
Universität Karlsruhe (TH)
Institut für

Betriebs- und Dialogsysteme

Lehrstuhl Systemarchitektur

Hardware-Supported Virtualization
for the L4 Microkernel

Sebastian Biemüller

Diploma Thesis

Verantwortlicher Betreuer: Prof. Dr. Frank Belosa
Betreuender Mitarbeiter: Dipl. Inf. Jan Stöß

29. September 2006

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfaßt und keine anderen als die angegebe-
nen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only cited sources have been used.

Karlsruhe, den 29. September 2006

Sebastian Biemüller

Abstract

Despite the immense popularity virtual machines regained in the last years current
virtualization environments force significant compromises to the host system architec-
ture. Hypervisor-based virtual machine environments are missing system construction
principles; they only provide the coarse grained abstraction of a virtual machine, pre-
venting small and efficient systems. Hosted virtual machine environments reuse the
host’s operating system services and thereby massively increase the trusted code base,
preventing small, reliable and verifiable systems.

We propose a novel approach for the construction of virtual machine environments:
We divide the virtual machine environment into a necessarily privileged part, and a
user-level monitor. The privileged part and microkernels share a common set of goals
such as reliability, security, and isolation so that integrating virtual machines and mi-
crokernels is a promising approach. In fact, modern microkernels, such as the L4
microkernel, already provide the abstractions and mechanisms necessary to cater for
virtual machines. We identify shortcomings of the current kernel with respect to vir-
tual machine support and add a minimalistic set of extensions. As a normal microkernel
application, the user-level monitor can interact with services provided by other compo-
nents to maintain the virtual machine.

To demonstrate our approach we implemented a prototype virtualization environ-
ment on top of the modified microkernel. We successfully run a guest operating system,
utilizing all types of services side-by-side with other, native microkernel applications.

Our design preserves the performance of the microkernel, especially the mech-
anism for inter-process communication needed no adaption. Measurements indicate
only minimal side-effects caused by the increased hardware-overhead of the world-
switch needed for the virtual machine environments.

v

vi

Contents

Abstract v

1 Introduction 1
1.1 The Problem . 1
1.2 Approach . 2

2 Background & Related Work 5
2.1 Virtual Machine Environments . 5

2.1.1 Theory of Virtualization . 6
2.1.2 The Virtual Machine Monitor 7
2.1.3 Selected Virtualization Environments 8

2.2 The L4 Microkernel . 9
2.2.1 The Microkernel Argument 9
2.2.2 Abstractions . 9
2.2.3 Primitives . 9

2.3 Microkernels and Virtual Machines 10
2.4 Summary . 11

3 Design 13
3.1 Design Goals . 13
3.2 Proposed Scheme . 14

3.2.1 System Architecture . 14
3.2.2 Virtual Machine Representation 15

3.3 Virtual Machine Resources . 17
3.3.1 Physical Memory . 17
3.3.2 Virtual Memory . 19
3.3.3 Processor . 22
3.3.4 Peripheral Devices . 24

3.4 User-level Control Protocol . 25
3.4.1 Analysis of Requirements 25
3.4.2 The Virtualization-Fault Protocol 27

3.5 Virtual Machine Communication . 29
3.6 Summary . 30

4 Implementation 33
4.1 The IA-32 Processor Architecture 33
4.2 Microkernel Extensions . 35

4.2.1 VCPU Thread . 35

vii

4.2.2 VM-Exit Handler . 38
4.2.3 Virtualization Fault Protocol 38
4.2.4 Physical Memory Space . 39
4.2.5 Shadow Page Table Management 40
4.2.6 Further Resources . 45

4.3 The User-Level Monitor . 46
4.3.1 Architecture . 46
4.3.2 Virtual Machine Representation 48

5 Evaluation 51

6 Conclusion 53
6.1 Contribution of This Work . 53
6.2 Suggestions for Future Work . 54

A Proposed L4 API Extensions 55
A.1 SPACECONTROL . 56
A.2 EXCHANGEREGISTERS . 57
A.3 Virtualization Fault Protocol . 58

A.3.1 Fault Message . 58
A.3.2 Reply Message . 58
A.3.3 Thread-Startup Protocol . 61

A.4 MSR-Fpage . 62

viii

Chapter 1

Introduction

For the last 40 years the complexity of computer hardware increased exponentially
driven by Moore’s famous law [70] constantly opening fields where computer systems
become attractive. Unfortunately, software systems do not keep up with this rapid
evolvement resulting in increased pressure on software systems [29] to adapt to these
new hardware features and efficiently utilize them. This holds especially for operating
systems; they execute directly on the bare hardware to manage and abstract hardware
specifics behind a convenient, portable interface which user applications rely on. This
thesis combines two approaches which address the stated problem from two different
directions.

Virtual Machines first introduced by IBM in the 1960s were invented to provide
multiple users a seemingly separate, computing system to overcome the limits of for-
mer single-user operating systems. In the last 40 years, virtual machines have matured
in providing a faithful illusion of a complete machine platform; they now allow legacy
reuse of a complete software stack; presenting an attractive approach to solve a vari-
ety of problems in dissimilar contexts such as exploiting new hardware features [15],
device driver reuse [57], workload consolidation [25] and migration [20], secure com-
puting [69].

Component-based operating systems increase flexibility of system software con-
struction by separating the operating system into isolated components. The base of
the system is a microkernel. It only implements the minimal necessary concepts such
as computation, isolation, and communication to establish independence and integrity
between different subsystems. The goal is to allow construction arbitrary systems on
top. Microkernel-based systems allow stepwise innovation in OS technology to cope
with the ever-increasing complexity of operating systems.

1.1 The Problem
Systems which are based on only one of the both approaches, either the microkernel
system, or the virtual machine system are overly restrictive and do not achieve the
required flexibility.

Systems solely based on the virtual machine abstraction, such as the hypervisor-
based approach (Figure 1.1(a)) affect the whole system. A small, privileged hypervisor
provides a reliable system base. It implements only a single interface, the virtual ma-
chine. The virtual machines are isolated from each other and securely executed using

1

2 CHAPTER 1. INTRODUCTION

Hypervisor

Super
VM

VM 1 VM 2

(a) Hypervisor Architecture

Host Operating System

Native host
Applications

VM
VMM

(b) Hosted Architecture

Figure 1.1: Virtualization Architectures. Missing: The different interfaces provided by
the different approaches.

the host machine’s resources. The virtual machine as a faithful duplicate of a real ma-
chine is often too coarse grained to represent small software components efficiently.
This even holds for the virtual machine management logic, which is run in a privileged
component, the super VM. The super VM often runs a commodity operating system
to implement services such as the emulation of the virtual machine environment of
the other VMs. Faults in its implementation [19] can thereby affect other virtual ma-
chines as well, harming the strong isolation criteria required for the virtual machine
environment.

To overcome the construction problems of the virtual machine management logic
the host-based approach (Figure 1.1(b)) integrates the privileged hypervisor into a host
operating system, which directly executes on the physical machine. The host operating
system services can be used to implement the virtual machine monitor as an in-kernel
module or a user-level application; this avoids the second costly world switch into
the super-VM. However, this model has serious drawbacks, too. The host operating
system greatly increases the privileged part, and thus the trusted computing base of
the system [26, 78]. The reliability and secure isolation of virtual machines is only
as hard as the general security of the host operating system. Additionally, running
the virtual machine monitor on top of the host operating system increases overhead
drastically [26].

The virtual machines strongest point becomes also its weakest: focusing on reuse
and isolation they do not offer a core abstraction for communication with the system
surrounding the virtual machine. The communication is often emulated via special
devices which are part of the platform provided to the guest. It significantly increases
the necessary trusted computing base.

On the other hand we presented microkernels. Microkernels are designed to form a
flexible system base. Like all other operating systems they define a convenient interface
to their user-level applications. This interface is close, but not equal to the hardware
platform, preventing full software reuse – requiring porting.

1.2 Approach
In this thesis, we unify the virtual machine- and the microkernel environment in one
system. We present a new scheme to construct virtual machine systems: Based on the

1.2. APPROACH 3

concepts of microkernels we construct whole-system virtual machine systems [81] to
overcome the deficits of a solely hosted or hypervisor-based approach.

Our approach separates the virtual machine monitor into a necessarily privileged
part, called the hypervisor, and an unprivileged part, the user-level monitor. Our ap-
proach is based on the thesis that: hypervisors and microkernels are similar enough
to justify integration of both. The resulting system comprises a microkernel that also
provides support for virtual machines and a microkernel-based system on top which
includes components for maintaining the virtual machines. Such a system combines
the best of both worlds: Virtual machines provide strongly isolated containers with a
stable, compatible interface, the hardware platform API for legacy reuse, whereas the
microkernel approach enables construction of arbitrary, well-structured systems.

Our design is based on a particular microkernel, the L4 microkernel. The resulting
microkernel has only marginally increased complexity caused by the mechanism to
support user-level management of the virtual machine, the protocol to communicate
virtualization critical events, and the enhanced execution context handling required
by the world switches from/to virtual machines. The virtual machine representation
in L4 is highly integrated, introducing only minimal changes to the microkernel API.
Like all other application workload the virtual machine is described by an L4 address
space, which represents the isolation domain, holding all accessible physical resources.
L4 threads embody the processor of the virtual machine directly executing the virtual
machine’s instruction on the physical processor. The communication of virtualization
critical events is completely via synchronous IPC; it models the fault like behavior.

The user-level monitor application uses the IPC based virtualization-fault protocol
to control the virtual machine. Being a native L4 application, the monitor can use L4’s
usual mechanisms to control the virtual machine environment. Guest physical memory
is provided by L4’s mapping mechanism; execution of the virtual machine underlies
the usual thread scheduling provided by L4.

We demonstrate the feasibility of our approach by integrating support for full vir-
tualization of the x86 architecture using Intel’s virtualization technology. The required
changes to the L4 microkernel did not negatively affect the performance of native L4
applications; thus independence is sustained. Especially the inter-process communica-
tion mechanism need no modifications. Only minimal overhead is introduced by the
unavoidable hardware world switch for entering and exiting the virtual machine.

Outline

This thesis is structured as follows:

Chapter 2:
In the background chapter we give an overview of virtualization and micro-
kernel-based systems. We analyse the requirements of virtualization, describing
different virtualization systems and discuss their approaches and resulting sys-
tem architectures. Further, we introduce the idea of microkernel-based systems
describing its goals and concepts and the resulting system architecture. We focus
on a particular microkernel, the L4 Microkernel.

Chapter 3:
In the design chapter we present our approach of integrating virtualization fea-
tures into the L4 microkernel. We present our L4-based virtualization system

4 CHAPTER 1. INTRODUCTION

architecture focusing on the kernel representation of a virtual machine using mi-
crokernel concepts.

Chapter 4:
In the implementation chapter we offer an overview of our prototype implemen-
tation of the microkernel extensions and a user-level virtual machine monitor
application.

Chapter 5:
In this chapter we present the evaluation of our prototype implementation.

Chapter 6:
Finally includes a summary and gives suggestions for future work.

Chapter 2

Background & Related Work

This thesis brings together two research areas: virtual machines and microkernel-based
systems. In Section 2.1 we discuss the general problem of virtualization by reviewing
previous work: on the theory of virtualization, the requirements of virtualization, and
different virtualization approaches including their resulting architectures. Section 2.2
describes the state of the art in microkernel-based systems laying the ground for many
design decisions. We briefly introduce the L4 microkernel paying special importance to
virtualization critical mechanisms, such as the representation of hardware mechanisms.

2.1 Virtual Machine Environments
Virtual machine (VM) systems are a major development in computer system designs.
By providing a duplicate of one or more computer systems, virtual machines extended
computer systems from multi-access, multi-programming, multi-processing to multi-
environment architectures. Concurrency, previously only available at a higher level
becomes available at the lowest level — the system-level. Virtual machines adopt the
common theme of adding an layer of indirection to increase the flexibility.

The term Virtual Machine was introduced by IBM in the 1960s; IBM used virtual
machines to provide multi-user systems by securely multiplexing several instances of
a single-user operating system; each OS running in a virtualized duplicate of the real
machine [21]. In the last 40 years the virtual machine technique has matured in provid-
ing the illusion of an isolated and exclusive hardware platform to its guest’s software
stack. Virtual machines represent an attractive approach to solve a variety of problems
in quite different contexts:

• Exploiting new hardware features without requiring changes to the software
stack [15, 16]

• Improved testing of system software [54]

• Providing a high degree of reliability and security [13, 17, 30, 31, 44, 45, 69, 79]

• Running multiple, different software stacks concurrently on one physical ma-
chine e .g . to achieve consolidation or operating system diversity [25, 96]

• Running virtual configurations which are different from the physical system to
offer services like migration and ubiquitous computing [17, 20]

5

6 CHAPTER 2. BACKGROUND & RELATED WORK

2.1.1 Theory of Virtualization
A Virtual Machine as defined by Goldberg [33] is an “efficient hardware-software du-
plicate of a real machine”. The idea of virtual machines is to create the illusion of
a physical machine at the lowest level, the platform API. Thus, communication be-
tween the guest (operating) system executing inside the VM and the virtual machine
environment is completely defined by the behavior of the hardware interface.

The virtual machine monitor (VMM) provides the illusion of the VM’s environment
using the resources of the host system. It has full control of the virtual machine and can
establish full isolation or controlled sharing of resources between the VM, itself, and
the rest of the system. The environment of the VM includes all resources of a physical
machine: the processor, memory, interrupt lines, IO ports and thus devices. The virtual
machine monitor has three characteristics [74]:

• Equivalence. The guest running in the virtual machine expects to execute on a
physical machine. In order to execute properly the environment provided by the
VMM, the virtual machine, needs to represent all aspects of a physical machine.
Only the exact timing behavior is impossible to achieve — multiple virtual ma-
chines execute concurrently, and the VMM itself needs some time to create and
maintain the virtual machine’s environment.

• Resource Control. The VMM must be in control of the physical system. (i) No
virtual machine is allowed to directly access a physical resource not explicitly
allocated to it. (ii) The virtual machine monitor needs to be able to transparently
regain control of a previously allocated resource.

• Efficiency. The virtual machine provides the same hardware platform as the host
machine. Efficiency can be achieved by securely using physical resources of the
host whenever possible. This is especially important for the virtual machine
processor. A “statistically dominant subset of the virtual processor’s instructions
needs to be executed directly on the real processor” [74].

Virtualization of System Resources

To create the illusion of an exclusively available physical machine all machine com-
ponents need to be virtualized. The virtualized components must follow the stated
characteristics of equivalence, controllability, and efficiency. Depending on their type
resources can be virtualized in several ways [34]; Figure 2.1 depicts an overview:

A virtualized resource is represented by a renamed physical resource. Renaming
enables different objects of the same resource class to represent each other. For ex-
ample, renaming of physical memory can be provided by virtual memory. Different
physical memory frames can be used to represent the same page frames in different
virtual machines.

If a physical resource is completely preemptible one instance of a physical resource
can be multiplexed between different virtual machines; for example, multiplexing of a
processor register between different threads. A special case of multiplexing is when
the resource is exclusively assigned to one user, here the state need not necessarily
preemptible.

If a resource can not be renamed or securely multiplexed the resource needs to
be emulated. Emulation of resources is usually done by trapping instructions which
access these resources. The effect on the virtual machine environment is then emulated
in software.

2.1. VIRTUAL MACHINE ENVIRONMENTS 7

Physical Resources

VM A Resources VM B Resources

a)
b) c) d)

Figure 2.1: Resources of a virtual machine can be provided in several ways. Depending
on the characteristics of a given resource it can be: (a) emulated, (b) remapped, (c)
mapped, and (d) multiplexed.

The Virtual Processor

The physical processor is the key to the virtualizability of the system. It must provide
trap semantics that let a VMM safely, transparently, and directly use the real processor
to execute the virtual machine. With these traps on virtualization critical conditions the
VMM can use direct execution to create the illusion of a normal physical machine for
the software running inside the virtual machine. These traps include external events,
related to the physical machine such as interrupts, which must be sheltered from the
virtual machine and be delivered to the VMM, and internal events such as the execution
of sensitive instructions. When the virtual machine executes directly on the physical
processor, some instructions – instructions which leak the state of the physical machine
uncontrolled into the virtual machine – can not be issued; these instructions are called
sensitive. Sensitive instructions must be prevented from being executed directly. If all
critical instructions are trap-able, the processor is called fully-virtualizable.

2.1.2 The Virtual Machine Monitor
The virtual machine monitor functionality can be divided into several modules [74].
The dispatcher is the first module. It starts the VMM and initializes its environment.
The dispatcher represents the entry-points for the different traps of the physical proces-
sor. The dispatcher therefore implements secure multiplexing of the virtual machines.
The allocator manages the physical resources. It keeps track of the resource usage to
guarantee controlled isolation. The interpreters are a set of routines which emulate the
behavior of the trapped, sensitive instructions.

Architecture

In the hosted architecture the virtual machine monitor runs on top of a host operating
system. It can use the host operating system’s services to implement the virtual ma-
chines. The monitor can reuse the host operating system’s abstraction and services such
as scheduling and resource allocation to implement the virtual machines. On the other
hand the monitor may loose full control of the host’s hardware to the host operating sys-
tem; flaws in the host operating system undermine the security of the complete virtual
machine system [78]. To minimize the side effects of software not directly related to
the virtual machines, the hypervisor based architecture minimizes the privileged code
running directly on the physical machine. The privileged hypervisor implements only
basic scheduling and isolation mechanisms of the dispatcher module. The other com-
ponents are located in a super-VM located on top of the hypervisor. This privileged

8 CHAPTER 2. BACKGROUND & RELATED WORK

virtual machine often contains a classic monolithic OS which includes the device driver
emulation and VM management interface.

2.1.3 Selected Virtualization Environments
Tons of virtual machine systems have been developed each for its own special purpose.
We classify these approaches into para- and full-virtualization systems and discuss the
various approaches regarding their special goals.

Para-Virtualization: Environments

Para-virtualization systems [95] require source code access to the guest system to
change it. Para-virtualization does not have the goal to provide an exact duplicate of the
platform API. It follows the opposite approach: each guest is ported towards the virtu-
alization system by replacing virtualization critical sensitive operations with high-level
hypercalls to the VMM. These changes are often guest specific; para-virtualization re-
quires intimate knowledge of the guest system resulting in high engineering effort [56].
Depending on the required characteristics research found various approaches. Having
knowledge of the guest operating system’s behavior hypercalls can even be delayed
and batched until an unavoidable call to the VMM is necessary. This is used, for ex-
ample, in the Xen hypervisor [25]. This reduces the number of domain switches and
thus increases performance. Stepwise introduction of special hypercalls, the approach
presented in [67], removes performance bottlenecks. A host based para-virtualization
environment is User Mode Linux, it runs a modified Linux on top of the Linux operat-
ing system [24].

