Reorganisation in
energiebewussten Dateisystemen

Studienarbeit im Fach Informatik

vorgelegt von

Philipp Janda
geboren am 05. April 1978

Institut fiir Informatik,
Lehrstuhl fiir Verteilte Systeme und Betriebssysteme,
Friedrich-Alexander-Universitit Erlangen-Niirnberg

Betreuer: Dipl.-Inf. Andreas Weiflel
Dr. Ing. Frank Bellosa
Prof. Dr. Wolfgang Schroder-Preikschat

Beginn der Arbeit: 05. Juli 2004
Abgabedatum: 05. April 1978

Erklirung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung
anderer als der angegebenen Quellen angefertigt habe, und dass die Ar-
beit in gleicher oder dhnlicher Form noch keiner anderen Priifungsbehoérde
vorgelegen hat und von dieser als Teil einer Priifungsleistung angenommen
wurde.

Alle Ausfithrungen, die wortlich oder sinngeméfl iibernommen wurden, sind
als solche gekennzeichnet.

Erlangen, 05. April 2005

iii

Energy-Aware Reorganization in
Log-Structured File Systems

Studienarbeit

by
Philipp Janda
born April 5th, 1978, in Heilbronn

Department of Computer Science,
Distributed Systems and Operating Systems,
University of Erlangen-Niirnberg

Advisors: Dipl.-Inf. Andreas Weiflel
Dr. Ing. Frank Bellosa
Prof. Dr. Wolfgang Schrider-Preikschat

Begin: July 5th, 2004
Submission: April 5th, 2005

Abstract

As mobile computing devices become more and more popular, the corre-
sponding hardware and applications become more complex, comfortable,
and thus energy hungry. Since the main advantage of mobile devices is their
ability to work without a stationary power supply an important challenge
has been to reduce power consumption, thereby prolonging the uptime of
the devices in battery mode.

One way to reduce the energy needs of a mobile device is the adoption of a
special data layout on its storage devices, which accounts for the mechanical
mode of operation of a hard disk. Such a special data layout is, for example,
a log-structured file system. The major disadvantage of a log-structured file
system is that it wastes storage space during operation in order to reduce
energy consumption.

To reclaim the wasted space, a particular free space management is nec-
essary. While there are multiple possibilities with different advantages and
disadvantages, all methods involve some overhead and an increased energy
consumption. The question is whether the addition of such a free space
manager will negate the energy efficiency of a log-structured file system and
thus make log-structured file systems unsuitable for saving energy.

This work analyzes the properties of different free space management
techniques and gives recommendations for their application in log-structured
file systems. Implementations of variants of a certain class of free space man-
agement are described and tested for performance and energy consumption.
Measurements of the cleaning processes were performed for different frag-
mentations and in comparison to other file systems. Although the two tested
prototypes are similar, they show vast performance differences under certain
circumstances.

vii

Contents

Introduction

Motivation
2.1 Hard Drive Operation
2.2 FileSystems.o

Related Work

3.1 The Design and Implementation of a Log-Structured File Sys-
tem ... L

3.2 An Implementation of a Log-Structured File System for UNIX

3.3 Improving the Performance of Log-Structured File Systems
with Adaptive Methods

3.4 Considering the Energy Consumption of Mobile Storage Devices

Previous Work
4.1 ScherlFS File System Layout
4.2 Energy Characteristics of ScherlF'S

Free Space Management Strategies and Algorithms

5.1 Copying/Compacting Cleaners
5.2 Threading Approach
5.3 Combined Approach

Implementation

6.1 The Copyclean File System Cleaner
6.1.1 General Preparations.
6.1.2 Source and Destination Regions
6.1.3 Compacting Cleaning
6.1.4 Defragmenting Cleaning

6.2 Future Work
6.2.1 File System Support for Block-Inode Mapping R
6.2.2 Hole-Plugging Mode
6.2.3 Threaded Approach in the ScherlFS File System . . .
6.2.4 Adaptive Cleaning

8

9

10
10
14

15
15
18
19

20
20
21
22
24
24
25
25
26
27
28

Contents

7 Energy Measurements
7.1 Preparations
7.2 Test Cases o o v it
73 Test Results

8 Conclusion

Bibliography

X

29
29
30
31

37

39

Contents

Chapter 1

Introduction

During the last few years, mobile computer devices and embedded systems
have become more and more widespread. The main advantage of mobile
computing for users is the greater flexibility of not being dependent on a
fixed power supply. Due to the technological progress more useful and com-
plex applications become possible, while the demand for such applications
rises. Many of those applications require some sort of data storage. As the
number of features of mobile devices such as cell phones, digital cameras
or personal information managers with mobile office applications increases,
so does the energy usage. Even though there have been various improve-
ments regarding energy consumption and thus an increase in battery mode
runtime, especially one area has so far been disregarded in connection with
efficient energy usage: storage devices. One possible way to improve en-
ergy efficiency of storage devices without researching new materials for data
storage or building new storage hardware is to change the layout and access
patterns of data on common hard drive storage devices such as the Hitachi
Microdrive[1].

In his thesis[2], Holger Scherl has examined and implemented an alter-
native means of organizing data on hard drives and thus minimizing energy
consumption due to disk seeks and rotational latencies by using so-called
log-structured file systems. While the prototype and the energy measure-
ment results are very encouraging, the implementation still lacks a vital
component for the ScherlF'S which permits ongoing use of the file system.
A log-structured file system saves energy at the cost of temporarily wasting
storage space, thus an effective free space management is needed to reclaim
the wasted free space areas.

This paper examines various ways of free space management in log-
structured file systems as well as the effects of these techniques on the file
system’s performance and energy characteristics.

The following chapter (chapter 2) gives an overview of the current sit-
uation of storage media, file systems and their energy saving potential for
embedded devices and explains the motivation for this thesis. Chapter 3

2 Chapter 1. Introduction

lists and summarizes papers which are related to the subject of this thesis
whereas chapter 4 reviews the current implementation of a log-structured
file system for the Linux operating system called ScherlFS [2], which is the
basis for the implementations described in this thesis. In chapter 5 the ba-
sic strategies for free space management are analyzed and compared, while
chapter 6 discusses an implementation of a certain kind of free space man-
ager, a copying cleaner, for the ScherlF'S file system as well as further details
about other free space management techniques in relation to the ScherlF'S
file system. Chapter 7 outlines the test cases and measurements performed
for the implementation of the copying cleaner and the ScherlF'S file system
in general and examines the results. Finally, in chapter 8 the test results
and the information given in the previous chapters are summarized and
interpreted.

Chapter 2

Motivation

As already indicated in the last chapter this thesis, and the previous work
by Holger Scherl|2], which is described in detail in chapter 4 (page 10),
try to reduce the energy consumption of storing and retrieving data on
disk not by using some form of fancy new hardware, but by changing the
organization and layout of the data on the device instead. This approach
takes into account the way hard disk storage devices are constructed and
work in order to reduce the number of hardware operations necessary to
perform hard disk reads or writes.

2.1 Hard Drive Operation

While all modern hard drives are accessed via logical block addressing (LBA),
this addressing method conceals the real design of hard disks. The older ad-
dressing method CHS (cylinder, head, sector) mirrors the actual hardware

more closely, but was abandoned due to limits of the maximum size of hard
disks.

Hard Drive Structure and Data Accesses A hard drive consists of
one or more rotating magnetic disks and a read/write head which hovers
above the rotating disks.

Figure 2.1: Hard drive geometry

4 Chapter 2. Motivation

The data on hard disk drives is organized in circles on the rotating disks.
Such a circle is called a "track” and one such track can be accessed by the
read/write head without moving the head to another position. Hard drives
with more than one rotating disk usually have their disks stacked on top
of each other and a read/write head for each disk. Often these read/write
heads are not independent and can only move together. The set of the tracks
on the rotating disks which can be accessed by all read /write heads without
repositioning is called a ”cylinder”. Thus the combination of a read/write
head and a given cylinder can identify a track in an unambiguous way. The
tracks are further divided into sectors, which are the smallest data storage
unit a hard drive can read or write (see figure 2.1). These sectors usually
hold 512 bytes and are often called blocks (e.g. in logical block addressing).
Therefore hard drives are commonly referred to as block devices.

If a block is going to be accessed on the hard disks the read/write heads
usually have to be moved to the right cylinder—a process called seeking.
If the heads are already in the right position this is a most favorable case
since moving the heads is relatively time and energy consuming. Before the
read/write heads can start accessing a disk block, typically one has to wait
until the disk rotates into the right position. This delay is called rotational
delay and is another important factor in runtime and energy consumption.
Actual numbers on the influence of seeks and rotational delay on the per-
formance and energy consumption of different hard drives can be found in
[3].

As a consequence, data that is aligned on a single track can be accessed
without intermediate seek operations and thus with reduced delay and en-
ergy usage. Sectors that are additionally located sequentially on the track
minimize the rotational latency and thus further reduce access time and
power consumption.

Energy Saving Modes of Hard Drives To support power management
in mobile devices many modern hard drives feature low power modes, which
can save energy while the disk is idle, but can result in severe performance
degradation. A transition into or out of power mode usually takes some
time and might cost additional energy as well.

