Universitét Karlsruhe (TH)

Institut fir
Betriebs- und Dialogsysteme

Lehrstuhl Systemarchitektur

Compatibility Mode Support
for L4Ka::Pistachio/AMDG64

Sebastian Reichelt

Studienarbeit

Verantwortlicher Betreuer: Prof. Dr. Frank Bellosa
Betreuender Mitarbeiter: Dipl.-Inf. Jan Stoess

December 7, 2006

Hiermit erklare ich, die vorliegende Arbeit selbststindig verfasst und keine
anderen als die angegebenen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only cited
sources have been used.

Karlsruhe, den 7. Dezember 2006

Sebastian Reichelt

Contents

[[Introductiord
E_Motivation

10
10
10

12
12
12
14
15
16

16
16
17
17
21
26
26

29
30
30

31

Figure 1: AMDG64 Operating Modes Figure 2: Usage of AMDG64 Modes

Legacy Mode i Long Mode !
Legacy Mode Long Mode ! - P ST
R S \Compatibility! !
[32-bit | [32-pit |11 11 [ea-bit | 1 | 327D |1
lprogram) (program ;1! (program] | | programy 1
Compatibility Mode b 32-bit hoon 64-bit x

Virtual-8086 Mode | kernel [kernel

1 Introduction

The AMD64 processor architecture [I], also known as Intel 64 [2], has started
to replace the traditional TA-32 design in servers and personal computers.
One reason for this success is the high degree of backward compatibility to
[A-32 that AMD64 provides. In ,Legacy Mode”, AMDG64 processors show the
same behavior as IA-32 processors in most cases (see Figure [l), and there-
fore software written for IA-32 can be run unmodified (including operating
systems, see Figure). Operating systems specifically written for AMD64
can switch to ,Long Mode” and use 64-bit registers and addresses. To exe-
cute programs compiled for TA-32, they may activate ,,Compatibility Mode”,
a sub-mode of Long Mode. This causes a temporary transition to the 32-bit
or 16-bit instruction set and enables operating systems to simulate a 32-bit
or 16-bit environment.

L4Ka [T0] is a microkernel developed at the University of Karlsruhe. In
addition to the original TA-32 implementation, an AMDG64 port exists. The
objective of this study thesis was to implement Compatibility Mode support
for the AMDG64 port of L4Ka, to achieve binary compatibility with existing
programs compiled for 1.4 /TA-32.

Since L4Ka is designed for minimum kernel size and very fast IPC, the main
goal of the design and implementation was to achieve good performance of
IPC between all types of threads, while keeping the amount of code added to
the kernel minimal. Analysis showed that aiming for good IPC performance
or code minimality leads to different design alternatives. We implemented
the solution that maximizes IPC performance, showed that the implemen-
tation performs well indeed, and that the complexity added to the kernel is
acceptable.

2 Motivation

The simplest way to run TA-32 applications on an AMDG64 system is to use a
kernel compiled for IA-32 and let it operate in Legacy Mode. This approach
does not require any additional programming effort, and usually even per-
forms better (see Section [B2). However, in many scenarios it is not sufficient:

e Porting applications from [A-32 to AMD64 can improve performance
in some cases [B, Section 1.1]. If the AMDG64 kernel supports [A-32 ap-
plications, performance-critical applications can be ported to AMD64,
whereas others do not have to be modified.

e The number of pure AMDG64 systems, consisting of an AMDG64 kernel
and applications compiled for AMDG64 64-bit Mode, is likely to increase
in the future. However, even in such environments, users will want to
run existing 1A-32 applications, for example if no AMDG64 ports are
available.

e In the L4Ka virtualization project, L4Ka acts as a host for other guest
operating systems (e.g. Linux) [II]. If a 64-bit guest operating system
attempts to run a 32-bit user application, L4Ka will need to run the
guest application in Compatibility Mode.

3 Related Work

Support for running applications compiled for IA-32 is available in AMD64-
targeted Linux [I4] and BSD kernels (at least NetBSD [13]).

[A-64 is another architecture with similar support for running IA-32 binaries
[[. For the TA-64 target of the L4Ka microkernel, an experimental imple-
mentation exists as part of a diploma thesis [T5].

In Section BTl we will analyze and compare how these implementations are
designed, investigate on other design alternatives, and decide on a solution
that meets the design goals.

4 Design

Apart from the straightforward task of activating Compatibility Mode in the
processor, the kernel needs to be extended in several ways to support running

bt

existing 32-bit user applications. The main reason is that the IA-32 and
AMDG64 kernel interface of the 1.4 microkernel are different. Specifically, data
structures exported by the kernel differ in word size and other aspects, and
different registers are used for arguments of system calls. The AMDG64 kernel,
in turn, currently expects applications to contain 64-bit executable code. For
example, the kernel debugger decodes certain instructions to perform special
actions such as entering debugging mode or waiting for a key press.

4.1 Kernel vs. User Level

There are basically two design alternatives: a user-level and kernel-level ap-
proach (see Figure B). They have different implications on complexity and
performance, the most notable impact is the implementation of system calls
(see Figure H).

1. The kernel can be designed to treat IA-32 and AMDG64 programs more
or less equally. The kernel presents itself to AMD64 programs with an
AMDG64 interface, and to IA-32 programs with an interface compatible
to the one provided by the IA-32 kernel. Whenever the kernel com-
municates with a user-level program, it needs to determine the type of
program and use the correct version of the interface. From the user’s
point of view, there is practically no difference between the two types
of programs. The Linux kernel takes this approach: It implements
the IA-32 system call interface inside the kernel, as a wrapper that
converts the arguments and calls the actual system call functions de-
signed for AMDG64 (see Linux kernel source code [I4], version 2.6.17,
file arch/x86_64/1a32/sys_ia32.c).