VMI [91] provides a generic para-virtualization interface which still requires port-
ing of the guest. It focuses on the unification of the interface between the VMM and the
guest for x86 based systems. The OS implementors simply change their operating sys-
tem to call specific VMI routines stored in a ROM to make their system virtualization
friendly. The routine transparently handles virtualization. It allows to switch between
different VMMs implementing the VMI interface and native operation.

Full-Virtualization: Environments

Full virtualization environments do not require source code access to the guest; they
focus on providing a faithful illusion of the platform API. Modification of the guest’s
behavior is only possible by using special device drivers for a specific guests, e .g . to
provide custom high performance devices such as network cards [52], or to reclaim
memory using memory balloons [94]. Prominent full-virtualization environments are
the host-based VMware Workstation and the hypervisor-based VMware ESX server
[92]. Virtual machines core functionality is to provide an isolated environment.

Emulation, Simulation

On processors not fully-virtualizable sensitive instructions must be prevented to ap-
pear in the VM’s instruction stream. The most relevant technique is para-virtualiza-
tion [25, 56, 96]; it needs source-code availability of the guest software to patch the
sensitive instructions with fix-ups. Binary rewriting techniques [7, 23, 80] instead use
complex trapping of memory references to transparently change the guest’s instruc-
tions. Whole-system simulation such as Simics [90], QEMU [12], and Bochs [55]

2.2. THE L4 MICROKERNEL 9

interpret the complete virtual instruction set, such approaches, although very powerful
impose huge performance hit and thus violate Golberg’s efficiency requirement [35].
In this thesis we focus on fully-virtualizable processors.

2.2 The L4 Microkernel
The L4 microkernel [63] is a second generation microkernel originally developed by
Jochen Liedtke at GMD, IBM, and Karlsruhe University. Various versions exist at
Karlsruhe University, UNSW/NICTA Sydney, and Dresden University of Technology
[83].

2.2.1 The Microkernel Argument
In contrast to monolithic systems, the microkernel-based approach implements oper-
ating system functionality like scheduling policies, network services or device drivers
into dedicated user-level servers. To isolate them these servers are located in differ-
ent address spaces and provide their services by inter-process communication. This
construction principle is very flexible; the system services can be replaced, or run side-
by-side like normal applications, allowing coexistence of different resource policies on
one system [62] specialized for different applications [53, 65]. The system base forms
a microkernel. It implements system-wide features like isolation, resource manage-
ment, communication, and integrity. The goal of a microkernel is to be policy free
and to provide system construction principles. The microkernel is tiny and thus can
be made secure [42, 86]. Beginning with Mach’s user-level pagers [77, 97]; current
second generation kernels provide even more complete resource management in user-
level components [40, 62]. The most critical kernel mechanism is IPC; it is master to
the functionality and flexibility of the microkernel [59, 64] and the component system
on top [14, 32].

2.2.2 Abstractions
Threads are the abstraction of an activity. CPU time is multiplexed between threads
bound to the same processor. An L4 thread is represented by its register state (processor
registers and virtual registers), a unique global identifier, and an associated address
space.

Address spaces provide the abstraction for protection and isolation; resource per-
missions are bound to an address space. L4 address spaces are no first class object;
they are indirectly identified via a thread associated to this particular space. All threads
in an address space have the same rights and can freely manipulate each other.

2.2.3 Primitives
Inter process communication (IPC) is the mechanism for data transfer and con-
trolled execution transfer between threads. Message transfers are synchronous and
involve exactly two threads. Both sender and receiver have to agree on the format of
the message. IPC is the master to the microkernel design [59].

10 CHAPTER 2. BACKGROUND & RELATED WORK

Resource Delegation is the mechanism for controlled transfer of resource permis-
sions between address spaces. Access to a resource is granted by transferring a map
or grant item in an IPC message, and thus allows user-level management of address
spaces. Mapping requires mutual agreement of the sender and receiver thread. Map
duplicates the resource permissions from the sender’s into the receiver’s address space;
grant moves the permission. The receiver’s permissions can only be a subset of the
sender’s permissions. Mapping can be applied recursively. Revocation of resource
rights is done asynchronously through the unmap primitive and does not require ex-
plicit consent from the receiver of the mapping.

Scheduling. L4 has an in-kernel round-robin scheduler that allocates time to threads
according to their priority and time-slice length. If the time slice of a thread expires,
L4 preempts the thread and schedules the next runnable thread.

Protocols. Hardware-generated events such as exceptions and interrupts are trans-
lated into kernel-generated IPC messages. On an hardware interrupt, the kernel syn-
thesizes a message to a thread that is registered as the handler for that interrupt. The
sender appears to be a thread with a special per-interrupt thread identifier. Hardware
exceptions are transparent to the faulting thread; the kernel preserves the thread’s con-
text. The hardware exceptions are mapped onto an IPC based fault protocol. In the
name of the faulting thread, the kernel synthesizes a message with information about
the cause of the fault and sends it to the faulting thread’s exception handler. The fault-
ing thread is automatically set into a blocking IPC receive operation, waiting for a reply
from the exception handler to resume execution. On a page fault exception, the fault
message is sent to the pager of the thread, expecting a memory mapping in the reply.
The special treatment of the page fault exception has historical reasons.

These protocols allow easy virtualization of physical resources, e.g., paged virtual
memory [9, 40]: Under memory pressure, the provider of a page unmaps it from the
address space it was mapped to. If a thread now accesses the removed page, a page-
fault IPC is sent so that the pager can transparently re-establish the mapping and resume
the faulting thread.

2.3 Microkernels and Virtual Machines
There already exists related work which integrates the fields of virtual machines and
microkernels. In [39] and [43] the authors argue that microkernels and virtual ma-
chines, although their definition is quite different, follow similar goals. The work pre-
sented in [68] reasons towards a microkernel-based virtual machine systems for high
performance computing.

Extended Virtual Machine Monitor. The work of Hohmuth et . al [46] explores the
design space of hybrid virtual machine/microkernel systems with the goal to minimize
the trusted computing base (TCB) required to implement the virtual machine envi-
ronment. It is found that a VMM extended by mechanisms for memory sharing and
communication can reach a very small TCB.

Para-virtualization. The L4 microkernel already serves as a host for virtual ma-
chines. The L4Linux [41] system, is a para-virtualized Linux kernel, ported to the L4’s

2.4. SUMMARY 11

API interface. It achieves near native performance.
The L4Ka::Virtualization environment [85] also support the L4 microkernel, as a

host. The authors separated the VMM into an isolation critical resource monitor and
an uncritical in-place component. The in-place component is co-located to the guest,
it can use detailed knowledge of the guest to create the illusion of the virtual machine
environment. It uses a technique called after-burning to replace sensitive instructions
of the guest with function calls to the in-place component’s interpreters which avoids
hypercalls. Allocation of physical resources that can not completely handled inside the
in-place monitor are translated to resource monitor requests. This indirection allows
for (i) guest specific optimizations in the in-place monitor and (ii) host system diversity.
The environment supports the L4 microkernel [84] and the Xen hypervisor [25] as a
host.

The Spine system [37] forms a reliable system base for an intrusion recovery sys-
tem. It supports detection and recovery from kernel-level and user-level root-kits. The
authors choose a microkernel, the L4 microkernel as the base hypervisor component.
The authors argue that only a microkernel achieves the correctness, isolation and per-
formance requirements. The microkernel was preferred over a virtual machine ap-
proach because the authors wanted a simple architecture that does not sacrifice per-
formance and support for multiple operating systems. As guest operating systems, to
prove recovery services, it uses para-virtualized L4Linux instances.

Fluke. The Fluke system developed by Bryan Ford et al . [28] is a software-based
virtualizable architecture. It combines the concepts of microkernels and virtual ma-
chines to increase operating system extensibility. The operating system functionality is
decomposed “vertically” into layers. In these layers, called nesters, the environment,
provided to the application can be stepwise refined; for example a demand paging
nester adds anonymous memory, or a checkpoint nester allows defined restart of the
application after a system failure. The application’s execution environment consists of
the hierarchy of nesters it runs on. Thus the application environment only includes the
required operating system services.

The prototype system implementation is based on the x86 architecture – on which
the fluke microkernel runs. Fluke provides a well defined subset of the x86 architec-
ture to the nesters and applications on top to avoid the trapping of traditional virtual
machine systems. Additionally, the fluke kernel adds a low-level interface including
thread, address space and IPC mechanisms to the execution environment allowing con-
venient system construction. To overcome the exponential overhead of virtual machine
stacking, the services of Fluke’s microkernel are designed to support recursive systems:
A system component has full access to all its children. For example recursively defined
memory management through remapping, which is based on L4’s model. All system
services are based on capabilities, which allows to short-circuit the hierarchy of nesters
when appropriate.

2.4 Summary
In this chapter we presented related work on virtual machine systems. The virtual
machine abstraction represents an isolated duplicate of a physical machine. A virtual
machine has three properties: equivalence, resource control and efficiency.

We showed that previous approaches to support virtual machines suffer from at
least one of the following deficiencies:

12 CHAPTER 2. BACKGROUND & RELATED WORK

• Para-virtualization systems require porting of at least the guest operating sys-
tem towards the host system environment. Thus depend on source code access
preventing full legacy reuse.

• Hypervisor-based VMMs only allow to run workload embedded in virtual ma-
chines. The virtual machine abstraction is insufficient as a general abstraction
to construct system services running besides the virtual machines. It is often to
coarse grained, preventing fine isolation and efficient interaction between system
components. This results in compromises which may harm achievable isolation.

• Host-based virtual machine monitors attach their services onto a host operat-
ing system which may cause loss of full control of the host services. The host
operating system causes a significant performance overhead. It further affects
reliability, being dependent on the host system services, the VMM can only be
as reliable as the complex and huge host operating system.

To overcome these deficiencies this thesis proposes the usage of a microkernel-
based approach to construct a virtual machine system. Microkernels provide a minimal
set of flexible abstractions to construct systems on top; they offer abstractions to ex-
press isolation and execution, and mechanisms to control usage of physical resources
from user-level. Microkernels and virtual machine systems share a common set of
goals such as isolation and resource control. Microkernels and virtual machines thus
seem candidates for a tight integration to overcome the deficiencies of both, namely
lightweight subsystems and reuse.

Chapter 3

Design

In this chapter, we present a novel approach for the construction of virtual machine
systems. Our approach addresses the shortcomings in flexibility of current virtualiza-
tion system architectures which are either based on a hypervisor or a host operating
system. Both approaches have significant drawbacks, harming the virtual machine’s
main design goals: isolation and robustness. We propose to use microkernel principles
to construct the virtual machine system. In the related work chapter we already showed
that the microkernel-based approach and the virtual machine systems share a common
set of goals such as isolation, resource control, and system integrity, to justify a tight
integration of both. The microkernel provides a minimal set of flexible abstractions
and mechanisms to construct arbitrary systems on top. We show that modern second
generation microkernels already offer the necessary concepts to construct virtual ma-
chine environments through their minimal interface. We present a design which uses
the concepts of the L4 microkernel to construct a virtual machine system. The resulting
system comprises of a microkernel that also provides support for virtual machines and
a microkernel-based system on top which includes components for maintaining the vir-
tual machines. It combines the best of both worlds: Virtual machines provide strongly
isolated containers with a stable environment, based on the platform API; whereas the
microkernel approach enables construction of arbitrary, well-structured systems. The
microkernel based approach can be seen as a fusion of the benefits of the hypervisor
and the hosted virtual machine architecture.

This chapter is organized as follows: In Section 3.1, we first state our thesis goals
and then point out a set of requirements and goals that should apply to our solution.
These requirements induce our general architecture. In Section 3.2 we roughly describe
the basic architecture of our virtual machine system and the microkernel’s view of
the VM. In subsequent sections we refine our design by describing how the virtual
machine’s resources are virtualized using L4’s concepts.

3.1 Design Goals
The goal of our thesis is to construct a virtual machine system which is based on the
principles of microkernels. The base of our system is an extended version of the L4
microkernel. This decision is based on the thesis that a microkernel provides a more
flexible set of abstractions than current virtual machine monitors. The microkernel has
to provide support for virtual machines as well as for native microkernel applications.

13

14 CHAPTER 3. DESIGN

A valid solution must comply to the microkernel principle: aiming for a minimal,
flexible system base which allows construction of arbitrary systems on top [60, 62].
Our solution has to follow this approach and use the microkernel construction principle
to build the virtual machine system. Only the necessary privileged mechanisms of the
virtual machine monitor are allowed to reside in the privileged kernel. The criteria is
functionality: A primitive is only allowed in the microkernel if implementation outside
the kernel would prevent the system from being usable. The virtual machine system
logic is located in components residing on top of the microkernel.

We define following requirements and goals our approach should achieve:

Preserve Native Execution Environment. Virtualization support is an extension of
the microkernel functionality. Our solution has to sustain the core functionality
of the microkernel; it should minimize the affect on the service quality of the
other system components. Especially the performance of the fundamental mech-
anism of inter-process communication (IPC); IPC is master to achieve modular-
ity, flexibility, security and scalability [59]. The goal of our design is to reduce
the impact to a minimum.

Minimal Extensions. The required microkernel extensions have to be reduced to a
minimum [61]. To achieve minimal extensions we require our solution to reuse
already provided microkernel abstractions and mechanisms whenever possible;
reuse increases efficiency and homogeneity of the overall system. Our goal is to
describe the virtual machine concepts via microkernel primitives; we do not want
the resulting system to be a co-location of a microkernel and virtual machine
hypervisor.

Architecture Independence. The representation of the virtual machine and the mech-
anisms to manipulate and control its state have to be flexible. Especially they
must not rely on specifics of a certain architecture. Following the microkernel
principle we want to represent the virtual machine, using policy free abstractions
and mechanisms [63]. This allows to apply our approach to other architectures
than our target architecture for the implementation. For example, the mecha-
nisms should hide the specifics of different hardware virtualization techniques
(like Intel VT-x and AMD Pacifica).

3.2 Proposed Scheme
In this section we give an overview of our microkernel-based virtualization system.
First we divide the virtual machine system into components. After that we give an
overview of the microkernel’s representation of a virtual machine. In the following
chapters we refine the representation by mapping the resources which form a virtual
machine onto the concepts offered by the L4 microkernel.

3.2.1 System Architecture
Our system is based on a microkernel. The microkernel approach gives a minimal sys-
tem base, like in hypervisor-based architectures. But unlike hypervisors microkernels
additionally provide system construction primitives; allowing to build arbitrary sys-
tems on top – including virtual machine environments. In our approach we divide the

3.2. PROPOSED SCHEME 15

virtual machine monitor into a necessary privileged part, represented by the microker-
nel, and an unprivileged part, the user-level monitor application. The resulting virtual
machine system consists of three components:

Virtual Machine: The virtual machine is represented like all other user-level appli-
cations using L4 abstractions. It is a faithful duplicate of the physical machine
platform.

Monitor: The monitor defines and maintains the virtual machine environment. It
implements the allocator and the interpreters of a conventional VMM architec-
ture: It guarantees isolation by securely controlling the VM’s access to physical
resources and implements all complex aspects of virtualization, such as device
emulation. As a normal L4 application, the monitor can interact with services of-
fered by other user-level components to maintain the environment of the virtual
machine, for example disk storage or network connectivity [32].

Microkernel: The microkernel provides the execution environment for the virtual
machine, the monitor, and the rest of the system. It ensures host-wide constraints
such as integrity, and controlled execution of all system components. To securely
execute the different components the microkernel offers abstractions for execu-
tion and isolation in which all system components are described – including
the virtual machines. For our virtual machine subsystem the microkernel im-
plements the dispatcher module of the conventional VMM architecture. It uses
hardware virtualization techniques where necessary [87] to run the virtual ma-
chine. The microkernel catches virtualization critical hardware events and either
handles them transparently or dispatches them to the VM’s registered monitor
application.

Net

VM 1VM 1VM 1

MemApp A

Monitor

L4 Microkernel

Native L4 Applications Virtual Machines

unprivileged

privileged

Figure 3.1: Native microkernel applications including the unprivileged part of the vir-
tual machine monitor run side-by-side with virtual machines.

Through the remainder of this chapter we stepwise refine our design and show the
virtual machine representation in the L4 microkernel.

3.2.2 Virtual Machine Representation
In this section we give an overview of our virtual machine representation in our mi-
crokernel-based virtualization system. The focus of this thesis is the description of a

16 CHAPTER 3. DESIGN

virtual machine using L4 microkernel concepts including the interface which grants the
user-level monitor full control of the VM’s resources and execution.

A virtual machine is a hardware-software duplicate of a physical machine system. It
includes all platform resources: the processor, physical/virtual memory and devices. In
our system the virtual machine representation regards the requirements of three system
components:

1. The guest running in the virtual machine requires an efficient, faithful duplicate
of the physical machine system.

2. The monitor demands full control of the virtual machine, especially the allocated
physical resources and their execution.

3. The microkernel needs a representation of the virtual machine’s resources to
enforce system-wide constraints such as isolation and integrity.

The L4 microkernel abstracts a virtual machine using an L4 address space. This
space holds all resources directly accessible to the virtual machine. It allows L4 and
the user-level monitor to enforce strict isolation. The L4 microkernel takes care that the
virtual machine can only access the resources with its permissions, thereby establishing
isolation and independence – core concepts of a microkernel [60].

L4 normally exports an extended machine interface to the user-level applications.
This extended machine is similar but not identical to the underlying hardware; for
instance L4 provides system calls and installs itself into each virtual address space.
Native applications are aware of this changes and developed towards L4’s extended
machine interface. In a virtual machine environment this is impossible as the guest
running in the virtual machine expects an environment which is a faithful duplicate of
a real machine. For the virtual machine we introduced a new address space mode, the
virtualization mode. In this mode, code executing does not experience L4’s extended
machine interface but the behavior of the platform API.

Resources. At the time of creation the virtual machine, its address space is com-
pletely empty and holds no permission to any physical resources. This establishes
strong isolation of the virtual machine; the virtual machine can only operate on re-
sources explicitly allocated to it. The monitor application can then selectively populate
the virtual machine with resources, thereby defining the VM’s environment.

Depending on the type of resource L4 already provides the required mechanisms
of renaming, multiplexing and emulation of resources. In our virtual machine system
resources can be divided into several groups:

• Memory. Resources with semantics like memory such as physical memory and
IO ports can be controlled using L4’s resource mapping mechanisms. The user-
level monitor uses the already available L4 mechanisms of map/grant and unmap
to fully control the access of physical resources in the virtual machine [9, 40].