A typical hard drive operates in one of four modes[4]: during the active
mode the hard disk is ready to access data, but uses the most energy. If
the hard disk is unused for a short period it changes to idle mode. In this
mode it uses less energy but needs a short delay to switch back to active
mode when a data request arrives. The standby mode is similar to the idle
mode but requires still less energy but a considerable longer reactivation
time. Therefore it is used for longer idle periods. Finally the sleep mode is
used for long periods of system inactivity and uses little energy but typically
requires several seconds before the drive can change into active mode again.

2.2. File Systems 5

There are various algorithms responsible for choosing power saving modes
(see [5] for an analysis), but in general it is most beneficial if the disk ac-
cesses are grouped together, thus maximizing the idle time periods and the
periods the hard drive spends in low power modes.

2.2 File Systems

As far as hard drives are concerned, only raw data chunks of sector-size
are read from or written to disk, but the user of computer systems usually
further organizes his data into files and directories. Directories serve as con-
tainers for the files while files group related data and carry meta information
with them.

A file system is part of the operating system and allows the user to cre-
ate, remove, read, or modify directories, files and their meta information.
It maps these constructs to raw data chunks which can be handled by the
hard drive. A file system is also responsible for locating data on the hard
drive and interpreting the data chunks as files or directories. This data or-
ganization causes common access patterns to the data, for example, usually
the directory containing a file is read before the meta information and the
actual data of the file itself. Furthermore, often the data blocks of a file are
accessed together or in short time intervals.

Obviously, a file system that organizes its data in such a way that the
data access patterns do not interfere with the raw data layout on the hard
disk can offer better performance and energy consumption than other file
systems.

A log-structured file system is an attempt to reduce hard disk seeks and
therefore increase performance and energy efficiency.

Log-Structured File Systems Recently journaling file systems have be-
come popular. These file systems maintain a special file called a journal or
log to which all important updates are appended. In case of a crash the file
system can be brought into a consistent state with the help of the log.

A log-structured file system uses the available storage space to record any
updates similar to the log of journaling file systems. All update operations
and, in case of the log-structured file system, all data is appended to the
end of the log, causing it to grow until it fills all available space. Updates to
existing data do not happen in place, but instead a new version of the data
is appended. This has several advantages regarding the above mentioned
energy saving options.

Since all data is written at the same position, a minimal number of seek
operations is necessary for storing data. Naturally the stored data will most
likely end up on the same hard disk cylinder. Due to this sequential data
layout, future read operations will benefit as well. Data that is updated

6 Chapter 2. Motivation

successively and therefore might be related, will be stored in close proximity
which in turn can improve later accesses. The reduced number of seek
operations for read or write accesses will in general shorten the necessary
hard drive activity time and thus enable longer idle phases utilizing low
power modes.

The major drawback is that obsolete data in the log is not removed as it
would require additional disk seeks and thus an increased energy consump-
tion during updates. Therefore, it is possible that the log contains only a
very small amount of live data while still filling up the whole disk space.

Free Space Management As a consequence a log-structured file system

cannot be used over a long time period unless one has a way to reclaim the

wasted space and thus shrinking the log. Depending on the type of free

space management it could even be possible to restore the sequential data

layout that might have been lost due to many small updates of file data.
This paper will examine exactly these possibilities.

Chapter 3

Related Work

Although log-structured file systems have so far been neglected in relation
to energy efficiency, they have been noted for raw writing performance for
many years. Since they also evenly distribute hard disk stress they are also
important for some special sensitive storage media. As a consequence, log-
structured file systems have been studied closely in the following papers for
example. The last given paper is an exception as it deals with the energy
consumption of mobile storage devices and file systems.

3.1 The Design and Implementation of a Log-Structured
File System

In this paper[6] from 1992, Mendel Rosenblum and John K. Ousterhout de-
scribe their implementation of a log-structured file system called Sprite LE'S
and some simulations regarding the different policies of their free space man-
agement technique. For their prototype they chose to split the hard disk into
fixed size segments and do a local defragmentation according to an analysis
of the block usage in the segments. The file system skips full segments during
writing. As a result the Sprite LFS achieves approximatley 70% hard disk
throughput while conventional file systems only work at 5-10% efficiency.
The remaining 30% are required for the free space management which was
optimized using simulations of different management policies like the time
when the cleaner should run, or how much space should be reclaimed on
each cleaner run.

A crash recovery based on check points which denote a consistent file
system state was added later on. As no data is overwritten in log-structured
file systems, and due to the sequential file layout the crash recovery for the
Sprite LFS is faster than in conventional non-journalling file systems.

As a result the paper presents log-structured file systems in general as
being more efficient than standard unix file systems at this time.

7

8 Chapter 3. Related Work

3.2 An Implementation of a Log-Structured File
System for UNIX

Three years later Margo Seltzer et al. redesigned the Sprite LFS to re-
move some deficiencies in the older prototype, e.g. the excessive memory
usage and some shortcomings in the file system recovery and cleaning. Ad-
ditionally, a better integration with the BSD tool set was desired. The new
prototype, along with performance numbers on the cleaning overhead and
comparisons to other file systems, are described in this paper[7].

The main changes to the old prototype are that the cleaner has been
moved into userspace, and a modified segment layout on disk.

The bottom line of this project is that while the file system itself can
utilize a large fraction of the available bandwidth, the cleaner can have a
large performance impact. The new and old versions of the Sprite LF'S work
better with large amounts of main memory as buffers and asynchronous write
operations which increase the contiguous chunks on the storage device.

3.3 Improving the Performance of Log-Structured
File Systems with Adaptive Methods

As log-structured file systems offer excellent performance for most common
workloads but suffer serious efficiency degradation in the event of heavy
random updates and little idle time for cleaning, Jeanna Neefe Matthews et
al. have tried to reduce these effects for the Sprite LF'S and log-structured
file systems in general. Their results are described in this paper[8].

The main idea is to make the file system more intelligent and aware
of the current workload and the underlying hardware capabilities and to
let it choose the best parameters for the current situation. Four concrete
suggestions to this self-tuning approach are explained and measured using
a file system simulator.

The first suggestion is specific to the Sprite LFS. It concerns itself with
the proper choice of the segment size as too small segments may limit the
transfer efficiency while too large segments can cause more cleaning over-
head. The second suggestion deals with an alternative cleaning strategy
called ”hole-plugging” (see page 17 for further details) which is normally
more inefficient than the normal Sprite LFS cleaner, but which is better
suited for less idle times. Selecting the most appropriate one at runtime
could increase the file system efficiency.

Normally the standard Sprite LFS cleaner reads one or more segments
and writes the contained live data to an empty segment. The third sugges-
tion extends this technique to segments that are already cached in mem-
ory. Naturally this also increases performance for large amounts of available
memory.

3.4. Considering the Energy Consumption of Mobile Storage Devices 9

Finally, a dynamic reorganization of the data layout to match read ac-
cess patterns (as opposed to the write access patterns all log-structured file
systems are well suited for) will improve the access for certain read patterns.

The given suggestions are especially effective for low-idle-time workloads
where log-structured file systems normally perform badly.

3.4 Considering the Energy Consumption of Mobile
Storage Devices

In this paper Fengzhou Zheng et al. analyze different file system design
decisions in relation to the energy consumption during typical workloads.
One of these files systems is a log-structured file system, while the other
tested file systems are modified variants of a standard update-in-place file
system. The modified versions provide different features that are normally
attributed to log-structured file systems.

The authors use a logical disk system which enables them to test the
different file system variants on different hardware. The tested hardware
consists of a flash card, a microdrive, and a network card for remote stor-
age. While the flash card has a very powerful energy management and the
power management of the network card is independent of the workload, the
microdrive mostly benefits from long periods of idle time, where the low
power modes can save energy. Along with the log-structured file system,
the variants with asynchronous writes and increased burstiness favor energy
savings.

That includes the cleaning process, which should only clean free space
on demand, or the idle periods will be disrupted. On the downside this will
penalize the response time on heavily used file systems.

Chapter 4

Previous Work

This thesis is based on the work of Holger Scherl who implemented a log-
structured file system called ScherlF'S [2] for the Linux kernel using its virtual
file system (vfs).

4.1 ScherlFS File System Layout

The virtual file system of the Linux kernel provides a framework and a com-
mon interface to storage devices for building different files systems. It uses
two important data structures for handling devices and files: the superblock
and the inode. The superblock contains all information about the file system
itself and the device it is on, while an inode contains information about a
file (e.g. access rights, modification time, the location of data blocks, etc.).
Some file systems also use variants of these data structures to store this
information on the device (most notably the ext2 file system) but this is not
necessary as long as the required information can be gathered from the raw
data on the device. The vfs provides hooks for reading superblock or inode
information.