2. Alternatively, the kernel may provide an AMDG64 interface only, since
the interface required by IA-32 binaries can be implemented by a com-
patibility layer that does not necessarily need to be executed in kernel
mode. This solution is similar to user-level software running programs
written for a different operating system (e.g. WINE). Translation of
data structures is performed at user level, which is possible in L4 be-
cause system calls are not invoked directly but by calling a kernel-
supplied user-mode stub. However, the kernel needs to provide minimal
support for switching between AMD64 and TA-32 mode. The experi-
mental implementation for L4Ka/IA-64 was designed to take this ap-
proach; however, due to restrictions of the IA-64 architecture, the data
conversion actually happens in kernel mode, as illustrated by Figure @

(b) [I5, Figure 4.5].

Figure 3: Kernel-level and user-level solutions

Kernel-level User-level
Compatibility
rogram layer
64-bit 32-hit 64-hit BieS Y
program/ |program program User mode

Kernel mode
Kernel

Full 32-bit Basic 32-bit
compatibility layer support

At first sight, the user-level approach appears to be best suited for a micro-
kernel:

o [t keeps the kernel as small as possible, which is one of the main prin-
ciples of microkernel design [T6].

e [t is more robust and secure, since errors in the conversion process do
not have any impact on the kernel.

e The kernel does not need to differentiate between 32-bit and 64-bit pro-
grams in most cases. In the kernel-level solution, the kernel frequently
needs to determine the type of program, which introduces some over-
head even for AMD64 programs.

However, there are several important drawbacks:

e The speed of IPC operations is critical in a microkernel. Multi-threaded
[A-32 applications will generally invoke a lot of IPC operations from
32-bit to 32-bit threads. A user-level compatibility layer usually needs
to convert IPC data to 64-bit values first, then convert it back on the
receiving side. Data conversion obviously causes a fairly large overhead.

— Alternatively, a special IPC short path can be implemented, as
outlined in the diploma thesis about 32-bit support for TA-64 [T3,
Section 5.2]. However, this solution requires additional kernel sup-
port, contrary to the goal of keeping kernel code minimal.

e Translation of system call arguments and other data structures always
causes a delay. Since system calls are executed very often, such a
delay may actually be noticeable. If the kernel natively supports [A-32

7

Figure 4: IPC and other system calls

| Call user-mode system call stub |

Execute kernel system call | | Return to program |
| Y prog User mode
Kernel mode
| Convert arguments | | Convert return values |
\ /

| Execute system call handler |

1
¥

| Access 32-bit UTCB and convert values |

(a) Kernel-level solution with direct UTCB access

| Call user-mode system call stub |

Execute kernel system call | | Return to program |
| Y prog User mode

Kernel mode
| Convert arguments | | Convert return values |

| Convert UTCB | | Convert UTCB |

| Execute system call handler |

(b) Kernel-level solution with UTCB conversion

| Call user-mode system call stub |

| Jump to 64-bit mode | | Return to program |
\
| Call 64-bit user-mode system call stub | | Jump to 32-bit mode |
| Convert arguments and UTCB | | Convert return values and UTCB |

| Execute kernel system call |
User mode

| Execute system call handler | Kernel mode

(c) User-level solution

| Call user-mode system call stub |
Return to program

| Convert arguments and UTCB | | Convert return values and UTCB |

Execute special kernel system call |
| P Y User mode

| Execute system call handler Kernel mode

(d) Intermediate solution

programs, it does not always need to convert arguments (e.g., if it needs
to decode arguments anyway before continuing, or if some arguments
are ignored in certain situations).

e The code that converts system call arguments needs to be executed in
64-bit mode (see FigureM (c)), since it needs to conform to the AMD64
system call interface if it is not built into the kernel. (The AMDG64
interface of L4 uses 64-bit registers not available to 32-bit programs.)
Therefore a switch from 32-bit to 64-bit mode is necessary before the
actual system call, which causes an additional delay.

— An intermediate solution is possible as well (see Figure @l (d)): 32-
bit user-level code converts the arguments, saves them at locations
known to the kernel, and invokes a special 32-bit system call. The
system call handler reads the values and directly passes them to
the 64-bit system call handler. However, this approach does not
require much less in-kernel code than implementing 32-bit system
calls natively.

e In the L4 microkernel, a UTCB (User-Level Thread Control Block) is
used as part of the interface between a program and the kernel [0]. Both
kernel and user programs write to the UTCB and expect the change
to be visible on the other side. Since the UTCB data structures of the
[A-32 and AMD64 interface are different, two UTCBs are necessary,
and the compatibility layer constantly has to transfer data between
them. In the L4Ka/TA-64 implementation, UTCB synchronization has
a significant impact on TPC performance [I5, Section 5.2].

e The KIP (Kernel Interface Page) of L4 contains certain volatile system
data, such as the processor frequency. Since the compatibility layer
needs to provide a KIP compatible with the TA-32 L4 API, it needs to
read and translate all volatile data from the AMD64 KIP periodically.
It cannot provide the information on demand because 32-bit code may
read the values without notifying the compatibility layer.

To avoid these drawbacks, especially the high cost of IPC operations, we
chose to implement the kernel-level alternative (as in Figurel (a)), providing
a native [A-32 interface to 32-bit programs.

4.2 Address Spaces

Another less important design decision is whether 32-bit and 64-bit threads
are allowed to run in the same address space. In theory, the AMDG64 archi-
tecture supports this, with the limitation that 32-bit threads can only access
the first 4 GB of their address space [, Section 1.3.3]. However, this fea-
ture is not required in any case — the same effect may be achieved using two
identical address spaces — and possible applications are very rare. In 14,
this would require the address space to contain two KIP structures, one for
64-bit programs, the other for 32-bit programs. Since the design of the L4Ka
implementation strongly depends on a single KIP area, which is referenced
at various places throughout the entire source code, our implementation will
not permit 32-bit and 64-bit threads to run in the same address space.

4.3 Transparency

Communication with 64-bit threads must be transparent to 32-bit threads,
since the goal of Compatibility Mode support is to run unmodified 32-bit
programs. Transparency is not strictly required on the 64-bit side, but still
desirable, as it reduces programming effort for 64-bit programs.

