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Abstract

The development of small mobile hard disks with large storage capacities has

changed the application requirements of modern mobile computers and embedded

systems significantly. While these devices are mostly battery-powered, all usable

power saving techniques have to be integrated to prolong their up-time.

Most mobile devices suffer from the restriction of small sized memories. It

is common that the available memory is exclusively used by the operating system

and the running applications. Therefore, in contrast to normal workstation comput-

ers, the caching of disk blocks at the operating system level is problematic and not

as effective for these devices due to the large memory requirements of that tech-

nique. However, existing file systems organize file data and meta data to match

performance requirements by relying on the presence of a considerable amount of

system memory for caching purposes. As far as hard disks are concerned, valuable

battery power can be saved by avoiding disk seeks and introduced latencies due to

rotational delays.

This work examines the effects of different file system layouts on hard disk

energy consumption. It is shown that energy efficiency of file systems is heavily

influenced by the used data layout and file organization principle when disk caches

are mostly not available. Guidelines for a low power file system design are de-

veloped. A new implementation of a file system for the Linux kernel based on

these recommendations is provided to show that energy efficiency is significantly

improvable by adapting the file system layout in systems which do not have the

possibility to use disk block caching techniques.
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Chapter 1

Introduction

In the last few years mobile devices and embedded systems have set one major

trend in the computer industry. Independence of an external power supply for a

reasonable time period is a crucial necessity for mobile computers that deserve

their name. For this reason energy consumption has been recognized as a major

challenge of mobile system design.

At the same time the miniaturization of large storage devices has widened the

possible range of mobile applications and therefore their purpose of utility for the

end user. Today mobile web browsers, audio-video players and recorders, inte-

grated mobile phones with lots of additional features and small office suites are

only a small subset of the possible uses for such devices. As mass storage media

gain more and more importance for the applications of modern mobile computers,

such systems are often equipped with mobile hard disks as alternative means to

flash memory. Recently, the IBM or now Hitachi Microdrive [27] has mostly been

used in these devices for secondary storage. Regarding energy consumption sub-

stantial savings became possible in other components but not as much in the area

of hard disk power [13]. That’s why in comparison to earlier models of portable

computers, modern devices spend a greater percentage of their power consumption

on the hard disk. Thus, power saving techniques for mobile hard disks offer high

potentials to prolong system up-times.

Nowadays hard disks can improve their energy efficiency significantly by ex-

ploiting their low power modes. As the transition between such modes consumes

a remarkable amount of energy and introduces latency issues a notable increase in

the length of idle periods is necessary to save energy. The research community is

very active in this area, yet this technique either requires large system memories or

an application involvement in order to be most efficient.
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2 Chapter 1. Introduction

Similarly, as far as performance and energy efficiency is concerned, existing

file system technology is designed to rely heavily on the availability of a large

amount of memory to dynamically hold frequently used data in disk caches. How-

ever, due to reasons of mobility and energy efficiency, one characteristic trait of

mobile hardware design is a need for miniature components implying the conse-

quence that their performance and equipment cannot reach the outcomes of today’s

workstations. Generally mobile devices suffer from lower processor speed and

small sized memory. There the available memory is mostly used by the running

applications and the operating system itself. Therefore, the memory needed for

disk block caching is not available and the energy requirements of the file system

become most sensitive to the data organization on disk because many disk seeks

and rotational latency delays are required by reading and updating file system inter-

nal data structures which only manage storage layout. Therefore a low power file

system design has to eliminate this wastage of energy as much as possible. When

only powered with batteries, a file system could easily adapt to this pretension by

organizing its data in a non optimized manner but with lowest energy demands.

While users are always obliged to charge their batteries mobile computers have

to be connected to an external power supply from time to time. Then energy ef-

ficiency is of minor importance, providing the chance to clean up imperfect data

organizations and initiate defragmentation techniques.

The present paper will focus on adapting the file system layout to save hard

disk power in an environment with small system memory.

The rest of this work is structured as follows.

The second chapter gives an overview of the research areas of previous work.

Chapter 3 deals with techniques that are used to reduce hard disk energy consump-

tion in the lowest levels of the operating system and the apparent drawbacks of

existing file system technology. Their effects on energy consumption in mobile

systems are described. A new approach to incorporate energy efficiency into the

file system layer is presented in chapter 4. Chapter 5 further describes the imple-

mentation of a prototype file system which is based on the Linux 2.4.21 kernel.

Chapter 6 reports the energy saving results related to existing Linux file systems

using real world applications and synthetic tests as an evaluation basis. Finally,

hints for possible future improvements are listed in chapter 7.

An energy-aware file system as suggested in this paper may be embedded in
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an overall hard disk energy-saving concept, for example by merging in the concept

of cooperative I/O as introduced by Weissel et al. [29]. When large memories are

available for the caching of disk blocks the proposed file system design could be

optimized to collaborate with the updating and prefetching methods as suggested

by Papathanasiou et al. [21] to reach a ”bursty” access pattern on the hard disk,

thus increasing idle times and energy efficiency.



Chapter 2

Related Work

2.1 Power Management

Energy-aware operating system. During the last few years design paradigms

in the area of power-conscious operating systems have incorporated energy as a

first class system resource. The main target of such systems is the control of en-

ergy consumption and battery lifetime by unifying resource management and by

introducing energy accounting mechanisms. These approaches are explicitly de-

signed to be independent of application software preventing the need of rewriting

or adapting user programs.

The importance of energy efficiency as a primary metric in operating system

design is emphasized by Ellis et al. [5], [28]. ECOSystem [32] is a modified Linux

in which a fair allocation of energy among competing applications is accomplished.

It aims to provide system wide energy management under the control of user pref-

erences. In a more recent report [31] an increased energy efficiency of the hard

disk is realized through the coordination of disk accesses. This is achieved through

bidding and pricing techniques that are based on the ”currentcy” metric introduced

in ECOSystem.

Application adaption. On the other hand the approach of Flinn et al. [6], [20]

enables applications to reduce their energy requirements by dynamically modifying

their behavior. Monitor techniques for energy supply and demand are performed

at operating system level to guide running applications via special system up-calls.

Then applications can be rewritten to select an acceptable tradeoff between energy

consumption and application quality by using the available information.

4



2.1. Power Management 5

Device level power management. To save energy industrial efforts have been

concentrated to integrate low power modes into modern mobile devices and their

components. These modes are associated with a different level of power consump-

tion and response time. In the area of power management for hard disks heuristic

transition policies emerged both at hardware and operating system level. They can

be divided into algorithms with fixed or adaptive time-out and predictive policies.

Different shutdown policies have been suggested by [10], [3], [11], [12], [14], [7].

A detailed comparison and evaluation of several algorithms can be found in [4]

[17]. Different commercial solutions which address OS-level power management

are the Advanced Configuration and Power Interface (ACPI) [1] and Microsoft’s

OnNow [18].

Cooperation between applications and operating system.Heath et al. investi-

gated the potential benefits of application supported device management for opti-

mizing energy and performance [8]. To increase disk idle times they propose that

applications should explicitly cluster read operations together and inform the op-

erating system about upcoming idle intervals. Furthermore, a compiler framework

that is able to perform the transformations mentioned is given in [9]. Lu et al. argue

for a special system call that details device usage requirements and future access

patterns [15]. Thereby applications can inform the operating system about future

idle times to perform energy efficient shutdown decisions of devices. The given in-

formation is further exploited by intelligently reordering the schedule of processes

to achieve a clustering of device requests which results in the prolongation of idle

periods. A task based approach without application involvement is suggested by

Lu et al. [16] by computing device and processor utilizations of each task at the

operating system level. The shut down of devices is performed when having a low

overall utilization. By reshaping disk usage patterns Weissel et al. [29] achieve

higher energy efficiency by increased idle periods in the ,,cooperative I/O” project.

They provide an API that allows processes to pass the urgency (delay time) of each

individual read/write operation whereby requests from different processes can be

grouped together and device activations are prevented by defining requests as de-

ferable or abortable. Papathanasiou et al. [21] also maximize idle periods to gain

higher energy efficiency. Therefore to achieve a bursty access pattern they altered

the linux caching policies with aggressive prefetching and buffering techniques.

Application support for write-behind caching is possible by a new flag in the open

system call.
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2.2 Log-structured File Systems

The principles of log-structured file systems (LFS) were introduced in 1991 by

Rosenblum et al. [22]. They described a new technique for disk management that

aimed to speed up both disk writes and recovery times and presented a prototype

implementation for the Sprite operating system. Seltzer et al. [24] completely re-

designed the file system to integrate it into the 4.4BSD Unix operating system.

A performance comparison with the Berkely Fast Filesystem (FFS) showed that

log-structured and clustered file systems each have regions of performance domi-

nance [25]. However, they attest log structured file systems improved performance

for reading and writing small files and for their creation and deletion. FFS showed

to be more effective when file sizes rise above 256 kilobytes. Czezatke et al.

tried to implement a log-structured file system in Linux 2.0.X series by adding

a logging-layer between an adapted version of the ext2 filesystem and the block

device [2]. Matthews et al. described possibilities to improve the performance

of log-structured file systems with adaptive methods for a wider range of work-

loads [19]. Layout adaption to match hardware characteristics of storage devices

through track-aligned extends is performed by Schindler et al. [23]. By utiliz-

ing disk-specific knowledge they were able to increase IO efficiency by reducing

head switches for mid to large requests. They suggest matching segments to track

boundaries to reach a better performance both for cleaning and writing in log-

structured file systems.



Chapter 3

Motivation

3.1 Magnetic Disk Characteristics

Differences in disk hardware are hidden to the storage manager by introducing the

abstraction of logical block addresses (LBA). That enables file systems to consider

disk storage as an array of equally sized blocks in a sequentially numbered order.

