
Anwendungsspezifische

Energieverwaltung in Betriebssystemen

Diplomarbeit im Fach Informatik

vorgelegt von

Thomas Weinlein
geboren am 1. Februar 1979 in Lichtenfels

Institut für Informatik,

Lehrstuhl f̈ur Verteilte Systeme und Betriebssysteme,

Friedrich-Alexander-Universität Erlangen-N̈urnberg

Betreuer: Dipl.-Inf. Andreas Weißel

Prof. Dr.-Ing. Frank Bellosa

Prof. Dr.-Ing. Wolfgang Schröder-Preikschat

Beginn der Arbeit: 15. Juli 2004

Abgabedatum: 17. Januar 2004

Erkl ärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung an-

derer als der angegebenen Quellen angefertigt habe und dass die Arbeit in glei-

cher oder̈ahnlicher Form noch keiner anderen Prüfungsbeḧorde vorgelegen hat

und von dieser als Teil einer Prüfungsleistung angenommen wurde.

Alle Ausführungen, die ẅortlich oder sinngem̈aßübernommen wurden, sind als

solche gekennzeichnet.

Erlangen, 13. Januar 2005

iii

Application-Specific Energy Management

in Operating Systems

Diploma Thesis

by

Thomas Weinlein
born February 1st 1979 in Lichtenfels

Department of Computer Science,

Distributed Systems and Operating Systems,

University of Erlangen-N̈urnberg

Advisors: Dipl.-Inf. Andreas Weißel

Prof. Dr.-Ing. Frank Bellosa

Prof. Dr.-Ing. Wolfgang Schröder-Preikschat

Begin: July 15th, 2004

Submission: January 17th, 2004

Copyright © 2005 Thomas Weinlein.

Permission is granted to copy and distribute this document provided it is com-

plete and unchanged.

Parts of this work may be cited provided the citation is marked and its source is

referenced.

The programs described herein are also copyrighted by Thomas Weinlein. They

are free software; you can redistribute them and/or modify them under the terms of

the GNU General Public License as published by the Free Software Foundation;

either version 2 of the License, or (at your option) any later version.

Abstract

Power management is recognized as an important research area for mobile de-

vices, embedded systems and general purpose systems. There are several methods

for reducing the energy consumption of individual components and of the whole

system. But known methods often have the shortcoming that energy savings cause

performance reduction. Therefore power management has to adapt to the applica-

tions’ and users’ performance demands. However there is a trade-off between the

users’ performance demands and energy savings. This work presents an approach

to automatically identify the performance demands of applications at runtime and

this way guiding the power management policies.

This approach extends the student thesis of Matthias Faerber to system wide

power management and several shortcomings are addressed. In the previous work

the currently running application is identified; Here, application usage profiles are

classified because one application can have different usage characteristics depend-

ing on its current job. Furthermore the heuristic classification done by Faerber is

replaced by a theoretically sound classification and training algorithm based on

Classification And Regression Trees.

The presented approach gives the user the possibility to specify his personal

minimal performance demands for different application usage profiles. Then mul-

tiple resource usage characteristics are retrieved from the CPU, the wireless net-

work interface card and the hard disk for each application. Upon those usage

characteristics it is possible to identify the usage profile of the currently running

application and to dynamically apply the adequate user-defined power manage-

ment setting. To account usage statistics for each application, the abstraction of

resource containers is used. The mapping of resource usage characteristics to the

appropriate power management setting is done by a classification demon. This

vii

viii

classifier is trained by supervised learning with the Classification And Regression

Tree algorithm.

The proposed approach for adaptive power management was evaluated on an

iPAQ running a modified Linux kernel and the classification demon. Several appli-

cations that are typical for such a mobile platform were tested. A rate of correct

classifications of the user-specific performance demands and the corresponding

power management settings of approximately 98% was achieved.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Overview . 5

2 Related Work 7

2.1 Power Management for a Single Resource 7

2.1.1 CPU Frequency and Voltage Scaling 7

2.1.2 Wireless Network Power Management 9

2.1.3 Hard Disk Power Management 11

2.2 System Wide Power Management 12

2.3 Application Specific Protocols 12

2.4 Workload Classification . 13

3 Classification 15

3.1 Basic Principles . 15

3.2 Classification And Regression Trees 17

4 Resource Container 21

4.1 Resource Container Hierarchy 21

4.2 Limitation of Resource Usage 22

4.3 Representation of Resource Containers 22

4.4 Modifications to Resource Containers 23

5 Implementation 25

5.1 Kernel Modifications . 26

5.2 User Space Logging . 29

ix

x Contents

5.3 Building the Classifier . 30

5.4 Classification Demon . 34

5.4.1 Classification . 34

5.4.2 Applying the Power Management Setting 34

6 Evaluation 37

6.1 Applications . 37

6.2 Power Management Settings . 38

6.3 On-line Evaluation . 40

6.3.1 Resource Profiles . 40

6.3.2 Applications Running in Parallel 43

6.4 Off-line Evaluation . 43

6.4.1 Application Profiles . 44

6.4.2 Comparison of Different Feature Sets 46

7 Future Work 51

8 Conclusion 53

List of Figures 55

List of Tables 57

Bibliography 62

Chapter 1

Introduction

The demand for more powerful mobile devices, such as PDAs, cell phones or lap-

tops, has strongly increased over the last years. The additional features and power

of these devices come with high energy consumption. However the improvement

of battery capacity for such devices could not keep up with that development as

shown in Figure 1.1. Therefore more and more aggressive power management

policies have to be introduced to keep the battery runtime on a constant level.

Modern components for mobile devices bring along several power saving modes

to relieve those efforts. For example Intel released the XScale processor series,

which supports CPU frequency and voltage scaling. The standard for wireless

network interface cards, IEEE 802.11, defines power saving modes and current

hard disk drives also provide mechanisms to save energy.

1.1 Motivation

Power management policies for mobile devices result in a trade-off between bat-

tery runtime or energy savings and performance. In the majority of cases, this

trade-off can be visualized as a reciprocal curve as shown in Figure 1.2.

It can easily be seen that high energy savings can result in poor performance

and high performance results in little energy savings. While it is impossible to get

below that curve, a power management policy has to find the optimal position on

that curve. This position is individual for each application and possibly each user

1

2 Chapter 1. Introduction

Ausgewählte Kapitel der praktischen Betriebsprogrammierung: Power Management I
 Frank Bellosa • Universität Erlangen-Nürnberg • Informatik 4 • 2004 J-Battery.fm 2004-07-02 16.32

K.1
Reproduktion jeder Art oder Verwendung dieser Unterlage, außer zu Lehrzwecken an der Universität Erlangen-Nürnberg, bedarf der Zustimmung des Autors.

A
K

B
P

/P
M

 2
0

0
4

K Battery Power Management

K Battery Power Management

K.1 Battery Gap

Reference:[LRDP02]Figure 1.1: A widening gap between power requirements and the energy density
of batteries [17]

because the user-experienced performance and/or the applications’ performance

demands often differ from the available absolute system performance.

However, most existing power saving techniques do not consider the perfor-

mance demands of currently running applications but introduce a static, system

wide energy and performance limit. A common example is the access delay

of hard disks, which are shut down to save energy. For limiting such effects,

most methods introduce a global performance loss boundary. This can be seen

as a shortcoming as various applications and/or their users have individual per-

formance demands which can be both higher and lower as the global boundary.

For example a media-player playing an audio file will periodically read data from

the hard disk, so that frequent switching between power states would waste more

energy than keeping the hard disk in active mode. Other applications like a PDF

viewer may not access the disk for minutes while the user is reading, which makes

switching to standby mode profitable.

To address those shortcomings, a power management algorithm has to re-

spect the users’ performance preferences for different applications. This can be

achieved by identifying those performance demands during runtime and adapting

the power management settings.

1.1. Motivation 3

Power/Performance Tradeoff
Pe

rf
or

m
an

ce

Power Saving

Figure 1.2: Tradeoff between power saving and performance

This work presents an approach to identify the performance demands that are

associated with the currently running application or application usage profile. As

a consequence it is possible to achieve the user-defined power/performance trade-

off of each application.

The approach is implemented on an iPAQ with a PXA250 CPU featuring fre-

quency scaling, a wireless network interface and an IBM microdrive. A modified

version of the Familiar Linux distribution from [13] was used and typical applica-

tions for mobile devices were tested. Such a system can be seen in Figure 1.3.

This work is based on a student thesis about application-specific power man-

agement for wireless networks presented by Matthias Faerber [9].

In his work, Faerber argues that power management has to adapt to appli-

cations’ and users’ demands. Thus, a system has been implemented that maps

statistical usage information of the network card to a usage profile appropriate to

the currently running application.

A collector module was added to the Linux kernel. It is responsible for peri-

odically retrieving data from the network interface. Such data is e. g. the number

of received and transmitted packets and their size in bytes. The collector module

passes that data from the kernel space to user space through the/proc-filesystem.

In user space, a characterization module is run to map the characteristics re-

trieved from the network interface to the usage profile representing a power man-

4 Chapter 1. Introduction

Figure 1.3: Opie Familiar Linux running on an iPAQ

agement setting. The possible power management settings are based on the vari-

ation of the beacon period of thePower Savemode defined in the IEEE 802.11

standard. For more information on power management modes of the IEEE 802.11

standard, see Section 2.1.2. Upon the characteristics retrieved from the collec-

tor module several key figures, including the average and standard deviation of

the size of transmitted/received packets and the ratio of inactive to active periods,

are calculated. These key figures are analyzed by hand to extract a representa-

tive value of each key figure for each profile. Then the characterization module is

build based on this analysis.

The classification is done as follows: First, the profile of the nearest repre-

sentative value is determined for each key figure of the currently running applica-

tion. If one of the profiles got a majority, a new power management decision is

achieved; otherwise the current setting is retained.

In this work, this approach is extended to system wide power management

and several shortcomings are addressed. One shortcoming of Faerber’s approach

is that it can not handle applications running in parallel because of the global data

acquisition. The mixed data can not be handled accurately by the characterization

demon as it would lead to varying decisions. In this work, this is addressed by the

introduction of the abstraction resource container to gather data for each applica-

1.2. Overview 5

tion separately. As a consequence, the classifier knows about several applications

and can make separate decisions, which are treated by an extra logic to reach a

global decision for all applications running in parallel.