4.4 API

Since loading and decoding of executable files is done at user level in 14,
the AMDG64 kernel interface must be extended so user-level code can specify
that a thread is to be executed in Compatibility Mode. Moreover, 64-bit
programs sometimes need to know whether an IPC message was sent by a
64-bit or a 32-bit thread. There a a few possible solutions, all of which have
pros and cons:

e Encode the thread type information in the thread ID, by setting a
previously unused bit for 32-bit threads. In other words, divide the
thread ID space into two parts, one for 32-bit threads, the other for 64-
bit threads. Ideally, the kernel analyzes this bit only when it needs to
decide whether a thread is running in Compatibility Mode, and 64-bit
user-level code can use it to detect IPC messages from 32-bit threads.
An experimental implementation used such a design, but the solution
has some serious flaws:

10

— The API specification states: “A global thread ID consists of a
word, where 18 bits (32-bit processor) or 32 bits (64-bit processor)
determine the thread number and 14 bits (32-bit processor) or 32
bits (64-bit processor) are available for a version number.” [9]
Section 2.1] Although it does not require all 32 bits of the thread
number to be usable, assigning another role to any bit of the thread
ID violates the present specification.

— Before the kernel delivers an IPC message, it checks whether the
destination thread carries the correct thread ID. However, when
a 32-bit thread sends a message, it cannot differentiate between
32-bit and 64-bit destination threads, since it only knows 32 out
of the 64 bits representing the thread ID (which must be the lower
18 bits of the thread number and the lower 14 bits of the version
number). Therefore the check will fail for either 32-bit or 64-bit
destination threads, unless the bit is either excluded from thread
ID comparison in the kernel or set correctly when system call
arguments are converted from 32 to 64 bits.

e Add aflag to the ThreadControl system call responsible for thread ma-
nipulation in L4. Since no control argument exists, it must be encoded
in another argument for existing 64-bit applications to work. Using
ThreadControl especially makes sense because logically the type of
executable code is an attribute of the thread.

e Specify it via SpaceControl, which is responsible for address space
manipulation, instead of ThreadControl. Such an approach is possible
if 32-bit and 64-bit threads are not allowed to run in the same address
space. One advantage is that the SpaceControl system call contains a
control argument featuring architecture-specific flags. However, since
SpaceControl is always executed after ThreadControl, the kernel does
have any information about the type of a thread when it is created. This
can cause problems, for example when setting the initial values of the
segment registers.

The final implementation uses this design, and specifically addresses
the issue of SpaceControl and ThreadControl call order.

When a 32-bit thread sends an IPC message to a 64-bit thread, the
kernel notifies the 64-bit thread by modifying its UTCB.

11

5 Implementation

In this section, we will present the details of the implementation of Com-
patibility Mode support in L4Ka::Pistachio/AMD64. We will describe how
the required hardware features are accessed, how each aspect of the overall
design is implemented, and which special problems are met.

5.1 Hardware Support

The processor switches to Compatibility Mode if the L bit in the segment
descriptor of the current code segment is set [d, Section 4.8.1]. This bit
must either be set and reset on every thread switch, or two different segment
descriptors must be set up, and the segment selector must point to the correct
one.

The latter approach is always preferable because the code segment selector
(CS) must be reloaded anyway if the segment descriptor is modified [, Section
4.4], thus the cost of modifying the segment descriptor is definitely higher.
Moreover, sysret, the processor instruction used to return to user mode
from system calls, sets the segment selector to different predefined values
depending on whether it is called with a certain prefix [5, Section 4]. Thus,
instead of setting the segment selector explicitly, the implementation sets it
implicitly by using the prefix in the 64-bit system call handler only.

The stack segment selector (SS) is always set to the same value by sysret,
regardless of the target mode. In L4, the value is the same as the user data
segment selector (DS). In the segment descriptor, the D bit must be set for
correct operation in Compatibility Mode. It is ignored in 64-Bit mode.

On the AMD64 test machine, in some cases a stack exception occurred on
the first stack access after the system call return. I have not found the cause
of this problem, actually it seems to be a hardware bug. It can be worked
around by reloading the SS register after the system call.

5.2 KIP and UTCB

One of the main design goals was to keep the amount of code added to the
kernel minimal. To achieve this goal, the header files containing the KIP
(Kernel Interface Page) and UTCB (User-Level Thread Control Block) data
structures were modified to be able to include them multiple times in the
same source file, creating data types of different word size.

12

Figure 5: Redefinition of Data Types

namespace ia32 {
typedef u32_t word_t;
#include <file.h>

To create two data types, a header file is included normally at first, then
again within a namespace declaration. Using a namespace works around the
obvious name conflict, and more importantly the namespace will be searched
first for every data type used by the header file. Therefore even general data
types may be redefined for the 32-bit data structures, by defining types of
the same name in the namespace (see Figure H).

This works even if the header file contains several data types that use each
other, since all of them will be redefined in the namespace. They can be
accessed outside of the namespace by prefixing them with the namespace
identifier.

Since the KIP is usually not modified after the system has been initialized,
copying the data from the 64-bit KIP to the 32-bit KIP at boot time is
enough. In the future, the 64-bit and 32-bit KIPs will have to be updated
simultaneously, for example when processor frequency scaling support is in-
troduced. (The user program can read the current processor frequency from
the KIP.)

When an address space is initialized, the KIP is mapped into it at a user-
defined virtual address. Therefore at that time, the required word size needs
to be known, and the KIP must be chosen accordingly. Kernel access to the
32-bit KIP is never needed at any other time.

Providing a 32-bit UTCB is more complex, as the kernel needs to read and
modify its fields. Fortunately, all accesses are performed via functions in
the TCB data structure, which we rewrote to check the type of thread and
access the UTCB accordingly. A cleaner and possibly even faster approach
would be to use two UTCB wrapper classes inside the kernel, which inherit
virtual UTCB access functions from a single abstract class. However, even
though the kernel is written in C++4-, the infrastructure necessary for virtual
functions is not present. Moreover, special magic would be needed to avoid
virtual functions if only one type of UTCB is used. And in general, virtual
functions impose performance problems rather than solving them.