Before discussing strategies that are able to increase energy efficiency of hard disks

it is necessary to thoroughly understand beneath that abstraction the characteristics

of magnetic disks that influence both their performance and energy consumption.

After describing the functionality of hard disks in general, the characterizing

parameters are exemplified with the Hitachi Microdrive [27]. Then commonly used

optimization techniques to overcome performance losses of hard disks performed

at the lowest levels are briefly described.

3.1.1 Anatomy of a Disk Request

Data storage on hard disks is divided into sectors that are usually 512 bytes in

size. These are organized in a stack of rotating platters and are accessed by various

read/write heads together mounted on a moveable disk arm. For one disk arm

position the heads can access a certain amount of sectors which are arranged as a

circular ring on each platter. In this position sectors that are accessible by a single

head together are called a track whereas a cylinder contains all tracks for one disk

arm placement. LBAs are mapped to physical locations on disk by translating

the logical address into cylinder/head/sector (CHS) combinations. Then the hard

disk satisfies requests by switching to a sequence of different operating modes. If

the requested sector lies on a cylinder which is different to the present disk arm

7



8 Chapter 3. Motivation

position first the seeking mode has to be entered. When the disk arm has arrived

at the correct location the disk selects the appropriate head and steps into rotation

mode to wait until the specified sector rotates under the head. Then the reading or

writing mode is responsible for the actual data transfer. The time spent in each of

these modes is referred to as seek time, rotational latency and transfer time.

Concerning the Microdrive, the average time spent in seeking mode adds up

to 12 milliseconds. Rotational latency is determined by the speed of the rotating

platters. Then a rotation speed of 3600 RPM for that drive corresponds to 8.33

milliseconds on average. Using the power measurements of Zedlewski et al. [26] it

becomes possible to calculate energy overheads for the Microdrive according to the

different operating modes. In Table 3.1 the average consumed powers according

to the various modes and the overheads for single operations are listed. Due to

the fact that seek operations and rotational delay spend much more energy than the

data transfer of single blocks, their avoidance is a jutting candidate for improving

energy efficiency.

Mode mW mJ
Seeking 637 7.64
Rotation 594 4.95
Reading 627 0.19
Writing 756 0.23

Idle 222 -
Stand-by 61 -

Table 3.1: Average power consumed by the IBM Microdrive. The right column
indicates the typical energy overhead for one operation in average (seek, rotational
delay, 1 KB read, 1 KB write).

3.1.2 Low Level Optimization techniques

There are two commonly used optimization techniques concerning the negative

effects of rotational latency. Some hard drives offer a feature called zero-latency

access. After a seek their firmware immediately reads all sectors of a cylinder

into an internal buffer in arbitrary order, thus anticipating additional latencies for

subsequent accesses to the same cylinder at hardware level. Some drives also offer

integrated write caches to eliminate rotational latency as seen from the operating

system. However, the write operation itself still suffers from latency issues. If more

than one disk request is to be queued, the operating system performs a technique
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called block clustering. Requests of adjacent sectors are joined together to form

one big request. Therefore the latency can be shared among them.

To avoid seeks request scheduling is used at the lowest operating system level.

By this technique an elevator-algorithm is performed which orders remaining re-

quests with regard to their sector numbers. Therefore a reduction in seek time is

achieved by using the overall minimal seek distance.

3.2 Linux File Systems

All techniques described so far are performed at very low levels but at best they

are able to further support file systems to reduce rotational latencies and disk seek

times. Above these methods file system technology is principally responsible for

avoiding disk seeks and reducing rotational latencies. Modern file system designs

try to attend to this duty by optimizing data layout on disk. However, they are

designed to rely heavily on large memories to prove performant and energy ef-

ficient. In this section I briefly describe existing file system designs and outline

their drawbacks with regard to energy efficiency in environments with small sized

memories.

The second extended file system (ext2fs)is the most well known file system de-

sign in the Linux community. It is famous for its stability and good performance.

Files are represented by a structure, the so called inode, which maintains meta

data and pointers to the file’s data blocks. By saving inodes and their data blocks

into certain regions on disk, the block groups, fragmentation issues are addressed.

All block groups in the file system have the same size and are stored sequentially.

Block groups are described by group descriptors which provide information about

used blocks, inodes and directories. There are bitmap fields in each block group

to specify which inodes and data blocks are free or used within a group. Oper-

ations like creating a file or appending data to it require an update of these data

structures. To prevent the file system from permanently accessing the same disk

blocks, caching of these structures is introduced. Group descriptors are perma-

nently cached and at least eight blocks are cached, which is realized by a LRU

mechanism. When created each data block remains at the same physical position

on disk over the whole file life span. While the file system fills up most data blocks

of new files will be created in a fragmented manner.
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In the worst case these data blocks are located in different block groups, which

requires additional disk seeks for sequential file accesses. In addition, disk seeks

caused by meta data accesses will become very likely, especially in systems which

have not much system memory. Due to the fact that disk seeks are a waste of

energy a low power file system must develop a different design.

In case of power failure or crash the ext2 file system has to run an exhaustive

scan and sanity check on the meta data both of the block groups and of the inodes

and their data in order to ensure file system consistency. As this is a very power

intensive task a low power file system must use other strategies for this problem.

Journaling file systems overcome the problem described above by inheriting

database transaction and recover technologies into the file system. Meta data mod-

ifications are logged into a reserved area of the file system, the journal, before

updating the affected disk blocks. After a crash only the portion of files which

have an entry in the journal have to undergo the consistency check.

In fact the ext3 file system is not different from an Ext2fs despite an added

journal file. Unfortunately updating the journal on every meta-data change induces

a need for more seeks and thus a power wastage in normal operation mode.

The Reiser file system is also a journaling file system based on fast balanced

trees (B+ Trees) to organize file system objects. Small files are saved directly into

a tree node to avoid disk seeks. It also tries to store file information closely to file

data.

Another log-based file system is developed by IBM, which is currently used

in high performance e-business file servers. Again, only meta-data changes are

logged. The logging style introduces a synchronous write to the log disk into each

operation that changes meta-data structures. This performance cost is reduced in

server systems by group commits, which combine multiple synchronous write op-

erations into a single write operation. Asynchronous logging schemes are also able

to decrease the performance losses.

Again it is very likely that such sophisticated techniques behave well only in

environments with lots of memory for caching the data structures. Thus it is ex-

pected that journaling file systems lead to lots of disk seeks in systems that cannot

cache these structures. Moreover, further disk seeks are also required by the log-

based techniques themselves.
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The FAT32 file system on the other hand is very simple in its nature. The su-

perblock contains the block number of the root directory. Directories store the meta

data of files together with their first data block. Further data blocks of directories

and files can be looked up in the file allocation table (FAT) at the beginning of the

partition. The FAT is nothing else than an array of 32 bit integers. The position

within that array corresponds to a disk block number whereas the stored value in-

dicates the next block in that file. Accesses to files always end up with hopping

around in the FAT. For a typical Microdrive with 1 GB capacity and a block size

of 1 KB the FAT would contain 4 MB of disk space. As this amount of data is not

cache-able it ends up with a large amount of disk accesses and disk seeks.



Chapter 4

Design

In contrast to normal workstation computers mobile devices have to get by with

a limited power supply. The benefit of such systems closely relates to the time

period in which they can be powered with their batteries. Therefore prolonging the

up-time of mobile systems is the most important point to deal with. Design issues

for energy conscious file systems are examined. The most common drawbacks of

existing file system designs can be avoided with regard to energy consumption.

First guidelines for an energy efficient file system design are proposed. Then

ideas to fulfill many of the given objectives are presented.

4.1 Guidelines for Energy Efficient File System Design

When accessing a file on disk several steps are required to fulfill the request. When

a file name is given, the corresponding information which describes the file con-

tents and block locations has to be identified and read in. Only then can file blocks

be selected for transfer. When new parts of a file are going to be written to disk,

free places on disk have to be found where the data can be written to. Then meta

data structures related to the file must be updated.

As outlined in Chapter 3 disk seeks and rotational latencies require a signifi-

cant amount of energy. For example, with the energy which is necessary to perform

an average disk seek accompanied by an average rotational delay 66 KB of data

can be read from an IBM Microdrive hard disk. By servicing hard disk requests

the energy of the data transfer itself has to be invested. Therefore, the avoidance

of latencies caused by disk seeks and rotational delays is the only way to improve

energy efficiency. The problem of reducing energy consumption of the hard disk

12
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becomes equivalent to the problem of optimizing the performance of the disk re-

quests, which is very difficult to realize in systems without large disk caches.

Therefore, a low power file system design can incorporate most of the follow-

ing guidelines to gain energy savings in battery powered mode.

4.1.1 Reduction of Meta Data Updates

When new data is written to disk or existing data is deleted the disk manager has to

update its meta data structures. These are needed to manage file system dependent

information and to identify file locations and free spaces on disk both for data

blocks and file information structures. When updating or creating file data meta

data structures also have to be cared for. This causes seeks and rotational latency

delays when the affected structures and the positions for reading and writing are

not located at near physical disk positions. Therefore meta data updates should

be kept minimal, ideally bundled together with the executing disk accesses and

performed at the disk location which was already affected by the causing access.

4.1.2 Sequential Arrangement of Meta Data and Data Blocks

Despite the data contained in a file several information about the file itself has to

be maintained by the disk manager. The size of the file, its type and the location of

the file blocks on disk are a few examples. This information is generally associated

with meta data. Therefore two different entities have to be saved to disk: meta

data and file data. To fulfill file requests such as read and write operations it is

necessary to access and update the meta data of the corresponding file. If meta data

and file data is organized at physically distinct disk locations it becomes necessary

to issue two disk requests accompanied by two seeks and two rotational latencies

when a task accesses file data. What is most important for workloads containing

many small files, it is possible to avoid the overhead of one seek and one rotational

latency by aligning meta data information and the data blocks successively on disk.