Another problem is the classifier. While Faerber analyzes the key figure data

by hand, a more sophisticated and theoretically sounded training algorithm, called

Classification And Regression Trees, is used in this work. Furthermore, in the

earlier approach the parameters for the classification decisions are hard coded in

the characterization module. The classification demon proposed here uses an extra

Perl module for classification, which is generated dynamically by the training

algorithm. This has the advantage that the classification demon has only to be

restarted to use the new classifier. Therefore, this approach can be easily used as

only the favored power management settings for the applications and/or recorded

data must be specified and everything else can be done automatically.

1.2 Overview

This thesis is structured as follows:

In Chapter 2, related approaches to power management for CPU, wireless

network, hard disk and for the whole system are presented.

Chapter 3describes the mechanisms of resource containers. InChapter 4

the Classification And Regression trees (CART) are introduced. Starting from the

basics of the classification problem, the principles of the CART training algorithm

are explained.

The implementation of the presented approach is figured out inChapter 5.

After showing the procedure of acquiring characteristic data of the considered

resources from the kernel, the preprocessing and classification of the data in user

space is explained. Another important topic of this chapter is the generation of the

classification demon.

Chapter 6presents the evaluation results done in on-line and off-line mode.

The effects of running applications in parallel on the classification results are also

examined.

Chapter 7gives some proposals for future investigations andChapter 8com-

pletes the work with a conclusion.

Chapter 2

Related Work

There are several research projects addressing power management for mobile de-

vices. They can be split into two groups, power management approaches on par-

ticular components or resources and approaches that deal with system wide power

management. Other projects introduce an additional API so that the applications

can provide information about their future resource usage.

First, the methods for particular devices such as CPU, wireless network and

hard disk, which are also covered in this work, are presented. Then a discussion

of system wide power management methods follows in Section 2.2. Additional

APIs for power management are discussed in Section 2.3.

Although workload classification is a new topic in connection with power

management, there are several works that use it for capacity planning. These

are presented in Section 2.4.

2.1 Power Management for a Single Resource

2.1.1 CPU Frequency and Voltage Scaling

The powerP of the CPU depends on the operation frequencyf , the voltageV and

the capacityC of the circuit. Additionally, there exists an architecture-dependent

constant powerPother. The power can be computed as denoted in Equation 2.1.

P = V2∗ f ∗C+Pother (2.1)

7

8 Chapter 2. Related Work

While the capacity of the circuit is a constant, some CPUs, like the Intel

XScale series, provide the possibility to run at different frequency levels. For

lower frequencies also the voltage can be reduced, resulting in a quadratic re-

duction of energy. This can be done without reduced performance as long as

all deadlines can still be met. There are different measures for the calculation

of deadlines, such as response time, quality-of-service or performance. For in-

teractive applications, the response time is an important measure; it should not

exceed the perception threshold of humans in the range of 50-100ms. Further on,

multimedia applications should reach a certain quality-of-service, which is often

measured in the number of frames per seconds. The computation of the appro-

priate CPU speed to reach a deadline is not difficult, but is the determination of

deadlines. These problems are addressed in the following works.

Neufeld et al. [22] have evaluated several proposed policies for setting the

clock speed appropriate to the current processor usage. The investigated policies

are presented by Weiser [27], Pering [25] and Govil [12]. Among them is a policy

called PAST and its generalization AVGn, which try to predict the future CPU

utilization by calculating the average utilization of the past. Upon the predicted

utilization the appropriate clock speed for the next time step can be calculated, so

that the work can be finished at the next time slice. The authors show that none of

the examined scheduling policies is able to set the appropriate speed for a MPEG

player. The best of the tested algorithms is PAST, which is configured in a way

that only the highest or the lowest CPU speed is possible. While the optimal CPU

speed for MPEG playing lies in between these borders the scheduling policy re-

sults in multiple clock speed switching. Hence, there is a lot of switching overhead

in time and energy, because a clock speed change needs some hundred millisec-

onds of time and some amount of additional energy. This scenario could benefit

from application-specific power management, which determines the appropriate

speed based on usage characteristics and avoids excessive switching.

Flautner et al. [10] present a multi layer system for performance estimation

called Vertigo, which is comprised of several power management algorithms. On

the top, a high level algorithm ensures that users of interactive applications do

not experience performance loss. Therefore, the communication between the X-

server and the application GUI is observed to determine the length of interactive

2.1. Power Management for a Single Resource 9

periods. The clock speed is set in a way that the interactive period is processed

before the human perception threshold exceeds. On the bottom level, an algorithm

similar to that evaluated by Neufeld et al. is used to predict the future processor

utilization by referring to the past utilization.

2.1.2 Wireless Network Power Management

The standard for wireless network interfaces, IEEE 802.11, was created having

power management already in mind. Therefore, a power management mechanism

is anchored in this standard. There are two power states defined for the wireless

network interface:

• Awake: Consuming full power; transmission and reception possible

• Doze: Very low power; neither transmission nor reception possible

Upon these power states two power management modes are defined. In the

Active Mode (AM), the interface is always inAwakestate and ready for receiving

and transmitting packets. If the network interface wants to switch toPower Save

(PS)mode, it has to inform the access point first. This is because in PS mode

the interface switches toDozestate for the time defined by the so called beacon

period. During this time, the network device is not able to receive data from the

access point. Hence, data packets sent from the access point during this period

would get lost. After each beacon period the network interface awakes for a short

time and listens for the traffic indication map (TIM) sent by the access point to

inform about buffered packets intended for the network device. After analyzing

the TIM, the network device can poll the access point for the buffered data. An ex-

ample of two wireless network interfaces at PS mode at different beacon intervals

and their access point is shown in Figure 2.1.

There are several protocols that adapt the beacon period or time-out threshold

to the current usage characteristic of the wireless network interface. As those

algorithms use the past utilization to predict the future they are often calledhistory

basedalgorithms.

Krashinski and Balakrishnan [15] present a power management protocol

called Bounded Slowdown (BSD) protocol that minimizes the energy consump-

10 Chapter 2. Related Work

Figure 2.1: Reception of packets for wireless network interfaces working inPower
Savemode, from [7]

tion for a guaranteed round trip time (RTT). While this method only uses infor-

mation about time of transmitting and receiving packets it can be implemented in

hardware.

Several proposals for optimizing the power management for multimedia

streams are published by Chandra and Vahdat [5, 6]. For multimedia streams

such as Windows Media, Real and Quicktime, the network packets are often sent

in constant intervals. Therefore the next idle interval can be derived from the av-

erage of past idle intervals [5]. As not all multimedia streams feature a constant

transmission interval, in [6] a traffic shaping method is proposed for streaming

servers to ease the prediction of idle intervals on client side and thereby save ad-

ditional energy. As this approach should be accurate for coordinated client-server

environments, the user at the client side has no possibility to influence the power

management if he has no access to the server.

Approaches for energy efficient transport layer protocols can also be found in

literature. For example Bertozzi et. al [2] utilize the TCP buffering mechanism

to improve energy efficiency of the transport layer with only low performance

overhead.

2.1. Power Management for a Single Resource 11

2.1.3 Hard Disk Power Management

The ATA standard for hard disks features several power states for saving power.

In activemode the hard disk is spinning at full speed, the read/write heads are

ready and full energy is required.Idle mode can save some energy by moving the

read/write heads to a parking position, while everything else is kept active. This

results in only little energy savings, but keeps the response time low. Instandby

mode the mechanics of the disk can be powered off until the next request to the

disk. Hence, more power can be saved with the drawback of a higher response

time. Finally in sleepmode even the electronics for request handling may be

turned off. Therefore a soft or hard reset is necessary to leave that mode. This

has the advantage of very low power consumption, but at the cost of a reactivation

time up to 30 seconds. The operating modes consuming less energy have not only

the disadvantage of operation delays but the switch from one mode to the other

requires additional energy. Therefore frequent switches should be avoided. The

minimal time the hard disk has to stay in standby mode to save energy is called

break-even time. The break-even time depends on the power consumption of the

considered hard disk.

There exist three different approaches to hard disk power management. The

first class includes algorithms that use a static or dynamic time-out until the hard

disk is switched to a low power mode. Another class of algorithms tries to predict

the workload of the future by observing the workload of the past. Finally there

are policies based on statistical workload models.

Lu et al. [20] evaluated and compared several hard disk shutdown policies.

In [28] the benefit of application support for hard disk power management is

demonstrated. Thereby an application can flag an I/O operation as deferrable or

abortable. This information can be used by the device driver to cluster accesses to

the device. As a consequence the number of power state switches can be reduced

as the operating system can alter and optimize the access timing of the hard disk.

Furthermore, this optimization leads to longer idle periods, which result in higher

energy savings.

12 Chapter 2. Related Work

2.2 System Wide Power Management

One approach for implementing a system wide power management is ECOSys-

tem, which is described in [30]. The idea is to unify the power management

of different devices by introducing a system wide resource and measuring unit

calledcurrentcywhich has to be shared by all applications. It is demonstrated that

ECOSystem can limit thecurrentcyaccurately to reach a target battery lifetime.

ECOSystem is implemented to control the CPU, the network interface and

the hard disk. Accounting and limitation ofcurrentcyis done by the abstraction

of resource containers that are also used in this work. The time is split up into

epochs and the available energy for the current epoch, depending on the target

battery lifetime, is distributed to all applications at the beginning of the epoch.

A process is only scheduled if it hascurrentcyleft. When a process is running,

for each time slice a certain amount ofcurrentcy is removed from its account,

which is administrated by resource containers. For hard disk usagecurrentcyis

accounted for read and write operations. Additionally, the costs for spinning the

hard disk up and down are shared by all processes which accessed the disk in the

period while the disk was active. Finally, transmitting and receiving bytes over

the network interface is accounted proportionally to the volume and bandwidth.

The goal of this approach is the introduction of an infrastructure for system

wide power management which can be adapted to several policies. While this ap-

proach is able to accurately account and limit the spent energy, the users’ perfor-

mance demands are not considered. In fact it is possible to prefer some processes

by specifying a higher priority which permits highercurrentcyconsumption but

in the end the performance is limited by the globalcurrentcylimit to reach the

target battery lifetime.

2.3 Application Specific Protocols

Application specific protocols for power management introduce an additional ap-

plication programming interface (API). Thereby energy aware applications, i.e.

applications which implement the new API, are able to specify their future re-

2.4. Workload Classification 13

source demands. Based on this information the operating system can optimize the

power management to the announced resource access characteristics.

There already exists a power management API for operating systems called

ACPI. ACPI is a standard released by Compaq, Intel, Microsoft, Phoenix and

Toshiba in 1996 [8]. It gives the operating system full control over the power

management states of the devices. This is legitimate because the operating system

has comprehensive knowledge about the hardware components and their usage.