The operation to copy message registers from one UTCB to another is part
of the TCB data structure as well. The Compatibility Mode version uses

13

optimized copy loops for 64-bit to 64-bit and 32-bit to 32-bit transfers. This
way good performance may be achieved very easily.

At user level, the UTCB is accessed by dereferencing a pointer stored at GS:0
in the IA-32 and AMD64 interfaces. As a result, the kernel must set the GS
segment base to point into a special page containing such pointers. In both
[A-32 and AMDG64 kernels, the page is mapped outside of the user area, to
avoid conflicts with user mappings. However, in Compatibility Mode, the
upper 32 bits of the segment base are ignored, so another mapping at the
same address truncated to 32 bits must be set up. For security, the user must
be prevented from mapping this page to other programs, and especially from
unmapping or overmapping it.

5.3 System Calls

In L4, user code invokes system calls by calling kernel-supplied stub func-
tions which execute the actual system call instructions. The kernel supplies
the addresses of these functions via the KIP. In the AMDG64 interface, the
addresses are absolute, but on [A-32 they are relative to the base address of
the KIP. Since the kernel only allocates a single KIP for each word size, these
relative addresses are fixed. However, the KIP is mapped into address spaces
at different locations, so the virtual addresses of the 32-bit stubs depend on
the virtual address of the KIP. Therefore, the stubs need to be combined
with the KIP and mapped along with it.

On AMDG64, the preferred instruction to enter the kernel for system calls
is syscall Ml Section 6.1]. The kernel may specify different entry points
for system calls executed by 64-bit and 32-bit programs. The 32-bit system
call handler must conform to the IA-32 kernel ABI, so it needs to read the
arguments from the registers used in the IA-32 interface, convert them from
32-bit to 64-bit data structures, and then call one of the system call functions
which are used by the 64-bit handler as well. When this function returns,
the system call handler must convert the return value and copy it into the
register specified by the TA-32 ABI.

The syscall instruction clobbers the ECX register, which is used by some
system calls in the IA-32 ABI of L.4. The user-mode system call stub supplied
by the kernel therefore needs to copy the contents of this register to another
register or to memory before calling the syscall instruction. The system
call handler must be adapted accordingly.

The Intel equivalent of AMDG64, called EM64T, differs from AMDG64 only in
a few aspects, but one of these is that the syscall instruction may not be

14

called from Compatibility Mode. Instead, Intel offers sysenter [0, Section
4.8.7.1], which has slightly different semantics, requiring modified user-mode
stubs and a different system call handler. sysenter, in turn, is not available
on AMDG64 in Compatibility Mode. To keep the kernel simple, the type of
system must be chosen at compile time. Actually, the use of syscall on
EM64T or sysenter on AMDG64 raises an illegal opcode exception, so these
instructions can be emulated easily by calling the system call handler directly
from the exception handler. However, since the overhead of exceptions is
much higher than the overhead of regular system calls, this method is not a
realistic option.

54 1IPC

When a 32-bit thread sends an IPC message to a 64-bit thread, the upper
32 bits of the destination message registers are zero-filled, treating the values
as unsigned integers (except for the label, which is sign-extended). The
resulting 64-bit values are correct for addresses, fpages, string items, and
map/grant items, so no special treatment is necessary for any of these. When
the kernel decodes the message to handle string and map/grant items, it reads
the message registers from the UTCB using the access functions, and then
operates on the values independently of the type of thread.

For simple register-only IPC, L4Ka/AMDG64 offers a fast path bypassing the
usual IPC system call function. If the source thread is a 32-bit thread, the
fast path is not used, since there is a separate system call entry point for
Compatibility Mode. However, if the source thread is a 64-bit thread and
the destination thread is a 32-bit thread, the fast path may be entered acci-
dentally unless special care is taken. The fast path implementation already
contains checks for all non-standard conditions requiring slow path IPC, in-
cluding a check for resource bits set in the source or destination thread. Re-
source bits indicate the need to perform specific actions on a thread switch,
such as saving and restoring floating point registers. In the AMD64 port, set-
ting a resource bit in one of the two threads involved unconditionally causes
the slow path to be entered. Thus, adding a Compatibility Mode resource
bit is sufficient to prevent fast path IPC from being used between 64-bit and
32-bit threads.

15

5.5 Miscellaneous

As the ExchangeRegisters system call uses more than two registers to return
values, its implementation uses a special return path separate from the actual
system call handler. In other words, the sysret instruction is performed
inline inside of the system call function. If Compatibility Mode support is
enabled, the return code needs to check whether the calling thread is a 32-bit
thread, and use the appropriate registers and sysret prefix.

The kernel debugger decodes certain instructions to perform special actions
such as debugger entry and console I/O. To trigger a kernel debugger feature,
user or kernel-level code must execute a software interrupt followed by a
specific instruction. The AMDG64 kernel debugger interface uses the same
instructions as the IA-32 interface, but operands are usually extended from
32 to 64 bits in the 64-bit instruction set of AMDG64. Therefore, in the
interrupt handler, the kernel debugger first needs to determine the type of
thread and then read 32 or 64 bits from user memory, respectively.

The L4Ka kernel compiled for the AMD64 platform is substantially larger
than the [TA-32 kernel. The size becomes an issue when the root task is an [A-
32 program because root tasks receive idempotent memory mappings from
09. Per default, 32-bit root tasks use base addresses that are occupied by the
kernel on AMDG64. The base addresses can be changed in the compile-time
configuration, but actually such a conflict is hardly noticeable. Therefore we
extended the boot loader utility to detect and report it.

6 Evaluation

In this section, we will evaluate the implementation in several ways. First
of all, we will ensure that it provides correct functionality in the sense that
programs compiled for L4/IA-32 can be executed and produce the same re-
sults as on the TA-32 kernel. Next, we will measure performance of TPC
between all types of threads, as good IPC performance was one of the main
design goals. Finally, we will analyze and justify the amount of additional
complexity introduced into the kernel source code.

