux. This
behaviour may degrade power-efficiency when reading small blocks. So I have tested the
energy consumption for the five reading processes of figure 5.4 with smaller block sizes, as
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Figure 5.8:Energy consumption for five read processes, varying the block size.

shown in figure 5.8.

The Cooperative strategy is still better than the Timeout strategy, but the advantage for small
block sizes is smaller than for 256 KBytes blocks. This is caused by the fact that Linux’ read-
ahead function is calledbeforethe requested data is read in. If the drive is in standby mode,
no data is read ahead although the drive will run up in a moment to read in the requested
data. Unfortunately, Linux’ current read-ahead function must be modified to be called later.
This remains work to be done.
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Chapter 6

Conclusion

6.1 Summary

In the present work, I have examined how an operating system may support energy-saving
measures for hard disks, with or without hints from the applications.

In chapter 2, I have outlined the strategies that are commonly applied to reduce the energy
consumption of a hard disk drive. The central point is the use of the drive’s power-saving
modes that have lesser power requirements and should be activated when the disk is not in
use. Since the transition between power modes needs time and energy, a power saving mode
(e.g. standby mode) should only be activated if no hard disk accesses are to be expected for
thebreak-even period.

In chapter 3, I have introduced Coop-I/O, an integrated cooperative power-saving strategy
that is composed of the following mechanisms:

1. A simple adaptive shut-down algorithm called DDT/ES that tries to guess the length
of the current busy interval.

2. An update policy that writes back all dirty buffers of a drive at once, tries to attach to
other disk accesses and starts an update when a drive is shutting down.

3. Explicitly cooperative file operations that may wait for other hard disk accesses for a
specified interval in order to save energy.

In chapter 4, I have described the changes in the Linux kernel that were necessary to im-
plement that concept. The ATA/IDE driver was augmented by a power mode control, while
the virtual file system and the Ext2 file system were modified to support the cooperative
drive-specific update policy and the cooperative file operations.

In chapter 5, I have tested Coop-I/O concept by running a modified, cooperative MP3 audio
player together with an email reader. There was evidence that Coop-I/O may save energy.
Parameterised tests were used to examine the conditions under which Coop-I/O really saves
energy and when it is most effective. The Coop-I/O implementation has shown a robust
energy-saving behaviour.
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6.2 Application Areas

Write operations are coordinated by the buffer/update mechanism even without explicitly
calling write coop(), so all applications that write to disk may benefit from Coop-I/O with-
out any need of modifications. A user program can improve its cooperability by using
write coop().

Applications that may profit from cooperative read operations must be able to defer or to
cancel them. Streaming applications like audio or video players are a primary field for coop-
erative operations.

If explicit cooperative operations are to be used in an application program, it has to be mod-
ified. Depending on the application’s needs, several usage strategies are conceivable, among
them the following ones:

- If the file operation is of minor importance and should only be executed if it does not
consume much energy:
Call a cooperative file operation with parametersdelay = 0andcancelflag = 1. This
will execute the file operation only if the hard disk does not have to run up.

- If the file operation may be deferred for a period that is known in advance:
Call a cooperative file operation with the knowndelayandcancelflag = 0. Since the
process may be blocked for a longer time, it is often advisable to create a second thread
that is dedicated for I/O. This has been exemplified by the AMP audio player in section
5.2.

- If the file operation may be deferred, but the period is not known in advance:
The application may use a second thread that starts a cooperative operation with a long
delay. If the operation must be executed at a certain point of time and is still blocked,
the thread is interrupted by a signal and aborts the operation. The file operation may
then be done by the appropriate standard system call.

6.3 Future Work

Since a thesis is limited in time, there is still room for improvements and extensions. The
following areas that seem worth investigating are listed with increasing estimated complex-
ity.

- In section 5.2, we have seen that power mode control and cooperative I/O operations
may influence each other in a positive feedback loop, leading to an energy-saving
behaviour where small variations in the access pattern may have a big effect. It would
be desirable to break this loop, for example by passing the possible time range of
the file operation to the IDE driver when requesting a disk access. The shut-down
algorithm then has to be modified to consider these time ranges instead of time points.