Lu et al. [18, 19] argue that application programmers should not need to care

about power states of the devices and instead introduce a system call namedRe-

quireDevice(device,type,period,wait). Therewith, the application can announce

which resource it requires and what type of access pattern it has. The access

pattern type thereby can beperiodic, onceor always. Based on the requirement

information, the operating system can schedule the requests such that idle peri-

ods and busy periods are clustered. The presented approach is more abstract than

ACPI and programmers do not have to care about possible power states of devices

from different vendors.

The shortcoming of application-specific protocols is the need to change the

applications, which can be an immense overhead.

2.4 Workload Classification

Workload classification has been a research task for capacity planning and per-

formance modeling since the early 1970s [4]. However, the thesis of Matthias

Faerber presented in Section 1.1 and this work are the first approaches to use

workload or resource usage classification for power management.

An approach for automated classification of workload is proposed by Pentaka-

los [24]. Here an unsupervised training algorithm of a Gaussian classifier is used

to separate the data. Although the algorithm is unsupervised, the number of tar-

get classes have to be specified and additionally, a small user labeled starting set

is needed. As the recorded data of a mass storage system is mixed up accord-

ing to their class membership, an unsupervised training algorithm is mandatory to

avoid excessive labeling. In contrast data for application classification is already

separated for each application, which reduces the effort of labeling for the user.

14 Chapter 2. Related Work

Moreover user labeling is explicitly wanted so that the user can achieve his own

power/performance trade-off. Another advantage of the training algorithm used in

this work (see Section 3.2) is that a form of feature selection is done implicitly and

is an additional result of the training algorithm while Pentakalos has to include an

extra feature selection step with supplementary costs. Indeed, it has to be men-

tioned that the feature selection done by CART may not be optimal. Therefore,

extra examinations to optimize the set of used features are recommend.

Chapter 3

Classification

The identification of different objects by investigating the characteristics of the

object is an important research area in computer science called pattern recognition.

Pattern recognition deals with the mathematical and technical aspects of automatic

pattern processing and/or classification [23].

The basic principles of classification and an overview of available types of

classifiers are presented in the next section. This is followed by the description of

Classification And Regression Trees in Section 3.2. This is the type of classifier

used in this work to identify the appropriate power management setting of the

current application by retrieving characteristic usage data from the resources.

3.1 Basic Principles

A general classification system is shown in Figure 3.1. The digital signalf (x),
also called pattern, is preprocessed, e. g. filtered, to an improved signalh(x).
Then features are extracted. Classification can only been done if the class borders

are known. These are trained in the training stage by a learning algorithm using

a training sample. Based on the training results—the class borders—the classifier

assigns a class to each feature vector, which represents a pattern.

Assuming that there is already an-dimensional feature vector~c, the classifier

associates the feature vector with one ofk classes:

~c→Ωκ,κ ∈ (1,2, . . . ,k) (3.1)

15

16 Chapter 3. Classification

ω

Preprocessing Classification

Sample

Training Stage

Feature extraction

Learning

Working Stage

f(x) h(x) c Ω

Figure 3.1: Classification system according to [23]

The optimal classifier is the Bayesian classifier. It minimizes the error rate by

deciding in favor of the class that maximizes the a posteriori probability:

p(Ωκ |~c) =
pκ p(~c |Ωκ)

pi (~c)
(3.2)

Unfortunately, this classifier needs full statistical information. In practice, this

knowledge will never be available. But there are several other classifiers which

approximate the Bayesian classifier.

• Statistical Classifier:

Assuming that the conditional probabilities of all feature vectors exactly

belong to one n-dimensional family of densities and that the a priori proba-

bilities of all classes are known, it is possible to estimate the parameters of

the density functions for each class, based on samples. Best known member

is the Gaussian Classifier.

• Distribution Free Classifiers:

Here, the parameters ofk partitioning functions are estimated. The parti-

tioning functions have to be linear in parameters. This type is more general

than the Statistical Classifiers.

• Non-parametric Classifiers:

For this type of classifier a non-parametric estimation of density functions

is done, or the next neighbor rule is used. This has the disadvantage that the

whole sample has to be saved.

3.2. Classification And Regression Trees 17

• Other Classifiers:

There are several other classifiers which cannot be associated with the other

types presented above. These are for example Classification And Regres-

sion Trees, Support Vector Machines or artificial neural nets.

3.2 Classification And Regression Trees

For now it was shown that classification algorithms have to assign each pattern to

a class, but it was not mentioned how this can be done. Classification And Regres-

sion Trees (CART) [3] make those decisions based on answers to binary questions.

Questions are asked considering arbitrary elements of the feature vector.

The questions are arranged in a tree structure. The first question forms the root

node. Each answer to this question represents an edge to the next level of nodes

and/or questions. The leafs of the tree are labeled with class names.

To classify a feature vector, you start at the root and answer the corresponding

question in consideration of the feature data. Then you follow the edge that suits to

the feature vector and answer the question of that node. This is done successively

until a leaf is reached, which is labeled with some class nameκ. So the feature

vector is assigned to classκ.

Such a classification tree is build by the following steps:

First the set of all possible questions is build. Let the feature vector be made

up of random numbersXi , i ∈ 1, . . . ,n, then a question refers exactly to one random

numberXi . The questions have the form:

Is Xi ∈ S? withS⊂ x1, . . . ,xl(i) for discrete random numbers

Is Xi ≤Φ? with Φ ∈ (−∞,∞) for continuous random numbers
(3.3)

So there exist as much possible questions as members of the random numbers

codomain. For continuous random numbers, the magnitude of questions would be

infinity. To solve this problem, the codomain is split intomequal ranges, and only

the borders of those ranges are used to form questions.

Now all possible questions are available, but it is still unclear which questions

should be asked in which sequence. So a quality factor is needed. Here the impu-

18 Chapter 3. Classification

rity of a set is chosen, defined by [16]. A set is pure, if all elements belong to the

same classκ. A set is impure, if it contains elements of different classes. Impurity

is maximal for uniformly distributed classes. A measure for purity is the entropy

of sets according to [21]:

H (S) =−∑
i

P(i | S) log2P(i | S) (3.4)

Equation 3.4 is only valid for uniform costs of classification errors.P(i | S) is

the percentage of classi in setS.

Hence, we can build the tree as follows. All feature vectors are assigned to the

root of the tree. Then the best question according to the quality factor is chosen.

This question is used for splitting the set into two parts of maximal purity. The

root has got two new children, associated with the emerged subsets. These new

nodes are treated like the root node, which means that for each subset the best

splitting question is picked out. That process is done, until one of the following

stop criteria are reached.

• All elements of the node belong to the same class.

• Improvement of error rate is below some thresholdφ.

• Number of elements per node is below some thresholdΦ.

This is a greedy algorithm for discovering a local maximum, which may not

be the global maximum. It is supposed to work also well if only a local maximum

is found. A positive side-effect of taking the best question first and then succes-

sively the best questions for each subset is that you get a feature selection for free.

Features used near the root are better than features used in deeper levels or even

not at all.

Classification And Regression Trees are susceptible to over-training, which

means that the necessary generalization is lost. For example the training data is

split very subtle with high purity of each subset but testing the tree with disjoint

test samples yields high error rates. This effect can be reduced by pruning the tree

as shown in [11]. The training data is split at random in two parts, one for training

and the second much smaller one for pruning. First of all the CART is built with

3.2. Classification And Regression Trees 19

the training data as shown above. Then the pruning samples are classified by the

trained tree. For each leaf the purity of the pruning sample subset assigned to that

leaf is computed. If for a pair of leafs, where a pair of leafs are two leafs with the

same parent node, the purity of each leaf is lower than the purity of the unity set,

this pair is deleted. Thus the subsets of the leafs are merged together again and

the unity set is reassigned to the parent node, which becomes a leaf now. This is

done for all possible pairs of leafs. In the end the Classification And Regression

Tree is more general and will probably give better results for unknown samples.

Chapter 4

Resource Container

In oder to be able to account resource usage or characteristics, an infrastructure is

needed to save such information. Banga [1] introduced such an abstraction called

resource containers. Resource containers are handled by the system kernel, but

can be accessed by an application programming interface (API) from user space.

They are also used for limiting resource consumption of activities.

There already exists a structure for accounting in the kernel, the process struc-

ture. While the process is a protection domain, there is no reason to restrict ac-

counting to a protection domain. So to achieve more flexibility and to be able

to account for different granularities, an independent structure, such as resource

containers, has to be introduced. This has the advantage that on the one hand

accounting for multi-threaded applications is easy and on the other hand that ac-

counting for different clients of a single threaded server is possible.

4.1 Resource Container Hierarchy

It was already mentioned that resource containers are managed independently

from processes to allow accounting for different granularities. These different

levels can be easily obtained because of the resource container hierarchy. This

means that all resource containers are linked in a tree like structure. There is a

root container representing all resources available in that system. It can be used

for system wide policies. All other resource containers are descendants of the root

21

22 Chapter 4. Resource Container

container. To introduce a new level in the hierarchy, resource containers can be

grouped and assigned to a new parent container.

Resource containers can be created in two ways. Either they are created by

explicitly using the new system callrc clone()or implicitly during the genera-

tion of a child process by the system callfork(). Containers generated byfork()

are automatically attached to the new child process. Explicitly created resource

containers are not bound to any process.

4.2 Limitation of Resource Usage

The detailed knowledge of resource consumption obtained by resource containers

can be used to limit or control the resource usage. The limitation is suitable for

applying a scheduler that enforces resource limits e. g. energy consumption. Due

to the resource container hierarchy, it is possible to employ different short and long

term limits for a resource. For example a long term limit for energy consumption

can be specified as a resource container. Here long term can be e. g. a time interval

of one second and a limit of energy consumption ofnJ. A child resource container

may specify a short term usage rate, which may even be higher as the long term

rate, to be able to deal with usage peaks. A short term can be e. g.1
10s and the

associated energy consumptionmJ> n
10J. Therefore, a peak energy consumption

of mJ is possible as long as the long term energy consumption limit does not

exceednJ. So all derived resource containers and the associated processes have

to hold the specified limits. The scheduler has to enforce the compliance of the

limits.