The virtualization of memory-based resources is detailed in the Section 3.3.1 for
physical memory and Section 3.3.2 for virtual memory.

• Processor. The most critical resource is the processor as virtualization is processor-
centric [74]. The VM’s processor (VCPU) is fundamental to the performance of
the virtual machine. In our L4 based virtual machine system, we represent the
VCPU with an L4 thread. It allows L4 to securely multiplex the VCPU onto the

3.3. VIRTUAL MACHINE RESOURCES 17

physical processors like all other threads in the system. For virtual machines we
extend the thread abstraction to hold the complete processor state to handle the
world-switch into a virtual machine.

For instance, the monitor application can use L4’s thread manipulation primitives
such as: create, delete, start and stop to control the execution, which is detailed
in Section 3.3.3.

• Peripheral Devices. From the view of virtualization peripheral devices are a
combination of memory, IO-ports and interrupts. The virtual machine can have
either direct physical access as already supported for native L4 applications, or
the device can be emulated in software in the basis of instruction faults.

In Section 3.3.4 we detail device related specifics.

The user-level monitor can freely define which physical resources are available to
the virtual machine and thereby trade the size of a virtual machine with the efficiency;
as physical resources avoid time-consuming emulation. In Section 3.3 we refine re-
source control and discuss the representation of resources for our virtual machine sys-
tem.

User-Level Control Protocol. Virtualization is processor-centric, the user-level mon-
itor needs access to the VCPU’s state to emulate critical instruction and to maintain the
virtual machine environment. From the viewpoint of L4, emulation is a matter of trap-
ping. We introduce a new IPC-based fault protocol to grant the monitor full, transparent
access to the VCPU to efficiently control the virtual machine’s behavior. It dispatches
virtualization critical events to the virtual machine’s registered monitor. Access to a
critical, non-present resource inside the virtual machine generates a trap which causes
the virtualizable processor to leave the guest-mode and reenter the privileged-mode
into the L4 microkernel. L4 then notifies that event to the VM’s monitor application, to
handle the fault. This protocol further allows the monitor application to inject virtual
events from the device emulation into the virtual processor. It is detailed in Section 3.4.

The virtual machine representation in L4 needs no substantial extensions; L4 already
provides the required primitives to manage virtual machines.

3.3 Virtual Machine Resources
In the following sections we present the virtualization of the virtual machine’s re-
sources in more detail.

3.3.1 Physical Memory
In this section we discuss the representation of physical memory in the L4 based virtual
machine environment. A virtual machine can not have direct access to host physical
memory; it would circumvent protection because on most hardware architectures phys-
ical memory access is uncontrolled – even on fully virtualizable processors. To virtu-
alize physical memory virtual memory can be used [22]. We follow the approaches
presented in [15, 94] and use virtual memory to establish a layer of indirection which
allows to fully control the accessible physical memory of a virtual machine. Virtual
memory allows remapping of physical machine memory to give each VM the illusion

18 CHAPTER 3. DESIGN

of a chunk of physical memory starting at address zero. Virtual memory is supported
by hardware and thus very efficient.

In L4 an virtual memory space is represented by an address space. We use an L4
address space to represent the virtual machine’s physical memory space. The monitor
populates this space by using L4 map messages. It maps or grants parts of its own
address space to the virtual machine’s space.

Being the L4 pager of the virtual machine the user-level monitor can use L4’s user-
level paging to completely control the management of the physical memory of a virtual
machine. Through the page-fault protocol the monitor is notified on physical mem-
ory faults of the virtual machine. By mapping and unmapping the user-level monitor
can provide memory resources at arbitrary locations and even with decreased rights,
thereby allowing full control of the physical memory [40,60]. L4’s mapping an unmap-
ping mechanisms are very flexible. For virtual machines they can be used to establish
controlled sharing such as content-based physical memory sharing or copy-on-write
between different virtual machines [15, 94].

For efficiency reasons, L4 does not offer the complete architecturally defined virtual
address space to user level; the kernel keeps part of it for its own purposes. There
is, however, no conceptual limitation in L4’s mapping mechanism that would prevent
managing the whole address space. A guest may require the physical complete address
space of the virtual machine, and hardware support for virtualization makes it easy to
provide the full address space.

The L4 API defines two mandatory objects in each address space: the kernel inter-
face page and the user thread control block (UTCB) area. Their location is determined
by the creator of the address space. Being part of the L4 virtual address space, they
will appear as objects in the VM’s physical address space. The monitor can freely de-
fine their position and thereby effectively hide them from the guest; for example by
placing these objects in a unused region of the VM’s physical address space. For the
virtual machine environment, these objects can optionally removed from the VM’s ad-
dress spaces. To not preclude later optimizations such as efficient inter virtual machine
communication (Section 3.5) both objects can still be mapped into the VM’s space.

Host-Physical Memory

map

map

Sigma Zero

UL- Monitor

VM Resource Space

Figure 3.2: Physical memory hierarchy: The user-level monitor uses the virtual mem-
ory to provide the virtual machine with “virtualized” physical memory. L4 exports
machine memory via the sigma zero address space. The monitor can request memory
mappings to its own address space and pass it to the virtual machine.

3.3. VIRTUAL MACHINE RESOURCES 19

3.3.2 Virtual Memory
We use L4’s virtual memory management concepts to provide the VM’s physical ad-
dress space. However, the guest operating system in the VM usually wants to create
virtual memory itself. To maintain the illusion of access to virtual memory, the virtual
machine system must resolve a guest-virtual address into a host-physical address [94].
This translation consists of two stages. The first stage translates the guest-virtual ad-
dress to a guest-physical address via page-tables maintained by the guest operating
system located in guest-physical memory. The second stage is determined by the mon-
itor’s mapping of guest-physical addresses to host-physical addresses to enforce the
resource constraints of the monitor; they overrule the requests of the guest. For exam-
ple, this indirection can be used to transparently share physical memory of the machine
as described in the previous section.

Most hardware lacks support for such a two-tiered memory translation, called nested
paging. For efficient execution on the physical processor, both stages have to be merged
into a single translation, the shadow page-table, which directly translates a guest-virtual
into host-physical addresses. The shadow page-table can also be seen as a virtual TLB
(vTLB) as it caches guest-virtual to host-physical translations. Figure 3.3 gives an
overview of the shared page-table mechanism.

Guest Page Table

guest virtual -> guest physical

Host Page Table

guest physical -> host physical

VM
execution

Physical
Execution

Shadow Page Table

guest virtual -> host physical

VM
execution

Physical
Execution

Figure 3.3: The shadow page-table is a fusion of two page–tables. Step one is de-
fined by the guest operating system, located in guest physical memory. Guest physical
memory is provided by virtual memory of the host system, which itself is implemented
using a page-table. The shadow page-table is a combination of both in a hardware
understandable form, to allow physical execution.

In our microkernel-based virtualization system, the generation of the shadow page-
table involves all three components of our system architecture. (i) The microkernel
needs to enforce isolation and independence between the different L4 address spaces
holding the applications and virtual machines. (ii) The monitor application requires
full control of the physical resources occupied by the VM. (iii) The guest operating
system, needs to create arbitrary virtual address spaces onto its guest-physical memory.
We found two different approaches to maintain guest-virtual memory which we discuss
next.

Approach 1: User-Level Management

One way to establish the guest-virtual to host-physical translation is to represent the
VM’s virtual address spaces as an L4 address space, described by the contents of the

20 CHAPTER 3. DESIGN

shadow page-table. The monitor directly constructs the shadow page-table using L4’s
map and unmap operations. VM-internal translation faults are propagated to the moni-
tor which then walks the guest operating system’s page-table to find the guest-physical
address. It then maps pages from its own address space directly into the L4 address
space representing the virtual machine, or injects the page-faults into the virtual ma-
chine as depicted in Figure 3.4. Page-fault injections accord page-faults which would
occur when the guest executes on a physical machine.

Monitor
VM

phys./virt.
memory

space
map

unmap

L4

L4 space L4 space
#PF, AS switch

TLB inv.

GP Memory

Figure 3.4: User-Level vTLB Management: The user-level monitor L4 application uses
L4’s mapping mechanism to create the guest virtual address space. Virtual Memory
related events in the VM are notified to the monitor application.

This approach allows the monitor application to fully control the guest virtual ad-
dress spaces. The monitor can use a-priori knowledge of the guest operating system
to optimize the virtual address space management. For example by avoiding address
space flushes or establishing virtualization-aware drivers into the guest to reduce virtu-
alization overhead.

However, this approach has several serious drawbacks:

• L4’s mapping mechanisms abstracts from the underlying hardware page-table.
To allow user-level management of address spaces it includes access rights such
as read, write and execute, but it does not expose additional processor archi-
tecture specific parameters such as the distinction between user- and kernel-
accessible memory. Their introduction would require architecture specific exten-
sions of L4’s mapping mechanism and these features would have to be disabled
for all but VM-address spaces.

• L4 threads are associated with exactly one L4 address space. As a result, only
the currently active guest virtual address space can be described by the L4 ad-
dress space. An address space switch in the VM requires a complete flush and
repopulation of the L4 address space of the virtual machine via memory map-
pings by the monitor. Introducing threadless address spaces, which are needed to
represent currently inactive guest virtual address spaces, into the L4 microkernel
would incur major API changes; for example the introduction of address space
identifiers.

• Updates to the virtual TLB are very frequent operations, efficiency of the vTLB
is paramount to the virtual machine’s overall performance. We consider the cost
of two address space switches and a map operation for every vTLB update too
expensive.

3.3. VIRTUAL MACHINE RESOURCES 21

Monitor
VM

physical
memory

space
map

unmap

L4 in-kernel
vTLB handling

L4 space L4 space
physcial

memory fault

#PF,
AS switch,
TLB inv.

GP Memory

Figure 3.5: In-Kernel vTLB Management: The L4 microkernel handles virtual mem-
ory related virtualization events transparently. Only events which are caused by non-
available or insufficient rights to physical resources are signaled to the user-level mon-
itor application.

Approach 2: In-kernel Management

The problems of the first approach can be avoided by emulating guest-virtual address
spaces transparently inside the L4 microkernel. The VM’s physical address space is
represented by an L4 address space which is maintained by the monitor. It holds all
physical resources of the virtual machine, including the physical memory. The ap-
proach is shown in figure 3.5.

The L4 microkernel catches page-faults on guest virtual memory. It walks the
guest page-table to resolve the fault. The user-level monitor is only notified if the L4
microkernel detects that the fault is caused by non-present, or insufficient rights on the
guest physical memory.

Of course, this approach has some disadvantages, too:

• In-kernel shadow page-table management can perform only very limited opti-
mizations. Without introducing awkward configuration protocols, optimizations
based on the knowledge of a specific guest’s behavior are not possible.

• The complexity of shadow page-table management is rather high: The vTLB
algorithm needs to walk the VM’s guest physical memory, which may cause in-
kernel page-faults (that can be handled like faults during an string IPC handling).
Furthermore, L4 uses one page-table format, while the guest operating system
may use one of many, increasing complexity of the L4 page-table walker for the
guest page-table.

Taken Approach

The authors of [7, 72] already identified the shadow page-table management of ma-
jor importance for the overall performance of virtual machines. We expect upcoming
hardware to natively support nested paging which will remove the need for shadow
page-tables altogether [8]. Therefore, we prefer in-kernel vTLB management as a tem-
porary, clean solution at the API level: If hardware support is present, L4 simply uses
it without any further changes at the API level.

22 CHAPTER 3. DESIGN

3.3.3 Processor
The virtual machine’s processor (VCPU) is critical for the efficiency of the virtual ma-
chine [74]. Similar to other systems we use a thread to represent a virtual machine’s
processor [24, 26, 56]. The L4 thread abstraction represents a timeslice of the multi-
plexed physical processors. The execution of the VCPU can be controlled like all other
threads in the L4 system. Like all other threads in L4, the VCPU is scheduled based on
its timeslice and priority.

Currently L4’s extended machine only exports the user accessible general purpose
registers to the user-level applications. For the virtual machine we extended the thread
abstraction to include the complete physical register set. To securely multiplex its
threads, L4 maintains the processor context inside the microkernel. While executing
the VCPU directly on the physical processor the fully virtualizable processor architec-
ture helps to retain isolation and control as described in Section 2.1.1. The user-level
monitor needs access to the VCPU context in two cases which we examine next.

External Events: #INT, #NMI, #PF

VM-Entry
start

Host’s
CPU Mode VM-Exit

stop

register state

?

Guest’s
CPU Mode

?

register state

Behavior Control

Figure 3.6: A virtualizable processor consists of two execution contexts. The Host
mode is active while the VMM runs. It configures the behavior control to securely
execute the VM in the guest’s mode.

Handling of Critical Instructions

To emulate the virtual machine resources such as privileged registers or devices, the
monitor needs to emulate the instructions accessing these resources. Fully virtualizable
hardware allows to generate traps on these instructions, which cause an exit out of the
virtual machine into the privileged part of the virtual machine monitor (here the L4
microkernel). L4 already provides an abstraction for these hardware exceptions: the
IPC-based exception protocol. In the name of the faulting thread, L4 synthesizes a fault
message to the associated user-level handler. The message contains the reason of the
fault and a static subset of the user-visible CPU state. The handler resolves the fault by
emulating the behavior of the faulting instruction, and sends a reply message back to
resume the thread. This message contains the new CPU register state, to be established
before resuming the thread.

For virtualization, exporting a static set of registers is too inflexible: the overall
VCPU state is much lager, but the relevant state is small and depends on the exact fault
reason. The authors of [18, 52] showed that emulation of critical instructions is a fre-
quent operation and has strong influence on the virtual machine performance. Similar

3.3. VIRTUAL MACHINE RESOURCES 23

to the exception protocol, we propose a virtualization fault protocol. For each virtual-
ization fault reason, an (architecturally) predefined part of the VCPU state is transfered
in the fault message. In the rare case that the monitor requires more or different state
than was sent in the fault message, the virtualization fault protocol provides the get
item. This item contains a request for additional VCPU state; it causes the VCPU to
immediately generate another virtualization fault without resuming execution of the
VCPU. Thus the monitor can iteratively access the complete VCPU register state. The
exact description of the virtualization fault protocol is described later in Section 3.4.

Asynchronous Execution Control

When emulating the behavior of active devices the monitor must be able to asyn-
chronously modify a VCPU’s state, for instance, to inject virtual device interrupts. L4
already provides a way to asynchronously manipulate another thread through the EX-
CHANGEREGISTERS system call. EXCHANGEREGISTERS allows for native threads
certain thread state to be read or written; but only within the same address space.
Access to the complete register state has to be emulated by user-level protocols, for
example, by inserting a helper thread into the destination address space, reachable via
IPC, to do EXCHANGEREGISTERS locally. Inserting an L4 thread transparently into
the virtual machine’s address space is a major intrusion. The thread needs stub code
for its protocol logic mapped into the VM’s virtual address space, it needs the ability
to invoke IPC, and its presence must not induce any side-effects in the guest.

To avoid introduction of an additional thread, the monitor can delay asynchronous
events and piggyback them on the next synchronous virtualization fault reply. How-
ever, this is no general solution, because it may delay asynchronous events for too long
– yet, it is an efficient optimization for high workload situations. As a minimally inva-
sive method to asynchronously access the VCPU state, we favor the extension of EX-
CHANGEREGISTERS across address space boundaries, a possibility to asynchronously
force a virtualization event. We decided to map the asynchronous access onto the syn-
chronous virtualization fault protocol. The extensions allow the monitor the force the
VCPU to sent a virtualization fault. This avoids the introduction of two access formats,
and the management of in-kernel message buffers. In-kernel buffers would be needed
to store the event until the VCPU is ready to receive it, at a later point in time. The
extensions of EXCHANGEREGISTERS include:

• An immediate fault causes the VCPU to immediately raise a virtualization fault.
The monitor can use this to unconditionally inject events such as non-maskable
interrupts or exceptions, or to inspect the VM’s state, e .g ., for debugging or
introspection purposes.

• The delayed fault provides an efficient way to find the next point in time the
VCPU is ready to receive certain events. This is necessary because the VCPU
can not always inject hardware events immediately into the guest, for instance,
interrupts when the guest operating system has interrupts disabled. The delayed
faults cause the VCPU to raise a virtualization fault when the VCPU is ready to
deliver such events – the next time the guest is able to receive interrupts. The
monitor can use the later virtualization fault to inject pending virtual interrupts
[50].

Allowing a thread’s pager and exception handler to invoke EXCHANGEREGISTERS
does not introduce any security issues, as a pager is already a strongly trusted compo-

24 CHAPTER 3. DESIGN

nent for the virtual machine. Apart from the VCPU register state, the monitor may
need to access the VM’s memory, e .g . to inspect the guest’s page-tables. Accessing
guest physical memory is not problematic for the monitor since it provided the memory
from its own address space or knows the providing component.

3.3.4 Peripheral Devices
Peripheral devices are represented as a combination of physical memory, IO memory,
and associated interrupt lines on the level of the processor interface.

Memory Mapped Devices

Memory mapped-devices are located in the guest physical address space. They are
accessed by normal load/store operations, which cannot be trapped even by fully vir-
tualizable hardware. Instead, access to memory-mapped devices can be tracked by
page-faults on memory which represents the devices. It is sufficient because memory-
mapped devices are aligned on the size of page-frames [75]. These page-faults should
not be satisfied with a mapping but trigger an emulation of the accessing instruction
to trap on further device accesses. Therefore, page-faults should also use the virtual-
ization fault protocol. Unifying page-faults and exception handling is already under
discussion in the L4 community for other reasons such as orthogonality of concepts.

IO Port Space

On some architectures, such as IA-32, there exists an additional address space, the IO
port space. In L4 these device ports are part of the L4 address space abstraction. Special
port mappings allow the management of permissions of an address space to the physical
IO ports [60,82]. For the virtual machine we use the IO port space to control the VM’s
permissions to the physical machine’s ports. Non-sufficient permissions cause a special
virtualization fault message to the user-level monitor, which can use the fault to emulate
the associated device in software.

Interrupts

A virtual machine system has to cope with two types of interrupts: (i) physical inter-
rupts coming from a real hardware device and (ii) virtual interrupts, which are created
by a software device model representing an emulated device.

The L4 microkernel abstracts processor interrupt lines by special kernel threads.
Interrupt events are abstracted by kernel generated IPC messages from the matching
kernel thread to one associated handler thread.