ScherlF'S uses a superblock structure which is located at a fixed address
(1024 bytes offset) on the device. All binary meta data is stored in little en-
dian byte order by the ScherlF'S file system driver. Figure 4.1 shows snippets
of C code to illustrate the data that is stored in the superblock structure
on disk. The most important elements of this structure are s_blocks_count,
s_log_block_size, s.magic, s_log_head and s_ifile_block. The s_blocks_count field
holds the total number of blocks on the device, while s_log_block_size defines
how many bytes each block has (currently the value 1024 is hard coded in
the file system driver). s.magic, the magic number of the file system, is
used to identify a file system on a device and to ensure the right file system
type during the mount operation (the ScherlF'S magic number is 0xCA77).
The field s_log_head denotes the position of the block which will be used in
the next write operation. Every block with a smaller block number than

10

4.1. ScherlFS File System Layout 11

/* the scherlfs superblock on disk (located at byte offset 1024) */
struct superblock {
uint32_t s_inodes_count;
uint32_t s_blocks_count; /* number of blocks on device */
uint32_t s_free_blocks_count;
uint32_t s_free_inodes_count;
uint32_t s_log_block_size; /* number of bytes per block */

uint16_t s_magic; /* scherlfs magic number: 0xrCA77 */
uint16_t s_mount_state; /* some flags */
uint32_t s_log_head,; /* next unused block at end of log */
uint32_t s_log_tail;
uint32_t s_ifile_block; /* block number of .ifile inode */

I8

Figure 4.1: The ScherlF'S superblock structure on disk

s_log-head is used (or at least reserved) by the log, while all other blocks are
unused. The field s_ifile_block is the disk block number of the inode of a spe-
cial file called .ifile. This file is used by the file system driver to look up
disk blocks for inode numbers, to everyone else it is of little use. The data in
this file is treated as a large array of 32 bit block numbers (in little endian)
and indexed by the inode number. The first four inode numbers (0-3) are
reserved. Inode number two is the .ifile itself and the block number at
this position is already obsolete—the correct block number is stored in the
superblock structure. Inode number three is the inode of the root directory.

A directory is like an ordinary file but special directory entries are stored
in its data blocks. Such an entry consists of the file name of the entry and
the inode number for the file, along with some management information (the
directory management is similar to the ext2 file system). The .ifile can
be used to look up the inode block number for the inode number, and the
inode itself can identify the data blocks for the file.

ScherlF'S uses a structure shown in figure 4.2 to store important infor-
mation about a file on the device. Most of the fields correspond to the fields
of the in-memory inode structure used by the vfs except the i_n_logchains
field. However, depending on the file type of the inode, which is encoded in
the i_mode field of the inode, there is some more information following on
disk right after this structure. For character or block device files the inode
stores an additional 32 bit device number, for symbolic links the link target
is stored as a character array, and for regular files and directories the inode
holds an array of so-called extents. The length of this array is stored in the
i_n_logchains field of the inode. Depending on the number of extents the
complete inode data can span multiple (adjacent) disk blocks for regular
files and directories.

12 Chapter 4. Previous Work

/* a scherlfs inode structure on disk */
struct inode {

uint16_t i_mode; /* file type and permission bits */

/* wint16_t _paddingl; */

uint32_t i_uid; /* user id of file owner */

uint32_t i_size; /* file size in bytes */

uint32_t i_ctime; /* change time in seconds since 1.1.1970 */
uint32_t i_mtime; /* modification time */

uint32_t i_atime; /* last access time */

uint32_t i_gid; /% group id of owning group */

uint16_t i_links_count; /* number of hard links to this file */
/* wint16_t _padding2; */

uint32_t i_blocks; /* number of 512 byte blocks allocated */
uint32_t i_flags; /* some flags (currently unused) */
uint32_t i_generation;

uint32_t i_n_logchains; /* number of extents following */

Figure 4.2: A ScherlFS inode structure on disk

/* a scherlfs data extent on disk (aka. logchain) */

struct extent {

uint32_t le_block; /* first block of the data chunk */

uint16_t le_length; /* number of blocks belonging to the chunk */
/* wintl6_t _padding; */

I

Figure 4.3: A ScherlFS extent for file/directory inodes on disk

An extent is used to identify a contiguous chunk of disk blocks containing
file data. It consists of the first block number of the chunk and the length
of the chunk in file system blocks. The logical block number of the file (the
block number relative to the beginning of the file data), is stored implicitly
and can be obtained by counting the blocks belonging to the previous extents
in the inode. A C code definition of a ScherlFS extent can be found in
figure 4.3.

As an example, the following steps need to be performed to read the file
/tmp/xxx.txt:

Since the superblock structure is in memory when the file system is
mounted, the block number of the .ifile inode can be looked up. The
inode structure given in figure 4.2 has to be read and—since the file must
be a regular file—the extents after that structure. As the .ifile inode is
needed for almost every file access, the ScherlFS file system driver caches

4.1. ScherlFS File System Layout 13

it in the in-memory superblock structure for faster access. Since the next
step is to read the root directory, the extents of the .ifile inode have to be
scanned for the first file block because the root inode block number (inode
number 3) is stored at the fourth array position in the .ifile, which is in
the first file block. After that, the root directory inode and its extents can
be read. Now all directory entries in the data blocks have to be scanned
until one finds an entry with the name tmp. This entry, if it exists, also holds
the inode number of the tmp directory. Again the .ifile inode and data
blocks are used to look up the starting block number of the inode. After
one has read the inode, ensured that the inode belongs to a directory and
read the extents and corresponding file data blocks, a directory entry with
the name xxx.txt needs to be found in the data blocks. If it exists, one
can look up the inode block for the corresponding inode number, read the
inode, read the extents and data blocks if the inode belongs to a regular file,
and it is done. Most of this logic is handled by the virtual file system of
the Linux kernel, along with some further management operations such as
checking the file permissions. The ScherlFS file system driver only handles
the parts that are specific to ScherlF'S.

Updating a file is similar up to the point where one got the inode of the
given file. On the first read or write access to a block of a file, the block is
mapped to memory and put into a cache. If the block has changed since it
was first mapped, it has to be saved back to disk, eventually. This is done
by the virtual file system framework and the bdflush daemon (Linux kernel
2.4), so the ScherlFS file system driver only has to assign a new destination
block number to the given block and mark the block as "dirty”. The new
block number will be the s_log_head value from the superblock, which will
then be incremented. Assigning a new block number will also invalidate
the extent the block belonged to, so this old extent needs to be removed,
shortened or split. Generally a new extent for the block is needed unless the
new block address is adjacent to the block’s previous extent’s data chunk, in
which case the two can be merged. Since the extents and some other inode
fields have changed, the inode structure has to be written to disk as well.
This is also done using the vfs and a new block address. Then the .ifile
data has to be updated to include the new inode address, in which case the
corresponding .ifile block needs to be written to disk. This changes the
.ifile inode which has to be written to disk, too, and that changes the
address of the .ifile inode on disk. Thus the superblock field s_ifile_block
has to be updated and the superblock saved to disk at its fixed position.
In its current implementation the ScherlF'S file system driver defers writing
.ifile inode and superblock until the file system gets unmounted.

14 Chapter 4. Previous Work

4.2 Energy Characteristics of ScherlFS

In the performance and energy measurements that were part of his thesis[2],
Holger Scherl came to the following conclusions:

For sequential file operations such as creating new files or reading and
writing large contiguous portions of a file, the log-structured approach of
ScherlF'S outperforms the reference file systems (fat32, ReiserF'S, ext2 and
ext3) concerning energy consumption for all tested file sizes (4 kb to 1024 kb).
The reasons for these results are that all file and meta data can be written in
a sequential manner, resulting in less disk seeks. Disk seeks are still necessary
for the directory operations. Thus the above conclusion for small file sizes
only holds if one uses a cache for directory entries, since for small files the
directory lookups and updates affect the energy consumption significantly.

Regarding non-sequential or random access operations such as reading or
updating many small regions scattered randomly all over the file, ScherlF'S
still gains some advantages due to the sequential layout of the file data on
disk. However if there have been some updates to the test file the energy
consumption rises. This is due to the fact that after various file updates the
file data is no longer stored sequentially on disk. Although the performance
is still comparable to the other file systems, the fragmentation causes serious
performance degradation. Thus a means of restoring the sequential data
layout of the file could improve the overall energy efficiency.

Chapter 5

Free Space Management Strategies and
Algorithms

A log-structured file system uses a disk in an append-only manner and stores
all data and almost all meta information at the end of the already used
storage area. In case some data needs to be changed, an updated copy
of the data is appended to the log along with the necessary updates of
meta information, while the old (now obsolete) data remains at its original
position and consumes storage space which could be used for valid data.
This space is lost, since it is part of the log region and thus reserved by
the log and there is no meta data on the file system that references this old
data. If the log eventually consumes the whole disk space, the file system
becomes unusable (or at least read-only), since no create, update or even
remove operations are possible, because each operation requires appending
data or meta data to the log. To keep the file system operational over time,
one has to ensure that the wasted space caused by obsolete data in the log
can get reused. This chapter introduces various strategies for free space
management and discusses their advantages and disadvantages.

5.1 Copying/Compacting Cleaners

The most obvious solution to the free space management problem mentioned
above is to move live data from the log head to the unused space in the log.
This makes it possible to shorten the log and thus make room for new data at
the log head. In comparison to the other free space management strategies,
this technique does not enforce changes to the normal file system operations.
There are multiple possibilities to choose the live data areas which should be
copied and the unused destination areas where the live data should end up.
The first step to move live data to unused space in the log is to identify the
unused chunks. As mentioned before, no meta data references this obsolete
data, so if the file system does not provide a special means of identifying

15

16 Chapter 5. Free Space Management Strategies and Algorithms

L1l BBl @l Bl BBRl EPf ||

log head

LRBBErEBrRl [[[[[IIIIf]]

log head

Figure 5.1: Compacting the log

LRl BBl @l il BBEl LRl |

log head

LiipBBBpEabl [[[[[IIII]]]

log head

Figure 5.2: Defragmenting the log

unused space, one has to scan all live data and record all unused disk areas.
Since the files that are (at least partially) located at the log head also need
to be identified, all live data has to be scanned anyway unless the file system
provides a reverse mapping from disk areas to the files that occupy them.
After all important data and free space areas are identified, one can start
moving data around.