4.3 Representation of Resource Containers

Because resource containers are used for limiting resource consumption of activi-

ties, the right to use a resource container has to be protected. This is done by using

capabilities. A capability represents the right to access a protected object. All ca-

pabilities are managed by the operating system kernel. As most operating systems

use a combination of access control lists (ACL) and capabilities to protect objects,

4.4. Modifications to Resource Containers 23

this is also done for resource containers. An ACL is a list of users, which have

the authority to access the associated object. This mixture of ACL and capability

is implemented as follows. The resource containers are represented as files in a

special file system. For each file exists an ACL, which defines who is allowed to

open that file. As result to the open call, the initiator receives a file descriptor rep-

resenting a capability which offers access to the file. Indeed resource containers

are no real files, hence read or write is not possible. The resource container files

are only used for associating resource containers with names.

4.4 Modifications to Resource Containers

In this work, the resource container implementation of Martin Waitz for the Linux

kernel is used but the mechanisms for resource limitation were removed from the

original implementation. This is because limitation is not necessary for this work

and would only cause additional overhead.

Additionally, structures for storing accounted usage characteristics are added.

There is a supplementary structure for the characteristics of each resource (CPU,

WLAN, HD). This is necessary because resource containers per default account

only one resource usage value; here, the possibility to store an arbitrary number

of parameters is needed.

Chapter 5

Implementation

The adaptive power management system described in this work was implemented

for a Linux system running on an iPAQ with a PXA250 CPU, a Cabletron wire-

less network interface and an IBM microdrive. The kernel was modified by adding

resource container support originally implemented by Martin Waitz [26] and ad-

ditional code for logging of several resource parameters. For application-specific

power management, a set of user space tools was added supplementary to achieve

the decision which power management setting is best for the currently running

applications.

The following overview of the implementation is shown in Figure 5.1.Data

acquisitionin kernel space for the resourcesCPU, WLANandHD is described in

the next section. For each application, aUser space loggingprocess (see Section

5.2) exists, which retrieves the data from kernel space. The logged data is stored

in so calledTrace Filesto be able to train the classifier off-line with Classifica-

tion And Regression Trees (CART) as presented in Section 5.3. In Section 5.4

the Classification Demonis introduced, which receives the usage characteristics

from theUser space loggingprocesses and classifies that data using the classifier

trained byCART. After the correct usage profile class is identified, the new power

management setting is applied by using the appropriate utility for each resource,

e. g. iwconfigfor the wireless network interface.

25

26 Chapter 5. Implementation

off−line
CPU WLAN HD

Data acquisition

. . .
Application n

User space logging

Application 1

User space logging

Trace Files

CART
Classifiaction

Demon

iwconfig

hdparm

/proc/cpu/

space
kernel

user
space

on−line

Figure 5.1: System overview

5.1 Kernel Modifications

First, resource container support was added to the Linux kernel. Resource con-

tainers provide a mechanism for accounting resource usage independent from pro-

cess structures. Therefor, resource containers are arranged hierarchically to allow

easy access to resource usage on arbitrary granularity. For further information on

resource containers see Chapter 4.

Resource container support was added by porting the implementation of Mar-

tin Waitz for Linux kernel version 2.6 to the Linux kernel for iPAQs available

at [13]. Further on, the resource container implementation was extended for ac-

counting arbitrary information for each resource instead of only accounting the

CPU usage. Therefor, the resource containers are extended by structures to log

information for each resource.

The logging of resource usage characteristics is done on several levels in the

5.1. Kernel Modifications 27

kernel. Parts of the characteristics are gathered on system call level, others are

gathered on the level of the virtual file system and several on device driver level.

The usage characteristics and their acquisition are presented below.

As an example, the gathering of the usage parameters of the wireless network

interface is explained in detail. The number of packets transmitted or received and

their size seemed to be good parameters. This means that these parameters appear

to differ for applications with different performance demands and therefore should

make a contribution to the identification of usage profiles. The first promising lo-

cation to retrieve such information is the network device driver. The appropriate

driver for the wireless network interface used in this scenario is thewvlan cs.o

module. The functions for sending and receiving a packet arewvlan tx() and

wvlan rx(), respectively. So this should be the adequate locations to account the

number and size of transmitted and received packets. Since this is true for trans-

mission, the number of transmitted packets is incremented during the execution

of wlan tx() and at the same time the size of transmitted packets is accounted.

This accounting is not done for a global variable but for the resource container

associated with the currently running and sending process. The accounting to the

resource container and its parents is done by the functionrc driver stats() that

was newly implemented for that purpose.

If you try to log the information of received packets in such a simple way you

would probably account for the wrong resource container. That’s because of the

following reasons: The processing of received packets is triggered by an interrupt.

But the principle of resource containers is to account usage for the originator of

the processing, which is an interrupt in this case. The currently running process

may not be the receiver of the network traffic, so the resource container of the

currently running process may be the wrong one either. It should become clear

that it is necessary to determine the receiver of the packet to account for the correct

resource container. But to achieve this on the level of the device driver, a lot of

additional processing would be necessary. To avoid such overhead, the accounting

of the incoming traffic is done on the level of the transport layer because there the

receiver of the packet is determined anyway.

Someone may argue that packets at the transport layer can be made up of sev-

eral packets from the network layer, which leads to incommensurable values for

28 Chapter 5. Implementation

Logged Parameters
Status (working as client or as server or for itself)
CPU usage
CPU usage as client
CPU usage as server
CPU usage while working for itself
Active time (time of the CPU burst)
Waiting time (time of the I/O burst)
Inactive time (time in scheduling queue)
Number of packets received/transmitted
Number of bytes received/transmitted
Number of hard disk sectors read/written
Number of buffers read/written
Duration of the read or write call
Time between two read or write calls
Number of read/write calls on a file
Number of read/write calls on a socket
Number of read/write calls on a device
Number of read/written bytes of all read/write calls

Table 5.1: List of parameters logged in kernel space

the number of transmitted and received packets. The same applies to the num-

ber of bytes transmitted and received, because the packets are shortened by the

length of the headers of the lower protocol layers. However, for this work it is not

important to retrieve absolute correct data or information that can easily be inter-

preted by humans, but to retrieve data which is characteristic and distinguishable

for different applications.

A list of all parameters which are logged by means of resource containers are

shown in Table 5.1. The parameters of receive or transmit and of read or write

operations are listed only once with the notation receive/transmit and read/write,

respectively.

5.2. User Space Logging 29

5.2 User Space Logging

To be considered for application-specific energy management, an application has

to register at the resource container infrastructure and to communicate with the

classification demon. This could be done by the application itself but would re-

sult in the need of adapting the application. As modification of applications is

undesirable and often not possible another registration method was introduced.

A start script was created to register an application that should be considered by

the adaptive power management. The start script only needs the application name

as parameter. Further on, applications are often invoked by a click on an icon

of the graphical desktop environment. As the ‘on click’ behavior can be easily

adapted for most desktop environments, it is possible to automatically invoke the

start script for each application instead of the application itself. Therefore the user

experiences no loss of comfort.

There would also be the possibility to integrate this functionality to the Linux

binary loader. This would have the advantage that neither an additional start script

nor application modifications are necessary. This was not done because of the fol-

lowing reasons: During development there occur several changes which can be

applied to a script with less effort. Another reason is that the binary loader would

also include all background tasks and demons to adaptive power management.

This is not wanted because those tasks should deal with the available performance

while the applications currently utilized by the user should enforce their perfor-

mance demands.

When the user starts an application by calling the start script with the appli-

cation name as parameter, a new resource container is created in the resource

container file system with the application name as file name and the start script

PID as resource container ID. Then the application itself is started and attached to

the new resource container. Afterwards user space logging starts.

The resource characteristics are retrieved ten times per second through the

resourceinfo() system call which was already part of the resource container im-

plementation of Martin Waitz [26]. To be able to obtain the average and standard

deviation of the characteristics such as time stamps or time intervals, these char-

acteristics are stored as arrays in the resource containers, while characteristics

30 Chapter 5. Implementation

such as the number of received or transmitted packets are stored as single values.

Those arrays are retrieved by the user space logging and are used to compute the

averages and standard deviations since also for these characteristics only a single

value is needed. On the one hand the vector of all characteristics is passed on

to the classification demon and on the other hand it is written to a file for off-

line processing. Logging stops when the application exits. A short cutting of an

imaginary log file follows:

Counter data[1] data[2] data[3] data[4] data[5]

4 22.1 10 32 41 32.24

5 21.2 15 23 42 23.42

Each line corresponds to one vector of all characteristics, also called data vec-

tor in the following. The characteristics are denoted asdata[1], ..., data[5]. Ad-

ditionally, there is a line counter at the beginning of each line for debugging pur-

poses.

5.3 Building the Classifier

The classifier is built by the Classification And Regression Tree training algo-

rithm provided by the Edinburgh Speech Tools Library [14], which is under a free

license similar to the X11 license. The CART algorithm is explained in Section

3.2. It was mentioned that the CART algorithm needs a classified training set for

the so called supervised learning. Therefore, the training data included in the trace

files has to be labeled. Thus the implemented training script reads the name of all

trace files and prompts the user for the class which it should assign to the file data.

To reduce user interaction, the input is saved in a configuration file, so that the

user is only asked for labeling new files.

Then the features have to be computed from the usage characteristics. To

be able to calculate features which consider the usage characteristics’ history, a

sliding window of thek newest data vectors is used for feature calculation. Hence,

all features and possible classes are defined in a global configuration file. The

syntax of the configuration file has the following structure:

5.3. Building the Classifier 31

(

(CLASS resourceclass0. . . classN)
...

...

(featurename range) resourceList; functionindex [parameters]
...

...
...

...

)

The bold face marks characters that are mandatory. Names which can be cho-

sen by the user are written in italic type. An example of a configuration file can

be found below.

First the resources (CLASSresource) are specified with all possible power

management class values. They are followed by the feature definitions. There-

for, a feature name and a range of values has to be specified. Possible settings

are “float” and enumerations. If “float” is denoted, the CART algorithm splits the

whole real number axis automatically inmsegments; the segment borders are con-

sidered as enumeration. This is done because the CART wants to form all possible

questions, which is not possible for a continuous range. For further information

see Section 3.2.

TheresourceListrepresents the list of resources for which that feature is taken

into account by the training algorithm. After a semicolon, the method to compute

the declared feature follows. Possible functions are:

• the newest value in the parameter vector

• the average of the sliding window

• the deviation of the sliding window

• the difference between the first and last value of the sliding window

• the weighted average of the whole history

• the median of the sliding window

The weighted average is computed by a weighted sum of the newest value and

the weighted average of the last step. Therefore, this feature is influenced by all

values and not only from those of the sliding window.