In our virtual machine system the user-level monitor can use L4’s interrupt IPC
mechanism to receive interrupts of physical devices. Using the EXCHANGEREGIS-
TERS system call with delayed faults, as described in Section 3.3.3, the monitor can
then inject the physical interrupts and the synthesized virtual interrupts into the vir-
tual machine. Direct delivery of physical interrupts into the VM is not possible as this
would require the introduction of an second in-kernel mechanism to buffer interrupt
events to deliver them into the VCPU when it is ready to receive the events. Another
issue here is that L4 immediately masks interrupt lines when an interrupt appears. The
interrupt line is unmasked when the associated handler notifies the kernel that is ready
to receive another interrupt via an acknowledge IPC. For the VCPU thread this protocol

3.4. USER-LEVEL CONTROL PROTOCOL 25

can not be used as the required information to emulate this behavior is only available
in the interrupt device emulation model of the user-level monitor.

DMA

Using direct memory access in the virtual machine raises isolation issues [57]. To
sustain full isolation and control, direct access to DMA-able devices for the virtual
machine must be prevented; for example, by emulating the device in the user-level
monitor application.

But none the less, it is possible to grant a virtual machine access to a DMA device.
Here the user-level monitor who must have access rights to the device, grants access to
the virtual machine. It must take care to establish the required degree of isolation by
interposing the configuration of the DMA device. The L4 microkernel needs no further
mechanisms to support DMA in the virtual machine as a DMA device can be controlled
from the user-level monitor like every other device by controlling its physical memory,
interrupt lines, and IO ports.

Trapping creates massive overhead which can be reduced by injection of virtual-
ization aware device-drivers into the guest operating system [52]. Upcoming hardware
support in the name of IO-MMU [49] or completely virtualizable devices [76] already
attack this problem and may need kernel level support.

3.4 User-level Control Protocol
In this section we discuss the design of the communication protocol required to control
the virtual machine environment from the user-level monitor.

3.4.1 Analysis of Requirements
The Monitor requires a protocol to (i) access the VCPU’s register state, (ii) emulate
resources of the VM, (iii) manipulate the VCPU’s state and, at last, (iv) to signal certain
events of the platform into the VCPU. The microkernel must implement a service which
notifies the VCPU’s monitor on behalf of the VCPU. The authors of [18, 52] showed
that this communication is critical for the virtual machine system performance. Next
we describe critical parameters of the control protocol.

Execution Transfer. The required communication mechanism between the VCPU
thread and the user-level monitor has RPC semantics. Asynchronous events such as
the delivery of interrupts are mapped on the synchronous protocol as described in Sec-
tion 3.3.3. On a VM-Exit caused by an access to an emulated resource, the physical
processor traps, L4 preempts the VCPU thread and notifies the user-level monitor. The
VCPU needs to be suspended until the monitor notifies that the effect of the critical
instruction has been completely emulated. For optimal efficiency L4 has to transfer
execution directly to the user-level monitor – to donate the VCPU’s time slice to the
monitor.

State Transfer. On a VM-Exit the user-level monitor needs a certain subset of the
VCPU register context to handle the fault. The author of [38] shows that most per-
formant message transfer heavily depends on the details of the message and the target

26 CHAPTER 3. DESIGN

architecture. In the following we discuss the communication schemes in the context of
our requirements.

With shared memory the user-level monitor and the L4 microkernel have a mapping
of the same physical memory allowing to transfer big messages without any copy over-
head. In our scenario shared memory has a lot of disadvantages [36]. Shared memory
softens the strict separation between the kernel and the user-level monitor. Zero copy
transfers requires that the user-level monitor gets full access to the machine representa-
tion of the VCPU state. On some architectures this is not possible because the machine
representation mixes safety critical state with uncritical state required by the user-level
monitor.

In contrast to shared memory, IPC messages hide the kernel representation of the
VCPU. IPC strictly separates the kernel from the user implementation allowing flexi-
bility. As mentioned before, IPC is L4’s core primitive and thus highly optimized [59];
it does not necessarily increase transfer overhead by message copying. L4’s IPC is
synchronous and allows to establish an RPC protocol. Also virtualization messages are
usually very small [7], requiring only minimal copying overhead. Thus our communi-
cation scheme is solely based on IPC messages.

Resource Population. IPC messages allow to map resources in L4. IPC messages
to VCPU threads allow to the user-level monitor to populate the physical memory into
the virtual machine.

Accessing State. Our communication protocol is based on IPC messages. To reduce
the copy overhead only the necessarily required state should be transfered between the
user-level monitor and the in-kernel VCPU representation. As discussed in Section
3.3.3 the necessary state heavily depends on the architecture an the exact reason of the
fault. We identified four cases which must be regarded by our protocol:

1. Some faults have a static behavior and thus require an architecturally predefined
subset of the VCPU’s state (for example the rdtsc instruction of the IA-32 pro-
cessor). This state can be contained directly in the fault notification IPC.

2. Some faults have a dynamic behavior. For optimal performance the monitor may
need to change the state contained in the fault message during the lifetime of a
virtual machine.

3. Faults may have rare corner cases which require much more information to re-
solve them. To avoid performance overhead for treatment of these rare cases, the
protocol needs am mechanism to gather additional state without resuming the
VCPU. This mechanism can also be used to fetch additional state, for example,
if the complete state does not fit into one IPC message.

4. The resume IPC notification holds VCPU state which is installed before the
VCPU thread is resumed.

Addressing State. To identify the involved VCPU registers of a fault message or a
VCPU state update the protocol needs to name the addressed VCPU registers. Only the
registers which do not have side-effects to the host operation are user-accessible. We
give each user-accessible VCPU register an unique index. Only through these indices
the user-level monitor can name the registers. All addressable registers are uncritical,

3.4. USER-LEVEL CONTROL PROTOCOL 27

BF
VCPU

(e.g. VMCS)
BF

index
HW
name

User-Level Monitor In-Kernel Representation

Figure 3.7: The kernel exports the user-level accessible registers via a bit-field. The
user-level monitor can use only the bit-field indices to address the VCPU state. The
kernel translates the indices into a hardware-usable form by a simple lookup table.

which avoids checks to enforce isolation in the L4 system (Refer to figure 3.7). The
registers are ordered in a way which reflects the correlation. VCPU registers which are
highly probable to be accessed at the same fault have close index numbers. This allows
to find a compressed representation of VCPU register subsets. These sets are usually
very small, about ten registers [7]. In figure 3.8 we show a graphical representation of
the encoding we present next:

• Pre-defined Sets. In cases a fault has a static behavior and requires a constant
set of VCPU registers an architecturally predefined set of VCPU registers an
efficient encoding.

• Bit-field. The bit-field holds one bit for every user-accessible VCPU register.
The problem with the bit-field description is its size. Regardless if one or all bits
in the field are set, it includes all bits explicitly. To overcome this we found a so
called hierarchical bit-field. It is divided in partitions of the size of a machine
word and a header. The header specifies which words of the bit-field are non-
zero and therefore included in the bit-field representation explicitly. A careful
ordering of the associated VCPU registers achieves a dense coding.

• VCPU Mask. The VCPU mask is derived from the processor mask introduced
in [89] and founded on the description of floating point values. The VCPU mask
defines a subset of processor registers (the bit-field) in a space efficient way. The
mask compresses the bit-field into one machine word. It treats space of the mask
description for accuracy.

To describe an arbitrary set of registers “at least” semantics have to be used.
The mask may identify more than the required registers. Here the protocol/user
can make trade-offs by using one coarse-grained, or multiple more fine grained
masks.

3.4.2 The Virtualization-Fault Protocol
The virtual machine’s CPU is represented by a L4 thread and thus an communication
endpoint in L4. The virtualization fault protocol unifies page-fault and exception proto-
col for VCPU threads. It is based on synchronous IPC. The virtualization fault protocol
is defined between the faulting VCPU thread and the thread registered as its pager (the
user-level monitor). It allows the pager to get notifications on virtualization-critical
events, to access the VCPU register state, and to install resources into the virtual ma-
chine using IPC based resource mappings. An example protocol session is sketched in
figure 3.9.

28 CHAPTER 3. DESIGN

Physical VCPU
Representation

Bitfield of User-level
Addressable Fields

~
1101

Hierarchical Bitfield

0

1

2

3

VCPU Mask

MaskOrd.Off

header:

100110

10 01~ 1001

Figure 3.8: This figure shows different formats for the specification of a set of VCPU
registers. The representations left and right of the simple bit-field are compressed rep-
resentations described in the text.

The Fault Message

A virtualization fault message is synthesized by the kernel in the name of the VCPU
when the VCPU raises a virtualization event. The message contains a word specifying
the reason followed by a subset of the VCPU register state. The exact registers depend
on the fault reason and the architecture. The kernel implementation uses the CALL
IPC to directly transfer the execution, including the remaining timeslice to the pager to
reduce latency.

The Reply Message

The pager answers the virtualization fault with a virtualization reply message. This
message may contain typed items for resource mappings, for example, memory map-
pings to install physical memory into the virtual machine’s environment as described
in Section 3.3. The reply message can also be used to modify or to request more VCPU
state. Similar to the general IPC protocol, several “typed” items, called protocol items
are defined. These items are encoded as untyped words in the IPC message of the vir-
tualization reply message to avoid interpretation by the IPC transfer mechanism. This
allows to leave L4’s IPC path untouched and allows the pager to use L4’s fast path
IPC. The in-kernel virtualization fault handler on the VCPU side associates a certain
meaning to the protocol items (untyped words) which are described next:

• Set Item. The set item changes exactly one register of the VCPU. The target
register is encoded in the item, followed by the value.

• Set-Group Item. A group item sets a predefined, fixed group of VCPU registers.
Predefined groups of registers may be very efficient on some architectures to
handle faults which require a static subset of the VCPU’s state.

• Set-Multiple Item. The set-multiple item sets an arbitrary subset of VCPU reg-
isters. The target registers are identified by a dense encoding, such as a bit-field
or a VCPU mask, followed by the values.

• Get-Resume Item. The get-resume item requests additional VCPU register
state; it uses the encoding of the set-multiple item to identify registers to be

3.5. VIRTUAL MACHINE COMMUNICATION 29

sent. This item, if present, must be the last item in the reply message. It forces
the VCPU to immediately send the requested state in another virtualization-fault
message without resuming the VCPU.

• Set-Mask Item. An architecture may require to make the fault state transferred
on a virtualization fault message run-time configurable. The set-mask item al-
lows to configure this state for each reason. The state is defined similar to the
set-multiple item format.

The refinement and exact encodings for the IA-32 architecture are described in the
implementation chapter in Section 4.2.3 and defined in Appendix A.

Pager VCPU

compile virtualization
fault message

pager handles fault

handle set/no-resume items

IPC message transfer

handle set item(s)

resume VM execution

VM execution causes fault

pager handles
no-resume fault

In-Kernel vFault Handler

User-Level / VM Execution

fault message

relpy message

Figure 3.9: The virtualization fault protocol: On a virtualization critical event inside
the VM the kernel synthesizes a virtualization fault message and sends it to the VCPU’s
pager. The pager’s first reply holds a get item requesting further state. The second reply
only modifies VCPU state and resumes execution of the VCPU.

3.5 Virtual Machine Communication
Virtual machine communication is known since the beginning of virtual machines
[10, 66]. It provides an efficient way for communication avoiding complex emulation
of communication devices such as network cards. Our virtual machine environment
reuses the facilities already available in L4.

As an extended L4 thread we conditionally allow the VCPU to issue selected L4
system-calls. To use the L4 interface the VCPU thread must be able to access its user
thread control block (UTCB) and kernel interface page (KIP). Being part of the virtual
machine’s platform we decided to base our virtual machine communication model on
the guest physical address space. The guest physical address space already has a strong
representation in L4: it is contained in the address space abstraction which represents
the virtual machine. Guest physical memory can be altered via map and unmap opera-
tions by the monitor. The guest virtual address space is only represented in a hardware

30 CHAPTER 3. DESIGN

understandable form by the vTLB. Thus the UTCB area of the virtual machine is part
of the guest physical memory space already described in Section 3.3.1. To access the
UTCB a virtualization aware driver inside the guest operating system may remap the
UTCB object into the guest virtual address space via the guest page-tables.

The virtual machine is allowed to issue following L4 system-calls:

• THREADSWITCH. The VCPU thread releases the physical CPU without block-
ing on a resource. This is transparent to the monitor, like usual thread scheduling.

• IPC. The VCPU thread can utilize all features of L4’s IPC mechanism. Ad-
dresses of mapping and strings are treated as references to guest physical ad-
dresses.

• UNMAP . As the dual operation to the map, the unmap operation is to be sup-
ported as well.

To issue the L4-system call we leverage the hypercall instruction which is avail-
able on fully virtualizable processors. Executed in the virtual machine, this instruction
unconditionally leaves the virtual machine and switches to host mode – in our case the
L4 microkernel. We define two modes associated with the instruction if executed in the
virtual machine. The monitor can configure the hypercall instruction to be interpreted
as L4 system-calls or to cause virtualization fault messages.

1. The VCPU can be configured to cause virtualization fault messages to the mon-
itor if the instruction is executed in the virtual machine. This enables the user-
level monitor to emulate the instruction behavior allowing full control of the
associated semantics providing even recursive virtualization.

2. The hypercall instruction can be mapped on L4’s system call interface. It allows
the VCPU thread to call the three L4 system calls directly. To enforce isolation,
the monitor can use IPC control mechanisms such as Redirectors [51] or Clans
& Chiefs [58] to intercept the IPCs issued by all VCPUs of a virtual machine.

To invoke the L4 IPC and Unmap operations the VCPU thread must lookup its
UTCB. The UTCB location can be communicated by a user-level protocol: First the
monitor configures the VCPU to generate virtualization faults on hypercall instructions.
The monitor checks if the VCPU requests to use L4 services, loads a VCPU register
with the UTCB location, and enables the hypercall instruction to be mapped on L4
operations. From now on the VCPU can efficiently invoke L4’s IPC. The invoked
system call is specified in a special location in the UTCB, or if the ABI register binding
of the architecture has free registers, such a register may be used.

3.6 Summary
In this chapter we presented the design of our microkernel-based virtualization sys-
tem. It consists of three major components: the microkernel, the user-level monitor
application and the virtual machine. Our system is based on an extended L4 microker-
nel. The microkernel needed only minimal extensions on the API level which are fully
backwards compatible, i e . invisible to applications which do not require them.

We introduced a new L4 address space mode which reflects the behavior of the
platform API. It is required to give the virtual machine a faithful environment and to

3.6. SUMMARY 31

keep track of all physical resources which are available to the VM. The L4 thread ab-
straction represents the virtual machine’s processor. Virtualization events are mapped
on an IPC based virtualization protocol which allows access to the VCPU’s complete
register state; it replaces the exception and page-fault protocol of current API threads.
Asynchronous access to the VCPU’s state is mapped onto the synchronous protocol.
L4’s current resource mapping allows population of resources into the virtual machine
space at the time of a virtualization fault. Access to non-available resources generates
virtualization faults; this is congruent to the behavior of the native thread model.

In fact, the privileged part of the virtual machine monitor and the microkernel have
many similarities. The most important are isolation and resource control. The mi-
crokernel’s user-level resource control already requires methods which are reused and
slightly extended for the virtual machine. The biggest extension comes with the thread
abstraction. Currently, the microkernel only provides unprivileged access to the pro-
cessor and a reduced register set. The much bigger privileged set requires a more so-
phisticated protocol, but the basic functionality, synchronous and asynchronous access
is already available, which caused only minimal extensions on the API level.

The last point we have the check if the environment provided by L4 fulfills the
virtual machine criteria and if the design meets our goals stated at the beginning of this
chapter.

Based on our description in Section 2.1 a virtual machine environment has to sus-
tain:

• Equivalence. The virtual machine is given a complete address space which can
hold any resources available in the physical machine. All resource accesses in a
virtual machine can be configured to cause resource faults. These faults allow the
user-level monitor to faithfully emulate the behavior of non-available physical
resources.

Using physical resources may effect the isolation of the virtual machine and
thus harms the equivalence criteria. Here the user-level monitor application is
responsible for only providing the resources which sustain the required isolation
for a particular virtual machine instance.

• Efficiency. To sustain efficiency the virtual machine environment can use phys-
ical resources whenever possible. The representation of the virtual machines
resources can even change during runtime of the virtual machine to achieve
system-wide performance trade-offs.

• Resource Control. Through L4’s resource mapping and thread management
mechanisms the user-level monitor has full control of the resources acquired
by the virtual machine. The monitor can asynchronously, without consent of
the virtual machine, preempt any physical resource held by the virtual machine.
Thus the resource control requirement is achieved.

Using L4’s resource control mechanism the user-level monitor can define a con-
figuration which fits the requirements of a particular virtual machine; it can de-
fine the trade-off between equivalence and efficiency, for the virtual machine it-
self, as well as on the system level, e .g ., participating on a system wide resource
management scheme.

32 CHAPTER 3. DESIGN

Chapter 4

Implementation

In this chapter we present a prototype implementation of our extended microkernel and
a user-level monitor application. The implementation is based on the fully virtualizable
IA-32 processor architecture using the Intel virtualization technology VT-x.

In Section 4.1 we discuss the architectural features of the IA-32 processor exten-
sions. In Section 4.2 we describe the implementation of the virtualization extensions
to the L4 microkernel. In Section 4.3 we briefly sketch our prototype implementation
of the user-level monitor application.

4.1 The IA-32 Processor Architecture
Our implementation of the microkernel-based virtualization environment uses the Intel
IA-32 architecture with its virtualization extensions (VT-x). It is expected that our
approach also applies to comparable, fully-virtualizable architectures as well, such as
[8, 47].

Virtualization Extensions (VT-x)

The basic IA32 architecture is not fully virtualizable. In [78] the authors identified
several critical instructions which prohibit the IA-32 processors from being fully vir-
tualizable. To prevent execution of these critical instructions virtualization systems
need to make high trade-offs: either requiring highly complex approaches, such as
para-virtualization [25] or binary translation, and instruction tracking [23, 80].

To overcome these CPU virtualization issues Intel recently introduced virtualiza-
tion extensions to the IA-32 processor. With these extensions the IA-32 processor is not
only virtualizable, but provides convenient mechanisms to create a virtualization envi-
ronment. Rich Uhlig et al . give an overview of the virtualization extensions in [72,87]
— more detailed information can be found in [50]. We will sketch the major points
which help to understand the implications on our implementation.