Compacting The easiest way is to just overwrite the unused space with
the live data that is next to the unused region, starting from the log begin-
ning. All unused space will accumulate at the log head which can then be
set to the end of the live data. This process is outlined in figure 5.1.

Defragmenting Since a log-structured file system benefits significantly
from the sequential data layout of its files, an obvious enhancement to the
proposed compacting of live data is to gather all parts of a file and move
complete files only. This could eliminate fragmentation at the cost of even
more copying and an increased complexity of the cleaning algorithm: This
variant could involve moving file parts that are not at the log head and one
has to ensure that the unused areas are large enough to hold the complete
files. This cleaning strategy is demonstrated in figure 5.2.

5.1. Copying/Compacting Cleaners 17

0 i1 0§ §E N EEER

I
log head

50 i & §i N EENR

1
log head
D unused blocks

. used blocks

D used blocks (currently processed)

Figure 5.3: Hole-plugging

A0 i 0 NI 0 NEER

1
log head

I BN NN

1
log head

Figure 5.4: Hole-plugging with data chunk splitting

Hole-Plugging There is a technique for copying cleaning which reduces
the restructuring of the live data in the log and therefore minimizes the
copying overhead: ”hole-plugging”. This algorithm determines the size of
a live data area at the log head and searches for a region of unused space
that is large enough to hold that data chunk. Then the data is moved
and the log head reset (see figure 5.3). If there is not enough contiguous
free space in the log, there are several possibilities to move the live data:
One could split the live data and scatter it through available unused areas
(see figure 5.4), but this would result in an increased fragmentation of said
data and thus a decrease in performance. Another possibility is to use a
local compaction as in the first mentioned variant of the copying cleaner
to accumulate enough free space somewhere in the log for the whole data
region. While this involves more copying it also limits fragmentation and
can even be modified to use a local defragmentation step instead of a simple
compaction.

As this algorithm features the smallest copying overhead and, in its pure
form, only processes one live data area and accordingly only one file at a

18 Chapter 5. Free Space Management Strategies and Algorithms

_HER ER B ERE 0 0N

|
log head

_SER ER B ERE 0 0N

|
log head

Figure 5.5: Threading approach - four new data blocks are appended to a
nearly full log

time, it is the most suitable alternative of the previously mentioned strate-
gies for incremental use and therefore capable of cleaning the file system
while it is in use.

While the copying solution is conceptually the easiest free space manage-
ment strategy, it also involves much copying and thus consumes more energy
than the other techniques. Since it touches many live data regions, it is gen-
erally difficult to provide correct synchronization for incremental use while
the file system is active. Its advantages are that it minimizes defragmen-
tation of the log, and maybe even its files, while imposing no restrictions
on the normal file system operations. There is no additional overhead for
writing to the log since there is always contiguous memory at the head of the
log. The copying solution also has some similarities with copying garbage
collection algorithms (see e.g. [9]).

5.2 Threading Approach

In this approach the log grows normally until it first reaches the end of avail-
able disk space. Then it starts over from the beginning of the log using only
the unused log areas and skipping all live data sections. Therefore, it creates
an interleaved log (see figure 5.5 for an illustration). As a consequence, no
explicit cleaning is necessary, which makes this strategy well-suited for incre-
mental use. The main drawback is that for each write operation a suitable
area of unused space has to be found in the log, and the position and size
of all unused areas in the log need to be known during writing. In contrast,
in the copying approach this information is necessary during cleaning only.

Once the unused log areas are known and the current live data chunk is
too large for the next free space area at the log head, the same considerations
as in the ”"hole-plugging” variant of the copying approach apply: One can
split the live data or do a local compaction or defragmentation of the live

5.3. Combined Approach 19

data around the destination area. A third possibility is to skip all undersized
free space regions, use the next free space region that is big enough and try
to reuse the skipped areas when the log restarts from the beginning next
time.

As the threading method can cause significant fragmentation especially
of frequently used files if there are only small holes in the log, an explicit
defragmentation step similar to the copying approach might become neces-
sary. Furthermore, this approach could involve a large memory overhead for
many non-contiguous free space regions in a large log in order to keep the
free space information in memory. Given that one has to choose suitable
free space areas for a given chunk of live data this approach is similar to
common memory allocation strategies (see e.g. [10]). The chosen algorithm
determines which free space area to use for new live data and which data
structures to use to organize the list of unused log areas.

5.3 Combined Approach

As the threaded approach is well suited for incremental use and is also very
energy efficient, while the copying approach incurs significantly less frag-
mentation and a more sequential data layout, it is tempting to combine the
two methods to get the best of both worlds. In section 5.2 about the thread-
ing approach, some local enhancements to the threading approach utilizing
compacting or defragmenting methods are already mentioned. There is still
another severe problem with pure threading: the large memory overhead
due to the list of unused log areas, which can become quite high for large
disks and many small free space areas. One way to solve this dilemma is to
partition the available disk space into larger chunks and use the threading
approach for these areas. As there are now less areas the in-memory list and
therefore the memory overhead becomes more acceptable. For the data in
the chunks a copying approach is taken along with some options of merging
two sparsely populated chunks. See [6] and also section 3.1 (page 7) for an
implementation and detailed discussion of this technique.

Chapter 6

Implementation

This chapter describes the implementation of a copying cleaner for the
ScherlF'S file system. For an introduction to the copying cleaners see sec-
tion 5.1 (page 15). For details about the ScherlF'S file system implementation
refer to chapter 4 (page 10).

The cleaner supports two operation modes: a defragmenting mode and
a simple compacting mode. As the file system and thus the cleaner are
intended for embedded or mobile systems, energy and main memory usage
have been taken into account. Since mobile devices could run out of power or
be switched off by the user extra care has been taken to ensure a consistent
file system and no possible data corruption in case of a power loss or crash.
The algorithms, data structures and techniques for the implementation are
described in the following sections.

6.1 The Copyclean File System Cleaner

The presented copying cleaner is a user space program as opposed to a ker-
nel module for the following reasons which have already been indicated in
chapter 5: as copying cleaners need exclusive access to almost every file on
the device, it is difficult to maintain normal file system operation anyway. A
single update operation during cleaning would annihilate the whole effect of
the cleaning run, as updates cause new data at the log head which effectively
prevents shrinking the log. The various caching mechanisms in the Linux
kernel further complicate copying file data. As the compacting cleaner al-
ready needs lots of energy due to extensive copying, it is best used when
recharging the mobile device. The defragmenting mode needs even more
energy. Further advantages are the improved portability as the cleaner is
not tied to a specific kernel version or even a specific operating system (a
POSIX operating system is required for the current prototype), and superior
stability of the kernel since possible bugs in the cleaner cannot effect kernel
operations.

20

6.1. The Copyclean File System Cleaner 21

The cleaner program gets the required number of blocks it should make
available for future updates as a command line argument and tries to shrink
the log by the given amount. It is imaginable that the cleaner could decide
on its own how much cleaning is necessary, but the current implementation
does not support this.

6.1.1 General Preparations

The two operation modes of the cleaner program share some similarities,
especially at the beginning of the cleaning process. Both modes try to
shrink the log at the log head to enable further updates to the log data,
and thus need to define a region at the log head which will be freed from
live data—the source region. The live data from the source region will be
moved to somewhere in the log where enough unused space is available—
the destination region. The current cleaner prototype places the destination
region at the very beginning of the log since the data in this area is the
oldest data in the log and the area will most likely contain much obsolete
data and thus much reusable free space.

While choosing source and destination region is slightly different depend-
ing on the cleaning mode (see relevant sections below) there are still common
prerequisites.

Unless there is some kind of kernel support for a reverse mapping of disk
blocks to the corresponding file, the cleaner has to scan all existing inodes
present on the device to create such a mapping on its own. The current
ScherlF'S implementation does not provide such support but see section 6.2
for further thoughts about this matter. As such a mapping can be quite large
for big devices (for every disk block of 1024 bytes a four byte inode number
is required ') and main memory might be limited on embedded systems,
the cleaner prototype can limit the created mapping to the two areas where
the source and destination regions will most likely be. Especially if the
requested free space is small, this could save significant amounts of memory;,
however all inodes still need to be scanned so no time or energy savings can
be achieved in this way. But as a consequence, the possible size of source
and destination region is limited by the size of the available mapping, which
could result in less than the required reclaimed free space.

Since the disk block addresses of all inodes are stored in the .ifile,
scanning the inodes first involves reading this file. The disk block number
of the .ifile inode is stored in the superblock structure which in turn is

For a 2 gigabyte large device, which is the biggest supported size of the current
ScherlF'S implementation, a complete block inode mapping would consume

2 gigabytes
1024 bytes

(

) - 4 bytes = 8 megabytes

of main memory.