32 Chapter 5. Implementation

Features should have similar values if they belong to the same class and vary

if they belong to different classes. Thus, averages or the median are a good idea

to achieve less varying values for time dependent parameters. The deviation can

be used as a measure of periodicity. To obtain local changes of a parameter the

discrete derivation or difference is used. Although this are common methods for

feature extraction, a rather wide range of functions can be used to compute fea-

tures.

Theindexdenotes which column of the data vectors is used for the feature cal-

culation. Optional there may be further parameters for the feature calculation. For

example the weighted average has an additional parameter to adjust the weight.

An example of a configuration file:

(

(CLASS CPU 100 200 300 400)

(CLASS WLAN 000 100 500)

(foo float) CPU WLAN ; average 1

(bar 10 15 20 25) WLAN ; lastValue 2

(foobar float) ; weightedAverage 1 0.1

)

For feature calculation a sliding window is used, including 40 vectors of usage

characteristics. For the presented example however a window size of two is used

to preserve clearness. To calculate the featurefoo defined in the example, the

average of the column data[1] is computed as the index specified for this feature is

1. The result can be seen below. For the featurebar the newest value of data[2] is

taken, namely the value of data[2] of data vector 5 (see Section 5.2). The feature

foobar is calculated on column data[1] again. It has to be pointed out that the

featurefoobar is calculated for all data vectors, but is never used for classification

because of the empty resource list. Thus, such features should be avoided because

of the overhead of feature calculation. To complete the feature vector the class

labels assigned to the trace file of the considered data vectors are added. So the

example results in the following feature vector, which is composed of two class

labels and three calculated features:

5.3. Building the Classifier 33

classCPU classWLAN foo bar foobar

200 500 21.65 15 22.01

The feature data is forwarded to the Classification And Regression Tree train-

ing algorithm. The training for each resource specified in the configuration file is

done separately. As the training algorithm of the Edinburgh Speech Tools Library

needs separate configuration files for each resource, these are generated automat-

ically from the global configuration file presented above. Additionally, the CART

training algorithm needs parameters for the stopping criteria. As explained in

Section 3.2, the CART algorithm divides the set of feature vectors into subsets of

higher purity. It was also mentioned that the CART tends to over training. This

effect can be reduced by specifying the minimal size of a subset, because smaller

subsets imply less generality. Due to the amount of training data (about 100,000

feature vectors) a value of 500 for the minimal subset size turned out to be appro-

priate. A second instrument to avoid over-training is pruning. Hence, the CART

also uses 10% of the training data for pruning. Referring to the current example, a

possible output tree for the resource CPU and one for the network device is shown

in Figure 5.2.

The output of this algorithm is printed in Lisp list syntax. As there is no Lisp

but a Perl interpreter for the Familiar Linux distribution, and Perl is qualified for

easily processing text or configuration files, it is used to implement the Classifica-

tion Demon. Thus the tree has to be transformed to a sequence of if-statements in

Perl syntax before it can be used with the classification demon written. Further-

more each if-cascade is encapsulated in a function calledclassifyRESOURCE(),

where RESOURCE denotes the name of the associated resource. These functions

are packed in a new Perl module which is included by the classification demon

described in Section 5.4. Therefore no changes to the classification demon are

necessary after new training; It only has to be restarted to automatically load the

newly generated module.

34 Chapter 5. Implementation

5.4 Classification Demon

5.4.1 Classification

The classification demon is started on system startup, sets up a named pipe and

waits for usage characteristics sent to that pipe by the users’ applications. The

demon can distinguish data of different applications by the process identification

number which is added to each data vector sent through the pipe.

For each application, a data window is held to store the latest 40 data vectors.

The recent feature vector is calculated from this data set as described in Section

5.3. Then the feature vector is classified for each considered resource by means

of the generated if-cascades. The classification results are then compared to the

current power management settings. But the power management setting is only

changed ifn successive classifications yield the same result. This is necessary to

avoid multiple switching between different power management states in case of

uncertainty of the classifier, which could result in oscillating decisions.

5.4.2 Applying the Power Management Setting

If a switch to a new power management setting is needed, the appropriate user

space tools are executed in background. To apply a new setting for the CPU, the

/proc-filesystem is used, which is a pseudo-filesystem that provides an interface

to the kernel. While most files hold read-only information about the kernel, some

files are writable to set kernel variables. Such a writable variable is the speed of

the first CPU/proc/cpu/0/speed. It can be accessed as a text file; therefore, the

processor clock rate can be set e. g. as follows:

echo SPEEDIN KHZ > /proc/cpu/0/speed

The power management of the wireless network interface card can be adjusted

by the wireless tools. They provide theiwconfigutility to manipulate the configu-

ration of a wireless network interface (e. g.eth0). The optionspowerandperiod

are used to specify that a new beacon period is set for power management.

iwconfig eth0 power period BEACONPERIOD

5.4. Classification Demon 35

Finally the hard disk standby time-out can be manipulated in steps of five

seconds via hdparm e. g. for hard disk /dev/hda:

hdparm -S TIME /dev/hda

If several applications run in parallel, it is possible and probable that the clas-

sification demon will come to conflicting decisions for the same resource. In this

implementation, the classification demon accomplishes the setting that represents

higher performance. This is done due to the assumption that the setting with

higher performance provides enough margin to deal with all applications running

in parallel. This is surely only true for a small number of applications running

in parallel but on mobile devices a maximum of two or three applications work-

ing concurrently is realistic. Hence, more sophisticated algorithms can easily be

integrated.

36 Chapter 5. Implementation

WLAN

if(foo > 20)

400

if(bar > 15)

500

000

100 500

if(foo > 10)

if(bar > 20)

if(foo > 30)if(foo > 10)

100 200 300

thenelse

else then

CPU

Figure 5.2: Possible CARTs for the resources CPU and WLAN, based on the
given example

Chapter 6

Evaluation

The evaluation of the presented approach was done on an iPAQ with an Intel

PXA250 CPU featuring frequency scaling, a Cabletron wireless network interface

and an IBM microdrive. On this platform, the Familiar Linux distribution from

[13] was run. The kernel was modified for additional Resource Container support

and for logging of kernel characteristics. For details see Chapter 5.

6.1 Applications

Since the target platform for this work were mobile devices, the system was tested

for applications which are considered as typical for this scenario. These applica-

tions can be sorted into several categories: There is software for entertainment,

like games, media players and image viewers, and for use with the Internet, to

browse the web, download files or access remote computers. Additionally mobile

devices are often used as Personal Information Manager (PIM), for organizing ap-

pointments and for office concerns, like viewing and editing documents. The goal

of application selection was to cover all presented categories to setup a represen-

tative testing environment.

The following applications were chosen for testing:

• Web browser (Konqueror)

• Media player (Opieplayer2, VLC)

37

38 Chapter 6. Evaluation

– audio and video streams

– audio and video files

• PDF viewer (Qpdf)

• File download (scp)

• SSH session

• Game (Patience)

• Image viewer (Showimg)

• Bitmap painter (Drawpad)

• Calendar (Datebook)

• Text editor (Textedit)

These applications do not only differ in their purpose, but also in their char-

acteristic resource usage scheme and their resource demands. Therefore, it was

investigated if the resource usage characteristics, obtained as described in Sec-

tion 5.2, can be used for classifying the assigned resource profile. Different

CPU speeds, WLAN beacon periods and hard disk standby time-outs were dis-

tinguished.

6.2 Power Management Settings

Possible settings for CPU speed are clock rates of 200, 300 and 400MHz. For

playing audio files or downloading files from remote computers a clock speed of

200MHz is sufficient, while even 400MHz is too slow to play enduring smooth

video. A clock speed of 300MHz is appropriate for most interactive applications.

For the wireless network interface, the IEEE 802.11 standard defines a power

saving mode. The network interface card is put todozestate and woken up peri-

odically to ask the base station for new packets. The time interval for which the

device is sleeping is called beacon period and can be adjusted (see Section 2.1.2).

6.2. Power Management Settings 39

Features
Standard deviation of I/O idle times (time between two accesses)
Standard deviation of CPU active time
Standard deviation of CPU inactive time
Weighted average of CPU active time
Standard deviation of CPU waiting time
Average of CPU active time
Total CPU time within the considered time window
Standard deviation of I/O durations (length of I/O operations)
Number of read operations from files within the considered time window
Average of CPU inactive time
Number of write operations to device within the considered time window
Number of network packets received

Table 6.1: Features used to classify for resource CPU. The features are ordered by
quality.

The hard disk can be spun down to save energy. This is done after the standby

time-out occurred. For this work a short time-out in the order of the break-even

time and a longer one for applications accessing the hard disk more often can be

chosen.

For each application, the appropriate power management setting was deter-

mined beforehand. This was done by a user who ran the applications with dif-

ferent settings and determined those setting that represents his personal optimal

power/performance trade-off.

About three hours of training data were recorded by using the applications

presented in Section 6.1. This data was labeled with the optimal power manage-

ment settings and was afterwards used by the Classification And Regression Tree

training algorithm to generate the in terms of purity best class borders in feature

space.

Therefor, features retrieved of all resources are used as possible features for

any classification tree built by CART. 36 features computed on the characteristic

usage parameters which are listed in Table 5.1 were available. Hence, possible

features for the resource CPU were e.g. the average active time of the CPU as

well as features that are totally unrelated to the CPU such as the number of write

40 Chapter 6. Evaluation

Features
Number of read operations on sockets within the considered time window
Standard deviation of CPU inactive time
Data volume written within the considered time window
Number of read operations from files within the considered time window
Standard deviation of CPU active time
Total number of transmitted bytes
Total number of received bytes
Average of I/O idle time (time between two I/O accesses)

Table 6.2: Features used to classify for resource WLAN. The features are ordered
by quality.

operations to sockets or the standard deviation of the time between two hard disk

accesses.

In Section 6.4.2 other sets of possible features are evaluated. There the set of

all features is split into a subset of features related to the resource to classify and

a subset of unrelated features. Then the CART does its training on each subset

separately. For every other test all 36 features were used for training.

As mentioned in Section 3.2, the CART algorithm automatically selects the

best features. This are the features that divide the feature space so that the highest

purity for the subsets is achieved. The Tables 6.1, 6.2 and 6.3 list the best features

for classifying the resource profiles of CPU, WLAN and Hard Disk. Thereby,

the features are ordered such that the best is on top of the list and the worst used

feature at the bottom.