The virtualization extensions introduce a new processor mode, the root mode. It
is orthogonal to the processor’s legacy protection ring model; allowing the VMM and
the guest to use its intended privilege levels. A VMM runs in VT-x root mode and has
full control of the physical processor. The non-root mode provides an alternative IA-32
environment controlled by the VMM and designed to support a VM. VT-x introduces

33

34 CHAPTER 4. IMPLEMENTATION

two new atomic transitions called VM-Exit and VM-Entry. The VM-Entry switches
from root mode into non-root mode; the VM-Exit vice versa.

The virtual machine control structure (VMCS) is a new control structure located in
a physical memory page-frame. It manages the behavior of VM-Exits and VM-Entries
and the behavior of the processor when it operates in non-root mode. The VMCS
is divided in two main partitions, the guest-state and the host-state area. The areas
contain fields which correspond to different components of the physical processor. A
VM-Entry loads the state from the guest region, resuming the execution of a virtual
machine. A VM-Exit safes the actual processor state into the guest area and loads the
state from the host area.

In non-root operation the processor behavior can be fully controlled based on ex-
ecution controls stored in the VMCS by the VMM. These fields allow the VMM to
flexibly define which instructions and events cause VM-Exits. On the IA-32 architec-
ture the CR0 and the CR4 registers are critical as they control the processor operation.
For efficiency reasons the VMM may wish to retain control only on some of these bits,
for example the bits which control virtual memory management including paging, but
not others such as the floating point unit. Here the VMCS highly integrates the pro-
cessor state experienced by the guest and the physical state used for execution. VT-x
includes a guest and host mask that a VMM can use to indicate which bits it wants to
protect. Guest writes can freely modify the unmasked bits, changing the operation of
the physical processor. But an attempt to modify a masked bit causes a VM-Exit. The
VMCS also includes a read shadow whose value is returned for masked bits to decuple
the VM representation from the physical processor configuration. This fine granular
mechanisms greatly reduce the virtualization overhead.

The VMCS offers bitmaps to flexibly control which of the 32 processor exceptions
cause VM-Exits. It further includes a pointer to an I/O bitmap to control the access
to the physical machine’s IO ports, and a newly introduced MSR bitmap which con-
trols direct read / write access to the model specific registers. To efficiently virtualize
interrupts the VT-x extensions provide two controls. When the “external interrupt”
control is enabled, all physical interrupts – which appear while the processor is in non-
root mode – cause VM-Exits. This shelters a VM from physical events which are not
related to the active virtual machine. The second control offers delivery of virtual inter-
rupts (synthesized by the VMM) into a guest; the “interrupt-window exiting” control
causes a VM-Exit if guest software signals that it is ready to receive interrupts by un-
masking its interrupt flag in the EFLAGS register. This avoids polling of the guest’s
processor state.

The VM-Entry can be configured to inject events such as exceptions and virtual
interrupts into the guest. These events are delivered to the guest after the guest state is
completely loaded from the VMCS. The events are delivered through the guest’s IDT,
just as if the injected event had occurred immediately after the VM-Entry. This avoids
complex emulation of the delivery mechanism.

All VM-Exits use a common entry point into the VMM, which is defined in the
host-state area of the VMCS. The VM-Exit saves detailed information of the exit reason
into the VMCS. For many instructions this information is sufficient to handle the fault
very efficiently. For example an instruction which accesses a control register: Here the
exit information provides (i) the identity of the control register (e .g . cr3), (ii) the mode
of the access (read or write), (iii) the second operand (which general purpose register
is accessed). On other faults the exit information provides the guest linear address,
avoiding complex, time consuming inspection of the guest segmentation configuration.

4.2. MICROKERNEL EXTENSIONS 35

4.2 Microkernel Extensions
In this section we present the implementation of the virtualization extensions into the
L4 microkernel. For the implementation we used the virtualization extensions provided
by Intel VT-x. Our current implementation is for the 32-bit protected mode of the L4
microkernel. We currently support only this mode in the guest, too. This is due to the
limitation of our rudimentary implementation of the shadow page-table.

The L4 microkernel is the privileged component of the system and therefore runs in
the root mode of VT-x. At system start up, L4 detects, enables, and initializes the vir-
tualization extensions of the processor. The kernel announces hardware virtualization
support with a special feature string in the kernel interface page, the KIP (see Chapter
A).

Our virtualization extensions require small changes on the thread and the address
space abstractions. The address space is extended to include a new “virtualization
mode” which exports the semantics of the platform API. A Thread inside this space is
the VCPU of the virtual machine. In the following we present our extensions in a way
which resembles the life cycle of a VCPU thread. First we present the implementation
of the extension of L4’s thread control block (Section 4.2.1). After the creation of the
VCPU thread it starts to execute in the VM which causes hardware traps (VM-Exits);
their handling is described in Section 4.2.2. Some VM-Exits are propagated to the user-
level monitor which is done using the virtualization fault protocol. The virtualization
fault protocol replaces the page-fault and exception protocol of native L4 threads; it is
described in Section 4.2.3.

After the handling of the VCPU thread we describe the implementation of memory
based resources of the virtual machine: physical memory (Section 4.2.4) and virtual
memory (Section 4.2.5). The remaining resources are shown in Section 4.2.6.

4.2.1 VCPU Thread
In the design chapter we decided to represent the processor of a virtual machine by an
L4 thread. A thread abstracts a share of the time-multiplexed physical processor and
naturally establishes secure and controlled sharing of the physical processor between
native applications and virtual machines. To represent the processor of a virtual ma-
chine (the VCPU) we extended L4’s thread control blocks (TCBs). They now include
the VMCS structure containing the processor state. The VMCS does not contain the
general purpose registers. We store them at the beginning of the kernel stack which
usually holds the hardware exception frame.

VMCS Controls. To control the behavior of the virtual processor VT-x introduces
control fields to specify which physical resources cause a VM-Exit. In the L4 micro-
kernel environment we separated the controls into three parts:

• Kernel-Controlled. These controls are not accessible by the user-level monitor;
i .e . the user-level monitor can not change them, as it would have effects on
the host mode – the L4 microkernel. These controls include all fields of the
host-area.

Kernel controlled fields also include the scheduling related events such as hlt and
pause which always cause a virtualization fault sent to the user-level monitor.

36 CHAPTER 4. IMPLEMENTATION

• Implicit. These controls are automatically managed by the L4 microkernel. The
user-level monitor indirectly manages these controls using L4’s map and unmap
mechanisms. Implicitly controlled virtualization events are for example the fault-
ing on IO and MSR accesses. If the VCPU accesses a non-available resource L4
synthesizes a virtualization fault.

• User-Controlled. Controls of this group are exclusively controlled by the user-
level monitor, for instance the interrupt window exiting, or the time-stamp counter
access control. These VMCS fields are exported as VCPU registers and accessi-
ble using the virtualization fault protocol.

VMCS Access. The VMCS is located in physical memory, but it cannot be accessed
by normal load/store operations. VT-x introduces new read and write instructions to
access the various fields contained in the VMCS. The addressed field is an operand
encoded in a general purpose register. Thus, to access the fields assembler code needs
to be written. To increase the type safety of VMCS accesses in the L4 microkernel,
we used C++ templates to bind the different VMCS indices to their types. Listing 4.1
gives an example.

As described in Section 3.3.3, the user-level monitor is not allowed to directly
access the VMCS. It only can access the uncritical fields which are exported to user-
level and defined in a bit-field. Thus, validation of user requests is reduced to bounds
checking with the bit-field indices. The translation of bit-field indices into VMCS fields
is done using a simple array. The user-level monitor can access the VCPU state, which
includes selected VMCS fields, using the virtualization fault protocol.

VCPU Creation. The initialization of the VCPU consists of two stages. In the first
stage, at creation of the VCPU thread, all resources (including the VMCS) are allocated
and preinitialized. This especially includes the host-state area. The VCPU thread is not
put in an IPC receive for a startup message to receive its IP and SP, like native threads.
Instead, the VCPU thread expects a virtualization fault reply message. This allows the
user-level to completely configure and initialize the register state of the VCPU before
even the first instruction inside the virtual machine is issued.

After the user-level monitor sends the virtualization fault reply message, the VCPU
thread finalizes the initialization. The return to user() function is changed to not re-
turn to user-level but to enter the virtual machine for the first time using the vmlaunch
instruction.

VCPU Dispatching. The VCPU thread is scheduled like all other native threads of a
L4 system. The thread switch is extended to maintain the physical processor’s VMCS
pointer register. Mapping the VCPU onto a L4 thread does not require any additional
thread states in L4. Activity states such as wait on “inter-processor-interrupt”, which
are provided by VT-x, are not relevant to the L4 microkernel but fully accessible to the
user-level monitor, to emulate SMP systems.

The hlt and pause instruction cause a physical processor to enter sleep mode until
the processor receives an hardware interrupt. For the VCPU these instruction cause
VM-Exits which is mapped onto virtualization faults. They can not be handled trans-
parently by L4 because the VCPU thread is not allowed to resume its execution until a
virtual interrupt is delivered to the processor. The virtualization fault message automat-
ically blocks the VCPU thread thus avoids that it is being scheduled, until the monitor
decides to resume the VCPU, for instance, by injecting an virtual interrupt.

4.2. MICROKERNEL EXTENSIONS 37

template<u 3 2 t index , typename T = word t> c l a s s v m c s f i e l d
{
p u b l i c :

/ / Ass ign T t o v m c s f i e l d ; T needs a member raw
v m c s f i e l d& operator = (T v a l)

{
i a 3 2 v m w r i t e (index , v a l . raw) ;
re turn ∗ t h i s ;

}

/ / Ass ign v m c s f i e l d t o T ; T needs a member raw
operator T ()

{
T v a l ;
v a l . raw = i a 3 2 v m r e a d (i n d e x) ;
re turn v a l ;

}
};

/ / S p e c i a l i z e t e m p l a t e f o r w o r d t ; w o r d t does n o t have a . raw member
template<u 3 2 t index> c l a s s v m c s f i e l d<index , word t> {
p u b l i c :

/ / Ass ign w o r d t t o v m c s f i e l d
v m c s f i e l d& operator = (w o r d t v a l)

{
i a 3 2 v m w r i t e (index , v a l) ;
re turn ∗ t h i s ;

}

/ / Ass ign v m c s f i e l d t o w o r d t
operator w o r d t ()

re turn i a 3 2 v m r e a d (i n d e x) ;
};

d e f i n e VMCS IDX PB 0 x4000

c l a s s p b t
{
p u b l i c :

union {
u 3 2 t raw ;
s t r u c t {

s 3 2 t e x t i n t e x i t : 1 ;
s 3 2 t r e s 1 : 2 ;
s 3 2 t n m i e x i t : 1 ;
s 3 2 t r e s 2 : 2 8 ;

} a t t r i b u t e ((packed)) ;
};

};

t y p e d e f v m c s f i e l d<VMCS PB IDX , p b t> f p b t ;

Listing 4.1: The above listing shows the type safe encapsulation of the vmread and
vmwrite instructions. Using templates we are able to bind the required object type on
the used VMCS index. The output generated by the GCC compiler does not incur any
overhead.

38 CHAPTER 4. IMPLEMENTATION

4.2.2 VM-Exit Handler
L4’s VM-Exit handler is the single entry point of the VCPU thread on a VM-Exit.
A VM-Exit occurs on virtualization critical events. The processor stores the current
processor context (the VCPU context) into the guest state area of the current VMCS
in a well defined precise way and does a world switch, loading the host state, thus
resuming execution in root-mode at the beginning of the VM-Exit handler. The handler
stores the remaining processor context (mostly the general purpose registers) onto the
kernel stack. Restoring L4’s execution context additionally requires to reinitialize the
segment registers, the EFLAGS, and to the size of the TSS segment. Afterwards, the
fault reason is examined by inspecting the VMCS fields. The faults can be grouped
into three types:

1. Internal event: Events such as instructions that affect the vTLB management are
treated in the L4 microkernel and thus handled transparently.

2. Monitor event: Resource faults (such as physical memory, IO ports, and MSRs)
and the emulation of most critical instructions belongs to this group. In the name
of the faulting VCPU L4 sends a virtualization fault message to the registered
pager (i . e . user-level monitor) to handle the fault.

3. External events: Events which are not related to the VCPU execution cause VM-
Exits, too, resuming execution in the VM-Exit handler. For physical interrupts
we use the int instruction to issue an software interrupt to emulate the delivery
of the hardware interrupt though L4’s IDT.

After handling the fault the VCPU context is reloaded and the VCPU regains con-
trol of the physical processor using the vmresume instruction which synchronously
does a VM-Entry into the non-root mode.

4.2.3 Virtualization Fault Protocol
The virtualization fault protocol grants the user-level monitor full access to the VCPU
thread. It is required to emulate critical instructions, to control the behavior of the
VCPU, to access the guest’s processor state, and to populate memory into the virtual
machine. The virtualization fault protocol replaces the memory fault protocols and the
exception messages used for native L4 threads. As described in the design chapter, the
protocol consists of two messages: The kernel generated fault message and the reply
message which comes from the VCPU’s pager.

Fault Message. The fault message has a static message layout. In the first message
register it holds the reason of the fault, followed by a fault specific subset of the VCPU’s
register state. The state can be defined by the user-level monitor using a set-mask
protocol item in the reply message. This item includes a VCPU bit-field. For each VM-
Exit reason that results in a virtualization fault a bit-field is stored in the VCPU thread’s
control block and used to generate the fault message. After the message is stored,
L4 issues a blocking in-kernel IPC on behalf of the VCPU thread to the registered
pager. This IPC blocks, the VCPU thread is not scheduled until the pager sends a reply
message.

An alternative solution would be to use a fixed fault message content. As we aim
for full virtualization the goal is to provide a faithful duplicate of the real machine, so

4.2. MICROKERNEL EXTENSIONS 39

the required emulation does not depend on the specifics of a guest. Thus the required
work is fixed by the specifics of the hardware architecture and a fixed protocol would be
sufficient. Unfortunately, our current implementation of the user-level monitor is not
complete enough to run more complex operating systems which utilize all hardware
features to validate this thesis.

Reply Message. The reply message allows the user-level monitor to modify the VCPU
state, to read additional VCPU state, and to resume execution. To distinguish these dif-
ferent operations the reply message can hold different protocol items.

The reply handler interprets the untyped words contained in the UTCB as proto-
col items of the virtualization fault protocol. These words are transfered by the in-
kernel IPC transfer mechanism. We support several protocol items which are shown
in Appendix A.3. To interpret the items we use the same mechanisms as used in L4’s
extended IPC message transfer. Handling of read requests, which are encoded as get
items, require to store these items temporary; they cannot be handled directly as this
would overwrite the current message. We store these get items in a region local to the
physical processor. After the message is completely examined, all get items are pro-
cessed, and the requested VCPU register values are stored in the UTCB for the second
fault message. If the message contained no get items the execution of the VCPU thread
returns into the VM to resume execution.

Asynchronous VCPU Access

The user-level monitor requires asynchronous access to the VCPU and the VM to im-
plement the behavior of the emulated virtual machine environment. As discussed in
3.3.3 the user-level monitor must use the EXCHANGEREGISTERS system call to force
the VCPU thread into a virtualization fault to access the VCPU’s state.

Our changes to the L4 API include the required extensions to the EXCHANGERE-
GISTERS system call as detailed in A.2. The implementation is straightforward. It
distinguishes between local and cross processor operation. The operation is always run
on the processor the VCPU is associated to. This guarantees that the VCPU is currently
not running and thus can be freely manipulated.

• Delayed Fault. We currently implemented the “interrupt-window exit” control
to force a virtualization fault message when the guest signals to be able to receive
interrupts. The implementation simply sets the “interrupt-window exit” control
in the VCPU thread’s VMCS.

• Immediate Fault. The immediate fault requires that the VCPU thread enters
the virtualization fault protocol immediately. The implementation uses L4’s in
kernel notification mechanisms. It offers a method to force execution of in kernel
functions. We force the VCPU thread to call the in-kernel virtualization fault
handler.

4.2.4 Physical Memory Space
The virtual machine is represented by an L4 address space. All threads within the same
address space have the same resource permissions. To faithfully express a virtual ma-
chine we added a new mode to the L4 address space. The new virtualization mode can
be requested at address space creation via additional control bits on SPACECONTROL

40 CHAPTER 4. IMPLEMENTATION

(refer to A.1). In this mode the virtual machine has access to the complete virtual ad-
dress space size and holds the virtual machine’s physical memory space. At the time
of creation it is empty, allowing the monitor full control of the virtual machine; the L4
microkernel is not mapped into the memory space; it only contains the necessary KIP
and UTCB areas. All threads assigned to it behave like VCPUs as detailed in 4.2.1.

The virtual machine’s physical memory address space can be fully controlled by
the user-level monitor using L4’s memory management mechanisms: map, grant, and
unmap. As all other spaces it is fully integrated in L4’s mapping hierarchy and thus
part of the mapping database.

Virtualization
Address Space

map()

unmap()

Native L4
Address Space

map()

unmap()

L4 Kernel

space_t space_t

Figure 4.1: A virtual machine is represented by L4’s abstraction for isolation, the ad-
dress space. For virtual machines we introduced a new address space mode, the vir-
tualization space. It changes the environment experienced by the code running in the
address space from L4’s extended machine to the expected platform API. This requires
to remove the kernel from the virtual machine’s memory space. The address space can
still be manipulated using L4’s address space manipulation operations such as mapping
and thread creation.

• Map. The monitor uses L4’s map operation to populate the virtual machine
environment. Memory resource mappings are part of the virtualization reply
message. These mappings are automatically populated into the guest physical
memory space as the VCPU is associated it. We extended the address space
implementation (space t) to allow mappings into the virtual memory region
normally reserved to the kernel.

• Unmap allows the monitor to revoke access to physical memory and query the
accessed and dirty information of a physical memory frame. This access in-
formation includes the information of the shadow page-table, too. Revocation
of guest physical memory has to remove parts of the shadow page-table which
point to revoked memory; the vTLB handler has to take care that its reference
information is included on an UNMAP operation.

• Physical Memory Fault. Access to physical memory which is not mapped in the
VM’s address space causes resource faults and thereby virtualization messages.
Regions which are occupied by the KIP and UTCB are handled transparently by
L4.

4.2.5 Shadow Page Table Management
The shadow page table implements the virtual memory management of a virtual ma-
chine. The shadow page-table caches the two staged translation (from guest-virtual to

4.2. MICROKERNEL EXTENSIONS 41

guest-physical to host-physical) in a single translation (guest-virtual to host-physical)
for direct use by the processor. We consider this a temporary solution until upcoming
hardware natively supports this translation in hardware [7].