22 Chapter 6. Implementation

located at a fixed position on the device. The .ifile data, which holds the
disk block addresses, can be accessed through the extents of the inode.

Once all inodes have been located, the cleaner builds the block-inode
mapping. The program starts with a mapping where all disk blocks are
considered free. The mapping is simply an array of n inode numbers, where
n is the number of disk blocks on the device. Then the cleaner reads the
inodes one after another and marks the disk blocks which belong to the
inode in the mapping array. The starting address is the disk block number
in the .ifile data; the block size of the inode can be calculated, depending
on the inode type, using the information in the common inode header (see
chapter 4 (page 10) for details). If the current inode is a regular file or a
directory, the data blocks given in the inode extents are marked too. After
all inodes have been scanned, the elements of the mapping array either hold
a valid inode number (the inode the disk block belongs to), or are empty.

The block-inode mapping is later used to determine the source and des-
tination region for the cleaning process.

The current prototype reads the .ifile data into memory for faster
access to the inodes, but if there are many files on the device the .ifile
data could become very large (4 bytes for every file on the disk). To reduce
memory usage it would be possible to read only parts of the .ifile (e.g.
one disk block) at a time.

6.1.2 Source and Destination Regions

Once the disk block-inode mapping is complete the program can start to
determine the source and destination region using the information in the
mapping array. Such an area is just a range of disk blocks. Since the
cleaning process should shrink the log, the source region has to start at
the log head, consisting of zero blocks. It will grow toward the beginning
of the log in order to fulfill the free block request. The destination region
starts at the beginning of the log and grows in the direction of the log head.
The current prototypes handles source and destination region alternately
depending on which region needs to grow. Should a region meet the end of
the mapping (especially in case of the limited mappings due to little main
memory) or reach the other region, the process stops even if not the whole
requested amount of free blocks can be fulfilled. Otherwise the process stops
as soon as the source region is as large as the requested number of free blocks
and the destination region has enough free space for all live data that has
to be copied.

The cleaner will consider whole data chunks, i.e. groups of disk blocks,
that are either empty or belong to the same inode. If the current data
chunk is empty and belongs to the source region, the region can grow by
this amount. If it belongs to the destination region, the region can grow
but also the space for live data that can be copied from the source region

6.1. The Copyclean File System Cleaner 23

First Mapping Part —I

|Z||F3IF43|||IIIIIIWII

L— Destination Region —l

— Second Mapping Part —| /!9 "™

| [T A HERERER

L— Source Region —l

unused blocks
used blocks belonging to files partially in destination region

used blocks belonging to files partially in source region

O [N7

other used blocks

Figure 6.1: Example for source and destination regions in defragmenting
mode

increases by the number of blocks in the empty chunk. If the chunk is not
empty, then the following steps, depending on the cleaning mode and source
or destination region, are necessary:

Regions in the Compacting Cleaner For the compacting cleaner, a
non-empty chunk in the source region causes the region to grow normally,
but the number of free blocks required in the destination region increases by
the size of the chunk. A non-empty chunk in the destination region simply
results in the growth of the destination region.

Regions in the Defragmenting Cleaner The case is slightly more dif-
ficult for the defragmenting mode. Since the whole file will be copied to
the destination region in the course of defragmentation, one has to take the
whole file size and the inode size into account. The current implementation
of the cleaner needs to reread the inode from disk to gather this informa-
tion, but if there is enough main memory available it is possible to cache
these values during the inode scanning for the block-inode mapping. If the
non-empty chunk is in the source region, the region grows by the size of the
chunk but the number of required free blocks in the destination region is
increased by the whole number of blocks the file occupies on disk. If the
chunk is in the destination region, the region grows by the size of the chunk
and the number of available free blocks in the destination area is decreased

24 Chapter 6. Implementation

by the number of blocks of the rest of this file. As the whole file size is
counted for a non-empty data chunk, one has to make sure that the file does
not get counted more than once even if there are multiple chunks on the
device belonging to this file. Therefore, a bit set for each region is main-
tained where already handled inodes are marked. Data chunks of marked
inodes are considered as being empty chunks because the corresponding file
has already been handled. If parts of a file are both in the source and in the
destination region it is important that the file is only marked in the bit set of
the destination region (see the defragmenting algorithm below for reasons).
Figure 6.1 shows an example.

Since until now no file system modifications have occurred the data is still
in a valid state. The following operations will have to take special care to
keep the data consistent in the event of a sudden power loss.

6.1.3 Compacting Cleaning

The block-inode mapping and the source and destination regions include
all necessary information to start the compacting cleaning process. The
program searches for the first non-empty chunk of data at the beginning
of the destination region. Additionally, it counts the number of free blocks
before this chunk. In case the chunk is already at the beginning of the
destination area, the beginning of the area can be repositioned to the end of
the data chunk. Else if the free space at the beginning of the destination area
is big enough, the data chunk can be moved to its new position, which will
cause in-place inode updates for the corresponding inode as an inode data
extent will be changed in the process. If the free space is not big enough, the
file chunk needs to be copied to a temporal location at the end of the log.
This involves in-place inode updates and a superblock update since the log
head changes. Theoretically, the chunk could be moved back immediately
afterwards, but delaying this might prevent the need to temporarily copy the
next data chunk. Therefore the chunk is just added to the source region and
processed later. In every case the block-inode mapping has to be updated.

These steps are repeated until no more live data is present in the re-
maining destination area. Then the live data of the source region can be
copied chunk-wise to the empty destination area, and the log head can be
set to the beginning of the source area which will shrink the log.

6.1.4 Defragmenting Cleaning

The algorithm for defragmentation is similar to the compacting method
described above. As above, first the destination area is processed from the
beginning. For the first live data chunk, the cleaner checks whether the free
space before the chunk is big enough to hold the complete file. If this is the

6.2. Future Work 25

299555= [TITTITTITIT ...

L Former Destination Region 4

/ new log head

L Former Source Regiond

Figure 6.2: Regions shown in figure 6.1 after defragmentation

case, the file is copied and the relevant meta information is updated. This
also includes the block-inode mapping and the .ifile data. The beginning
of the destination region is moved by the number of blocks allocated for the
corresponding file.

If there is not enough space and the file is not already completely at the
beginning of the destination (e.g. due to prior defragmentation operations),
the complete file or, if the file is too big, at least the data chunk for the
relevant extent has to be moved to a temporary storage region at the log
head. This results in inode updates, .ifile updates, block-inode mapping
changes, and a temporary growth of the log and therefore superblock up-
dates. The moved file is marked in the bit set of the source region for later
processing.

If all live data chunks in the destination area have been processed and
thus the remaining destination region is empty, all files marked in the bit set
for the source region are copied completely to the destination region. After-
wards, the log head is reset and the relevant meta information is updated.

Figure 6.2 shows how figure 6.1 would look like after the defragmenting
step.

6.2 Future Work

6.2.1 File System Support for Block-Inode Mapping

Since the block-inode mapping mentioned above is necessary for both clean-
ing modes (and in general for all copying cleaners), and creating the mapping
is rather expensive because it involves scanning all inodes on disk, it is ben-
eficial to provide this mapping as part of the kernel file system driver. The
mapping could be generated during file system creation and continuously
updated by the kernel file system driver as part of write operations. To
ensure that the mapping data outlasts computer reboots and furthermore
is available in an unmounted state to cleaner programs a special file similar

26 Chapter 6. Implementation

to the .ifile is imaginable (a proper name would be .mfile). The data of
the .mfile would simply be the mentioned array of inode numbers where
the index into the array would define the block number on the device. To
prevent serious performance degradation, the .mfile would not be saved on
every file system update, but instead periodically after longer idle periods
and especially before file system unmounts to provide a consistent mapping
to the cleaner programs. Even if there are further updates (e.g. .ifile
updates) to the file system after the .mfile has been written, or in case of
a file system crash before the updated .mfile can be stored to disk, it is
relatively easy to bring the mapping data to an updated state given only
the old .mfile data and the .ifile. One simply has to recalculate the
occupied space for all files whose inodes are stored after the .mfile inode
in the log. As new data is always appended to the log, the .mfile inode
marks the point in time where the mapping was still accurate. All newer
data comes after that point and therefore has to be reprocessed. The inode
positions can be determined from the .ifile.

In summation, the kernel file system driver could provide an up-to-date
block-inode mapping at the cost of slightly increased management overhead
during write operations and rare additional data updates. But even an
outdated mapping could speed up the inode scanning phase for both copying
modes considerably, especially if there are many files on the disk. The extra
required storage space for the mapping would be 1/256 of the storage capacity
of the disk.

6.2.2 Hole-Plugging Mode

The cleaner program could be modified to use the hole-plugging approach
as described on page 17. The first steps of this technique are similar to the
compacting cleaner described above: The block-inode mapping is needed
and the source and destination region can be determined exactly as in the
compacting case. As it is important to identify the best matching free space
area in the destination region to each live data chunk in the source region, a
sorted data structure for free space areas in the destination region and one
for the data chunks in the source region is necessary. The best course of
action is probably to first serve the perfect matches from largest to smallest
chunk. Later one could try to combine the remaining live data chunks to
fill one of the remaining free space areas. Eventually, one will end up with
small free space areas and bigger data chunks.