6.1 Correctness

The L4Ka distribution contains an L4 test suite covering a large part of
the functionality defined in the L4 specification. The TA-32 version of L4Ka

16

passes most of the tests. One exception is the return value of the IPC sys-
tem call when called with a local destination ID. For some other tests, the
expected result is not obvious, so it is unclear whether the tests succeed or
fail.

Therefore, when evaluating the Compatibility Mode implementation, the goal
was not for all tests to succeed, but to produce the same results when run on
an AMDG64 or [A-32 kernel. In this sense, the implementation has been tested
successfully using the regular test suite compiled for the TA-32 platform.

The virtualization layer built on top of L4Ka is a complex L4 application
using many advanced features of L4. Although a real application can not
replace a test suite, it serves well as an addition. However, I was not able
to get the virtualized Linux system to run completely even on an TA-32
microkernel. Shortly after the kernel has booted, the system hangs. When
executed on top of the AMD64 microkernel on the same machine, it hangs
directly after kernel boot-up, or even earlier if IDE support is enabled in the
Linux kernel.

6.2 Performance
6.2.1 64/64-bit Performance

The most critical performance data to be measured is the speed of regular
IPC between two 64-bit threads, more precisely whether the existence of
Compatibility Mode support in the kernel has a noticeable impact on 64-bit
I[PC performance.

For performance analysis, we need to distinguish between two different types
of IPC operations: Like the TA-32 target of L4Ka, the AMDG64 target offers
an optional fast path for IPC operations that meet certain criteria [12]: For
example, the message may only contain untyped words (no string or map
items), the destination thread must be waiting, and as a new requirement, it
must be a 64-bit thread as well. More complex IPC operations are handled
by the slow path. The fast path can be turned off entirely in the kernel
configuration menu.

The fast path code, including all of the validity checks, is written entirely in
Assembler and does not contain any calls to other parts of the kernel. The
addition of Compatibility Mode support did not require any changes to this
code. To prevent an IPC operation with a 32-bit target thread from entering
the fast path, the implementation uses the existing functionality of “Resource
Bits”, which is actually designed to inform the kernel about special resources

17

to be saved and restored on thread switches (such as floating point registers).
In the AMDG64 implementation, the slow path is entered whenever one of the
involved threads’ resource bits is set. Consequently, the compiled fast path
code of the Compatibility Mode kernel is instruction-identical to the present
version. If there are any performance differences, they must be the result of
alignment, caching, or TLB issues.

For performance measurements, an IPC ping-pong program is included with
the L4Ka distribution. It starts two threads sending a given number of IPC
messages to each other, consisting of a varying number of untyped words.
For each message size, it calculates the average time a single IPC opera-
tion takes, and expresses the time in processor cycles as well. The user can
choose whether the threads run in different addresses spaces and on different
processors (if multiple processors are available).

Using this program, we measured the performance of slow-path IPC between
two 64-bit threads on L4Ka/AMDG64, using three different kernels:

e the original kernel without any modifications related to Compatibility
Mode (except for some general bug fixes),

e a kernel built from the modified source code, but with Compatibility
Mode support disabled at compile time,

e and finally, the modified kernel with Compatibility Mode support en-
abled.

All kernels were built using the same compiler and executed on the same two
machines: An AMD64 system with an AMD K8 processor and an EM64T
system with an Intel P4 processor. All debugging facilities were excluded at
compile time, and the AMD K8 Flush Filter was disabled for better accuracy.
Since address space switches have relatively high performance costs which
are dictated by the hardware and obviously not influenced by Compatibility
Mode support, the most relevant results are those of two threads running in
the same address space.

The actual results (see Figure) leave some room for interpretation, but a
few conclusions can be drawn:

e [PC Performance of all three kernels differs by less than 25 processor
cycles per IPC operation.

18

Figure 6: 64-bit Intra-AS IPC Performance

320
300
280
o 260
o [l Before changes
c>), [] After changes, Compatibi-
O 2401 lity Mode disabled
B After changes, Compatibi-
lity Mode enabled
N IIIIIIIII
180 -
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Registers
(a) AMD K8

[l Before changes

[] After changes, Compatibi-
lity Mode disabled

B After changes, Compatibi-
lity Mode enabled

Cycles

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Registers
(b) Intel P4

19

Figure 7: 64-bit Inter-AS IPC Performance

580
560
540
o 520
K Il Before changes
c>), [] After changes, Compatibi-
O 500 lity Mode disabled
B After changes, Compatibi-
lity Mode enabled
480
460
440
Registers
(a) AMD K8
1460

[l Before changes

[] After changes, Compatibi-
lity Mode disabled

B After changes, Compatibi-
lity Mode enabled

Cycles

8 12 16 20 24 28 32 36 40 44 48 52 56 60
Registers
(b) Intel P4

20

e Performance measurement using the ping-pong program is not accurate
enough to provide exact quantitative data. For example, in theory, the
Compatibility Mode kernel can never perform better than the original
kernel, and a larger IPC message must always result in a longer transfer
time. Some of the anomalies disappear when taking the average over
multiple runs, others remain. In any case, exact cycle counts are an
illusion because of caching and pipelining effects or interrupts.

e Nevertheless, it is evident that the Compatibility Mode kernel consumes
a few more cycles per IPC operation than the original kernel. This is
a predictable result because Compatibility Mode support introduces
some additional instructions determining the type of thread at a few
places in the code.

e The number of additional cycles can be regarded as constant with re-
spect to the number of message registers. On the AMD K8 system, an
IPC operation uses approximately 4 additional cycles if Compatibility
Mode is enabled. Given the total number of cycles per IPC operation,
this is an increase of 2% or less, depending on the number of message
registers. (Note that the scale in the figures does not start at 0 cycles.)
The Intel P4 data is very inaccurate, a rough estimate is 20 cycles or

5%.

e The modified kernel with Compatibility Mode disabled cannot be proven
to perform worse than the original kernel (which would, in fact, be sur-
prising, since the differences between these two kernels are minimal).