Unfortunately, as opposed to a fixed positioning dynamic positions of meta data

structures introduces complexities and overheads for maintaining their locations

on disk. But a careful implementation is able to limit these effects in order to gain

the outlined benefits.
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4.1.3 Sequential Reading and Writing Behavior

To enable energy savings for workloads which are characterized by sequential file

accesses data blocks of files can be clustered together at near physical disk posi-

tions. Then sequential file accesses are able to avoid many seeks and rotational

latencies. Therefore, all blocks of a file should be grouped into one large extent on

disk together with their meta data. However, it is very difficult to attain this ideal

behavior when the file system becomes fragmented. Update-in-place file systems

try to approximate an ideal sequential data layout only at the creation time of the

file data blocks. If the file system is heavily fragmented at this point file access

performance will suffer from an imperfect data layout over the whole file life span.

However, it is possible to make the disk manager capable of automatically creating

unfragmented empty space on disk. This makes it possible to arrange the file data

in a sequential manner. However, the task of free space generation requires energy,

which has to be invested for that purpose.

4.1.4 File System Reorganization

When small files are often accessed in the same sequence these files could also be

arranged sequentially to save energy. Figure 4.1 shows the perfect organization of

five files. The arrows indicate the access order of the files. For example file one

is always accessed right before file two. As described above, data reorganization

is already used to generate large extents of empty space. This technique can be

extended to match file organizations on disk to read access patterns. This approach

is most beneficial for workloads which access many small files. Then additional

Perfect File Layout

21 22 2423 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 4518 19 20

Unused Block Meta Data File Block

File 1 File 2 File 3 File 4 File 5

Figure 4.1: Perfect file system layout
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energy savings are possible by avoiding disk seeks and rotational latency delays

between file accesses.

This approach is based on the hypothesis that files can be grouped to semanti-

cal units which are mostly accessed together. Two problems have to be addressed.

First the mentioned file groups have to be determined. This can be done by stat-

ically introducing relationship constraints. For example files, which are residing

in the same directory, can be assigned to one of these groups. Another solution to

the problem can be approximated by observing file access patterns. Then groups

can be found by the assumption that past file accesses are a good predictor of fu-

ture access patterns. However, this method introduces overheads for both saving

the observation results and the computation of the groups. The computation can

be done by creating an access graph from the observations and solving the graph

partitioning problem for it. Although this problem is NP-complete many heuristic

solutions exist in the literature. Once the disk manager knows the file groups which

should be arranged together, the differences between the current and desired layout

have to be analyzed and if necessary I/O requests have to be issued.

4.1.5 Adaptive Energy Use

As users are obliged to charge batteries mobile devices are attached to external

power supplies from time to time. Then energy consumption is mostly of no con-

cern. However, when powered by batteries, every Joule is precious. Therefore it

is expedient to differentiate two operating modes: battery and powered mode. In

battery mode the system is disconnected from external power. There the most im-

portant objective is to get by with the remaining battery resources. I define powered

mode by being attached to an external power supply. Here energy consumption is

not so much important for the users of mobile systems. In battery mode file system

operations should be performed with lowest energy requirements. For the short

term accessing and updating data on disk can be done in a non-optimized manner

to save energy. Data organizations can be cleaned and optimized later when chang-

ing to powered mode. There the workload of the device is determined by long idle

periods which can be used for the cleaning operations. Therefore a different file

system behavior depending on the operating mode of the system enables significant

energy savings in battery mode by writing to disk with lowest energy requirements.

On the other hand only this distinction of operating characteristics justifies to in-

vest energy in powered mode for empty space generation and data reorganization

as outlined in Sections 4.1.3 and 4.1.4.
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4.1.6 Fast Crash Recovery

Mobile computers are often used until the battery power is consumed completely.

Furthermore unclean shutdowns are often carried out by the users of these devices.

But file systems are usually left in an inconsistent state after a crash due to power

or software failures and improper shutdown actions. Therefore consistency checks

have to be performed to ensure data reliability. A complete consistency check

requires scans over the entire disk to rebuild and verify all data structures of the

file system. This has enormous overheads both in time and power.

Thus, it appears that fast recovery techniques should be incorporated in a mod-

ern file system design. This implies the integration of a technique that is able to

identify the last modified data on disk. Then the performed recovery algorithm

has to operate only on a fraction of the whole disk. Therefore disk operations are

recorded in a log structure before their execution. After a crash the log still contains

the locations which are influenced by the last disk requests. However, managing

and updating the log is accompanied with further overheads in energy usage for all

file system operations which will alter meta data on disk. A low power file sys-

tem has to update its log structure with minimal overheads in energy to justify the

incorporation of recovery techniques.

4.1.7 Prolongation of Idle Periods

Finally, energy efficiency of mobile hard disks can be improved significantly by

exploiting their low power modes. However, transitioning between these modes in-

troduces a higher energy consumption for a short term depending on the hard drive

used. This increased power usage has to be amortized by resting for a sufficient

amount of time in low power mode. It is referred to as the so called break-even

period. Therefore lengthy idle periods are another goal for low power file systems

to achieve. There are two approaches which can be used. First, accesses to hard

drives can be avoided when resting in a low power mode by an application in-

volvement introducing deferrable and even abort-able read and write system calls.

Second, with large system memories both data for reading and writing purposes

can be saved into operating system caches. Then a prolongation of idle times can

be accomplished by incorporating aggressive prefetching and write-behind caching

in the buffer cache mechanisms of mobile operating systems when the policies to

update dirty disk blocks are changed to a ”bursty” pattern.
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4.2 Log-structured Approach

To stick to the proposed guidelines for a low power file system design I argue for

a log-structured approach similar to the ideas of Rosenblum et al. [22]. A log-

structured file system logically considers the disk as an infinite append-only log.

In contrast to other file system designs, meta data of files, their indexing infor-

mation and data blocks are not written to static locations on disk but are simply

appended to the log. This gives rise to achieve a successive alignment of meta data

and its appendant data blocks at physical block positions on disk. Furthermore,

as data blocks are also appended to the log this results in their successive disposi-

tion. It renders possible the feasibility of a sequential reading and writing behavior

with almost no administrative overheads caused by updates of file system specific

internal data structures.

As fast recovery techniques have to be incorporated in modern file system de-

signs this approach can intuitively perceive this pretension by the append only log

behavior. A log-structured storage manager can easily provide periodic check-

points which allow recovery to proceed efficiently from the most recent checkpoint

to the tail of the log.

Although the basic idea of this approach is very simple, two key issues have

to be resolved to achieve the expected benefits. First the retrieval of information

from the log is more complex as compared to indexing into traditional file sys-

tems. While section 4.2.1 covers that problem there is a second issue that has to

be resolved. The disk manager has to manage free space on disk. For accomplish-

ing this more difficult task different strategies are possible depending on battery or

powered mode. This is the topic of Section 4.2.2.

4.2.1 File Location and Reading

Although a log-structured approach might suggest that sequential scans are re-

quired to retrieve information from disk, this can be avoided by integrating index

structures to the log, which enables random access retrieval. In the Unix world

disk addresses of file blocks and information about files are stored within inode

structures. For each file a simple address calculation yields the disk address of the

corresponding inode since inode structures are stored at fixed locations. In contrast,

in log-structured file systems inodes are written to the log as well, which results in

a dynamic position on disk. To maintain the current location of each inode a new

data structure is introduced, the so-called inode map. If the identifying number for
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a file is given the inode map can be indexed to determine the proper disk address.

Since the inode map is divided into blocks it can be written to the log as usual.

Normally the inode map is compact enough to keep its active portion cached in

main memory. Therefore inode map lookups rarely require disk accesses and for

that reason additional disk seeks.

4.2.2 Free Space Management

Initially a log-structured file system maintains all free space in a single extent. But

by the time the disk fills up with new log writes, free space must be generated to

satisfy more write requests. Fortunately, not everything which is part of the log

corresponds to recent versions of files. When updated data is written to the end

of the log, a previous copy of the data on disk still remains at the old location.

Unless the file system has to support undo requirements of file changes, these data

blocks can be considered as dead space or a hole in the log, thus free space will

have been fragmented into many small extents. Therefore, for servicing additional

updates and writes free space management becomes an essential premise. The goal

is to provide and identify regions of free space on disk, which should be organized

preferably in large contiguous extents. There are three possibilities to attain the

goal:

• The log can be threaded around the still live blocks.

• Live data can be copied out of the way.

• A combined threading/copying approach.

4.2.2.1 Threading

The threading approach leaves live blocks at their original position on disk (figure

4.2). New log blocks are written to the holes of the log that have emerged at

positions where previous incarnations of now updated or deleted blocks resided

before. It must be possible to identify these dead places when using this technique.

Therefore it is required to insert dead blocks into a list to mark free positions of

the log. In case of a crash this list is also used by the applied recovery technique to

identify the log regions. It is possible to manage the free block list with minimal

overhead. When writing new data to disk, old log blocks are simply inserted into

the free block list which is partially cached in memory. A compact representation

can be achieved by organizing data blocks as extents which indicate a starting block
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Old log end New log end
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Threaded Log

Previously deleted

New data block

Old data block

Block key:

Figure 4.2: The threading technique. Log ends before and after a log wrap are
shown. The extent structures which indicate dead log space are marked.

number and the number of contiguous free blocks after that position. When the

size of the cached list entries exceeds a configurable amount of space, the cached

data is simply written to the log together with other log writes, thus the free block

list can be treated by the implementation as nothing else than a special file. Now

when the log is filled up and new log space has to be generated this list can be

used to compute a new threaded log region. For efficiency reasons the threaded

log has to be generated carefully. This requires to sort the extents by their starting

block number. As well joins of extents have to be accomplished when the starting

or ending block number coincides with the starting block number of an already

existing extent.