Since the compacting of live data in the destination region (and thus the
merging of the free space areas) could involve significant copying overhead
for a small number of remaining files, the preferable solution is probably
chunk splitting. As long as this does not cause an inode to grow due to an
increased number of extents, this method is rather straightforward. If there
really is not enough contiguous space for the bigger inode it has to remain

6.2. Future Work 27

in the source area.

The energy efficiency of this method in comparison to the other copying
solutions would be interesting, as the hole-plugging strategy has the least
copying overhead.

6.2.3 Threaded Approach in the ScherlF'S File System

While this thesis generally concentrates on copying cleaners the threaded
approach for free space management mentioned in section 5.2 (page 18)
can be added to the ScherlFS implementation without much difficulties. As
described in this section, the file system driver needs to know the free regions
of the log during all write operations. This data has to be maintained and
updated, thereby causing minor management overhead. Since the free space
information has to outlive system reboots, one can benefit from the existing
extent management of the ScherlF'S inode implementation. A special file
(called e.g. .ffile following the .ifile naming convention) can be used to
track free space areas and store them in the file extents. As it is considerably
more difficult to update an old .ffile given only the changed files and
the .ifile than for the .mfile case above, the .ffile inode must be
written to disk on every file data update or the file system consistency in
case of a crash will be sacrificed. However if the above proposed .mfile is
available, the updates of the .ffile could be delayed until the file system
unmount. If there is ever a power loss or crash, the .mfile can be updated
as described above, and the .ffile can be rebuilt using the block-inode
mapping. An easier implementation probably would not save the .ffile at
all, but instead rebuild it on every mount using the .mfile at the cost of
a one-time increased read overhead. Using these two special files together
could also enable the file system driver to switch threading on or off on
demand. This would be especially useful for adaptive cleaning (see below).
Since an inode holding many extents will occupy more than one disk block
this write overhead could be considerable especially for many small updates
(and thus the resulting small free space areas).

Finding an appropriate free space area in case the log already wrapped
around the device could also cause performance loss for write operations,
but a more efficient data structure which could speed up the free space
lookup for a given chunk size could prevent that. For example, collections
ordered by size like trees or a skip list could have a positive effect on finding
suitable free space areas. Also note the similarities to memory management
in general as described in e.g. [10] and the resulting possible data structures
and algorithms. On the other hand, the file data can always be split into
single blocks—only the inodes might need continuous free space areas larger
than one disk block. Of course, this would destroy one main benefit of
log-structured file systems: the sequential data layout.

28 Chapter 6. Implementation

6.2.4 Adaptive Cleaning

As the mentioned free space management algorithms all have different ad-
vantages and disadvantages, it could be beneficial to let the file system
choose a cleaning method during runtime according to the current situa-
tion. This might involve choosing hole-plugging, compacting or defragment-
ing mode depending on the available energy and the fragmentation of the
device.

If an existing threading mode can be deactivated on demand (using the
block-inode mapping to rebuild the free space information at the next re-
activation time, as described above), this could also save energy in case the
file system has just been compacted or defragmented.

Another area where the file system driver could enhance cleaning effi-
ciency is choosing the destination region for compacting or defragmenting
mode. A large region with much live data at the beginning of the log could
be skipped since compacting or defragmenting this area would result in many
copy operations for very little gain in terms of reclaimed free space. The
block-inode mapping of the .mfile would provide the required information
for this optimization step. If there is no .mfile, the storage space could
be divided into a fixed number of segments and usage information for these
segments could be stored, for example, in the superblock structure. A copy-
ing cleaner could choose the most sparsely populated segment as destination
region.

Chapter 7

Energy Measurements

This chapter describes the measurements performed on different file systems
as well as for different cleaning strategies in ScherlFS file systems.

7.1 Preparations

The energy and timing measurements were performed on a Hitachi Micro-
drive. A four-channel analog-digital converter measures the voltage drop at
a sense resistor in the 5 V line leading from the power supply to the hard
disk and transfers this data via the parallel port to another computer where
the results are recorded. The voltage drop is acquired with a resolution of
256 steps and at a rate of up to 5000 samples per second.

To measure the energy characteristics of the file system without dis-
turbing influences like buffers or hardware low power modes, the linux page
cache and the APM mode of the microdrive are disabled/limited for the
duration of the tests using a kernel patch implemented by Holger Scherl for
his thesis[2] and the hdparm utility, respectively. Additionally, before ev-
ery file system test, the partition is unmounted to flush existing caches and
remounted with clean buffers.

Fat32, ext2, ext3 and ReiserF'S serve as reference file systems for ScherlF'S.

To simulate the effects of file system usage in a predictable and reprod-
ucable manner a perl script has been implemented that issues a variety of
file operations on a mounted file system. The fragmentation tool can create
and remove a specified total amount of new files with random file size and
contents (within a specified range) and do in-place modifications of random
size in existing files. A recording mechanism allows one to replay the same
fragmentation for different file systems and different settings.

For the evaluation of the different file systems and the relative costs of
cleaning, two special fragmentations are used that are composed of small,
medium, and large files and random updates on the data. For the first frag-
mentation, subsequently called ”standard fragmentation”, a total amount

29

30 Chapter 7. Energy Measurements

Fragmentation Type H Files ‘ Live Blocks | Dead Blocks
Standard Fragmentation 1128 110546 3354
Coarse Fragmentation 93 95656 271
Cleaner Fragmentation (small files) 2085 12182 7038
Cleaner Fragmentation (medium files) || 37 8610 116

Figure 7.1: Characteristics of the different fragmentation samples

of 5Mb of small files (1kb-10kb), 20 Mb of medium files (50 kb-500 kb) and
75 Mb of large files (1 Mb-10Mb) are created. Afterwards a total amount
of 1Mb of medium sized updates (10kb-50kb) and 256kb of small sized
updates (1kb-5kb) are performed on random files at random locations. For
the write tests, the above steps are measured individually. The second frag-
mentation uses the same values but excludes small files and updates to limit
the fragmentation somewhat, and is hence referred to as ”coarse fragmenta-
tion”.

As it has turned out during the measurements, the cleaners (especially
the compacting cleaner) show horrible performance with deactivated page
cache: the cleaning of the chosen fragmentation is too time consuming.
Thus, a reduced fragmentation is used to compare the two cleaning modes.
To measure the impact of file/chunk sizes on the cleaning process, one frag-
mentation with approx 10 Mb of small files (1kb-10kb) is created, and im-
mediately afterwards 20% of the file data is removed again. The remaing
files are modified randomly using the in-place mode of the fragmenting util-
ity with a total amount of 5 Mb and random updates between 1kb and 5 kb.
As the block size of ScherlFS is 1kb, smaller files do not make sense for
this measurement. A similar fragmentation is created using the same total
amount of file data and updates, but for medium sized files (50 kb-500 kb)
and modifications (10 kb-50kb). This results in less files on the device.

The different fragmentation characteristics (in terms of the ScherlF'S file
system) are listed in figure 7.1.

7.2 Test Cases

As this thesis tries to estimate the impact of different free space manage-
ment techniques on the energy consumption and performance of the log-
structured file-system ScherlF'S, first the reference file systems are compared
to ScherlF'S without any free space management (see [2]). First the file
creation and update performance for artificial test cases are measured (fig-
ures 7.2 and 7.3). The details are described in the previous section, as the
parts of this test correspond to the single steps of the ”standard fragmenta-
tion” mentioned above. This can show how much energy ScherlFS can spend
for free space management without being worse at energy consumption than

7.3. Test Results 31

the reference file systems.

As the chosen fragmentation and, as a consequence, the cleaning mode
can influence the reading of files on all file systems, especially on a log-
structured file system, the read performance for the different file systems
and the two fragmentation alternatives are measured (figure 7.4) by simply
reading all files that were previously created and modified using the first test.
This may point out future energy advantages when performing a specific
cleaning mode. In this test case a modified version of ScherlF'S that uses a
simulated directory cache is listed. See [2] for a rationale on this matter.

The next test measures the performance and energy usage of the two
implemented cleaning modes (figure 7.5) for the two special fragmentation
situations mentioned in the previous section. After that, the subsequent
read behavior for ScherlF'S is measured for the cleaned log. To enable direct
comparisons to the previous read tests, this test uses the same fragmentation
as above (figures 7.6 and 7.7). The results for the compacted log were
obtained by temporarily enabling the Linux page cache during the cleaning
process.

As the previous cleaning tests already cleaned the whole log, the follow-
ing tests measures the performance and energy consumption when reclaim-
ing only 10% of the available free space. This test also uses the normal
fragmentation. The compacting mode performs reasonably well for this lim-
ited cleaning so its numbers are included.

Finally, in the last test, the possible gain by implementing a kernel based
block-inode mapping as explained in section 6.2 is examined.

7.3 Test Results

The first two figures (7.2 and 7.3) show the energy and time consumption
of the different file systems during the test. The results are similar to those
of Holger Scherl in his thesis[2] and show that log-structured file systems
in general perform well on write operations, due to the reduced number of
disk seeks. The figure shows a total energy saving of approximately 105 J
in relation to fat32 which is the second best file system in this test.

The bad performance of the ReiserF'S file system is surprising. Previous
measurements have shown this file system as being comparable to ext2 or
ext3. The reasons for this are yet unknown but it may be an effect of a
new ReiserF'S version or the hardware. The tests previously performed by
Holger Scherl applied to the given setting show similar results.