The remaining question is whether a performance drop of 2% or even 5% is
acceptable. Such an impact on performance could be avoided if one of the
other design alternatives was chosen. However, it is important to remember
that fast-path IPC is not affected. For this reason, we claim the performance
drop to be acceptable.

6.2.2 32/32-bit Performance

Since Compatibility Mode support was designed to run unmodified programs
compiled for the IA-32 architecture, the IA-32 version of the ping-pong pro-
gram can be used to measure the speed of IPC between two 32-bit threads
on a native AMDG64 kernel, and to produce an accurate comparison with an
[A-32 kernel running on the same machine.

21

Figure 8: 32-bit Intra-AS IPC Performance

I IA-32 kernel
Il AMD64 kernel

I IA-32 kernel
Il AMD64 kernel

(a) AMD K8

Registers

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

(b) Intel P4
22

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Registers

800
750
700
650
600
550
500

450+
400
350
300
250
200
150
100

50+
0

n
Q@
O
=
@)

Figure 9: 32-bit Inter-AS IPC Performance

I IA-32 kernel
Il AMD64 kernel

1100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Registers

(a) AMD K8

I IA-32 kernel

Il AMD64 kernel

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

2600

Registers

(b) Intel P4

23

The results (see Figure B) are as inaccurate as the 64-bit results, but a quo-
tient of less than 1.7 between the number of cycles used by the AMD64
kernel and the IA-32 kernel is common to all measurements. (On the AMD
K8 system, it is between approximately 1.5 for empty messages and 1.4 for
messages with 60 untyped words. The Intel P4 system has a quotient near
1.7 for empty messages, but 1.5 as well for 4 untyped words. The quotient
between execution times is always the same as the quotient between cycles,
which shows that cycles are not measured differently depending on the ker-
nel).

Whether this value is high or low is a matter of opinion. In general, a
certain unavoidable performance overhead is induced by the conversion of
kernel data structures such as thread IDs. For a complete evaluation, the
alternative user-level design of Compatibility Mode support would need to
be implemented, in order to get comparable results.

Unfortunately, the diploma thesis describing the IA-64 implementation does
not contain a comparison with a native IA-32 kernel. The author does com-
pare 32-bit and 64-bit IPC, to discover that 32-bit IPC is slower by a factor
of 2.1 [IH, Section 5.2]. Results on AMD64 show approximately the same
factor (compare Figure @ and [), but the relevance of such a comparison is
questionable.

For example, on AMDG64, 32-bit IPC on an TA-32 kernel already turns out to
be considerably slower than 64-bit IPC on an AMDG64 kernel. The AMD64
architecture has the advantage over IA-32 of having a larger set of processor
registers, which plays an important role in L.4 IPC performance.

Moreover, depending on the exact hardware details, a system call from a
32-bit thread into a 64-bit kernel can take more cycles than a system call
executed by a 64-bit thread. Hardware can also be optimized for 64-bit code
in general, making 32-bit code run more slowly.

Performance of 32-bit IPC could be improved drastically by adding a fast
path similar to the existing fast path for 64-bit IPC, which handles empty
IPC messages in 122 cycles on the AMD K8 system. Such a fast path could
use 32-bit thread IDs directly without the need for converting them at first,
which would eliminate a lot of unnecessary branches in the code. However,
since 32-bit applications are usually not required to run at full speed on
64-bit systems, the additional complexity of another fast path was deemed
unnecessary.

24

Figure 10: 64/32-bit Inter-AS IPC Performance

950

900

850

800

Cycles

750

Cycles

0 4 8

12 16 20 24 28 32 36 40 44 48 52 56 60
Registers
(a) AMD K8

12 16 20 24 28 32 36 40 44 48 52 56 60
Registers
(b) Intel P4

25

Il 64/32-bit IPC

Il 64/32-bit IPC

6.2.3 64/32-bit Performance

To test the speed of IPC between a 32-bit and a 64-bit thread, the AMD64
version of ping-pong was extended by a feature to replace one of the two ping-
pong threads with a 32-bit thread. The 32-bit code is not fully optimized,
so the results may be a few cycles too high. Since 64-bit and 32-bit threads
cannot run in the same address space, only Inter-AS data exists.

The results are not comparable to the other types of IPC operations. They
are included for comparison with the results of future studies.

6.3 Complexity

Since the kernel-level design of Compatibility Mode support is likely to intro-
duce more additional complexity in the kernel than the user-level solution, an
analysis of this complexity is necessary to justify the design decision. Com-
plexity can be analyzed in a variety of ways, both quantitatively and from
the perspective of readability and maintainability. We will try to answer the
following research questions:

e How many lines of code were changed or added in the kernel sources
for the purpose of Compatibility Mode support?

e How many of these are local to the AMDG64 target, and how many
involve files that are used globally?

e How many of them would still be necessary if data conversion happened
at user level? Would there be any need for additional functionality?

e Are the changes to global files applicable to other multi-architecture
systems?

e Do any of the changes affect the readability of the code?
e Do any potential changes in the future involve more work if Compati-

bility Mode support is included?

In general, affected lines of code are a good measurement if white space and
comments are excluded. Even if different programming styles result in fewer
or more lines given the same code, they are a good indication, since every
change bears the potential of adding complexity.

26

Figure 11: Changes in generic and AMDG64-specific files

Generic files
AMDG64 files

However, a few changes involved renaming certain identifiers at all places
where they were used in a file, and counting every single instance of the
identifiers would not be fair (especially since there is no actual complexity
involved). In these cases, we count the entire renaming operation as a single
change.

Some changes only involve user-level code, for example user header files, oy,
the boot loader (which is technically not executed at user level but writ-
ten using the same infrastructure), and also the system call stubs that are
mapped into the applications’ address spaces. These were excluded as well,
since only the complexity of the kernel is to be investigated. If they were
included, then a user-level solution would be regarded as complex, when in
fact it is the reference for minimum complexity.