The threading technique is able to operate at a high disk capacity utilization

and with low overheads for free space management. Thus, this approach is well

suited for battery mode operation because the expensive copying of live data is not

required as opposed to the techniques described later in sections 4.2.2.2 - 4.2.2.4.

For the short term threading operates at the lowest energy requirements in com-

parison to the other techniques. This is achieved by the price of imperfect data

organizations. Free blocks are fragmented between the still live blocks. As the

degree of fragmentation depends only upon the workload the disk manager itself

has no influence to control fragmentation issues while it is not possible to prevent

the free space on disk to become fragmented. Under more unfavorable workloads

large sequential transfers become not possible any more and the time spent strip-

ing over survived blocks drops disk access performance especially at a high disk

capacity utilization. But when changing to the powered operating mode other free

space management techniques are well suited to overcome the fragmentation issue
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by the prize of a higher energy usage. Fortunately, energy consumption and disk

utilization are not of much concern then. Therefore additional techniques have to

be incorporated into the design for free space management in the other modes.

4.2.2.2 Copying

As an alternative to skipping around the still live blocks after a log wrap it is possi-

ble to move the live blocks somewhere else as it is shown in figure 4.3. This allows

the log to be written to the cleared locations. New large extents of data will become

available but beforehand energy and time has to be invested by the copying opera-

tions. This happens at each log wrap, which creates the need to copy around long

lived data blocks multiple times, which constitutes an enormous energy wastage.

However, this can be justified in powered mode if energy efficiency increases in

battery mode operation.

Although new large extents of empty space are created, the goals as outlined in

Sections 4.1.2 and 4.1.4 are not achieved by the pure copying approach. However,

the technique can be extended to eliminate the fragmentation of file data blocks

and also to reorganize files in groups of physically near disk blocks. Data reorga-

nization and defragmentation techniques are well suited to be integrated into the

cleaning algorithm because many of the affected disk blocks are already read in

and saved to other locations on disk.

4.2.2.3 Hole-plugging

It is more difficult to realize the copying approach at a high disk capacity utilization

because many data blocks have to be copied around before new large extents of

Old log end New log end

21 22 2423 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 4518 19 20

21 22 2423 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 4518 19 20

Copy and Compact

Previously deleted

New data block

Old data block

Block key:

Figure 4.3: Copying technique. The log ends before and after the log wrap are
shown.
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Figure 4.4: Hole-plugging technique. Parts of the log are shown before and after
a log wrap.

free space become available. Then the threading technique can be used but it loses

performance due to the empty space fragmentation problem. Newly written data

gets fragmented.

Hole-plugging is a variation of copying that can still operate at a high disk ca-

pacity utilization. Fragmented log data is not copied back at the log end but is fitted

into holes found in the fragmented log regions as shown in figure 4.4. Although

the possible effects of data reconstruction can be abrogated by this approach, large

free extents of free space can be generated for new log writes. This operation mode

can be implemented in situations where a high disk capacity utilization makes the

ideal copying approach not feasible any more due to the enormous time needed for

it. The threading approach behaves differently to hole-plugging in that way that

newly written data gets fragmented, whereas by hole-plugging existing data or-

ganizations are possibly broken into fragments. But careful algorithms can choose

holes by which the data is still well organized. While existing log data is still copied

around, the hole-plugging technique shows to be an alternative only in powered

mode but the threading technique remains the better alternative in battery mode.

4.2.2.4 Combined Threading and Copying

The pure threading approach loses performance due to fragmentation issues. In

contrast, the copying method controls the empty space fragmentation problem but

loses performance by the copy operations. Therefore a combined approach is able



22 Chapter 4. Design

to compromise about the pros and cons of each method. After a log wrap frag-

mented live data should ideally be copied to the end of the log whereas unfrag-

mented log regions should be skipped over. The combined threading and copying

approach tries to approximate this behavior by dividing the log into extents of ei-

ther fixed or variable size, which are generally referred to as segments in literature.

Before a segment can be rewritten all live data has to be copied out of it. There-

fore, segments form the unit of log threading. Once the current segment fills up,

the nearest free segment is selected for servicing further write requests. After a

log wrap segments have to be cleaned to satisfy new log writes. Which segments

are selected for cleaning can be controlled by different cleaning policies. Each

policy is determined by a different metric to estimate cleaning overheads. Then

these overheads are minimized and appropriate segments are selected for cleaning.

Unfortunately, a problem arises at a high disk utilization, especially for workloads

with many random updates. Then to empty a segment many nearly full segments

have to be cleaned. Hole-plugging addresses this problem by writing live blocks

to the holes found in other segments instead of writing them to the end of the log.

Hole-plugging can be combined with the other cleaning policies to form an adap-

tive one.

The hybrid approach as implemented in existing systems is not capable of data

reorganization although this technique is essential for attaining better read per-

formance, especially in battery mode operation. Therefore the segment cleaning

policies have to be extended to work with the data reorganization scheme.

4.2.3 Crash Recovery

After the occurrence of a system crash the last performed file system operations

can leave the file system in an inconsistent state. Then these operations have to

be reviewed during the reboot phase to identify and then correct possible emerged

inconsistencies. When file systems do not incorporate logging mechanisms the

locations of changed data items cannot be easily determined after a crash. Then a

sequential scan over all meta data structures is required to guarantee consistency

of the file system. Fortunately, the log-structured approach easily identifies the

locations which were affected by the last disk operations. They are always located

at the end of the log. Therefore a quick crash recovery becomes possible by a two

phase approach.

There checkpoints identify consistent states of the file system and roll-forward

is used to recover data items that are written after the last checkpoint. Each check-
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point should contain almost all recently performed file system modifications. Ad-

ditionally, the consistency requirement must be provided for the log up to that

point which requires to make many data structures persistent on disk. Because

of that reason check-pointing can introduce significant overheads when applied

frequently. For periodically applied checkpoints there is a tradeoff between check-

pointing overheads and the time needed in the roll-forward phase. On the one hand

long intervals between checkpoint creation are able to reduce overheads for check-

pointing in the running system. On the other hand the non frequent creation of

checkpoints implies a significant time increase of the recovery phase after a crash.

Fortunately, recovering time can be limited by performing checkpoints only after a

given amount of data has been written to the log. However, a low power file system

should be able to provide both methods. The policy which selects and configures

one method should be accessible from user-space. There it is possible to imple-

ment it by a daemon process. Then a more fine grained reaction on the different

operating modes of the file system can easily be realized. Thus, it makes it pos-

sible to limit check-pointing in battery operation up to a certain degree to reduce

energy overheads due to frequent check-pointing operations. Otherwise periodic

checkpoints can be applied in active mode.
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Implementation

The concept presented in Chapter 4 has been implemented in the official Linux ker-

nel source, version 2.4.21. The Linux kernel supports a variety of file systems via

its internal virtual file system, also known as Virtual File System Switch or VFS. It

is a kernel software layer which handles all system calls related to a standard Unix

file system, thus providing a common interface to several kinds of file systems. Un-

fortunately, up to now none of the existing Linux file systems for block-oriented

devices is purely log-structured. Only the Journaling Flash File System (jffs2) is

an implementation of a log-structured Linux file system. However, it is designed

to operate only with Flash memory technology as the underlying storage medium.

Therefore, a completely new implementation was necessary. Although most of the

provided switch functions from VFS were sufficient to interact with this implemen-

tation, the log-structured approach required a few changes to the Linux buffering

mechanisms. In contrast, the directory handling mechanisms are adapted from the

ext2 file system with a few minor modifications.

This chapter first describes the buffering schemes and policies provided by the

Linux kernel. Then basic parts of the implementation are presented. Section 5.3

details the mechanisms which are needed for the management of the dynamically

stored inode structures. Finally a new inode design is introduced and all changed

and new implemented source files are listed.

5.1 Linux Disk Caches

In order to be able to understand some problems faced during the implementation

process, a short outline of various Linux caching mechanisms is presented. Basi-

24
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cally, in the Linux kernel framework performance optimizations for disk accesses

are achieved by introducing four different caches:

Inode Cache. This cache is used for maintaining an in-memory representation

of frequently used inodes. While almost all file operations need the corresponding

inode object to execute, a speed-up in overall system performance is achieved.

Directory Cache (dcache). Since reading directory entries from disk and con-

structing the corresponding file system objects, called dentry objects, repeatedly

causes disk accesses, the Linux kernel keeps them in memory depending on the

available system memory. This speeds up the translation of a path name into the

corresponding inode number. When a dentry is created the corresponding inode ob-

ject is also loaded into system memory. Inodes which already have an in-memory

representation and which are associated with an unused dentry structure are not dis-

carded. Therefore, the associated inode of a dentry structure is always guaranteed

to be also loaded into system memory.

Buffer Head Cache. The representation of a disk block in memory is de-

scribed bybuffer head structures. Therefore the deletion and allocation of

buffer heads is an operation which takes place very often. The cache stores

used and unusedbuffer heads up to a certain amount to avoid this overhead.

Page Cache. The actual data of file disk blocks is stored in the page cache.

The size of a page is dependent on the system architecture, but usually it is 4096

bytes large. Therefore it can store the associated data of a variable amount of

buffer heads. Each page in the cache corresponds to several blocks of a regular

file or a block device file. All such blocks are logically continuous, thus repre-

senting an integral portion of a file. The page cache is indexed by file offsets and

the memory address of the file operation pointer which is stored in the file’s corre-

sponding inode object.