The fact that ScherlF'S performs worst in the fragmented read test (fig-
ure 7.4) is not unexpected. The file operations cause the files on a ScherlF'S
device to be scattered in small chunks all over the log. The energy advantage
of sequential data layout and a reduced number of disk seeks is negated. As

32 Chapter 7. Energy Measurements

Creating Files

B 450 B

a00 F R+
350 N
300
250 - N
ZiE L
2 N
- 100 g

58 f:: n

Medium Files Large Files

Energy [J]

\\\\\400*\\\

250 - v scherlfs m—

reiserfs =3

fat32 ===
ext2 ==

Time [sec]

ext3 wzzza

0
Small Files Medium Files Large Files

Figure 7.2: Energy consumption and time needed for creating new files

Moditying Files
160 I T 250
140 Copee] n
120 = 7 | 200 - b
= 100 b 150 _
> 80 -
5 60 4 100 1
=1
M 40 h 50 - _
20]
0 0
Small Updates Medium Updates
140 250 T
133 i)
B %0 i 150 1 scherlfs
= reiserfs =
g 00 7 100 - 1 a2 ===
&40 g ext2 ==
20 - 50 - B ext3 zzzzz
0 0
Small Updates Medium Updates

Figure 7.3: Energy consumption and time needed for updating files in-place

7.3. Test Results 33

Reading Files

80
70
60
50
40
30
20
10

Energy [J]

Coarse Fragmentation

scherlfs mu—

scherlfs—d mrTo
reiserfs

fat32 ====
ext2

Time [sec]

ext3

Standard Fragmentation Coarse Fragmentation

Figure 7.4: Performance characteristics for reading

the figures 7.6 and 7.7 show, an improvement in read can be reached. This
could also mitigate the energy cost of cleaning.

The energy cost of the two cleaning modes for different fragmentations
and different buffer sizes are shown in figure 7.5. The buffer size deter-
mines how much data can be read into main memory and therefore how
many seek operations are necessary to move a data chunk or file to a new
position. As can be seen in the figure the compacting cleaner is relatively
independent of the size of the files since it is more concerned with contigu-
ous file chunks. The copying cleaner in contrast reads and buffers a single
whole file, if possible, and exhibits degrading performance as the number of
files increases. A further optimization for the defragmenting cleaner proto-
type is to collect more than one file in the internal buffer in case it is large
enough. In theory, the small buffer size of 2kb should seriously affect the
defragmenting cleaner, as most files cannot be buffered anymore. Since the
compacting cleaner currently only collects contiguous data chunks belong-
ing to file extents which are rarely larger than two blocks anyway, a smaller
block size should not hinder its operation significantly. Surprisingly, even for
larger files the defragmenting cleaner prototype does not suffer a noticeable
performance degradation.

In figures 7.6 and 7.7 the influence of file data fragmentation on ScherlFS
file systems is examined. It is shown that compacting the log can decrease
the necessary time and energy consumption by about 40% in the ”standard
fragmentation” case. In this test case defragmenting the log, which should
normally further improve the sequential data layout, had no positive effect
compared to compacting the log.

For compacted or defragmented logs, the read performance and energy

34 Chapter 7. Energy Measurements

Cleaning Performance

600 600
500 - -1 500 F
= 400 - —— - 400 |- B
@ 300 - -1 300 o
2 200 7 200 b
m
100 - -1 100 R
0 0
Medium Files
600 T T T T 600 T T T T
500 - - 500 - i
£ 400 7 400 b
> 300 - 4 300 - a
g L | L i compact (2mb) ===
S 200 200 compact (2kb) ===z
100 - 100 7 defrag (2mb) T
0 0 defrag (2kb) =——=
Small Files Medium Files

Figure 7.5: Performance of the two cleaning modes

consumption of ScherlF'S is again better than for the reference file systems
shown in figure 7.4.

Until now all cleaning processed the whole log. This has shown to be
disadvantageous for the compacting cleaner, which requires more disk seeks
due to its lack of a buffer mechanism. The defragmenting cleaner buffers
whole files in memory before writing them back to disk, thus it can save
two disk seeks for every extent compared to the compacting cleaner. A nat-
ural optimization of the current compacting cleaner implementation would
therefore be the addition of data buffering.

However figure 7.8 shows the energy consumption and performance of the
two cleaner prototypes applied to the ”standard fragmentation”. As already
mentioned, the compacting cleaner performed so poorly with disabled caches
that the test has been aborted.

In the case where only 10% of the wasted free space should be reclaimed,
the compacting cleaner catches up with the defragmenting prototype. The
performance is still not comparable, although the defragmenting cleaner
obviously touches almost all files on the file system (the energy consumption
and time is equivalent to the complete cleaning of the log). As a side note,
if the caches are active however, the compacting cleaner outperforms the
defragmenting cleaner in the second case.

Finally, in figure 7.9 the cost of the block to inode mapping necessary for
both cleaning modes is put in relation to the total cleaning. It shows that
support for such a mapping in the file system could improve the cleaning
process. In this case the performance gain would be moderate, but with an
increasing number of files on the device such an .mfile could be favorable.
The fragmentation used in this figure is the ” Cleaner Fragmentation (small
files)” in table 7.1.

7.3. Test Results

35

Reading Files in ScherlFS

140 140 140

120 120 - 1 120 n
_ 100 100 -1 100
= L -
- 80 80 80
5 60 60 - . 60
S 40 40 - 1 40

20 20 - . 20

0 0 0

Standard Fragmentation ~After Compacting After Defragmenting

120 120 120

100 100 < 100 [.
- 80 80 . 80
Q
260 60 - - 60 scherlfs mm—
g scherlfs—d oo
E 4 40 440
F

20 20 - n 20

0 0 0
Standard Fragmentation ~After Compacting After Defragmenting
Figure 7.6: Impact of cleaning modes on ScherlFS read performance (part 1)

Reading Files in ScherlFS

80 80 80
70 70 - 70 b
60 60 -1 60 b
5 50 50 1 50 R
2 40 40 -1 40 b
5 30 30 430 -
=20 20 420 R
10 10 -1 10 b
0 0 0
Coarse Fragmentation ~ After Compacting After Defragmenting
70 70 70
60 60 60
_. 50 50 50
Q
2 40 40 40 scherlfs mm—
g 30 30 30 scherlfs—d o™
20 20 20
10 10 10
0 0 0
Coarse Fragmentation ~ After Compacting After Defragmenting
Figure 7.7: Impact of cleaning modes on ScherlFS read performance (part 2)

36 Chapter 7. Energy Measurements
Partial Cleaning in ScherlFS
800 800 T
700 - B 700 - m
600 - N 600 [~ N
= 500 [] 500 - o
513400* :I:I:I 7 400 - :I:I:I T
2 300 - T 1+ 300 - R
53] D T T T
200 |- e 200 s
100 [~ :I:I:I b 100 - :I:I:I -
0 1 T 1 0 T T
200 Complete Cleaning 200 10% Cleaning
T T T
600 - B 600 - : m
500 - N 500 - : 7
8 400 |- mma 400 |:|:|: 7
E 300 |- |:|:|: i 300 F LN <:ompa<:tingESSI
k= I LN defragmenting =——
=200 - i 200 I
100 [~ :I:I:I b 100 - :I:I:I -
0 I L T 1 0 [EERE
Complete Cleaning 10% Cleaning
Figure 7.8: Partial application of the cleaning process
Block-Inode Mapping
600 T T T 600
500 - b 500 - § .
400 7 400 - 8
% 300 - 4 2 300 8
: :
s =
200 - b 200 - N
100 - g 100 - . mapping T
compacting 5=
defragmenting =1
0 o | EEEEE
Figure 7.9: Energy consumption and time needed for creating block-inode

mapping

Chapter 8

Conclusion

The most important conclusion is that the Linux buffer cache can tremen-
dously speed up operations for all file systems.

In the course of this work the concept of log-structured file systems has
be explained and the advantages and disadvantages have been outlined. The
reduced number of disk seeks and the sequential data layout allow for energy
efficient read and write operations and therefore increased idle times which
in turn favor the low power modes of modern hard drives. The need for an
explicit free space management for continuous operation and the resulting
energy costs are the main drawback of a log-structured file system in re-
gard to power consumption. Various free space management strategies have
been described in general and some of them for an existing log-structured
file system called ScherlF'S implemented by Holger Scherl for his thesis[2].
Two of these free space management strategies have been implemented as
prototypes for the ScherlF'S file system and tested in different situations.

The main drawback of the two copying solutions is that they require
large amounts of energy during operation. They also need exclusive access
to the file system and therefore are unsuitable for incremental free space
management during runtime. While this is already an important reason
to consider other free space management strategies, the measurements in
this paper showed that even the two similar compacting and defragment-
ing approaches can exhibit vastly different performance characteristics and
other influences on the operation of a log-structured file system. For exam-
ple, the defragmenting cleaner prototype performs much better when the
whole log needs to be cleaned. While the resulting better layout of the data
should improve read operations compared to the compacting cleaner, this
assumption could not be proved by the tests in this thesis. However the
read performance is significantly improved for read accesses in comparison
to a fragmented log. On the other hand, the compacting cleaner performs
better if only a small portion of the log needs cleaning and, in contrast to
the current defragmenting cleaner implementation, it is nearly independent
of the number of files on the ScherlFS device. If enough energy is available,

37

38 Chapter 8. Conclusion

e.g. during recharging of a mobile device, defragmenting or compacting can
boost the performance of future read operations while the current energy
consumption is not important anyway.