6.3 On-line Evaluation

6.3.1 Resource Profiles

To evaluate this approach under realistic conditions, an on-line test was per-

formed. The applications listed in Section 6.1 were tested on the iPAQ running

the modified kernel and the classification demon. The test runs of the different

applications took between 10 and 15 minutes each.

6.3. On-line Evaluation 41

Features
Standard deviation of I/O idle times (time between two accesses)
retrieved at the level of the cache subsystem
Standard deviation of I/O idle time (time between two accesses)
Average of CPU active time
Weighted average of CPU waiting time
Data volume written within the considered time window
Weighted average of CPU inactive time
Standard deviation of CPU waiting time
Average of CPU waiting time
Data volume read within the considered time window
Standard deviation of CPU active time
Total CPU time within the considered time window
Standard deviation of CPU waiting time
Total number of transmitted bytes
Number of bytes transmitted within the considered time window
Number of packets transmitted within the considered time window

Table 6.3: Features used to classify for resource hard disk. The features are or-
dered by quality.

The classification demon receives data from user space logging and computes

features from this data. Then the calculated feature vector is classified for each

resource (CPU, WLAN, HD) separately. If the classified power management set-

tings are constant over five successive feature vectors, the classification demon

initiates switching of the power management settings. To be able to evaluate the

on-line test, a log file was generated which contains the timestamps and settings

of each switch.

The constraint to reach five equal successive classifications before changing

the power management settings was introduced because needless switching based

on temporary classification errors should be avoided. An amount of five succes-

sive classifications turned out to reduce the amount of unnecessary changes of the

power management settings while the response time to new performance demands

is kept low.

The evaluation was done by determining the percentage of the application

runtime for which the correct power management setting was chosen. This was

42 Chapter 6. Evaluation

Application Resource
CPU WLAN HD

konqueror 100% 99.7% —
opieplayer
• audio from file 96.9% — 98.1%
• video from file 98.8% — 99.3%
• audio stream 99.5% 93.1% —
• video stream 71.8% 100% —
qpdf 100% — 100%
ssh 100% 100% —
scp 100% 99.3% 99.0%
showimg 100% — 100%
patience 97.7% — —

Table 6.4: Rates of correct power management settings

done for each resource separately.

When an application is started, the startup activity in the first few seconds dif-

fers from the typical characteristics of this application. Additionally time passes

until the sliding window of the classification algorithm is filled with typical data.

Therefore, the first 15 seconds were ignored for computing the rate of correct

power management decisions. The results are shown in Table 6.4. Almost every

application was classified correctly, which results in an average rate of correct

classifications of about 98%.

The only test run that is worse is the opieplayer playing a video stream. A

reason could be that the video stream for the on-line test had a lower bit rate than

most of the video streams used for training. As video streams with low bit rates

cause less computing, the classifier decided in favor of a lower CPU speed as

specified.

The computing overhead of this approach can be measured by means of the

resource containers. The overhead of the classification demon is in the order of

0.01%. Additionally, there is an overhead in the order of 0.001% for each running

application resulting from user space logging. Therefore, the overhead can be

neglected.

6.4. Off-line Evaluation 43

Application Resource
CPU WLAN HD

opieplayer audio stream96.9% 98.1% —
qpdf 100% — 100%

Table 6.5: Rates of correct power management settings of applications running in
parallel

6.3.2 Applications Running in Parallel

Besides good classification rates for each single application, another requirement

of a power management algorithm is the ability to deal with applications running

in parallel. When the algorithm collects system wide characteristics without as-

signing them to a concrete application, the characteristic data of applications run-

ning in parallel is mixed together. This may not be a problem if the applications

have similar resource demands and power management settings but otherwise this

leads to multiple switches of settings [29]. In such cases the classification is done

as if the data originates from a single application but in fact data segments of both

applications are classified alternately. Thus the classification results alternate ei-

ther.

Therefore, it has to be possible to assign usage characteristics to applications

to achieve accurate results. This can be achieved by means of the resource con-

tainer architecture introduced in Chapter 4. This was realized in this work as

explained in Section 5.

Hence, it was expected to achieve similar results for single applications and

applications running in parallel. To prove this an on-line test was done. The test

consisted of reading a PDF file while listening to an audio stream. The results

listed in Table 6.5 approved the assumption.

6.4 Off-line Evaluation

Because on-line tests are very time consuming, there has to be a possibility to do

off-line testing, too. This is especially important for fine tuning of parameters.

44 Chapter 6. Evaluation

Off-line testing is also useful as it can ease the comparison of different ap-

proaches, because it allows feeding the different tests with the very same data.

Therefore, the data collected from the kernel during the live tests was also logged

for off-line testing. In the following section, the approach of single resource pro-

files presented in Section 6.3 is compared to application profiles introduced in the

next section.

6.4.1 Application Profiles

A second approach was to classify application profiles instead of separate resource

profiles. This means the classification was no longer done for each resource sep-

arately, which would result in three classifications for each feature vector as done

in the first approach. Instead only one classification for each feature vector was

done, resulting in a class that represents one power management setting composed

of the appropriate CPU speed, beacon period and standby time-out. A comparison

of both approaches is shown in Figure 6.1. The first approach of single resource

profiles is illustrated in the upper half of Figure 6.1, while the lower half shows

the second approach of application profiles.

To discover which approach is more reliable, an off-line evaluation of both

approaches was done. To simulate the conditions of an on-line test, power man-

agement settings were only switched if the classification yields a constant result

over five successive classifications. Due to the startup time of the applications, the

first fifteen classifications were ignored for computing the rates of correct classi-

fications.

The evaluation was done as follows: To get a single classification rate for the

three separate classifications obtained by using resource profiles, a classification

result has been defined as correct if the classifications for all three resources were

correct; in all other cases, the classification result is defined as false. Then the

classification demons of both approaches were fed with the trace files of the on-

line test. Table 6.6 lists the rates of correct classifications for each application.

The resource profiles yield better results than the application profiles except the

video stream test.

6.4. Off-line Evaluation 45

Apply setting to resource

resources
(resource profiles)

classification of

Classifier

200MHz ... 400MHz

Resource Profiles

Application Profiles

Classifier

...

Classifier

500ms ... 0ms

Resources:

402251Union classes for application profile

Classifier

WLAN

Resources: WLAN

CPU

CPU

10sec...20sec

HD

HD

Classification

Classes for separate

Figure 6.1: Comparison between resource profiles and application profiles

A possible explanation of the worse results of application profiles could be the

following:

For both approaches the same potential features were used. The CART has

the task to find class borders in feature space. This is rather easy for only two or

three different classes but much more complicated for a multiple of classes. This

is because for a lot of classes it is more probable that the classes are not separable

in feature space.

A consequence of this problem is that especially similar classes such as the

four application profiles of the opieplayer can not be distinguished by the classi-

fier. This leads to alternating decisions which result in bad classification rates.

The results of the resource profiles in Table 6.6 and of the on-line test in Ta-

ble 6.4 differ slightly. This can be explained by the off-line evaluation. Instead

of getting the kernel data in real-time, the classification demon receives it all at

46 Chapter 6. Evaluation

Application Application Profiles Resource Profiles
konqueror 100% 100%
opieplayer
• audio from file 95.8% 96.7%
• video from file 49.3% 98.8%
• audio stream 85.8% 92.9%
• video stream 80.7% 72.3%
qpdf 100% 100%
ssh 100% 100%
scp 99.3% 99.3%
showimg 78.8% 100%
patience 90.2% 98.0%

Table 6.6: Comparison between the rate of correct classification of application
profiles and resource profiles

once from the trace files. Hence, the evaluation of the results with time stamps

is not appropriate. Instead a logic time was used, which was represented by the

line numbers of the trace files. Due to scheduling effects, there is a non linear

mapping between logic time and real time stamps of the on-line test, resulting in

slight differences in the computed classification rates.

6.4.2 Comparison of Different Feature Sets

Until now, the CART algorithm had the possibility to use all available features

to build the classification tree. It was also already mentioned that the implicit

feature selection done by CART may not be optimal (see Section 3.2). Therefore,

the impact of different feature sets should be investigated. As the search for the

optimal feature set is very time-consuming, this work focuses on the examination

of a few interesting feature sets.

The preceding tests were done on a selection (done by the CART) out of all

features. It was supposed to be interesting to investigate the impact of features

on the classification results that are calculated on parameters of a resource that

differs from the resource the CART is built for. Therefore, the set of all features

was split into two disjoint subsets for each resource. The first subset contained all

6.4. Off-line Evaluation 47

Application All features Related features Unrelated features
CPU CPU CPU

konqueror 100% 100% 36.7%
opieplayer
• audio from file 96.9% 100% 97.6%
• video from file 98.8% 100% 98.8%
• audio stream 99.5% 88.5% 99.4%
• video stream 71.8% 76.2% 97.8%
qpdf 100% 97.8% 100%
ssh 100% 20.8% 100%
scp 100% 100% 100%
showimg 100% 99.1% 100%
patience 97.7% 41.4% 100%

Table 6.7: Resource CPU: Rates of correct classifications for different feature sets

features of parameters that arerelated to the investigated resource. The second

subset contains all other,unrelatedfeatures that are retrieved of the remaining

resources. For example, the first subset for the resource CPU contains features

like “CPU usage” and “active time” while the second subset includes features as

“Number of received packets” or “Number of written sectors of the hard disk”.

First, the classifiers for the resources were trained with the set ofrelatedfea-

tures. Then the trace files recorded during the on-line test were used to evaluate

this feature set off-line as described in the last section. After that, the same was

done for the set ofunrelatedfeatures. The results for the resources CPU, wireless

network interface and hard disk are shown in Table 6.7, 6.8 and 6.9, respectively.

According to the results of Table 6.7, the features related to resource CPU

appear to be insufficient for reliable CPU speed classification. Especially the clas-

sification rates for ssh and patience are poor.

A matter for the very poor result of ssh for therelated feature set could be

that the major computing effort is done on the remote machine whereas on the

local machine only displaying is done so that there is only seldom and little CPU

usage. Because of that sparse data, the training was not able to find the correct

class borders. Instead, perfect classification is possible with theunrelatedfeature

set. This is proposed to be due to the characteristic network traffic of a ssh session.

48 Chapter 6. Evaluation

Application All features Related features Unrelated features
WLAN WLAN WLAN

konqueror 99.7% 100% 22.0%
opieplayer
• audio from file — — —
• video from file — — —
• audio stream 93.1% 99.2% 83.1%
• video stream 100% 100% 95.5%
qpdf — — —
ssh 100% 100% 100%
scp 99.3% 99.2% 90.0%
showimg — — —
patience — — —

Table 6.8: Resource WLAN: Rates of correct classifications for different feature
sets

Patience uses the CPU unsteadily. This is caused by the great amount of user

interaction on the one hand and the animation of the cards on the other hand.