Buffer Cache. As suggested by its name the buffer cache is a disk cache con-

sisting of buffers. Indexing into the buffer cache is performed by device and log-

ical block number. Usually, all disk blocks that contain meta data structures of

a file system are cached in the buffer cache whereas all file contents are cached

in the page cache. It is possible to have a representation of a logical disk block
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both in the buffer and page caches, especially when the log-structured approach

is implemented. Due to this fact the Linux kernel provides a function called

unmap underlying metadata to make sure no disk request is issued by the update

mechanism for that buffer after the return of that function.

5.2 The Log Approach

Although the implementation aims to operate without the caching of disk blocks,

the buffering mechanisms are highly integrated in the Linux kernel. File systems

save disk data into buffers which are located either in the buffer cache or page

cache. Buffers are managed by three different lists for clean, locked and dirty

buffers. When writing data to disk, buffers are simply marked dirty and are refiled

to the dirty buffer list. Additionally, the buffer is given a future flush time which

specifies how long the buffer may remain in the disk caches. Two kernel threads

are actually responsible for issuing the write requests to the block device driver: the

bdflush and kupdate daemon. The kupdate daemon is activated every five seconds

to examine the head of the dirty buffer list and it will try to sync all buffers which

need to be written to disk according to their flush time value. The bdflush daemon is

activated when the kernel realizes that too many buffers are held in the disk caches.

Then buffers are synced to disk. However, this approach takes away from the file

system implementation the responsibility how and when a single block is written

to disk. The file system is not able to order the write requests. Moreover, disk

addresses have to be assigned to the block buffers when they are created. In contrast

to update-in-place file systems, in a log-structured file system the disk address is

assigned when blocks are written to disk instead of when they are written into the

disk cache. Therefore, the Linux assumption that all blocks have disk addresses

has to be addressed by the lazy assignment approach of log-structured file systems.

Scherlfs addresses this issue, which results from the log-structured behavior,

both by providing mechanisms in the file system dependent code and by altering the

code base of the buffer cache handling functions. Information about the file system

is saved in thesuper block structure which is located at the first logical disk block

and is read in during the initialization phase. The functionscherlfs get block

is responsible for the translation of logical file blocks to disk blocks. First, exist-

ing blocks are passed by with their normal block numbers whereas new blocks are

assigned a block number beyond the file system limit. Because it must be avoided

that different file blocks are mapped to the same disk block a counter variable is



5.3. Inode Map 27

maintained in thesuper block structure. Thereby it became possible to provide

statically increased block numbers beyond the file system size limit when new

blocks are going to be created. Second, all buffers are marked by setting in their

state bitsBH LOGFS, which was added to the possible state values of the buffers.

Therefore, buffers residing in a log-structured file system are easily identifiable.

Third, there is a special list included, thus extending the least recently used lists

for the different block buffers by maintaining a separate list for the dirty blocks

of a log-structured file system. Therefore therefile buffer function is modified

in such a way that dirty blocks of a log-structured file system are appended to the

logfs LRU list. Finally, the writing mechanism for blocks is based upon the corre-

sponding inodes and not on the blocks themselves. All dirty blocks from one inode

are written out together with the corresponding inode structure, thus forming the

unit of disk writes. This makes it possible to re-map all dirty blocks for one inode

when the inode itself is going to be written out to disk. The re-mapping of block

buffers is done by requesting a log block which is accomplished by the function

log getblk and then the block number of the buffer block is simply altered to the

new logical disk location. To make sure no disk I/Os are outstanding from within

the buffer cache the functionunmap underlying metadata has to be called on

the buffer block. Another counter variable is increased when a disk block with a

number beyond the file system limit is re-mapped. Therefore, it becomes possible

to identify the state where all assigned block numbers beyond the file system limit

are re-mapped and both counters can be reset. Finally, the update mechanisms are

altered to ignore any blocks from log-structured file systems. The updates of their

dirty blocks are performed at the granularity of write system calls.

5.3 Inode Map

In scherlfs inodes are not located at fixed disk locations but are stored dynamically

in the log. Therefore a mechanism for translating an inode number to the corre-

sponding disk block must be implemented. This is done by a simple map lookup

operation. The map is indexed by the inode number and reveals the corresponding

logical disk block at this position. Inode numbers which do not correspond to an

existent file are associated with a logical block number of zero. The elements of

the inode map are placed in a read-only regular file, called the ”.ifile”. It is made

visible in the root directory of the file system. There are three advantages to this

approach. First it overcomes the limitation to be able to store only a fixed amount
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of files in the file system since data can be easily appended to it as for any other

file. Second, in most cases it can be treated as any other file minimizing the special

purpose code in the file system. Finally, it is possible to communicate to the file

system via the standard file system calls when cleaning policies are going to be

implemented in user space.

When creating a new inode the ifile has to be searched for an empty entry.

Without applied optimizations a linear search has to be performed which should

especially be avoided when the ifile is nearly full and therefore many ifile blocks

have to be loaded and inspected for that purpose. In scherlfs this task is speeded

up by the introduction of a free block bitmap which is stored in the superblock. It

marks blocks full of inode entries by setting the corresponding bit in the bitmap.

Thus, the search for an ifile block which has space for a new inode is reduced to

the problem of finding the first zero bit in the bitmap. At initialization time the

bitmap is simply filled with zeroes assuming that all blocks of the bitmap still have

free places for an inode entry. Then the entries are updated by a lazy initialization

scheme, thus eliminating the need for maintaining the consistency of the bitmap

between file system mounts.

The integration of the inode map in the log eliminates the need for a special

checkpoint region. When checkpoints are applied, changed ifile blocks have to be

saved to disk and the new position of the ifile’s inode is simply inserted into the

superblock of the file system. Theread inode function is running into a bootstrap

problem when reading in the ifile inode because a lookup into the inode map is

required to determine the disk block of the requested inode structure which induces

the need to read in the ifile inode. Therefore, theread inode function must not

perform a lookup into the inode map when the ifile inode itself is going to be read

in, but it has to use the disk block number which is saved to the superblock.

5.4 The Case for a New Inode Design

The inode of a file has to store all information which is needed to map file block

numbers to logical block numbers. As data blocks are not necessarily adjacent to

each other most file systems provide a method to store the connection between each

file block number and the corresponding logical block number. This mapping goes

back to early versions of Unix from AT&T. In this scheme inodes store 15 block

pointers. The first 12 components yield the corresponding data blocks directly

to optimize the handling of very small files. The access to larger files is made



5.4. The Case for a New Inode Design 29

possible by the other indirect blocks. They point to blocks which contain either

more file data blocks or indirect blocks. Therefore even second order or third order

indirection is needed to enable the access to large files. To recognize the drawbacks

of this scheme imagine a block size of 1 KB. With this mechanism the access of

files up to a length of 12 KB executes with two disk requests: one to read the inode

block and the other to read the requested data block. First indirection reveals the

access to files with a maximal length of 268 KB but an additional disk request must

be issued to read in the indirect block. Second and triple indirection even creates

the need for additional disk requests. While disk accesses possibly cause seeks and

rotational latency a new mapping scheme was implemented.

Whenever possible, dirty data blocks of a file are written to disk in large ex-

tents. Extents are triples that describe continuous chunks of data by containing

a starting file block number, the corresponding logical block number on disk and

length information. By introducing this data structure it is possible to describe even

large files with only few extents. This is implemented by saving the extents of a

file in a doubly linked list which is added to the in-memory representation of the

inode. Thereby it is possible to save the file offset only implicitly. Then an array

representation of this list is added to the inode block on disk. Fortunately, for most

files only a few extents have to be created. Then these extents fit easily into the in-

ode structure and can be held in memory together with other inode data. Additional

disk seeks are not required in contrast to the traditional representation. However,

for highly fragmented files it is possible that a disk inode propagates over a variable

amount of continuous disk blocks. Although additional disk seeks are not required

in this situation, the compact representation of the file contents will get lost. There-

fore, extent structures have to be carefully managed by the implementation. When

updating or creating new extents a more compact representation can be achieved

by joining adjacent extents. The opposite case can also occur. Then extents have

to be split into two or three extents.

One major drawback of this scheme appears in an environment that has no

disk caches. Then data blocks and inode blocks have to be written to disk at the

granularity of system write calls. This is no problem when these calls are issued

in large chunks of data. But applications mostly issue write calls with a buffer

size that matches the system page size forcing the system to write out inode blocks

followed by only a small amount of data blocks. This writing behavior of most

Unix utilities causes an imperfect data layout on disk. Large continuous extents of

data blocks are not possible any more because small extents are divided by inode
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Figure 5.1: Different solutions to the inode placement problem. The resulting ex-
tent structures are shown below each diagram. The starting block number and the
length of each extent is illustrated. Arrows within blocks indicate seek operations.

blocks on disk preventing to form larger ones. This scheme is implemented in

scherlfs. It is illustrated in figure 5.1a. By remembering the inode number, which

was involved in the last write operation, it becomes very easy to determine the

situation when write calls are issued to the same file in order. Then there are three

solutions to overcome the described inefficiencies.

First it would be possible to write the data blocks to the log before the corre-

sponding inode structure (Figure 5.1b). When subsequent write calls to the same

file are issued the last written inode structure can be overwritten with the data

blocks which are selected to be written to disk. Then a new inode structure is

appended. However, this approach makes the file system recovery code more com-

plicated because the inode structures have to be linked together. A link which was

integrated in the last inode structure would not point to an inode any more but to

a file data block. Then the recovery code would have to check all following disk

blocks until it would identify a correctly written inode structure or it would reach

the log end. A second approach to the problem is to append all modified data

blocks to the log as usual and then to write the new inode block over the disk loca-
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tion of the last written one (Figure 5.1c). Unfortunately, the disk write location of

the inode block will separate from the log write location, as the extent increases its

length by the time, and so it becomes possible that the write operations of the inode

block and the data blocks require two short disk seeks. This would introduce write

inefficiencies which are not tolerable by the low power requirement of the file sys-

tem design. Therefore the described method can be altered to delay the inode write

operation a certain amount of time. Then the inode structure can easily be written

over its previously used disk location. However, special care has to be taken for

synchronized write requests where this scheme would not be applicable (Figure

5.1d), because it would not be guaranteed any more that previously successfully

performed file writes are recoverable after a crash.