Thus, for energy efficient operation of a log-structured file system in
general and ScherlF'S in particular a combination of some complementing
free space management strategies is advisable. The file system should choose
the most appropriate cleaning approach depending on the current situation.
Compacting and defragmenting cleaning is best used when enough power is
available, as they influence the operations of the log-structured file system
in a positive way and help save energy later, while the current increase in
energy consumption does not matter.

However, the question remains whether the two cleaning prototypes are
suitable to allow ScherlF'S to operate more energy efficiently than other
available file systems. Obviously, this depends on the overall usage of the
storage medium: If there are mainly new file creations and data reads, and
few modifications, the compact data layout can compensate for the increased
energy cost during cleaning. However, if there are many small updates, the
compact data layout will not last long enough to make up for the cleaning
overhead. A possible way to tell definitely whether the ScherlF'S file system
in combination with the cleaner prototypes is suitable for a specific situation
is to analyze traces of I/O patterns of the application in question.

Bibliography

[1]

2]

Hitachi Global Storage Technologies. Hitachi familiy of microdrives
datasheet.

Holger Scherl. Design and implementation of an energy-aware file sys-
tem. Department of Computer Sciences 4, student thesis SA-14-2004-01,
January 2004.

John Zedlewski, Sumeet Sobti, Nitin Garg, Fengzhou Zheng, Arvind
Krishnamurthy, and Randolph Y. Wang. Modeling hard-disk power
consumption, March 2003. Department of Computer Science, Princeton
University.

IBM Coporation Storage Systems Division. Adaptive power manage-
ment for mobile hard drives, January 1999.

Paul M. Greenawalt. Modeling power management for hard disks. In
MASCOTS, pages 62—66, 1994.

Mendel Rosenblum and John K. Ousterhout. The design and implemen-
tation of a log-structured file system. ACM Transactions on Computer
Systems, 10(1), 1992.

Margo I. Seltzer, Keith Bostic, Marshall K. McKusick, and Carl Staelin.
An implementation of a log-structured file system for UNIX. In
USENIX Winter, 1993.

Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello, Randolph Y.
Wang, and Thomas E. Anderson. Improving the performance of log-
structured file systems with adaptive methods. In Proceedings of the siz-

teenth ACM symposium on Operating systems principles. ACM Press,
1997.

Jacques Cohen and Alexandru Nicolau. Comparison of compacting
algorithms for garbage collection. ACM Trans. Program. Lang. Syst.,
5(4), 1983.

Mark S. Johnstone and Paul R. Wilson. The memory fragmentation
problem: solved? ACM SIGPLAN Notices, 34(3), 1999.

39

List of Figures

2.1

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5

6.1

6.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Hard drive geometryo 3
The ScherlF'S superblock structure on disk 11
A ScherlFS inode structure on disk 12
A ScherlFS extent for file/directory inodes on disk 12
Compacting thelog 16
Defragmenting thelog 16
Hole-plugging 17
Hole-plugging with data chunk splitting 17
Threading approach - four new data blocks are appended to

anearly fulllog o o 18
Example for source and destination regions in defragmenting

mode 23
Regions shown in figure 6.1 after defragmentation 25
Characteristics of the different fragmentation samples 30
Energy consumption and time needed for creating new files . 32
Energy consumption and time needed for updating files in-place 32
Performance characteristics for reading 33
Performance of the two cleaning modes 34

Impact of cleaning modes on ScherlF'S read performance (part 1) 35
Impact of cleaning modes on ScherlF'S read performance (part 2) 35

Partial application of the cleaning process 36
Energy consumption and time needed for creating block-inode
Mappingo e e e e e e e 36

40

Reorganisation in
energiebewussten Dateisystemen

Im Laufe der letzten Jahre haben sich mobile Computer und Embedded
Systems immer mehr verbreitet. Der Hauptvorteil von mobilen Geréten fiir
die Benutzer ist die groflere Flexibilitdt, da man nicht auf eine stationére
Stromversorgung angewiesen ist. Durch den technologischen Fortschritt wer-
den komfortablere und komplexere Anwendungen moglich, wéhrend gleich-
zeitig der Bedarf an solchen Anwendungen steigt. Viele dieser Anwendungen
bendétigen eine Form von Datenspeicherung. Im gleichen Mafie wie die An-
zahl der Features von mobilen Gerdten wie Handys, Digitalkameras oder
PDASs mit mobilen Biiro-Anwendungen steigt auch der Energiebedarf. Auch
wenn zahlreiche und wichtige Fortschritte im Bereich des Energieverbrauchs,
und damit der Laufzeit im Batteriebetriebs gemacht wurden, ist bisher ein
moglicher Bereich zur Reduzierung des Energieverbrauchs weitgehend ver-
nachléssigt worden: Speichermedien. Eine Mo6glichkeit die Energie-Effizienz
von Speichermedien zu steigern, ohne neue Materialien fiir die Datenspei-
cherung zu erforschen oder neue Hardware zu bauen, ist die Anordnung und
Zugriffsmuster der Daten auf handelsiiblichen Festplatten wie zum Beispiel
des Hitachi Microdrives zu modifizieren.

In seiner Studienarbeit hat Holger Scherl eine alternative Moglichkeit
untersucht und implementiert, die die Daten auf der Festplatte zu orga-
nisieren und dadurch den Energieverbrauch durch Disk Seeks und Rotati-
onsverzogerungen zu minimieren: so genannte Log-Structured Dateisyste-
me. Obwohl der Prototyp und die bisherigen Energiemessungen sehr ermu-
tigend sind, fehlt der Implementierung noch ein wichtiger Bestandteil, wel-
cher eine ldngerdauernde Benutzung des ScherlF'S Dateisystems erméglichen
kann. Ein Log-Structured Dateisystem spart Energie zu Lasten von tem-
porar verschwendetem Speicherplatz, daher ist eine effektive Freispeicher-
verwaltung notig, die die unbenutzten Speicherregionen wieder verwendbar
machen kann.

In dieser Ausarbeitung werden verschiedene Moglichkeiten der Freispei-
cherverwaltung fiir Log-Structured Dateisysteme untersucht, sowie die Ef-
fekte dieser verschiedenen Ansitze auf die Performanz und das Energiever-
halten des Dateisystems analysiert.

41

Im Rahmen der Studienarbeit wurden zwei Anséitze der Freispeicherver-
waltung fiir das Log-Structured Dateisystem ScherlF'S implementiert und
in Bezug auf Energieverbrauch und Performanz unter verschiedenen Bedin-
gungen getestet: eine defragmentierende und eine kompaktierende Variante.
Obwohl beide Verfahren sehr &hnlich sind zeigen sich dennoch zum Teil
gravierende Unterschiede im Laufzeitverhalten und Energieverbrauch in be-
stimmten Situationen. Die kompaktierende Variante skaliert besser mit stei-
gender Anzahl von Dateien und arbeitet besser fiir kleine Bereiche im Log,
wahrend der defragmentierende Prototyp eine deutlich bessere Performanz
zeigt, wenn der freie Speicher im ganzen Log zuriickgewonnen werden soll.
Der Einsatz einer kompaktierenden oder defragmentierenden Strategie zur
Freispeicherverwaltung hat einen positiven Effekt auf zukiinftige Lesezugriffe
auf das Dateisystem. Da der Energieverbrauch der verschiedenen Verfahren
zur Freispeicherverwaltung von verschiedenen Faktoren wie der Fragmentie-
rung, der Haufigkeit der Zugriffe und dem Zugriffsmuster abhéngt, ist ein
adaptiver Ansatz als Kombination verschiedener Strategien denkbar.

42

	1 Introduction
	2 Motivation
	2.1 Hard Drive Operation
	2.2 File Systems

	3 Related Work
	3.1 The Design and Implementation of a Log-Structured File System
	3.2 An Implementation of a Log-Structured File System for UNIX
	3.3 Improving the Performance of Log-Structured File Systems with Adaptive Methods
	3.4 Considering the Energy Consumption of Mobile Storage Devices

	4 Previous Work
	4.1 ScherlFS File System Layout
	4.2 Energy Characteristics of ScherlFS

	5 Free Space Management Strategies and Algorithms
	5.1 Copying/Compacting Cleaners
	5.2 Threading Approach
	5.3 Combined Approach

	6 Implementation
	6.1 The Copyclean File System Cleaner
	6.1.1 General Preparations
	6.1.2 Source and Destination Regions
	6.1.3 Compacting Cleaning
	6.1.4 Defragmenting Cleaning

	6.2 Future Work
	6.2.1 File System Support for Block-Inode Mapping
	6.2.2 Hole-Plugging Mode
	6.2.3 Threaded Approach in the ScherlFS File System
	6.2.4 Adaptive Cleaning

	7 Energy Measurements
	7.1 Preparations
	7.2 Test Cases
	7.3 Test Results

	8 Conclusion
	Bibliography