So there are periods of user thinking which result in unused CPU and periods

of animation which is CPU intensive. Thus, the classification decisions alternate

which results in a poor classification rate. As another test approved, rising the

amount of equal successive classifications to ten would improve the classification

rate withrelatedfeatures of the resource CPU for patience to about 95%.

Theunrelatedfeature set appears to be even better than therelatedfeature set

for the resource CPU. This is supposed to be an effect of application selection.

It was intended to test applications that differ in their resource usage. So as the

tested applications differ especially in their usage of the hard disk and/or wireless

network interface, this information is suited to identify the applications and/or

their CPU performance demands.

The results of Table 6.8 show that therelatedfeatures of the wireless network

interface achieve slightly better results than the set of all features. This enforces

the suggestion to do feature selection to further improve the achieved results.

The web browser konqueror achieved very poor classification rates for the set

of unrelated features of both resources. This is supposed to be because of his

6.4. Off-line Evaluation 49

Application All features Related features Unrelated features
HD HD HD

konqueror — — —
opieplayer
• audio from file 98.1% 99.3% 84.0%
• video from file 99.3% 100% 28.9%
• audio stream — — —
• video stream — — —
qpdf 100% 99.8% 100%
ssh — — —
scp 99.0% 99.3% 99.8%
showimg 100% 100% 100%
patience — — —

Table 6.9: Resource Hard Disk: Rates of correct classifications for different fea-
ture sets

special usage characteristic of the wireless network interface. As konqueror is

assigned to a beacon period on its own but yields a common CPU usage charac-

teristic for GUI applications, the CART could not correctly determine the beacon

period from the CPU usage. Otherwise the special network characteristic could be

treated as erroneous at the training for the resource CPU because the konqueror is

only one of many applications with a CPU speed of 300MHz.

Therelatedfeatures even improve the classification rates slightly for the hard

disk as can be seen in Table 6.9.

With exception of few cases for the resource CPU, the features that are re-

lated to the resource to classify appear to be most dedicated for classification of

that resource. But due to the even rather good results of the unrelated features,

the feature selection should not be limited to the related features. A good mix-

ture/selection of all features should yield the best classification rates.

Chapter 7

Future Work

As adaptive power management has not yet received much attention as a research

subject, there is a wide range of improvements and further investigations.

To classify the characteristic usage data, features are calculated on that data.

A feature should have a value as similar as possible for data according to the same

class and should vary as much as possible for data of different classes. It has

been shown that a great amount of features can be calculated from the obtained

usage data. But more important than quantity is the quality of the features. The

Classification And Regression Tree algorithm already does feature rating but the

quality depends on the current training set (see Section 3.2). Other training sets

may result in a completely different rating. Therefore, further research is desirable

to find out which features are best and why, independent from the current training

set. This will help to create new and better features and also to reduce the amount

of features consulted for classification.

Currently the training of the classifier is done off-line. It would be more com-

fortable if also the training could be done on-line. This would allow to inter-

actively change the power management preferences of applications or to adapt

them to new applications. To achieve this, the training algorithm would have to

be ported to the iPAQ. An additional program that offers the possibility to set or

change the power management preferences for applications on-line could improve

usability for the end user. A change of the power management preferences could

then initiate the training algorithm to do new training.

Another task to be evaluated is the scalability concerning the number of ap-

51

52 Chapter 7. Future Work

plications running in parallel. In Section 6.3.2 it has been argued that due to ac-

counting with resource containers, the classification rate of applications running

in parallel is not reduced. But resource containers only assure separate logging

of the usage characteristics. Indeed, the usage characteristics itself could change

if there were several concurrent applications. The existence of this effect and its

influence on the classification rate has to be analyzed. If it exists, features have to

be found that are resistant to that effect.

It is assumed that the adaption of this approach to server environments is also

possible. In this context, information about the client/server relations is supposed

to be very useful for identifying the performance demands. Using resource con-

tainers, client/server relations are automatically identified. So the adaption to that

environment should not be complex. Of course, this information can also be used

to identify the relations between GUI applications and the X-server.

A more advanced and interesting extension to the developed approach would

be to not only adapt the power management mode of the hardware to the appro-

priate setting, but to adapt the hardware itself to the specific requirements of the

currently running application. In combination with reconfigurable hardware like

FPGAs, the presented approach would permit to use the optimal hardware config-

uration for each application.

Chapter 8

Conclusion

This work presents an adaptive power management method to reduce the energy

consumption without causing performance loss experienced by the user.

It is argued that the power/performance trade-off resulting from power man-

agement is application and user-specific. Therefore, it is necessary to adapt the

power management decision to the currently running applications. For this pur-

pose, different usage profiles which represent the user-defined power/performance

trade-off are identified.

The power management decision is achieved by considering characteristic us-

age data which is retrieved from the resources. This information is captured for

each application separately on operating system level by the abstraction of re-

source containers.

A classifier trained by the Classification And Regression Tree training algo-

rithm is automatically integrated into the classification demon. This demon re-

ceives the characteristic usage data and computes the according usage profile.

Then the appropriate power management settings for that profile are activated.

The approach was evaluated on an iPAQ running a modified Linux kernel and

the user space classification demon. An average classification rate of 98% was

achieved for several typical mobile applications. Due to the use of resource con-

tainers for separate accounting, the classification rate is not reduced for applica-

tions running in parallel either.

53

List of Figures

1.1 A widening gap between power requirements and the energy den-

sity of batteries [17] . 2

1.2 Tradeoff between power saving and performance 3

1.3 Opie Familiar Linux running on an iPAQ 4

2.1 Reception of packets for wireless network interfaces working in

Power Savemode, from [7] . 10

3.1 Classification system according to [23] 16

5.1 System overview . 26

5.2 Possible CARTs for the resources CPU and WLAN, based on the

given example . 36

6.1 Comparison between resource profiles and application profiles . . 45

55

List of Tables

5.1 List of parameters logged in kernel space 28

6.1 Features used to classify for resource CPU. The features are or-

dered by quality. 39

6.2 Features used to classify for resource WLAN. The features are

ordered by quality. 40

6.3 Features used to classify for resource hard disk. The features are

ordered by quality. 41

6.4 Rates of correct power management settings 42

6.5 Rates of correct power management settings of applications run-

ning in parallel . 43

6.6 Comparison between the rate of correct classification of applica-

tion profiles and resource profiles 46

6.7 Resource CPU: Rates of correct classifications for different fea-

ture sets . 47

6.8 Resource WLAN: Rates of correct classifications for different fea-

ture sets . 48

6.9 Resource Hard Disk: Rates of correct classifications for different

feature sets . 49

57

Bibliography

[1] Gaurav Banga, Peter Druschel, and Jeffrey Mogul. Resource containers: A

new facility for resource management in server systems. InProceedings

of the Third Symposium on Operating System Design and Implementation

OSDI’99, February 1999.

[2] Davide Bertozzi, Anand Raghunathan, Luca Benini, and Srivaths Ravi.

Transport protocol optimization for energy efficient wireless embedded sys-

tems. InProceedings of the Design, Automation and Test in Europe Confer-

ence and Exhibition (DATE’03), March 2003.

[3] L. Breiman.Classification and Regression Trees. Wadsworth, Belmont CA,

1984.

[4] Maria Calzarossa, Luisa Massari, and Daniele Tessera. Workload character-

ization issues and methodologies. In Günter Haring, Christoph Lindemann,

and Martin Reiser, editors,Performance Evaluation: Origins and Direc-

tions, pages 459–482. Springer-Verlag, 2000. Lect. Notes Comput. Sci. vol.

1769.

[5] Surendar Chandra. Wireless network interface energy consumption implica-

tions of popular streaming formats. In Martin Kienzle and Prashant Shenoy,

editors,Multimedia Computing and Networking (MMCN’02), volume 4673,

pages 85–99, San Jose, CA, January 2002. SPIE - The International Society

of Optical Engineering.

59

60 Bibliography

[6] Surendar Chandra and Amin Vahdat. Application-specific network manage-

ment for energy-aware streaming of popular multimedia format. InProceed-

ings of the 2002 USENIX Annual Technical Conference, June 2002.

[7] IEEE Computer Society LAN MAN Standards Committee.IEEE 802.11:

Wireless LAN Medium Access Control and Physical Layer Specifications,

August 1999.

[8] Compaq, Intel, Microsoft, Phoenix, and Toschiba. ACPI: Advanced config-

uration and power interface.http://www.acpi.info, 1996.

[9] Matthias Faerber. Application-specific power management for wireless net-

works. Master’s thesis, University of Erlangen-Nuremberg, January 2004.

[10] Krisztin Flautner and Trevor Mudge. Vertigo: Automatic performance-

setting for linux. InProceedings of the Fifth Symposium on Operating Sys-

tem Design and Implementation OSDI’2002, December 2002.

[11] S. Gelfand, C. Ravishankar, and E. Delp. An Iterative Growing and Pruning

Algorithm for Classification Tree Design.IEEE Trans. on Pattern Analysis

and Machine Intelligence, 13:302–320, 1991.

[12] K. Govil, E. Chan, and H. Wassermann. Comparing algorithms for dynamic

speed-setting of a low-power CPU. InProceedings of the first Conference

on Mobile Computing and Networking MOBICOM’95, March 1995. also as

technical report TR-95-017, ICSI Berkeley, Apr. 1995.

[13] Alexander Guy, Jamey Hicks, Russ Nelson, Carl Worth, Ken Causey, Phil

Blundell, Jim Gettys, and Koen Kooi. Handhelds.org - the familiar project.

http://familiar.handhelds.org, 12.30.2004.

[14] S. King, A. W. Black, P. Taylor, R. Caley, and R. Clark. Edinburgh speech

tools library.http://www.cstr.ed.ac.uk/projects/speechtools, 1.10.2005.

[15] Ronny Krashinsky and Hari Balakrishnan. Minimizing energy for wireless

web access with bounded slowdown. InProceedings of the Eighth Annual

ACM/IEEE International Conference on Mobile Computing and Networking

(MOBICOM 2002), September 2002.

Bibliography 61

[16] R. Kuhn. Keyword Classification Trees for Speech Understanding Sys-

tems. PhD thesis, School of Computer Science, McGill University, Mon-

treal, 1993.