5.5 Modified and New Implemented Source Files

New Implemented Source Files

fs/scherlfs/balloc.c fs/scherlfs/super.c

fs/scherlfs/dir.c fs/scherlfs/symlink.c

fs/scherlfs/file.c include/linux/scherlfsfs.h

fs/scherlfs/ialloc.c include/linux/scherlfsfs i.h

fs/scherlfs/inode.c include/linux/scherlfsfs sb.h

fs/scherlfs/namei.c

Modified Source Files

fs/buffer.c



Chapter 6

Energy Measurements

The effects on power consumption of different file system layouts have not been

investigated much up to now. This section compares the most popular Linux file

systems with the newly implemented one (scherlfs) in regard to their energy re-

quirements. First the measurement configuration is described. Then modifications

to the Linux Kernel which were necessary to simulate a system with restricted

use of the disk caches are explained and the used approach to simulate file sys-

tem fragmentation is described. Finally the results of the energy measurements are

presented.

6.1 Test Environment

6.1.1 Measurement Configuration

To validate energy savings of the new file system, a power measuring configuration

is needed. One computer is used for monitoring purposes only. It is equipped with

a four-channel analog-to-digital converter (ADC) developed at the University of

Erlangen-N̈urnberg. Thus, the measuring of the voltage drop at defined resistors

in the power supply lines becomes possible with a resolution of 256 steps. The

measuring device is capable of sampling at a rate of 20000 Hz. A maximum voltage

drop of 50 mV is correctly converted. The software driver to read the data from the

interface via the standard parallel port was written by Christian Winter [30].

Only one ADC channel is used with 10000 samples per second to measure the

power dissipation of an IBM Travelstar mobile hard disk. A 100 mOhm resistor is

used. Therefore the maximum voltage drop is equivalent to a dissipation of 5 W for

32
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the Travelstar. Another computer is used as the target system. The IBM Travelstar

is built into a Fujitsu Siemens Desktop PC.

All file system tests are carried out five times. Then the average of these test

runs is calculated. Therefore variances between specific tests are smoothed out.

The measurements of the different file systems represent the energy consumption

on empty file systems. The measurements of scherlfs represent the energy con-

sumption when no cleaner is present. These configurations yield the best operating

conditions for the various file systems. During the tests hard disk power manage-

ment was disabled. The tests are designed to contain no idle phases. Therefore,

only the energy which is needed to perform the issued file system interactions is

measured. This induces that the achieved energy savings are mainly caused by an

increase in performance. It can be argued that a prolongation of idle periods is pos-

sible due to the saved time. This would increase energy efficiency in a real world

situation even more when the power management of the hard disk is enabled.

6.1.2 Modifications to the Linux Kernel

While this thesis tries to evaluate the different file systems in an environment where

not much memory is available, possible benefits of caching mechanisms have to

be eliminated. Unfortunately the Linux kernel offers no general way to execute

without its buffer and page caches and current file system implementations heavily

rely on the Linux caching mechanisms. Therefore it was necessary to simulate an

environment where mostly no cache is available by modifying the kernel sources

directly. Two possibilities are able to reduce the mentioned effects.

First during the booting phase the Linux Kernel can be initialized so that it

is allowed to use only a certain amount of the available memory. Depending on

the running applications and on the used file systems a variable amount of system

memory would be available for disk caching purposes in each case. Therefore

for each different test and each file system the correct amount of kernel memory

has to be determined experimentally to gain a fair evaluation basis. Even then it

would not be guaranteed that no disk caches are used by the file systems during the

measurements.

Another approach was developed in this thesis to gain a fair basis for compari-

son of the different file systems because most cache memory is used by the buffer

and page caches. Therefore only these were restricted whereas the dentry and

inode caches were not. At least little memory has to be reserved for them in a tar-

get system which has low system memory because enormous performance speed-
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ups and energy savings are achievable by the use of these caches. Before reading

blocks from disk a lookup into the buffer cache is always performed to check if

the requested operation can be satisfied by the cache. For that reason the function

get hash table will get called. It was modified to clear theBH Uptodate flag

of the requested buffer block when the block was found in the cache. However,

this was only operable when the buffer was not in use which was tested by the

buffer busy macro, because all file systems rely on the fact that buffers which

are marked to be used are not removed from the caches. Then the requested block

will be read from the hard drive even if it was up-to-date beforehand. A similar

approach is feasible for the page cache. Every access is performed in two steps.

First the hash value of the page is calculated. Second the actual page is searched in

the corresponding collision list by the functionfind page nolock. This func-

tion was modified to simply change the page to the not up-to-date state by calling

theClearPageUptodate macro on it. Thereby it also has to be taken into account

that used pages must be left in an unchanged state. As small read requests repeat-

edly call this function sequentially the described action is only performed when

the requested page differs from the last requested one. Thus, small read requests

are not needlessly penalized but the page cache is still reduced to the size of a sin-

gle page. The results of these modifications ensure the execution of thereadpage

function for all read requests, which is defined by theaddress space operations

object of the corresponding file system. It is responsible to read in all blocks

of the specified page and it is implemented in all tested file systems by calling

block read full page, which creates or examines all block buffers within that

page and issues read requests for all not-up-to-date block buffers. Again this behav-

ior is modified to read in also the buffers in the up-to-date state which are not busy.

Write requests that cover only partial pages are handled in Linux by reading in all

block buffers of that page beforehand. Therefore the functionprepare write of

the correspondingaddress space operations object of the file system is called

when a page is going to be written to disk. This function is implemented in all

tested file systems by the functionblock prepare write. Again this is modified

to read in also the buffers in the up-to-date state which are not busy. In Linux mod-

ified block buffers are written to disk by first marking them dirty. Thereby they are

refiled into the dirty buffers list. Then either the bdflush or kupdate kernel thread

is responsible for the actual data transfer. To force a write out of the buffer at the

same time when marking it dirty was not applicable because file systems like the

fat32 would suffer from two seeks and rotational latencies when the FAT has to be
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updated for each block. Thus, it was necessary to relax the no cache requirement

by enforcing the write-out of all dirty buffers at the granularity of write system calls

by issuing the functionsgeneric osync inode andsync buffers at the end of

the execution of the functiongeneric file write which is responsible for the

write call.

By these modifications the no cache case is best simulated because the use of

the disk caches is minimized and even none of the file system implementation is

disadvantaged. The granularity of the updates at system calls is justified by the

fact that additional memory requirements for the disk caches can be avoided by a

careful implementation with no overheads.

6.1.3 Changed Source Files

These are the functions that are changed to simulate a system without disk caches

in the Linux Kernel 2.4.21 to gain a fair evaluation basis among the different file

systems:

get hashtable fs/buffer.c

block readfull page fs/buffer.c

block perparewrite fs/buffer.c

find pagenolock mm/filemap.c

genericfile write mm/filemap.c

6.2 Energy Consumption for Sequential Operations

The first comparative measurements examine the energy consumption between se-

quential read and write operations across a range of different file sizes. The data

set consists of 50 megabytes of data, decomposed into the appropriate number of

files for the file size being measured. In the case of small files directory lookup

operations dominate all other processing overhead. Therefore, the files are divided

into subdirectories, each containing no more than 200 files. There are six phases to

this test:

• Create: The files are created by issuing one I/O operation.

• Read: All files are read in their creation order with one I/O operation

• Rand read: All files are read in pseudo random order with one I/O operation
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• Rewrite: All files are truncated and rewritten in their creation order and their

original size remains unchanged

• Reread: The read phase above is executed again on the file system after the

rewrite phase

• Rand reread: The randread phase is executed again on the file system after

the rewrite phase

The energy consumption of the various test phases for the different file systems

is shown in Tables 6.1 - 6.10. Each table shows the energy consumption for sequen-

tial accesses of a different I/O size. It is maintainable to reserve a small amount

of system memory in mobile computers for directory caching purposes when sig-

nificant energy savings become possible. Therefore measurements for scherlfs are

performed in two ways. The measurements for scherfs-d are different to scherfs in

that way that all directory data is cached by the file system. This ensures that no

seeks become necessary due to updates of directory data which is not cached.

In the create phase reiserfs shows to be most energy efficient in comparison

to the traditional file system layouts. Fat32 is very close to reiserfs but cannot be

better for any of the different I/O sizes. Ext2 is far behind the other file systems.

The approach of the block groups shows to be inefficient. The ext3 file system

behaves even worse because its recovering technique introduces additional over-

heads. Only as the file size reaches 1024 KB ext3 shows equal performance to

ext2. At this point only 50 files are created. Therefore the introduced overheads by

the journal updates are going to be negligible relative to the I/O transfer itself. Con-

cerning the energy consumption the log approach of scherlfs proves to be optimal.

Enormous energy savings become possible for all different file sizes. Relative to

reiserfs energy savings of 66 % to 79.9 % are possible for the creation of small files

with a size up to 32 KB. Although the relative savings decrease with increasing file

sizes energy efficiency is still increased by 42 % for 512 KB files and by 37.4 %

by 1024 KB files. This becomes possible because all file data and meta data can

be written to the log in a sequential manner. Disk seeks are only necessary for the

directory updates.