The shadow page-table can be seen as an additional, virtual TLB in the memory
hierarchy located between the guest’s page-tables and the physical processor’s TLB.
The shadow page-table handler behaves similar to a processor TLB. It caches address
translations. This cache can become inconsistent to the description required by the
guest. Similar to a processor TLB the shadow page-table management uses page-faults,
the invlpg and the load CR3, CR0, CR4 instructions to enforce synchronization. In
the virtual machine environment, these instructions cause VM-Exits to emulate their
behavior.

There exist two types of inconsistencies:

• Shadow Page-Table. In these cases the shadow page-table is inconsistent with
the guest which corresponds to an update of a hardware TLB miss/fault.

The most frequent update is triggered by a page-fault in the virtual machine.
The shadow page-table handler examines the guest’s page-table and synthesizes
an entry in the shadow page table. If the guest’s page-table itself does not contain
a valid entry the fault is a true page-fault and injected into the virtual machine.

Another cause for a synchronization is an address space switch, which is trig-
gered by a load CR3 instruction. It requires a flush of the shadow page-table
which corresponds to the flush of the hardware TLB. Strategies for optimizing
this critical operation are not examined in this thesis as they require complex
trade-offs. This thesis focuses on the integration of the mechanisms using con-
cepts of the L4 microkernel.

The invlpg instruction is used by the guest operating system to enforce consis-
tency of the TLB, thus the shadow page-table has to remove the matching page-
table entries, too. (The hardware TLB consistency has already been established
by the implicit hardware TLB flush at the world switch).

Changes on the handling of virtual memory of the VCPU, for instance, enabling
and disabling paging cause a flush, too. The shadow page-table manager adapts
its behavior.

• Guest Page-Table. These inconsistencies are caused by the processor’s updates
of accessed and dirty bits on the page-table. The shadow page-table mechanism
needs to emulate that behavior as the processor only updates the shadow page-
table. The access bit is emulated by marking non accessed pages in the guest
page-table non present in the shadow page-table. The resulting ’virtual’ page-
fault is used to propagate the accessed bit update into the guest. The dirty bit is
propagated in a similar way by marking non dirty pages in the guest read only in
the shadow page-table.

The emulation of super pages (4M pages) of guest physical memory by several 4K
pages at host level may require additional care. Flushing such an emulated super page
requires the revocation of multiple entries. As the representation of the guest page-
table is not necessary consistent with the shadow page-table, the shadow page-table
mechanism can not use the guest page-table to decide the size of the area identified
by the invlpg instruction. Here, the shadow page-table itself has to carry additional
information that it emulates a guest super page, causing a invlpg on such a region to

42 CHAPTER 4. IMPLEMENTATION

Guest Physical
Address Space

VCPU

vTLB Algorithm

map()

unmap()

Shadow Page Table

#PF
mov cr0, cr3, cr4
invlpg

guest-virt. to guest-phys.,
guest-phys to host-phys,

dirty, accessed

maintain dirty, accessed

dirty
accessed

Figure 4.2: The vTLB (shadow page-table) uses the guest guest’s page tables, located
in guest physical memory, and the virtual memory related instruction issued on the
VCPU to maintain the shadow page table. The physical processor updates access in-
formation (access and dirty bits) directly into the shadow page-table. These bits must
be propagated into the guest’s page-tables.

flush multiple 4K pages. The meta information can be stored in the page directory
entry’s “available bits” of the shadow page-table.

Integration in L4

The L4 microkernel implements page-tables with space t objects. All page-tables
are derived via map operations from the sender’s space and thus recursively derived
from the sigma zero address space. The dependencies of the mapping hierarchy are
expressed in the mapping database (MDB) which is located in a page attached directly
behind the hardware page-table. It contains the link to the sender’s (parent) page-table
entry from which it is derived via the map operation.

Full MDB Integration. Using the in-kernel services to construct the shadow page-
table fully integrates the pages into L4’s recursive mapping tree. The shadow page
tables are constructed from the guest physical address space using the map fpage()
operation. This approach automatically provides support for the UNMAP operation
which allows the user-level monitor to revoke access and to query access information
of the shadow page-tables by unmapping guest physical memory. Unfortunately, this
approach has some drawbacks. The map fpage() operation needs virtualization spe-
cific extensions to allow manipulation of page-table fields which L4 defines statically

4.2. MICROKERNEL EXTENSIONS 43

in native operation, for instance the protection information (the super-user bit). The
shadow-page table format uses the format provided by the space t object and thus is
static, it cannot be adapted to express the guests mode of operation in the most efficient
way. The tight integration of the shadow page-table creates overhead in time (for main-
taining the mapping hierarchy) and space (to store the back-link). Shadow page-table
updates are very frequent operations. The mapping hierarchy information is needed
only in the rare cases the user-level monitor changes the physical memory provided to
a VM.

MDB Coherence. To avoid the above deficiencies the shadow page-table could be
detached from L4’s mapping hierarchy. Coherence is established lazily on UNMAP op-
erations on the guest physical memory. The shadow page-table manager now can freely
choose the optimal representation to effectively and efficiently represent the guest’s
address space layout. Detaching the vTLB raises synchronization issues between the
recursive mapping tree and the shadow page-table. In the current implementation, a
revocation of guest physical memory issued by an UNMAP operation causes a com-
plete flush of the shadow page-table. The UNMAP system call further allows to query
the access information (accessed and dirty) of a given memory page. This information
is a bitwise or of all page-table entries which transitively derived the memory from
the space issuing the operation. The virtual machine’s guest physical memory space
is automatically included, as it is part of L4’s mapping hierarchy. A virtual machine’s
virtual memory spaces must be included, too. Here we decided to update this infor-
mation eagerly into the page-tables forming the guest physical address space at the
same time the guest’s page-table is updated. This avoids time consuming parsing of
the complete shadow page-table at the time of the UNMAP operation, or handling of an
inverted page-table to track guest physical to guest virtual references.

We implemented both approaches to construct the shadow page-tables. Unfortu-
nately, we were not able to make a final decision as this requires a more advanced
shadow page-table algorithm which is out of the scope of this thesis.

Optimization: Guest Page Table Walks

In the presented model we require temporary mappings of portions of the guest physi-
cal memory into the kernel address space to access the guest’s page-table, for instance,
to translate guest virtual into guest physical addresses. The L4 kernel space has only
very limited capacity for temporary mappings and multiplexing it is expensive as it
requires TLB invalidations. Additionally, accesses to these temporary remapping re-
quires complex, time-consuming offsetting to translate a guest physical into a kernel
addressable form which further reduces efficiency.

A direct switch into the guest physical address space is impossible as it does not
have the L4 microkernel mapped into it. To overcome these issues we decided to intro-
duce a special address space, the vTLB-handler space. Figure 4.3 gives an overview.
This space is only for implemtation, it is not visible to the user. It has the L4 microker-
nel mapped into the upper gigabyte, like all native L4 address spaces. The user-level
portion of the address space contains selected chunks of the guest physical address
space. This allows to use the hardware TLB to efficiently translate guest-physical into
host-physical addresses, thus to walk and access the guest’s page-table. In our current
implementation, we simply mirror the lower three gigabytes of guest physical mem-

44 CHAPTER 4. IMPLEMENTATION

ory. On a VM-Exit, when the execution switches to L4, this vTLB-handler space is
activated, as most events are related to memory virtualization.

In our current implementation we use a rather simple population scheme for the
vTLB-handler space. Memory mappings into the guest physical memory space are
simply mirrored into the handler space if they are located in the user portion of the
address space. This is achieved by a special treatment of the virtual machine address
space in the mapping implementation of map fpage(). An UNMAP on a region in the
guest physical address space implies the revocation of matching memory in the handler
space, too. This happens automatically, as the handler space received all its mappings
via map fpage().

While doing a guest page-table walk the in-kernel vTLB algorithm may cause page-
faults in the handler space. These page-faults are caught and transformed into virtu-
alization fault messages to the virtual machine’s pager thread. To handle such faults,
the state of the VCPU (such as the IP and the fault address) would be enough to recon-
struct the exact reason. For efficiency reasons, we extended the VCPU state with two
additional fields which contain 1) the guest-physical address which causes the fault and
2) the access mode (such as read or write). The user-level monitor can then check this
address if it matches with the location of a memory-mapped device, or if it is a true
physical memory resource fault. This behavior conforms to the expected behavior for
hardware supported vTLB management as stated in AMD’s Pacifica specification [8].

L4
Address Space

VM
Physical

Memory Space

map()

unmap()

L4
Address Space

VM
Handling

L4 Kernel

synchronize

Transparent for user-level

space_t space_t

Figure 4.3: Efficient handling of guest page-table walks requires access to huge por-
tions of the guest physical address space. The vTLB-handler space contains the lower
3 GB of the guest physical address space, avoiding temporary mappings in the L4 mi-
crokernel.

Optimization: Prefetching Shadow Page-Table Entries

The vTLB operations such as the miss, fill, and status information updates of the guest
page-table entries (e .g . the accessed and dirty bits) are very frequent. Under normal
conditions they are the most frequent operations in the complete platform virtualiza-
tion and therefore major to the overall virtualization performance. To optimize the
performance of the software implementation of the vTLB, advanced caching similar to
software loaded TLB handlers can be used [11, 71, 73, 88, 98].

In the virtualization system the vTLB handlers can use more advanced mechanisms
as the VM-Exit causes a high, overhead socked. Optimization of the vTLB requires to

4.2. MICROKERNEL EXTENSIONS 45

do more than doing the required minimum to resolve the current fault, but to avoid
misses in the future, for instance, prefetching or tracking of page-table writes [7].

Prefetching includes the GDT, as well as the current instruction and stack pointer.

4.2.6 Further Resources
IO Port Space. To control pass-through access of a virtual machine to the physical
IO ports we reuse L4’s IO bitmap implementation. We configure all VCPUs in a virtual
machine to use the same bitmap. The monitor can use IO-fpage mappings to manip-
ulate the virtual machine’s access. Access to an IO-port which is not available to the
virtual machine generates a virtualization fault.

Model Specific Registers. The hardware virtualization provided by VT-x supports
three modes for management of model specific registers (MSR): (i) physical access to
global MSRs, (ii) virtual machine local values which are saved and restored on a world
switch, and (iii) emulation of the MSRs by trapping the instructions which access the
MSRs.

Currently, L4 allows only the privileged address spaces to access the model specific
registers. In these spaces the execution of the rdmsr and wrmsr instruction causes a
general protection fault on the processor which the kernel uses to transparently emu-
late the behavior of these instructions. We extended L4’s current model to unify the
handling of virtual machines and the native microkernel environment. We allow each
address space controlled access to MSRs similar to the handling of IO ports. Access is
controlled by a MSR space which is part of L4’s address space abstraction.

For native operation the MSR-fpage establishes mappings which grant/map read
and write access to a physical MSR. The accessing instructions still cause general pro-
tection faults but depending on the actual rights of an address space, the L4 microkernel
emulates the instruction, or synthesizes a MSR fault IPC to the pager thread. The UN-
MAP system call is extended to support revocation of MSR access permissions.

For the virtual machine environment we support all hardware modes.

• Physical MSR. Mapping a MSR to a virtual machine allows the virtual machine
to access the machine’s MSR. To distinguish between VM local and system-wide
access we leverage the x-bit of the MSR-fpage. It defines if a virtual machine has
its own instance of the MSR or uses the global value (like the native L4 address
space).

• Emulating MSRs. Access of a virtual machine to a MSR which insufficient
permissions causes a virtualization fault message, which the user-level monitor
can use to emulate the effect of the instruction.

Time Stamp Counter. The time stamp conter register (TSC) is a processor register
which is automatically increased on every processor cycle. The guest operation sys-
tem may use it to measure time distances. To maintain a consistent view with other –
off processor – timing devices such as the programmable interrupt timer device (PIT)
or the real time clock (CMOS RTC), the user-level monitor needs full control of the
time stamp counter register [93]. The hardware virtualization extensions provide two
modes to virtualize the time stamp counter register: emulation or offsetting. In em-
ulation mode, access to the counter register generates a fault, causing a virtualization
fault message to the user-level monitor. Emulation causes high overhead if the guest

46 CHAPTER 4. IMPLEMENTATION

frequently accesses the register. The authors in [93] suggest to first enable emulation
and then switch to the physical TSC for performance reasons. In offsetting mode the
guest can directly access the physical TSC register. But accesses to the register returns
the physical TSC modified by an offset. This allows full hardware performance and
retains a VCPU local timestamp value.

To completely isolate the VCPU the user-level monitor needs to keep track when
the VCPU thread is scheduled to run on the physical processor so that it can adapt the
offset. Unfortunately, L4 does not provide a way to get notifications when a thread is
being scheduled. In our implementation the L4 microkernel automatically maintains
a consistent view of the time stamp counter register (refer to Figure 4.4). When L4
preempts a VCPU thread it saves the current time stamp counter. On reactivation, L4
modifies the VCPU’s offset so that the VCPU’s time stamp counter resumes at its last
value. In result the VCPU thread does not leak information if it has been preempted
by L4. The user-level monitor, on the other hand, keeps a consistent view between the
time stamp counter value and the other timing devices by synchronizing the offset with
the other platform devices.

0

100

vm

phys

t / [cycles]

10

110

11

300

preemption reactivation

Figure 4.4: The in-kernel TSC handler maintains the VM local time stamp counter
offset to create a monotonically increasing counter.

Floating Point Resources. In our approach the L4 microkernel transparently mul-
tiplexes the VCPU registers including the FPU state. L4 already supports lazy FPU
multiplexing. We extended L4’s model to include VT-x’s FPU virtualization based on
the description proposed in [72].

4.3 The User-Level Monitor
The user-level monitor application creates and maintains the virtual machine environ-
ment. In this section we describe our implementation of a small user-level monitor
application which utilizes important aspects of virtualization. In its current implemen-
tation it is able to run the L4 microkernel as a guest. In the following we describe key
points of our implementation.

4.3.1 Architecture
The user-level monitor implements the allocator and the interpreters of a conventional
VMM architecture. The monitor is a normal L4 application which can interact with
other system servers to implement its services. In its current implementation the user-
level monitor runs as the privileged root-task of a L4 system. This is only to reduce

4.3. THE USER-LEVEL MONITOR 47

L4

#INT
Timeouts

vFault / Reply

VCPU

Scheduler

VCPUVCPU

Phys.
Memory

Pool

#INTs

IO-Ports

Management Console

Device
Models

Device
Models

Device
Models

VM

Timer

Figure 4.5: User-Level Monitor Architecture: The monitor consists of services which
handle the physical resources. The user has full control of the monitor through the
management console. The virtual machine representation contains all resources avail-
able to it, especially the device models. The monitor provides an IPC interface which
dispatches incoming events to the virtual machine.

the implementation complexity because it allows the monitor to have full access on all
system resources. All system services are based on IPC an thus can be divided into
isolated system servers of a component based system, for instance into a task-server or
memory-server.

At system startup the user-level monitor grabs all physical resources including
physical memory, IO-ports and interrupts. It partitions the physical resources onto
the started virtual machines to securely isolate them. The granted physical memory is
registered in a local memory page pool. The page pool supports 4K and 4M pages.
This increases the efficiency of the guest mappings.

After all physical resources are registered the user-level monitor installs its global
services. The timer service offers time based events in the user-level monitor. The
physical interrupt handler manages physical interrupts, for example the keyboard in-
terrupts for the management console. The management console provides the user full
access for resource control and debugging of the virtual machines and the monitor
itself.

The last service is the module manager. It parses the system configuration and
then starts to initialize the requested virtual machines. Virtual machine initialization is
presented in Section 4.3.2. After all virtual machines are created, the user level-monitor
enters the event loop to service incoming requests. All events are based on L4’s IPC.
Upon receiving an IPC message it inspects the message which may be of three different
types:

• Virtualization Faults. The monitor receives virtualization fault messages of
the running VCPU threads. These faults are handled using the faulting virtual
machine, which is detailed in the next section.

• Physical Interrupts. The monitor receives all physical interrupts designated to
the monitor itself or the virtual machines. These interrupts may be used to trigger
device emulations or may be directly injected into the VCPU.

48 CHAPTER 4. IMPLEMENTATION

• Time-based Events. The IPC receive-timeouts of the event loop are used to
handle time-based events in the user-level monitor.

4.3.2 Virtual Machine Representation
The virtual machine representation is the major module of the user-level monitor appli-
cation. It contains a full representation of the virtual machine including the allocated
physical resources, the virtual processor handling, and the device emulators forming
the emulated machine platform.

Intlogic

Montior
Timer

RTC

VCPU

IO-Ports Memory

Disk? Net?

Console

Montior
#INTs

Monitor
Console

VM

Monitor
Page-Pool

Figure 4.6: Virtual machine representation in the user-level monitor.

Processor

The processor is the major endpoint for the virtualization fault protocol as VM-faults
are caused by the VCPU threads. The processor receives all virtualization related
events. The processor module handles the L4 virtualization fault messages and the
reply. At creation of a VCPU thread it defines the state transfered on a virtualization
fault. It holds the VCPU state at the time of the fault. Depending on the fault reason the
processor module may trigger device emulation, for instance on a fault caused by in or
out on devices. To efficiently translate the fault message into typed VCPU registers we
store all VCPU registers in an array arranged on the index in the mask bit-field. This
array is overlaid with the exact types of the VCPU register fields. The array is only
used for the load/store to handle the fault protocol. To handle faults the exact types can
be used, to achieve type safety. Handling of the fault the monitor requires updates on a
subset of the registers retrieved with the fault message. The VCPU registers contained
in a fault message are simply identified by a bit-field. This field is directly used for the
reply mask of the virtualization reply message

Scheduling. The user-level monitor application must be able to control the execution
of the virtual machine’s processors and needs to keep track of their execution status.
Similar to the domain scheduling used in Xen [18] we introduced VCPU thread states
to keep track of the different states of a virtual processor. But unlike Xen’s implemen-
tation we only require two states, as the actual scheduling on the physical processor is
done within L4. In any point in time, a VCPU thread can be in one of the following
states:

• Running. The VCPU thread is currently running the guest and scheduled like
any other thread in the L4 system.

4.3. THE USER-LEVEL MONITOR 49

• Blocked. The VCPU thread does not execute guest instructions. It has send
a virtualization fault and is now waiting for the virtualization reply message to
resume its execution. Some events such as the execution of the hlt and pause
instructions require to suspend the VCPU thread until it is reactivated by an
interrupt. In such cases the event loop must not reply to the current VCPU thread
but simply wait for other IPC messages.