[17] K. Lahiri, A. Raghunathan, S. Dey, and D. Panigrahi. Battery-driven sys-

tem design: A new frontier in low power design. InProceedings of the

7th Asia and South Pasific Design Automation Conference and 15th Inter-

national Conference on VLSI Design (VLSI Design / ASPDAC’02, January

2002.

[18] Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli. Requester-aware

power reduction. InInternational Symposium on System Synthesis, pages

18–23. Stanford University, September 2000.

[19] Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli. Power-aware op-

erating systems for interactive systems.IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 10(2), April 2002.

[20] Yung-Hsiang Lu and Giovanni De Micheli. Adaptive hard disk power man-

agement on personal computers. InProceedings of the IEEE Great Lakes

Symposium, pages 50–53, March 1999.

[21] David M. Magerman. Natural Language Parsing as Statistical Pattern

Recognition. PhD thesis, Stanford University, 1994.

[22] M. Neufeld, D. Grunwald, P. Levis, C. Morrey, and K. Farkas. Policies

for dynamic clock scheduling. InProceedings of the Forth Symposium on

Operating System Design and Implementation OSDI’2000, October 2000.

[23] H. Niemann.Klassifikation von Mustern. Springer–Verlag, Berlin, 1983.

[24] Odysseas I. Pentakalos, Daniel A. Menasc, and Yelena Yesha. Automated

clustering-based workload characterization. In5th NASA Goddard Mass

Storage Systems and Technologies Conference, September 1996.

[25] T. Pering and R. Broderson. The simulation and evaluation of dynamic volt-

age scaling algorithms. InProceedings of the International Symposium on

Low-Power Electronics and Design ISLPED’98, June 1998.

62 Bibliography

[26] Martin Waitz. Accounting and control of power consumption in energy-

aware operating systems. Master’s thesis, Department of Computer Science

4, January 2003. SA-I4-2002-14.

[27] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced

cpu energy. InProceedings of the First Symposium on Operating System

Design and Implementation OSDI’94, November 1994.

[28] Andreas Weissel, Bjoern Beutel, and Frank Bellosa. Cooperative I/O:

A novel I/O semantics for energy-aware applications. InProceedings

of the Fifth Symposium on Operating System Design and Implementation

OSDI’2002, December 2002.

[29] Andreas Weissel, Matthias Faerber, and Frank Bellosa. Application charac-

terization for wireless network power management. InProceedings of the In-

ternational Conference on Architecture of Computing Systems (ARCS’2004),

January 2004.

[30] Heng Zeng, Xiaobo Fan, Carla Ellis, Alvin Lebeck, and Amin Vahdat.

Ecosystem: Managing energy as a first class operating system resource. In

Proceedings of the Tenth International Conference on Architectural Support

for Programming Languages and Operating Systems ASPLOS’02, October

2002.

Anwendungsspezifische Energieverwaltung

in Betriebssystemen

In den letzten Jahren ist die Nachfrage nach mobilen Geräten stark gestiegen.

Da diese auf die begrenzte Energiereserve von Batterien angewiesen sind, ist ein

sparsamer Umgang mit Energie unerlässlich. In der Forschung gilt deshalb Ener-

gieverwaltung sowohl f̈ur mobile Ger̈ate als auch f̈ur eingebettete Systeme und

Allzweckbetriebssysteme als wichtiges Aufgabengebiet. Es gibt bereits eine Viel-

zahl von Verfahren, die den Energieverbrauch von einzelnen Komponenten, aber

auch vom gesamten System verringern. Oft haben die bekannten Verfahren al-

lerdings den entscheidenden Nachteil, dass sie nicht nur den Energieverbrauch,

sondern auch die vom Benutzer wahrgenommene Leistung des Systems reduzie-

ren.

Der in dieser Arbeit vorgestellte Ansatz geht davon aus, dass es sinnvoll ist,

nur dann Energie zu sparen, wenn die Leistung der Anwendungen von den Ener-

gieeinsparungen nicht negativ beeinflusst wird. Dazu wird ein System vorgestellt,

das dem Benutzer erlaubt, die seinen Leistungsansprüchen gen̈ugenden Energie-

sparmodi f̈ur Anwendungen zu spezifizieren. Diese Einstellungen werden dann

im Betrieb dynamisch vorgenommen. Um in den für eine Anwendung spezi-

fizierten Energiesparmodus zu wechseln, muss das Verfahren erkennen welche

Anwendung gerade verwendet wird. Dazu könnte man einfach den Energiespar-

modus mit dem Namen der Anwendung verknüpfen. So ẅare es allerdings nicht

möglich einer Anwendung verschiedene Energiesparmodi zuzuweisen. Mehrere

Energiesparmodi sind aber für Anwendungen die abhängig von der Nutzung sehr

unterschiedliche Leistungsanforderungen haben können sinnvoll. Zum Beispiel

belastet eine Anwendung zum Abspielen von Multimediainhalten den Prozessor

63

sehr unterschiedlich, je nachdem ob eine Audio- oder Videodatei abgespielt wird.

Deshalb werden die Energiesparmodi nicht den Anwendungen sondern sog. Nut-

zungsprofilen zugeordnet. Da aber keine direkte Information darüber vorhanden

ist in welcher Weise die laufende Anwendung verwendet wird, wird versucht das

Nutzungsprofil der aktuellen Anwendung an Hand von Nutzungscharakteristika

zu erkennen. Unter Nutzungscharakteristika versteht man statistische Datenüber

die Verwendung von Betriebsmitteln.

Für das Sammeln der Nutzungscharakteristika werden
”
Resource Container“

verwendet. Diese erm̈oglichen die Abrechnung von Dienstleistungen des Be-

triebssystems unabhängig von der Prozessstruktur. Durch eine Erweiterung der

Resource Container ist es zusätzlich m̈oglich die Verwendung des Prozessors,

die Sende- und Empfangscharakteristik der drahtlosen Netzwerkkarte und die Zu-

griffsmuster der Festplatte zu protokollieren.

Um die laufende Anwendung zu erkennen werden Methoden aus dem Bereich

der Mustererkennung verwendet. Die Nutzungscharakteristika werden mit Hilfe

eines Klassifikators auf die Nutzungsprofile abgebildet. Als Klassifikator werden

Entscheidungsb̈aume verwendet. Diese ermöglichen die Zuordnung von Einga-

bedaten zu Klassen indem sie sukzessiv binäre Entscheidungen treffen. Vorher

müssen die Entscheidungsbäume trainiert werden. Dazu muss eine klassifizier-

te Stichprobe vorliegen, d. h. der Benutzer muss in der Trainingsphase den Trai-

ningsdaten den geẅunschten Energiesparmodus zuordnen. Dann wird die Trai-

ningsmenge mit Hilfe des Entscheidungsbaums so geteilt, dass die den Blättern

des Baums zugeordneten Teilmengen möglichst homogen bezüglich ihrer Klas-

senzugeḧorigkeit sind. Der entstandene Entscheidungsbaum dient als Klassifika-

tor für die Nutzungscharakteristika.

Im laufenden Betrieb werden zunächst die Daten der Betriebsmittelnutzung

mit Hilfe der Resource Container protokolliert. Diese Daten werden regelmäßig

abgeholt und an den Klassifikationsprozess weitergeleitet. Dieser berechnet auf

den empfangenen Daten Merkmale, die zur Klassifikation mit dem Entschei-

dungsbaum verwendet werden. Die bei der Klassifikation erkannten Energiespar-

modi werden anschließend mit bereits vom Betriebssystem bereitgestellten Hilfs-

programmen aktiviert.

Dieses System wurde für einen iPAQ mit einem PXA250 Prozessor, der

64

Veränderungen der Taktrate und der Betriebsspannung ermöglicht, einer drahtlo-

sen Netzwerkkarte und einer Festplatte implementiert. Mehrere für mobile Ger̈ate

typische Anwendungen wurden zur Evaluation des Ansatzes untersucht.

Nahezu alle Anwendungen wurden in einem Test unter realen Bedingungen

richtig erkannt, wodurch eine durchschnittliche Erkennungsrate von ca. 98% er-

reicht wurde. Dank der separaten Protokollierung der Nutzungsdaten jeder An-

wendung durch die Resource Container kann diese Erkennungsrate auch erreicht

werden, wenn mehrere Anwendungen gleichzeitig ausgeführt werden. Um Kon-

flikte zwischen den spezifizierten Energiesparmodi parallel laufender Anwendun-

gen aufzul̈osen wird eine einfache Strategie genutzt: es wird immer der Ener-

giesparmodus verwendet, der die größere Leistung bietet, aber auch geringere

Energieeinsparungen ermöglicht. Allerdings ist es so m̈oglich, dass auch die Leis-

tungsanspr̈uche der leistungshungrigeren Anwendung erfüllt werden.

Es wurde versucht, an Stelle von einzelnen Energiesparmodi für jedes Ger̈at

einen globalen Energiesparmodus für alle Ger̈ate zu klassifizieren. Dies hat zu kei-

ner Verbesserung der Ergebnisse geführt. Weiterhin wurde der Einfluss von ver-

schiedenen Merkmalsmengen auf das Klassifikationsergebnis untersucht. Hierbei

hat sich gezeigt, dass die Merkmale, die von dem zu klassifizierenden Betriebs-

mittel stammen, oft aber nicht immer ausreichen, um sehr gute Klassifikationser-

gebnisse zu erzielen. Da allein mit Merkmalen von anderen Betriebsmittel auch

gute Ergebnisse erzielt werden konnten, erscheint eine Auswahl aus beiden Merk-

malsarten als die beste Lösung.

65

	Introduction
	Motivation
	Overview

	Related Work
	Power Management for a Single Resource
	CPU Frequency and Voltage Scaling
	Wireless Network Power Management
	Hard Disk Power Management

	System Wide Power Management
	Application Specific Protocols
	Workload Classification

	Classification
	Basic Principles
	Classification And Regression Trees

	Resource Container
	Resource Container Hierarchy
	Limitation of Resource Usage
	Representation of Resource Containers
	Modifications to Resource Containers

	Implementation
	Kernel Modifications
	User Space Logging
	Building the Classifier
	Classification Demon
	Classification
	Applying the Power Management Setting

	Evaluation
	Applications
	Power Management Settings
	On-line Evaluation
	Resource Profiles
	Applications Running in Parallel

	Off-line Evaluation
	Application Profiles
	Comparison of Different Feature Sets

	Future Work
	Conclusion
	List of Figures
	List of Tables
	Bibliography