- Adding a power mode control to the SCSI driver that has the same functionality as the
one of the ATA/IDE driver should be easy, since SCSI’s definition of power modes is
similar to ATA’s.
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- Other Linux file systems may also be modified to implement cooperative file opera-
tions. This could be interesting for non-Unix file systems like the FAT file system or
for transactional file systems.

- Using the early commit/abort policy, a blocked cooperative write operation might
block other file operations that access the same file. In such cases, implementing
the concept of shadow buffers, as presented in section 3.6, might improve system per-
formance. Besides, write accesses might be aborted later, thus improving the system’s
power saving behaviour.
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Glossary

Active Mode: Hard disk mode. The disk is either reading, or writing, or positioning.

ATA: AT Attachment.A standard interface and protocol for hard disk drives, also known as IDE.
Version 4 and later have a packet interface extension (ATAPI) included that is used to control
other device types like CD-ROM drives.

Break-Even Period: The shortest time interval for which switching to standby in the beginning and
switching back to running mode at the end is more energy-efficient than staying in idle mode.
The break-even period is device-specific.

Busy Period: A time interval between two standby periods that does not contain a standby period
itself.

DDT: Device Dependent Time-out policy.Switches the disk drive to a resting mode after it has been
idle for the break-even period.

DDT/ES: DDT with Early Shut-down.Like DDT, but switches to resting mode earlier if the current
busy period is roughly as long as the previous one.

Dirty Buffer Lifespan: The time interval that a buffer may be dirty until it is written back to disk.

Ext2: The 2nd version of the extended file system for Linux. The most popular file system type in
the Linux world.

IDE: Intelligent Drive Electronics.Another name for the ATA standard.

Idle Mode: Hard disk mode. The hard disk is not active, but the spindle motor is on and the interface
is active.

Resting Mode: Hard disk mode. Subsumes standby mode and sleep mode.

Running Mode: Hard disk mode. Subsumes active mode and idle mode.

Sleep Mode: Hard disk mode. The spindle motor is off and the hard disk interface is inactive and
may only be reactivated by a reset.

Standby Mode: Hard disk mode. The spindle motor is off, but the hard disk interface is active.

Standby Period: A time interval of hard disk inactivity that is longer than the break-even period, so
changing to standby mode would be energetically profitable.

VFS: Virtual File System.The part of the Linux kernel that is common to all file system types.
It communicates with the individual file systems via a well-defined (but badly documented)
interface.
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[7] Fred Douglis, P. Krishnan and Brian Bershad:Adaptive Disk Spin-down Policies for Mobile
Computers.In: Computing Systems,8(4), pp. 381–413, Fall 1995.
http://www.douglis.org/fred/work/papers/adapt.ps.gz

[8] Adaptive Power Management for Mobile Hard Drives. IBM Corporation 1999 (White Paper).
http://www.almaden.ibm.com/almaden/mobile_hard_drives.html

[9] Gaurav Banga, Peter Druschel and Jeffrey Mogul:Resource containers: A new facility for
resource management in server systems.In: Proceedings of the Third Symposium on Operating
System Design and Implementation (OSDI) 1999.
http://www.cs.rice.edu/˜druschel/osdi99rc.ps.gz

[10] Heng Zeng, Xiaobo Fan, Carla Ellis, Alvin Lebeck and Amin Vahdat:ECOSystem: Managing
Energy as a First Class Operating System Resource.Technical Report CS-2001-01. Duke
University.
http://www.cs.duke.edu/ari/millywatt/ecosystem.pdf

[11] Jacob R. Lorch, Alan Jay Smith:Software Strategies for Portable Computer Energy Manage-
ment.In: IEEE Personal Communications Magazine,5(3). pp. 60–73, June 1998.
http://research.microsoft.com/˜lorch/papers/survey.pdf

42