The sequential read performance of the various file systems shows only minor

differences. For small file sizes the retrieval of file information from the directo-

ries influences the energy consumption significantly. For that reason reiserfs has

the smallest energy requirements. The good performance for 4 KB files can be

explained by the tail packing of reiserfs. Small files are stored in reiserfs’s search
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Figure 6.1: Energy Consumption of sequential file system accesses for different
file operations with a file size of 4 KB
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Figure 6.2: Energy Consumption of sequential file system accesses for different
file operations with a file size of 8 KB
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Figure 6.3: Energy Consumption of sequential file system accesses for different
file operations with a file size of 12 KB
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Figure 6.4: Energy Consumption of sequential file system accesses for different
file operations with a file size of 16 KB
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Figure 6.5: Energy Consumption of sequential file system accesses for different
file operations with a file size of 32 KB
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Figure 6.6: Energy Consumption of sequential file system accesses for different
file operations with a file size of 64 KB
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Figure 6.7: Energy Consumption of sequential file system accesses for different
file operations with a file size of 128 KB
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Figure 6.8: Energy Consumption of sequential file system accesses for different
file operations with a file size of 256 KB
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Figure 6.9: Energy Consumption of sequential file system accesses for different
file operations with a file size of 512 KB
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Figure 6.10: Energy Consumption of sequential file system accesses for different
file operations with a file size of 1024 KB
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tree directly. Therefore no additional seeks are required when the file object is

found in the tree. The other file systems can only compete with it when the file

size increases. Although scherlfs arranges all files sequentially in the log and the

read order of the files is not varied, the directory lookups influence the energy con-

sumption significantly. That’s why it is not able to gain advantage of its file layout

for small file sizes. For 4 KB and 8 KB file sizes its energy consumption shows

to be very higher than that of reiserfs. Not until the file size increases over 32 KB

does the influence of the directory lookups decrease because fewer files are going

to be read in.

However, in the random read phase the file arrangement of scherlfs shows to

be of good advantage for small file sizes because file meta data and file data are

arranged sequentially on disk. Again, directory lookups influence the energy con-

sumption strongly. While fat32 stores meta information for the files together in the

directories and in its file allocation table, its energy requirements behave very sim-

ilarly to scherlfs. But notice that this becomes possible only by the internal FAT

cache of fat32, which is not eliminated by the modifications described in Section

6.1.2. For larger file sizes the file systems have only minor differences in energy

consumption.

During the rewrite phase the energy consumption of scherlfs differs signifi-

cantly. For small files up to a size of 32 KB the log approach shows to be of better

performance relative to the other file systems. But not until file size reaches 1024

KB can scherlfs compete with other file system’s energy efficiency. Scherlfs suf-

fers from two restrictions. First directory lookups require disk seeks, then the inode

lookup requires an additional disk seek and finally one additional seek has to be

issued to reach the log end. Ext2 and ext3 have both very high energy requirements

for all file sizes relative to the other tested ones which can be explained because of

their frequent meta data updates.

After the rewrite phase the two read tests are performed on the updated file

systems again. The energy consumption of the traditional file systems increases

a bit. This can be explained by the truncate operation of the rewrite phase which

forces the file systems to reallocate the data blocks to the files in contrast to simply

overwrite them. Therefore, it becomes possible that the previous allocation scheme

is changed which possibly fragments meta data and disk blocks of the files. In con-

trast scherlfs appends all files and updated meta data to the log. Therefore, the

same file layout is created only at another disk location. The measurements show

that the energy consumption decreases a little bit for scherlfs-d. As the files are
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not deleted but only truncated, updates of directory information structures were

not necessary. Therefore, only the data which corresponds to the file updates is

appended to the log. Now no directory data is saved in between the files by the

performed log appends. Therefore, in the reread phase the best achievable energy

efficiency is reached because the requested data could be read from disk with the

full transfer bandwidth of the hard drive. This explains the achieved energy sav-

ings. Even without an enabled directory cache scherlfs was able to gain advantage

of the new file system layout, but more little energy savings were achieved.

The measurements showed that scherlfs offers energy improvements especially

for the creation of new files. Its energy efficiency is often better or at least com-

parable to the other file systems in the other test phases. However, for some test

phases it cannot reach the energy efficiency of other file systems. That’s mostly

caused by directory lookup operations which avoid gaining the advantages of the

created file layout. When directory information is cached file system performance

for scherlfs could be improved significantly.

6.3 Energy Consumption for Random Updates

The second comparative analysis examines the energy consumption of the different

file systems when small random I/Os are issued to one large file. Therefore, a file

of 100 megabytes length is created within this test. There are five phases to this

test:

• Read: All data is read in by issuing the appropriate amount of I/O operations

with a size of 8 KB.

• Rand read: 24 MB of data is read in at pseudo random positions by issuing

the appropriate amount of I/O operations with a size of 8 KB.

• Write: 24 MB of data is updated at pseudo random positions by issuing the

appropriate amount of I/O operations with a size of 8 KB.

• Reread: The read phase above is executed again on the now updated file.

• Rand reread: The randread phase above is executed again on the now up-

dated file

Figure 6.11 shows the energy consumption of the described test phases for the

different file systems. As the target file is created on a new file system the test file
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Figure 6.11: Energy Consumption for large files which are randomly updated by 8
KB I/O operations.

was able to be created in an optimized manner by each file system. Therefore, all

file systems show the same energy measurements during the first sequential and

random read phases. However, fat32 consumed nearly three Joules more than the

best file systems in the read phase, due to the fact that the fat32 file system must

perform a lookup in its file allocation table every time when a new block of the file

is going to be loaded into memory. This requires two additional disk seeks when

the corresponding FAT block was not already loaded into the cache. Although

the Linux kernel was modified to limit disk block caching it does not hinder file

systems to explicitly hold disk blocks in memory. This is the fact for fat32 which

caches a certain amount of FAT blocks. Therefore, the additional seeks are only

required when a FAT lookup affects a block which is not loaded into the cache

at that time. Therefore, the energy wastage is limited in the read phase and not

as apparent in the random phase where uncached FAT lookups occur only with a

certain probability. In the write phase scherlfs is able to write with lowest energy

requirements because the updated file data must only be appended to the log. Fat32

is unable to perform with comparable results because the data has to be written to

the updated locations which are randomly scattered within the file in contrast to
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being aligned in a sequential manner. This situation proves to be even worse in

the case of the ext2 file system which organizes its data in different block groups.

Therefore, its update-in-place method spends even more time seeking as it was the

case in fat32. The two journaled file systems have to invest a significant amount of

energy to perform their updates because of their integrated recovering techniques.

Although scherlfs shows to be highly energy efficient for the initial read and write

phases of this test its data layout becomes inefficient when random updates are

performed. This can be seen in the reread and randreread phases. The energy

consumption significantly increases after the performed file updates. This is due to

the fact that the file data gets fragmented due to the append only behavior during the

updates. File data is not aligned sequentially but is split within the log significantly.

6.4 Testing a Digital Camera Appliance

The next step was to examine whether the new concept is able to save energy in

a real world application at all. Digital cameras take pictures and write them to

disk immediately. Thus, this workload is characterized by mostly writing out mid

sized files. By this test it was possible to compare the energy consumption of file

systems when writing out new files. As digital cameras are embedded devices their

behavior has to be simulated at the target workstation computer for this test. This

is done by a perl program. It reads in 156 photo files, which are together 145.8 MB

large, from a three Mega Pixel Canon Powershot S30 digital camera. The average

file size was 957 KB. Then all files are written out to disk subsequently.

Figure 6.12 shows the results of the performed energy measurements for the

 0

 10

 20

 30

 40

 50

 60

E
ne

rg
y 

[J
]

Digital Camera Application

scherlfs
reiserfs

fat32
ext2
ext3

Figure 6.12: Energy Consumption for a digital camera application
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different file systems. They attest scherlfs an optimized energy use. In comparison

to the energy consumed by reiserfs relative savings of 38.25 % are possible by

the new file system design. Scherlfs is able to write out the files with minimal

overheads for updating meta data structures. Furthermore, nearly no disk seeks

are required to create the files. As the created files are quite large the seeks which

are required to update the directories are not visible in the measurements. Ext2 and

ext3 show the worst energy consumption. This is caused by seeks which result from

many meta data updates. For example, free block bitmaps, free inode bitmaps and

the inode structures themselves have to be read in and updated quite often within

the test. In conclusion, the test shows that significant energy savings can be reached

when the overheads of traditional disk managers are avoided.

6.5 Testing an Mp3 Player

The workload of a mp3player appliance is ideally suited for examining the power

consumption when reading large files. In this test 35 mp3-files are played. Overall

138.4 MB of data is examined by the player. The average file size was 3.95 MB.

Figure 6.13 shows the results of the energy measurements. It can be seen that

the different file systems perform equally well in reading the large mp3-files. The

slightly worse file system performance of the ext2 and ext3 files can be explained

by the file data organization into block groups. Therefore, the file data is not orga-

nized completely sequentially. As all mp3-files are played in their creation order

this arrangement penalizes the two file system. However, the test shows that not

much energy savings are possible in the case of very large files.
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6.6 Effects of Fragmentation on Energy Consumption

All file systems rely on the allocation of contiguous disk blocks to achieve high

levels of performance. By the design described throughout this thesis the fragmen-

tation problem for scherlfs is reduce-able by data optimization and defragmenta-

tion techniques which can be applied in powered mode. As mentioned before the

performance of the other file systems is susceptible to fragmentation, nevertheless.

Now the effects of free space fragmentation are examined for different levels of

fragmentation. Here the digital camera appliance as an example for a write domi-

nated workload and the mp3-player application for a read dominated workload are

chosen for comparison. Therefore, a method has to be found to create the same

amount of fragmentation at each file system to be able to compare the resulting

energy dissipations. All measurements are performed within a newly created file

system and one that is affected from 20 %, 40 %, 60 % and 80 % fragmentation.