Physical Memory

Guest physical memory is handled by a page-table like structure in the user-level mon-
itor, the region manager. It maps guest physical addresses of a virtual machine to
addresses valid in the user-level monitor. On a physical memory fault the monitor al-
locates memory from its local page pool, registers it in the VM’s region manager and
maps the memory into the virtual machine using the virtualization reply message. The
region manager holds additional control bit in its page-table to indicate that regions
of the guest physical address space are occupied by a guest’s device. Access to such
a region is not serviced with a mapping but triggers the emulation of the registered
memory mapped device.

Startup Environment

The virtual machine monitor currently creates a startup environment which complies
to the multiboot standard. This environment is required to run the L4 microkernel as
a guest. The processor is set into protected mode with paging disabled using a flat
segment model [27]. The monitor copies the guest operating image into the guest
physical memory and installs the multiboot meta information structures. After that, the
VCPU’s register context is initialized as required by the standard using a virtualization
reply message to start the VCPU thread. In the case of a L4 guest, kickstart runs and
later hands over to L4.

Most operating systems expect the real mode to do the first stages of startup. Cur-
rently, we do not support the real-mode execution as it is not directly supported by
the Intel processor [50]. The real-mode execution environment must be emulated in
software, for example by porting whole system simulators such as Bochs [55] (refer
to Section 2.1) to the user-level monitor. The virtual machine environment is first
emulated in software; when the guest tries to switch into a processor mode directly
supported by the physical processor the user-level monitor can migrate the guest into a
virtual machine environment supported by L4 microkernel’s virtual machine. The soft-
ware simulator requires support to externalize the state and load it into the L4 virtual
machine.

Device Emulation

In the following sections we roughly describe our implementation of selected device
emulation modules.

Interrupt Logic. To manage the interrupts of a virtual machine we implemented
an interrupt logic based on the Intel 8269A chip [48]. We implemented two models
for interrupt delivery: synchronous piggy-backing of interrupts on virtualization fault

50 CHAPTER 4. IMPLEMENTATION

replies, and an asynchronous requests for interrupt delivery using EXCHANGEREGIS-
TERS. A device which raises a virtual interrupt can decide which method should be
used to deliver the interrupt into the VM.

Timer Device. Timing in the virtual machines is based on the model proposed in
[93]. In our current implementation this model includes the handling of the timestamp
counter register and the CMOS real-time clock.

For the virtualization of the real-time clock we need to inject periodic events into
the virtual machine. To handle such events we introduced an event queue to the mon-
itor. After the virtual machine has configured its RTC device model by virtualization
faults, the configuration is transformed into an event and enqueued into the list. On a
virtualization reply, the head of the list is used to determine the timeout of the follow-
ing IPC receive operation of the event loop. When the monitor thread receives an IPC
it is checked if the IPC receive failed because of a timeout violation. This indicates
that an event from the event queue needs to be processed. For efficiency reasons we do
not handle only the first event of the event queue but all events in a certain time span.
In case of the real time clock device, the event raises a timer interrupt at the virtual
interrupt controller of the associated virtual machine. The pending virtual interrupt
then injected into the VCPU thread to signal a timer tick. The event list distinguishes
between one shot and periodic events. Periodic events such as the timer event are not
erased but automatically enqueued into the list based on their cycle time.

Console I/O Interface. To control the operating system inside the virtual machine we
implemented a simple serial console IO device emulation. It allows basic interaction
with the virtual machine. The device emulates an NS16550A chip. For the emulation
we configured the VCPU to trap on in and out instructions on the devices port range.

Data output of the virtual machine into the device emulation of the serial console
can be configured to be directly displayed on the management console of the user-level
monitor. To feed the virtual machine with input we introduced a management interface
to the monitor which is based on the L4 kernel debugger interface. It grabs the physical
keyboard and allows to deposit keyboard input into console devices of arbitrary virtual
machines.

DMA. Direct memory of a virtual machine can be provided in two ways: emulation
and direct access to a DMA-able physical device. Emulation can be achieved like all
other devices. Direct access of the virtual machine to the physical device needs spe-
cial care. The monitor has to trap the start of the DMA operation. It must patch the
configuration of the start and end addresses of the transfer. The virtual machine uses
guest-physical addresses which need to be translated into host physical addresses. The
monitor also has to be aware that for the time of the DMA operation the addressed
memory block must not be unmapped by itself or its providers, higher-up in the map-
ping hierarchy. To ensure this, the monitor may priorly do an UNMAP of the memory
and exchange this memory location with a mapping of special memory from its pinned
memory pool.

Chapter 5

Evaluation

This chapter intentionally left out. For more information please contact contact@l4ka.org.

51

52 CHAPTER 5. EVALUATION

Chapter 6

Conclusion

This chapter concludes this diploma thesis with a summary followed by a suggestion
for further work.

6.1 Contribution of This Work
This thesis addressed microkernel-based virtualization systems. It integrated a generic
interface to the L4 microkernel, to maintain virtual machines from user-level. Micro-
kernel-based, hardware-supported full virtualization systems are a novel approach and
have not been published in previous work. Our approach has several benefits.

The microkernel approach introduces only a thin layer of trusted software similar
to hypervisor based architectures. Further, it allows to co-locate virtual machines and
native microkernel applications like host based virtual machine architectures. The mi-
crokernel establishes fine grained resource and execution control. Native microkernel
applications include services to manage of the virtual machines. The virtual machines
are controlled using L4’s native mechanisms. A new address space mode was intro-
duced to represent the virtual machine environment. For efficiency reasons, a new fault
protocol was introduced to control the VCPU.

The Contributions of this thesis are:

L4 API proposal. (see Appendix A)

This thesis specified an API proposal to integrate the virtualization extensions
for the Intel VT-x to the L4 microkernel. The extensions are fully integrated
into L4’s native interface and use L4’s native mechanisms to control the virtual
machine. The extensions are fully backwards compatible by defining only sys-
tem call parameters previously defined as must-be-zero, thus invisible for native
applications which do not require these extensions.

A prototype implementation. (Section 4)

We developed a prototype microkernel which implements the virtualization ex-
tensions and a user-level monitor. Both components cover all important parts of
virtualization as proposed L4 API; it allows to run the L4 microkernel as a guest
operating system.

53

54 CHAPTER 6. CONCLUSION

6.2 Suggestions for Future Work
This thesis raises following major areas for future work:

First, the implementation focused on the Intel virtualization extensions VT-x. In
the next step the virtualization extensions provided by AMD Pacifica should be in-
cluded. Second, support for SMP systems may require extensions in the microkernel
as well as the user-level monitor application. Third, the microkernel requires a more
advanced implementation of the shadow page-table mechanism, to support all virtual
memory modes of the IA-32 architecture. Further, performance improvements in the
handling of the address spaces switches, which require complex three-way trade-offs
among trace costs, hidden page-faults and context-switch costs, are required. Forth,
we need a more sophisticated user-level monitor application which provides support
for real-mode emulation to run legacy operating systems. The monitor should also pro-
vide more device models to fully utilize the kernel extensions. Fifth, the virtualization
protocol may be an attractive replacement for the static exception protocol used for na-
tive L4 applications. It may provide an convenient way to access the execution context
of architecture which have a huge register set, for instance, the IA-64 architecture.

Appendix A

Proposed L4 API Extensions

Besides normal thread execution, L4 provides an virtualization mode: full virtualiza-
tion mode. Virtualization is tightly integrated with L4’s normal execution model. In
virtualization mode, threads have access to an extended ISA and have restricted access
to L4-specific features.

Full virtualization mode (FVM) uses IA32’s virtualization hardware extensions:
Intel VT-x or AMD Pacifica. Threads that execute in FVM have access to an extended
architecture that includes parts of the privileged instruction set. VT-x and Pacifica
partially mirror the processor state in shadow registers or require intervention of an
external virtual machine monitor.

Address Space

In full virtualization mode, the L4 execution and resource model is mapped onto a phys-
ical machine model. A thread that executes in a FVM has access to the privileged part
of the platform architecture and runs with an additional memory translation. Depend-
ing on the hardware support for double paging, L4 either utilizes the hardware feature
or provides a transparent translation of guest-virtual-to-host-physical translations (as
opposed to guest-virtual to guest-physical).

Extended Thread State

An thread inside a FVM space represents a virtualized physical processor for the virtu-
alization FVM space. It holds all privileged and unprivileged registers of the physical
processor. VM-faults cause virtualization fault messages to efficiently manage critical
instructions. Virtualization fault replies allow mapping memory into the FVM space
an protocol items allow read/write access to the VCPU’ state. EXCHANGEREGISTERS
grants asynchronous access by forcing virtualization faults.

The virtualization extensions introduced new kernel feature strings:

String Feature
“uvm” Kernel has user-level virtualization support enabled.
“hvm-vt” Kernel has full virtualization support using Intel’s VT-x.
“hvm-pacifica” Kernel has full virtualization support using AMD’s Pacifica.

55

56 APPENDIX A. PROPOSED L4 API EXTENSIONS

A.1 SPACECONTROL

The SPACECONTROL system call has an architecture dependent control parameter to
specify various address space characteristics. For IA-32, the control parameter has the
following semantics.

Input Parameters

control

s v h k 0 (20) small (8)

v The v field denotes the virtualization mode for all threads in the
address space. The v field can only be specified for inactive address
spaces and is ignored for active address spaces. The availability of
the virtualization features is announced as a KIP feature string.

v=0 An address space with no virtualization support.
v=1, h=0 User-level virtualization mode provides binary compatibility for

user-level applications.
v=1, h=1 Full virtualization mode is the hardware assisted virtualization sup-

port for IA-32, either Intel’s VT-x or AMD’s Pacifica. In full virtu-
alization mode, the complete address space is empty and under con-
trol of the thread. The thread’s state is extended by IA32’s proces-
sor state including control registers, all segment selectors, debuging
registers etc.

v=1, k=1 The k-field indicates that KIP and UTCB should be mapped into the
address space. If k = 0 the KIP and UTCB areas are not mapped
into the address space.

Output Parameters

control

e v 0 (22) small (8)

v Indicates if the requested virtualization mode was effective (v = 1).
Zero if v = 0 in the input parameter.

A.2. EXCHANGEREGISTERS 57

A.2 EXCHANGEREGISTERS

The EXCHANGEREGISTERS system call has architecture depentent control flags to
specify control parameters. The virtualization extensions added three new control bits
to force a VCPU to sent a virtualization fault message.

Input Parameters

control

D I N 0 (20) d h p u f i s S R H

D = 1 Force an direct virtualization fault with a fault reason of −1.
I = 1 Force an delayed virtualization fault. The fault is delayed until the

VCPU is able to receive interrupts. The fault message contains the
context of reason 7.

N = 1 Force an delayed virtualization fault. The fault is delayed until the
VCPU is able to receive non maskable interrupts. The fault reason
is not architecturally defined yet.

Output Parameters

No new output parameters.

58 APPENDIX A. PROPOSED L4 API EXTENSIONS

A.3 Virtualization Fault Protocol
The virtualization protocol is defined between a VCPU thread and its registered pager
thread. It substitutes the page fault and exception protocol.

A.3.1 Fault Message
The fault message is sent to the VCPU thread’s pager at VM-faults which are not
handled directly by the L4 microkernel.

To Pager

VCPU register values MR 2,2+j

Reason (32) MR 1

label (16) 0 (4) t = 0 (6) u (6) MR 0

u The number of untyped message items. All VCPU registers and the
word holding the reason are encoded as untyped items.

reason The reason which caused the fault.
vcpu
registers

The vcpu registers matching the reason’s VCPU mask; the VCPU
mask was specified previously using a set-fault item. The message
contains j registers.

A.3.2 Reply Message
The virtualization reply message resumes execution of the VCPU thread. It may hold
typed items. To access the VCPU state several protocol items are defined.

Protocol Items
The reply message may consist of several protocol items which are presented next.
There exist two types of items: get and set.

Set-Single This item writes exactly one VCPU register.

VCPU register value (32) MR i+1

idx (24) 2 (8) MR i

idx The addressed VCPU register.
value The value written to the specified register.

A.3. VIRTUALIZATION FAULT PROTOCOL 59

Set-Multiple This item allows to change multiple VCPU registers simultaneously.

VCPU register values MR i+j+1,i+j+k

VCPU mask bitmap MR i+1,i+j

∼ (16) header (8) 0 (8) MR i

header If bit number n of the bitmap header is one, word n of the mask
bitmap is contained in the item. Words not contained in the item
are defined to zero. The j words holding the vcpu mask bitmap are
ordered with increasing n.

mask Holds the j, possibly compressed, bit-field indicating the addressed
VCPU registers. Bits not expressed in the mask field directly are
defined to be zero.

values The content of the addressed VCPU registers. The VCPU registers
have to be attached in the order of increasing bit-field indices.

Set-MSR Item This item writes exactly one model specific register (MSR).

MRS value MR i+2,i+3

MSR index (32) MR i+1

∼ (24) 3 (8) MR i

index The addressed MSR.
value The value to be written into the specified MSR.

60 APPENDIX A. PROPOSED L4 API EXTENSIONS

Set-Fault Item This item sets the default content of a specific virtualization fault
message.

VCPU mask bitmap MR i+1,i+j

reason (16) header (8) 127 (8) MR i

header If bit number n of the bitmap header is one, word n of the mask
bitmap is contained in the item. Words not contained in the item
are defined to zero. The j words holding the vcpu mask bitmap are
ordered with increasing n.

mask Holds the j, possibly compressed, bit-field indicating the addressed
VCPU registers. Bits not expressed in the mask field directly are
defined to be zero.

reason Specifies the virtualization fault reason for which the new mask is
to be used.

Get-Single Request to read a single VCPU register.

idx (26) 130 MR i

index The requested VCPU register.

Get-Multiple Request to read multiple VCPU registers.

VCPU mask bitmap MR i+j

∼ (16) header 128 (8) MR i

header If bit number n of the bitmap header is one, word n of the mask
bitmap is contained in the item. Words not contained in the item
are defined to zero. The j words holding the vcpu mask bitmap are
ordered with increasing n.

mask Holds the j, possibly compressed, bit-field indicating the addressed
VCPU registers. Bits not expressed in the mask field directly are
defined to be zero.

A.3. VIRTUALIZATION FAULT PROTOCOL 61

Get-MSR Item Request to read a model specific register (MSR).

MSR index (32) MR i+1

∼ (24) 131 (8) MR i

index The requested model specific register (MSR).

Reply Message
The reply message can contain several different types of items: map and grant items
to populate resources into the virtual machine, and get/set items to access the VCPU
registers. If the reply message contains any get items the VCPU thread does not resume
execution but immediately sends the requested VCPU registers. All get items must be
specified after the set items at the end of the message.

From Pager.

Protocol Items (Get) MR j+1,k

Protocol Items (Set) MR i+1,j

MapItem m or GrantItem g MR 1,i

∼ (16) flags t u MR 0

t Number of typed MRs occupied by MapItem and GrantItem .
u Number of untyped MRs occupied by virtualization fault protocol

items.

A.3.3 Thread-Startup Protocol
The thread startup protocol for VCPU threads – threads created inside a virtualization
space – requires to send a virtualization fault reply message for the VCPU thread’s
pager.

62 APPENDIX A. PROPOSED L4 API EXTENSIONS

A.4 MSR-Fpage
Access to processor’s model specific registers is controlled via. The minimal granular-
ity is 1. An MSR-fpage of size 2s′ has a 2s-aligned offset address sndbase + offset,
i.e offset mod 2s=0.

control

offset (16) s′ (6) s = 3 v r w x

r Allow read access to the specified MSRs.
w Allow write access to the specified MSRs.
g Ignored for mappings into non-FVM spaces. For mappings into

FVM space v = 0 grants access to the system MSR. On v = 0
the kernel installs a VCPU local MSRs which is transparently
multiplexed.

s’ 2s′ is the size of the region.
offset Offset specifies the lowest 16 bits of a MSR base address.

Bibliography

[1] ACM Press, December 1995.

[2] IEEE, October 1996.

[3] ACM Press, October 5–8 1997.

[4] ACM Press, October 2003.

[5] USENIX, April 2005.

[6] USENIX, June 2005.

[7] Keith Adams and Ole Agesen. A comparison of software and hardware tech-
niques for x86 virtualization. In Proceedings of the Second International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), San Jose, CA, USA, October 21–25 2006.

[8] Advanced Micro Devices, Inc., One AMD Place, P.O. Box 3453, Sunnyvale, Cal-
ifornia, USA. AMD64 Virtualization Codenamed ’Pacifica’ Technology, May
2005. Order number 33047.

[9] Mohit Aron, Luke Deller, Kevin Elphinstone, Trent Jaeger, Jochen Liedtke, and
Yoonho Park. The SawMill framework for virtual memory diversity. In Pro-
ceedings of the 8th Asia-Pacific Computer Systems Architecture Conference (AC-
SAC), Bond University, Gold Coast, QLD, Australia. IEEE Computer Society,
January 29–February 2 2001.

[10] J. D. Bagley, E. R. Floto, S. C. Hsieh, and V. Watson. Sharing data and services
in a virtual machine system. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, Austin, TX, USA, pages 82–88. ACM Press,
1975.

[11] Kavita Bala, M. Frans Kaashoek, and William E. Weihl. Software prefetching
and caching for translation lookaside buffers. In Proceedins of the 1st Symposium
on Operating System Design and Implementation (OSDI), Monterey, California,
USA, pages 243–253. ACM Press, 1994.

[12] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX Annual
Technical Conference, Anaheim, CA, USA [5], pages 41–46.

[13] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance. In Pro-
ceedings of the 15th Symposium on Operating System Prinicples (SOSP), Copper
Mountain Resort, CO USA [1], pages 1–11.

63

64 BIBLIOGRAPHY

[14] John Bruno, Jose Brustoloni, Eran Gabber, Avi Silberschatz, and Christopher
Small. Pebble: A component-based operating system for embedded applications.
In Workshop on Embedded Systems (ES), Cambridge, MA, USA, pages 55–65.
USENIX, May 29–31 1999.

[15] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum. Disco:
Running commodity operating systems on scalable multiprocessors. ACM Trans-
actions Computer Systems, 15(4):412–447, November 1997.

[16] Matthew Chapman and Gernot Heiser. Implementing transparent shared memory
on clusters using virtual machines. In USENIX Annual Technical Conference,
Anaheim, CA, USA [5], pages 1–4.

[17] Peter M. Chen and Brian D. Noble. When virtual is better than real. In Proceed-
ings of the Workshop on Hot Topics in Operating Systems (HotOS VIII), Elmau,
Germany, pages 14–19. USENIX, May 2001.

[18] Ludmila Cherkasova and Rob Gardner. Measuring cpu overhead for i/o process-
ing in the Xen virtual machine monitor. In USENIX Annual Technical Conference,
Anaheim, CA, USA [5], pages 387–390.