The remaining changes involve 1087 lines of code, 914 of which are local to
the AMD64 target (see Figure [[l). The other 173 lines are modifications to
files that are used by other targets as well.

Out of the 1087 lines that were changed, only 171 would remain in a user-level
solution (see Figure[[2). The rest is related to tasks like system call argument
conversion, 32-bit UTCB access, providing a 32-bit KIP, etc., which would
be handled at user level. Code that would remain is either related to the
hardware (for example, setting the segment descriptors) or to the general
feature of running 32-bit code (for example, instruction emulation).

Therefore, a large number of changes could be avoided in a user-level solution.
A reasonable conclusion might be that a user-level solution would require
virtually no changes outside of the AMDG64 target. However, this is not the
case: A configuration menu needs to be created, the boot protocol must be
extended to include the thread type of the root servers, the IPC system call
needs code to inform the target thread about the sending thread, etc. These
tasks make up 52 of the 173 lines of changes to generic files.

27

Figure 12: Changes that would still be necessary in a user-level solution vs.
changes specific to the kernel-level solution

Always
necessary

Always
necessary

Kernel- Kernel-

level only level only

(a) All files (b) Generic files only

The question about additional kernel functionality required by a user-level
solution cannot be answered as clearly. What kind of functionality is required
depends heavily on the details of the design. For example, if no 32-bit system
call interface is provided by the kernel, then system calls need to be executed
by an intermediary layer running in 64-bit mode. But in that case the kernel
needs to provide facilities for 32-bit user programs to call the intermediary
layer and thereby switch to 64-bit mode. On the other hand, a 32-bit sys-
tem call interface introduces more complexity in the kernel as well, even if
arguments are converted on the user side.

Another problem is that user programs use a certain processor instruction
to obtain the address of the KIP on both L4/IA-32 and L4/AMD64. The
instruction raises a hardware exception that is handled directly by the kernel
without a chance of intervention from user mode (e.g. from a 32/64-bit
compatibility layer). However, if the 32-bit KIP is handled by the user-
mode compatibility layer, the AMDG64 kernel does not have any information
about its location in the 32-bit thread’s address space. Therefore, special
functionality needs to be implemented in the AMDG64 target to query the
compatibility layer for the address of the 32-bit KIP, or to forward the KIP
address request to the compatibility layer in some way.

In theory, the UTCB creates a similar problem: In user mode, the GS segment
register is used indirectly to obtain the address of the current thread’s UTCB.
A user-mode compatibility layer must therefore either be allowed to change
the value of this segment register (unlike other user-mode code), or the kernel
needs to load a different value on switches between the 32-bit application and
the compatibility layer. In practice, this problem is solved by the fact that the
GS segment descriptor is truncated to 32 bit in Compatibility Mode, which

28

means that the segment starts a different location in 32-bit programs.

All in all, the additional functionality required for a user-level solution must
not be neglected.

Readability and maintainability are an issue mainly for the changes to generic
files. Most of the changes are normal C++ code, for example the addition
of another method or field. However, there is one exception: The changes to
KIP and UTCB code that were necessary to produce 64-bit and 32-bit data
structures from the same source files contain macros. A default definition for
each macro is provided in the file itself, and another definition is provided by
AMDG64-specific code. In general, the use of macros may affect readability.
The cases where new macros were introduced are rare though, most of the
re-definable macros replace fixed macros which were there before.

It should be noted that producing 64-bit and 32-bit data structures from
the same files is not strictly necessary. The source files could just be du-
plicated, which would eliminate the need for additional macros. The copies
could actually be placed in the part of the source tree that is local to the
AMDG64 target. However, duplicated code introduces an obvious maintain-
ability problem when it needs to be changed. On the other hand, macros
can be a maintainability issue as well. However, the macros only need to
be introduced once for all architectures where 64/32-bit compatibility is im-
plemented. Duplication, however, would be necessary for every architecture
with support for backward compatibility.

7 Additional Work

The way Compatibility Mode support is designed, the kernel’s task is to
provide an environment compatible to L4/IA-32 to 32-bit threads, and to
provide basic facilities for communication between 32-bit and 64-bit threads.
It does not address the fact that the actual data sent and received by 32-bit
threads often has a different format than the data used by 64-bit threads.
Data conversion, if required, has to be done at user level because the kernel
does not have any information about the data format. Therefore, 64-bit
programs need to be designed specifically to be able to communicate with
32-bit threads.

29

7.1 User-Level Support Code

Apart from the user-level code necessary to detect that a certain IPC message
originated from a 32-bit thread, the L4 user-level header files should provide
assistance for the data conversion process. For the data types used in L4, we
have added a separate header file containing 32-bit data types and conversion
functions. The thread ID type is especially important since it is frequently
used in communication. It is a bit field using different bit sizes in the 32-bit
and 64-bit versions.

7.2 IDL4

Data conversion usually needs to be done by hand, but it can be automated
if enough information is available. User-level L4 IPC code is often generated
from higher-level interface descriptions by the IDL* program. IDL* Inter-
faces consist of functions with parameters that all have specific data types.
Thus, the IDL* program can check for signed integer and thread ID types
in parameters, and insert the appropriate conversion code into the generated
[PC stubs.

However, word and thread ID types have to be imported from the .4 header
files, which implies that they are treated as user-defined types unknown to
IDL*. Therefore we modified the IDL* compiler in two steps: At first, we
introduced new built-in data types for unsigned /signed words and thread IDs,
which map exactly to the respective L4 types. Then we added an option to
use custom marshaling for these types.

Actually, the IDL* compiler did already use word and thread ID types in-
ternally, for example when the user specified an interface name as a type.
However, there were no specific classes in the IDL* type system for these
types; instead the word type was actually a normal integer type, and the
thread ID type was created dynamically as a custom type. To be able to use
custom marshaling, we extended the IDL* class hierarchy with new classes
for these types.