To simulate the fragmentation for each file system an image was created for each

fragmentation level. Then this image was copied to the partition in the test prepa-

ration phase. For the creation of the images a perl program was written. In the

first step the program wrote 8 KB files to the file system until no space was left

on it any more. Then files were pseudo randomly chosen for deletion until the file

system capacity utilization would reach a specified percentage.

Figure 6.14 shows the effects of fragmentation on the digital camera applica-

tion which is presented in Section 6.4. The measurements show that the different

file systems lose energy efficiency at higher fragmentation levels when writing to

disk new files. All tested file systems have to invest 15 to 23.9 % more energy

to fulfill the same job for a fragmentation level of 20 %. In the 40 % fragmented

scenario the energy inefficiency increases up to 50 %. At an 80 % disk utiliza-

tion the energy use increases more than 200 % relative to each file systems ideal

operating conditions. The new proposed file system design already shows an enor-

mous increase in energy efficiency in the no fragmented case. If the device usage

allows to execute its cleaning strategies in powered mode, its energy requirements

will not increase. Therefore, significant energy savings become possible. Figure

6.15 shows the energy measurements of the mp3-player application of section 6.5

under different levels of fragmentation. In contrast to the enormous savings, which

are achievable when writing new files to disk, fragmentation shows to be of minor

importance to read performance. Only small benefits around 5 % are attainable

at lower fragmentation levels. When disk reads are often performed for the same
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files the energy savings will sum up to a remarkable amount, nevertheless. At a

very high disk utilization file system performance degrades enormously. Then the

reduction of fragmentation can increase energy efficiency significantly.



Chapter 7

Future Work

7.1 Directory Cache

The energy efficiency of the new file system design is very sensitive to directory

lookup and directory update operations in most situations. It is possible to reserve

some memory for a special directory cache. This behavior is only simulated up

to now. A clean and careful implementation would be an important objective of

future work.

7.2 Improvement of Random Update Performance

The measurements described in Section 6.3 attest scherlfs bad energy efficiency

for random file updates. Therefore, ways to improve the situation have to be found

to extend the use of application of the file system design. The file system can be

altered to observe the file update characteristic and change from the append only

semantic of the log-approach to an update-in-place semantic when file changes are

applied randomly to an existing file.

7.3 Overhead of Cleaning Strategies

In section 4.2.2 different strategies for free space generation are discussed. Up to

now none of these strategies is implemented. In the future the overheads of each

strategy can be examined for the different modes of operation.
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7.4 Effects of Data Reorganization Techniques

It is possible to detect fragmented files by the new inode design easily because

the amount of extents in relation to the file size would be a good indicator for

fragmentation. Therefore these files should be preferably chosen to be reorganized.

This means to rewrite them to the end of the log in a single extend. Furthermore,

past accesses to files can be used to predict the access order of files. When these

accesses are logged data reorganization can be extended to match file layout to

these access characteristics.

7.5 Undo operations

As the log semantic does not overwrite file contents when they are updated it would

be possible to allow users to undo last file operations up to a certain limit. Espe-

cially for mobile computers, which are sometimes used without much care, undo

possibilities would be very helpful to the users.





Chapter 8

Conclusions

This work examines the energy efficiency of different file system layouts. This

is done in an environment where the use of disk block caching techniques is not

possible because the available system memory is used by the applications and the

operating system. This is often the case in mobile devices and mobile computers.

Concerning the file system layout the areas where energy savings become pos-

sible are explored. It turned out that the avoidance of disk seeks and rotational

latencies is the most promising candidate for improving energy efficiency. Guide-

lines for a low power file system design are developed. The most important points

that are suggested for such a design are the reduction of meta data updates, a se-

quential arrangement of meta data and data blocks and the enabling of a sequential

reading and writing behavior. For that reason file system reorganization techniques

and an adaptive energy use, depending on the kind of the power supply, must be

incorporated into the file system. Finally the possibility for fast crash recovery

must also be given while mobile systems often fail because of power reasons and

shutdown actions by users. The proposed file system design is implemented in

the Linux kernel 2.4.21. A log-structured approach was chosen to fulfill the pro-

posed goals. The problem of free space generation and cleaning which becomes

necessary by the log-structured way are thoroughly discussed.

Energy measurements both for synthetic tests and real world applications are

performed for various Linux file systems and the newly implemented one. The

measurements attest the new file system design enormous energy saving poten-

tial when new files are written to disk. The energy efficiency of workloads which

are characterized by mostly sequential file operations can also be improved by the

new file system design. The measurements demonstrate that a specially designed

directory cache is able to improve energy efficiency of the log-structured design
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even more. For some sequential workloads energy savings only become possible

with enabled directory caching. In the case of a workload that randomly updates

small file portions the new file system design shows to be inefficient in comparison

to the other update-in-place file systems. In conclusion the effects of fragmenta-

tion on the energy efficiency are analyzed. With the described data reorganization

techniques that can be performed when the device is attached to an external power

supply the new file system design is able to improve energy efficiency even more.
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Design und Implementierung eines

energiesparenden Dateisystems

In den letzten Jahren kamen eingebettete Systeme und mobile Geräte immer mehr

in Mode. Mobile Computer sind in ḧochstem Maße von ihren Batterien abhängig,

da sie, wie ihr Name schon sagt, in einem mobilen Umfeld eingesetzt werden. Sie

müssen deshalb̈uber einen l̈angeren Zeitraum ohne externe Stromzufuhr betrieben

werden. Deshalb ist die Reduzierung des Energieverbrauchs solcher Geräte zu ei-

ner der wichtigsten Aufgaben des Designs mobiler Systeme geworden. Zugleich

erweiterte die Miniaturisierung von Massenspeichermedien und deren Integration

in mobile Ger̈ate die M̈oglichkeiten mobiler Anwendungen und somit deren Nütz-

lichkeit für den Endverbraucher. Somit zählt die Festplatte als Massenspeicherme-

dium in heutigen mobilen Rechnern mit zu einem der größten Stromverbraucher

und er̈offnet deshalb ein großes Potential für eine Steigerung der Energieeffizienz

mobiler Ger̈ate.

Fast alle Komponenten mobiler Geräte k̈onnen in so genannten Niedrigener-

giemodi betrieben werden, wenn sie gerade nicht benutzt werden. Auch mobile

Festplatten stellen verschiedene Betriebsmodi zur Verfügung. Allerdings kostet der

Übergang zwischen den verschiedenen Modi sowohl Zeit als auch Energie. Des-

halb muss die Festplatte eine genügend lange Zeit in den Energiesparmodi betrie-

ben werden, damiẗuberhaupt eine Energieeinsparung und nicht etwa sogar eine

Energieverschwendung erreicht wird. Bisherige Verfahren zur Energieeinsparung

versuchen die verschiedenen Betriebsmodi optimal auszunutzen.

In dieser Arbeit wird ein anderer dazu komplementärer Ansatz untersucht.

Bei Lese- und Schreibvorgängen muss die Festplatte ihren Schreib/Lese-Kopf neu

positionieren und abwarten, bis die entsprechende Stelle der Magnetplatte dar-

unter rotiert. Diese beiden Vorgänge haben einen nicht unwesentlichen Anteil

am Energieverbrauch der Festplatte. Normalerweise können viele dieser Latenzen

durch das Cachen einmal gelesener Diskblöcke absorbiert werden. Allerdings muss
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für eine effektive Anwendung der Cachingtechnik ein nicht unwesentlich großer

Hauptspeicherbereich zur Verfügung stehen. Gerade mobile Systeme sind so kon-

zipiert, dass der zur Verfügung stehende Hauptspeicher fast vollständig von den

laufenden Anwendungen und dem Betriebssystemkern benutzt wird. Eine Erwei-

terung des Hauptspeichers kann durch die hohen Kosten und durch den Energie-

und Platzverbrauch der Speichermodule in den meisten Fällen nicht vorgenommen

werden. Durch ein optimales Dateisystemlayout können aber viele dieser Latenzen

vermieden und dadurch Energieeinsparungen erreicht werden.

Mehrere Aspekte, die ein energiesparendes Dateisystemdesign enthalten sollte,

sind untersucht worden. Es stellte sich heraus, dass ein log-strukturierter Ansatz am

besten geeignet erscheint um die gemachten Vorschläge zu verwirklichen. Proble-

me, die eine solche Herangehensweise mit sich bringt, sind detailliert besprochen

worden. Darauf aufbauend wurde ein neues Dateisystem implementiert und vor-

gestellt. Um Messungen unter Linux ohne beträchtliche Einfl̈usse der Diskcaches

durchzuf̈uhren, wurde der Kern sorgfältig modifiziert, aber immer im Hinblick dar-

auf, noch eine faire Vergleichsgrundlage zwischen den einzelnen Dateisystemen

zu geẅahrleisten. Durchgeführte Messungen attestieren dem neu implementierten

Dateisystem in einigen Bereichen signifikante Energieeinsparungen. Vor allem für

das Schreiben neuer Dateien kann mit dem vorgeschlagenen Ansatz eine enor-

me Energieeinsparung erreicht werden. Auch sequentielle Dateisystemoperationen

eröffnen Einsparpotential insbesondere für kleine Dateigr̈oßen. Allerdings gibt es

auch F̈alle, wo eine Energieeinsparung nicht erreicht wird, ja sogar eine Energie-

verschwendung im Vergleich zu den existierenden update-in-place Dateisystemen

auftritt. Das ist insbesondere bei wahlfreiem Zugriff auf große Dateien der Fall.

Auch stellte sich heraus, dass der vorgestellte Ansatz höchst sensitiv auf Verzeich-

niszugriffe und -modifikationen reagiert. Erst durch das Puffern dieser Strukturen

können die erhofften Energieeinsparungen dieses Ansatzes vollends ausgeschöpft

werden.
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