[19] Andy Chou, Jun-Feng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler.
An empirical study of operating systems errors. In Proceedings of the 18th Sym-
posium on Operating System Principles (SOSP), Banniff, CANADA. ACM Press,
October 2001.

[20] Christopher Clark, Keir Fraser, Jacob Gorm Hansen Steven Hand, Eric Jul, Chris-
tian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual ma-
chines. In Proceedings of the 2nd Symposium on Networked Systems Design and
Implementation, Boston, Massachusetts, USA. USENIX, May 2005.

[21] R. J. Creasy. The origin of the vm/370 time-sharing system. IBM Journal of
Research and Development, 25(5), September 1981.

[22] Peter J. Denning. Virtual memory. Computing Surveys, 2(3):153–189, September
1970.

[23] S. Devine, E. Bugnion, and M. Rosenblum. Virtualization system including a
virtual machine monitor for a computer with segemented architecture, October
1998. US Patent: 6397242.

[24] Jeff Dike. A user-mode port of the linux kernel. In Proceedings of the 4th Linux
Showcase Conference, Atlanta, GA, USA. USENIX, October 2000.

[25] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham,
and R. Neugebauer. Xen and the art of virtualization. In Proceedings of the 19th
Symposium on Operating System Principles, Bolton Landing, NY, USA [4], pages
164–177.

[26] Samuel T. King George W. Dunlap and Peter M. Chen. Operating system sup-
port for virtual machines. In USENIX Annual Technical Conference San Antinio,
Texas, USA, pages 71–84. USENIX, June 2003.

[27] Brian Ford. The multiboot standard 0.6 . http://www.uruk.org/
orig-grub/boot-proposal.html.

http://www.uruk.org/orig-grub/boot-proposal.html
http://www.uruk.org/orig-grub/boot-proposal.html

BIBLIOGRAPHY 65

[28] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann, Godmar Back, and
Stephen Clawson. Microkernels meet recursive virtual machines. In Proceedins
of the 2nd Symposium on Operating System Design and Implementation (OSDI),
Seattle, Washington, USA, pages 137–151. USENIX, October 1996.

[29] Jr. Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engineer-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1978.

[30] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra:
A virtual machine-based platform for trusted computing. In Proceedings of the
19th Symposium on Operating System Principles, Bolton Landing, NY, USA [4],
pages 193–206.

[31] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based ar-
chitecture for intrusion detection. In Proceedings of the 10th Annual Network
and Distributed System Security Symposium, San Diego, California, USA, Febru-
ary 2003.

[32] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin Elphinstone,
Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller, and Lars Reuther. The
SawMill multiserver approach. In Proceedings of the 9th SIGOPS European
Workshop, Kolding Denmark, September17–20 2000. ACM Press.

[33] Robert Philip Goldberg. Architectural Principles for Virtual Computer Systems.
PhD thesis, Division of Engineering and Applied Physics, Harward Universitry,
Cambridge, MA, USA, February 1972.

[34] Robert Philip Goldberg. Architecture of virtual machines. In Proceedings of
the Workshop on Virtual Computer Systems, Cambridge, Massachusetts, United
States, pages 74–112. ACM Press, 1973.

[35] Robert Philip Goldberg. Survey of virtual machine research. IEEE Computer
Magazine, 7(6):34–45, June 1974.

[36] Stefan Götz. Asynchronous communication using synchronous ipc primitives.
Master’s thesis, System Architecture Group, University of Kalrsruhe, May 2003.

[37] Julian B. Grizzard and Henry L. Owen. On a µ-kernel based system architecture
enabling recovery from rootkits. In Proceedings of the 1st International Work-
shop on Critical Infrastructure Protection (IWCIP), Darmstadt, Germany. IEEE,
November 2005.

[38] Andreas Haeberlen. Using platform-specific optimizations in stub-code genera-
tion, July 2002.

[39] Steven Hand, Andrew Warfield, Keir Fraser, Evangelos Kotsovinos, and Dan Ma-
genheimer. Are virtual machine monitors microkernels done right? In Proceed-
ings of the Workshop on Hot Topics in Operating Systems (HotOS X), Santa Fe,
NM, USA [6].

[40] Herman Härtig, J. Wolter, and Jochen Liedtke. Flexible sized page objects. In
Proceedings of the 5th IEEE International Workshop on Object-Orientation in
Operating Systems (IWOOOS), Seattle, WA, USA [2].

66 BIBLIOGRAPHY

[41] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schönberg, and
Jean Wolter. The performance of microkernel-based systems. In Proceedings of
the 16th Symposium on Operating System Principles (SOSP), St. Malo, France
[3].

[42] Gernot Heiser. Secure embedded systems need microkernels. The USENIX Mag-
azine, 30(6):9–13, December 2005.

[43] Gernot Heiser, Volkmar Uhlig, and Joshua LeVasseur. Are virtual-machine mon-
itors microkernels done right? Technical Report PA0005103, National ITC Aus-
tralia and University of New South Wales, October 2005.

[44] Christian Helmuth, Alexander Warg, and Norman Freske. Micro-sina – hands-on
experiences with the Nizza security architecture. In Proceedings of the D.A.CH
Security, Darmstadt, Germany, March 2005.

[45] Christian Helmuth, Andreas Westfeld, and Michael Sobirey. µSINA – eine miro-
kernbasierte systemarchitektur für sichere systemkomponenten. In In achter
Deutscher IT-Sicherheitskongress des BSI, pages 439–453. Secumedia-Verlag,
May 2003.

[46] Michael Hohmuth, Michael Peter, Hermann Härtig, and Jonathan S. Shapiro. Re-
ducing tcb size by using untrusted components – small kernels versus virtual-
machine monitors. In Proceedings of the 11th SIGOPS European Workshop,
Leuven, Belgium. ACM Press, August 2004.

[47] IBM. PowerPC Operating Environment Architecture, Book III, 2005.

[48] Intel Corporation. 8259A Programmable Interrupt Controller. Santa Clara, CA,
USA, December 1988. Order number 231468-003.

[49] Intel Corporation. Lagrande Technology Architectural Overview. Santa Clara,
CA, USA, September 2003. Order number 252491.

[50] Intel Corporation. Intel IA-32 Architecture Software Developer’s Manual: Volume
3B: System Programming Guide, Part 2. Santa Clara, CA, USA, January 2006.
Order number 253669.

[51] Trent Jaeger, Kevin Elphinstone, Jochen Liedtke, Vsevolod Panteleenko, and
Yoonho Park. Flexible access control using ipc redirection. In Proceedings of the
Seventh Workshop on Hot Topics in Operating Systems (HotOS-VII), Rio Rico,
AZ, USA, March 29–30 1999.

[52] Ganesh Venkitachalam Jeremy Sugerman and Beng-Hong Lim. Virtualizing i/o
devices on VMware workstation’s hosted virtual machine monitor. In USENIX
Anual Technical Conference, Boston, Massachussets, USA. USENIX, June 2001.

[53] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Hector M. Briceeno,
Russell Hunt, David Mazieres, Thomas Pinckney, Robert Grimm, John Jannotti,
and Kenneth Mackenzie. Application performance and flexibility on exokernel
systems. In Proceedings of the 16th Symposium on Operating System Principles
(SOSP), St. Malo, France [3], pages 52–65.

BIBLIOGRAPHY 67

[54] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging operating
systems with time-traveling virtual machines. In USENIX Annual Technical Con-
ference, Anaheim, CA, USA [5], pages 1–15.

[55] Kevin Lawton. The bochs ia-32 simulator project. http://bochs.
sourceforge.net.

[56] Joshua LeVasseur, Volkmar Uhlig, Matthew Chapman, Peter Chubb, Ben Leslie,
and Gernot Heiser. Pre-virtualization: Slashing the cost of virtualization. Techni-
cal Report 2005-30, Fakultät für Informatik, Universität Karlsruhe (TH), Novem-
ber 2005.

[57] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Unmodified de-
vice driver reuse and improved system dependability via virtual machines. In
Proceedings of the 6th Symposium on Operating Systems Design and Implemen-
tation, San Francisco, CA, USA. USENIX, December 2004.

[58] Jochen Liedtke. Architektur von Rechensystemen. Springer-Verlag, March 1992.

[59] Jochen Liedtke. Improving ipc by kernel design. In Proceedings of the 14th
Symposium on Operating System Principles (SOSP), Asheville, NC, USA. ACM
Press, December 1993.

[60] Jochen Liedtke. On µ-kernel constuction. In Proceedings of the 15th Symposium
on Operating System Prinicples (SOSP), Copper Mountain Resort, CO USA [1].

[61] Jochen Liedtke. Microkernels must and can be small. In Proceedings of the
5th IEEE International Workshop on Object-Orientation in Operating Systems
(IWOOOS), Seattle, WA, USA [2].

[62] Jochen Liedtke. Toward real microkernels. Communications of the ACM,
39(9):70–77, September 1996.

[63] Jochen Liedtke, Uwe Dannowski, Kevin Elphinstone, Gerd Liefländer, Espen
Skoglund, Volkmar Uhlig, Christian Ceelen, Andreas Haeberlen, and Marcus
Völp. The L4Ka vision, April 2001.

[64] Jochen Liedtke, Kevin Elphinstone, Sebastian Schönberg, Hermann Härtig, Ger-
not Heiser, Nayeem Islam, and Trent Jaeger. Achieved ipc performance (still the
foundation for extensibility). In Proceedings of the Workshop on Hot Topics in
Operating Systems (HotOS-VI), Cape Cod, MA, USA. USENIX, May 5–6 1997.

[65] Jochen Liedtke, Vsevolod Panteleenko, Trent Jaeger, and Nayeem Islam. High-
performance caching with the lava hit-server. In USENIX Anual Technical Con-
ference, New Orleans, Lousiana, USA. USENIX, June 15–19 1998.

[66] R.A. MacKinnon. The changing virtual machine enviornment: Interfaces to readl
hardware, virtual hardware, and other virtual machines. IBM Systems Journal,
18(1), 1979.

[67] Daniel J. Magenheimer and Thomas W. Chrisitan. vblades: Optimized paravirtu-
alization for the itanium processor family. In Prceedings of the Third Virtual Ma-
chine Research and Technology Symposium, pages 73–82. ACM Press, May 6–7
2004.

http://bochs.sourceforge.net
http://bochs.sourceforge.net

68 BIBLIOGRAPHY

[68] Mark F. Mergen, Volkmar Uhlig, Orran Krieger, and Jimi Xenidis. Virtualiza-
tion for high-performance computing. ACM Sigops Operating System Review,
40(2):8–11, April 2006.

[69] R. Meushaw and D. Simard. NetTop: Commercial technology in heigh assurance
applications. Tech Trend Notes, 9(4), 2000.

[70] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8), April 1965.

[71] David Nagle, Richard Uhlig, Tim Stanley, Trevor Mudge, Stuart Sechrest, and
Richard Brown. Design tradeoffs for software-mannaged tlbs. In Proceedings of
the 20th Annual International Symposium on Computer Architecture (ISCA), San
Diego, CA, USA, pages 27–38, May 1993.

[72] Gil Neiger, Amy Santoni, Felix Lang, Dion Rodgers, and Rich Uhlig. Intel vir-
tualization technology: Hardware support for efficient processor virtualization.
Intel Technology Journal, 10(3):167–178, August 2006.

[73] Gilbert Neiger, Stepen Chou, Eric Cota-Robles, Stalinselvaray Jeyasingh, Alain
Kagi, Michael Kozuch, Richard Uhlig, and Sebastian Schönberg. Virtual tranla-
tion lookaside buffer, December 2000. US Patent: 6907600.

[74] Gerald J. Popek and Robert Philip Goldberg. Formal requirements for virtualiz-
able third generation architectures. Communications of the ACM, 17(7):412–421,
July 1974.

[75] Ian Pratt, Keir Fraser, Steven Hand, Christian Limpach, Andrew Warfield, Dan
Magenheimer, Jun Nakajima, and Asit Mallik. Xen 3.0 and the art of virtualiza-
tion. In Proceedings of the Linux Symposium, Ottawa, Ontario, Canada, pages
65–77, July 20–23 2005.

[76] Himanshu Raj, Karsten Schwan, and Jimi Xenidis. Scalable i/o virtualization via
self-virtualizing devices. Technical report, February 2006.

[77] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron,
David Black, William Bolosky, and Jonathan Chew. Machine-independent virtual
memory management for paged uniprocessor and multiprocessor architectures. In
Proceedings of the Second International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Palo Alto, CA, USA.
ACM Press, October 5–8 1987.

[78] John Scott Robin and Cynthia E. Irvine. Analysis of the Intel Pentium’s ability to
support a secure virtual machine monitor. In Proceedings of the Ninth USENIX
Security Symposium, Denver, Colorado. USENIX, August 2000.

[79] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. van Doorn, JL Griffin, and S. Berger.
sHype: secure hypervisor approach to trusted virtualized systems. Technical Re-
port RC23511, IBM TJ. Watson Research Center, Yorktown Heights, NY, Febru-
ary 2005.

[80] Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Maurice P. Marks, and
Scott G. Robinson. Binary translation. Communications of the ACM, 36(2):69–
81, February 1993.

BIBLIOGRAPHY 69

[81] James E. Smith and Ravi Nair. The architecture of virtual machines. IEEE Com-
puter Magazine, 28(5):32–38, May 2005.

[82] Jan Stoess. I/o-flexpages on the x86-architecture, May 31 2002.

[83] The L4 Team. L4hq. Home of the L4 community, http://l4hq.org.

[84] The L4Ka Team. The L4Ka::Pistachio microkernel. http://www.l4ka.org.

[85] The L4Ka Team. The l4ka::virtualization resource monitor. http://www.
l4ka.org/projects/virtualization/resourcemon/.

[86] Harvey Tuch, Gerwin Klein, and Gernot Heiser. Os verification – now! In
Proceedings of the Workshop on Hot Topics in Operating Systems (HotOS X),
Santa Fe, NM, USA [6].

[87] R. Uhlig, G. Neiger, D. Rogers, A.L. Santoni, F.C.M. Martins, A.V. Anderson,
S.M. Bennett, A. Kagi, F.H. Leung, and L. Smith. Intel virtualization technology.
IEEE Computer, 38(5):48–56, May 2005.

[88] Richard Uhlig, David Nagle, Tim Stanley, Trevor Mudge, Stuart Sechrest, and
Richard Brown. Design tradeoffs for software-managed tlbs. ACM Transactions
on Computer Systems (TOCS), 12(3):175–205, 1994.

[89] Volkmar Uhlig. Scalability of Micokernel-Based Systems. PhD thesis, System
Architecture Group, University of Karlsruhe, June 2005.

[90] Virtutech Inc. Selected publications on simics. http://www.virtutech.
com/about/research/selected-pubs.html.

[91] VMware. Virtual machine interface specification. http://www.vmware.
com/vmi.

[92] VMware. VMware ESX Server. http://www.vmware.com/products/
server/esx features.html.

[93] VMware. Timekeeping in vmware virtual machines, July 2005.

[94] Carl A. Waldspurger. Memory resource management in VMware ESX Server. In
Proceedings of the 5th Symposium on Operating System Design and Implementa-
tion, Boston, Massachusetts, USA. USENIX, December 2002.

[95] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Denali: Lightweight
virtual machines for distributed and networked applications. Technical Report
02-02-01, University of Washington, 2001.

[96] A. Whitakter, M. Shaw, and S. Gribble. Scale and performance in the denali iso-
lation kernel. In Proceedings of the 5th Symposium on Operating System Design
and Implementation (OSDI), Boston, MA, USA. USENIX, December 2002.

[97] Michael Young, Avadis Tevanian, Richard Rashid, David Golub, Jeffrey Ep-
pinger, Jonathan Chew, William Bolosky, David Black, and Robert Baron. The
duality of memory and communication in the implementation of a multiprocessor
operating system. In Proceedings of the 11th Symposium on Operating System
Principles (SOSP), Austin, TX, USA, pages 63–76. ACM Press, November 8–11
1987.

http://l4hq.org
http://www.l4ka.org
http://www.l4ka.org/projects/virtualization/resourcemon/
http://www.l4ka.org/projects/virtualization/resourcemon/
http://www.virtutech.com/about/research/ selected-pubs.html
http://www.virtutech.com/about/research/ selected-pubs.html
http://www.vmware.com/vmi
http://www.vmware.com/vmi
http://www.vmware.com/products/server/esx_features.html
http://www.vmware.com/products/server/esx_features.html

70 BIBLIOGRAPHY

[98] Gerald D. Zuraski and Micael T. Clark. Translation lookaside buffer flush filter,
January 2003. US Patent: 6510508.

	Abstract
	1 Introduction
	1.1 The Problem
	1.2 Approach

	2 Background & Related Work
	2.1 Virtual Machine Environments
	2.1.1 Theory of Virtualization
	2.1.2 The Virtual Machine Monitor
	2.1.3 Selected Virtualization Environments

	2.2 The L4 Microkernel
	2.2.1 The Microkernel Argument
	2.2.2 Abstractions
	2.2.3 Primitives

	2.3 Microkernels and Virtual Machines
	2.4 Summary

	3 Design
	3.1 Design Goals
	3.2 Proposed Scheme
	3.2.1 System Architecture
	3.2.2 Virtual Machine Representation

	3.3 Virtual Machine Resources
	3.3.1 Physical Memory
	3.3.2 Virtual Memory
	3.3.3 Processor
	3.3.4 Peripheral Devices

	3.4 User-level Control Protocol
	3.4.1 Analysis of Requirements
	3.4.2 The Virtualization-Fault Protocol

	3.5 Virtual Machine Communication
	3.6 Summary

	4 Implementation
	4.1 The IA-32 Processor Architecture
	4.2 Microkernel Extensions
	4.2.1 VCPU Thread
	4.2.2 VM-Exit Handler
	4.2.3 Virtualization Fault Protocol
	4.2.4 Physical Memory Space
	4.2.5 Shadow Page Table Management
	4.2.6 Further Resources

	4.3 The User-Level Monitor
	4.3.1 Architecture
	4.3.2 Virtual Machine Representation

	5 Evaluation
	6 Conclusion
	6.1 Contribution of This Work
	6.2 Suggestions for Future Work

	A Proposed L4 API Extensions
	A.1 SpaceControl
	A.2 ExchangeRegisters
	A.3 Virtualization Fault Protocol
	A.3.1 Fault Message
	A.3.2 Reply Message
	A.3.3 Thread-Startup Protocol

	A.4 MSR-Fpage