Both types use the same new marshaling class, which was derived from the
»simple copy” marshaling class used for integer and custom types. Marshaling
and unmarshaling is performed by calling a function whose name depends
on the type name. Such functions are defined in the IDL* header files; they
use the L4 functionality to check for 32-bit threads and convert the data
appropriately. Unsigned words do not need any special treatment, signed
words need to be sign-extended when they are converted from 32 to 64 bits,

30

and thread IDs need to be converted using the support code from the L4
header files. Luckily, other types offered by IDL*, such as strings and fpages,
do not need to be converted.

To ensure that 32-bit and 64-bit tasks using the same IDL* specification are
really compatible, the new ,,compatibility” option of IDL* needs to do more
than just activate marshaling for word and thread ID types. By default,
interfaces are not compatible, since IDL* ignores the register structure of L4
IPC messages, and treats the message registers as a block of memory instead.
Data transfer between 32-bit and 64-bit threads is done on a per-register
basis, creating or deleting “holes” in the message, respectively. Therefore, if
the compatibility option is activated, all data types must have machine word
size, so each register holds exactly one argument. No custom data types or
integers of arbitrary size may be used. Structures and sequences could be
supported in theory if they only use elements of word size, but this is not
implemented at the moment.

As a test case, we ported the resource monitor of the L4Ka virtualization
project to AMDG64. It communicates with a wedge installed in the address
space of the guest operating system via IDL*. The ported monitor can load
an unmodified 32-bit wedge and guest operating system and serve all IDL*
requests issued by the wedge.

8 Conclusions and Future Work

The objective of the study thesis, implementing AMD64 Compatibility Mode
support in L4Ka, was completed successfully. Some minor issues related to
the virtualization project remain. Performance and additional complexity
added to the kernel are in an acceptable range, but performance could be
improved further by implementing a fast path for 32-bit IPC.

There are multiple alternatives for the design of this support. The choice of a
complete kernel-level solution is unusual for microkernel design, but has some
major advantages. Comparison of all alternatives was outside of the scope of
this study thesis, but can be an interesting ground for future research.

Kernel support for Compatibility Mode is not sufficient to achieve compati-
bility between 32-bit and 64-bit applications. Conversion of communication
data must happen at a higher level. IDL* has been adapted to fulfill this task,
and tested by porting the virtualization resource monitor to AMDG64. Other
systems based on .4 may require more complex data conversion facilities,
thus the modifications to IDL* leave some room for further development.

31

References

[1] Advanced Micro Devices, Inc. AMD64 Computing Platform.

http://www.amd.com/us-en/Processors/TechnicalResources/0, ,30_182_869_875,00.html

[2] Intel Corporation. Intel®) 64 Architecture.

http://www.intel.com/technology/intel64/index.htm

[3] Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Man-
ual Volume 1: Application Programming. Revision 3.12, September 2006

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf

[4] Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Man-
ual Volume 2: System Programming. Revision 3.12, September 2006

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf

[5] Advanced Micro Devices, Inc. AMD64 Architecture Programmer’s Man-

ual Volume 3: General-Purpose and System Instructions. Revision 3.12,
September 2006

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24594.pdf

[6] Intel Corporation. IA-32 Intel® Architecture Software Developer’s Man-
ual Volume 3: System Programming Guide. January 2006

http://www.intel.com/design/Pentium4/manuals/253668.htm

[7] Intel Corporation. Intel® Itanium®) Architecture Software Developer’s
Manual Volume 1: Application Architecture. Revision 2.2, January 2006

http://www.intel.com/design/itanium/manuals/245317.htm

8] L.

http://14hq.org/

[9] Universitat Karlsruhe System Architecture Group. L4 eXperimental
Kernel Reference Manual Version X.2. Revision 6, August 2006

http://14hq.org/docs/manuals/14-x2-20060810. pdf

[10] Universitdt Karlsruhe System Architecture Group. The L4Ka Project.

http://14ka.org/

[11] Universitdt Karlsruhe System Architecture Group. L4Ka Virtual Ma-
chine Technology.

http://www.l4ka.org/projects/virtualization/

[12] Universitét Karlsruhe System Architecture Group.
L4Ka::Pistachio/amd64.

http://l4ka.org/projects/pistachio/amdé4/

[13] NetBSD/amd64.

http://www.netbsd.org/Ports/amd64/

[14] Linux.

http://www.kernel.org/

[15] Ovidiu Dobre. Multi-Architecture Operating Systems. October 2004

http://i30www.ira.uka.de/teaching/thesisdocuments/14ka/2004/dobre_dt_multi-architecture-os.pdf

[16] Jochen Liedtke. On u-Kernel Construction. December 1995

http://i30www.ira.uka.de/research/documents/14ka/1995/ukernel-construction. pdf

32

http://www.amd.com/us-en/Processors/TechnicalResources/0,,30_182_869_875,00.html
http://www.intel.com/technology/intel64/index.htm
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24594.pdf
http://www.intel.com/design/Pentium4/manuals/253668.htm
http://www.intel.com/design/itanium/manuals/245317.htm
http://l4hq.org/
http://l4hq.org/docs/manuals/l4-x2-20060810.pdf
http://l4ka.org/
http://www.l4ka.org/projects/virtualization/
http://l4ka.org/projects/pistachio/amd64/
http://www.netbsd.org/Ports/amd64/
http://www.kernel.org/
http://i30www.ira.uka.de/teaching/thesisdocuments/l4ka/2004/dobre_dt_multi-architecture-os.pdf
http://i30www.ira.uka.de/research/documents/l4ka/1995/ukernel-construction.pdf

	Introduction
	Motivation
	Related Work
	Design
	Kernel vs. User Level
	Address Spaces
	Transparency
	API

	Implementation
	Hardware Support
	KIP and UTCB
	System Calls
	IPC
	Miscellaneous

	Evaluation
	Correctness
	Performance
	64/64-bit Performance
	32/32-bit Performance
	64/32-bit Performance

	Complexity

	Additional Work
	User-Level Support Code
	IDL4

	Conclusions and Future Work

