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Abstract
This thesis presents a two-level approach to energy accounting in vir-

tual machine environments. Instead of accounting the energy consump-
tion of the hardware directly to the applications, as done by previous
approaches, we account it to virtual machines. Each guest operating sys-
tem can then obtain the energy consumption of the virtual machine and
split it between its applications. Thus, energy management can leverage
information intrinsic to the respective level. Furthermore, by dividing
energy accounting between host-level and guest-level, we can reuse ex-
isting energy management solutions within the virtual machines. For this
purpose, we introduce an energy-aware virtual machine interface, which
enables the guest operating systems to estimate the energy consumption
of virtual devices.

To evaluate our approach, we implemented a prototype for an existing
virtual machine environment. Experiments show that the performance
overhead caused by energy accounting in host-level and guest-level is
less than 3.2 percent.
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Chapter 1

Introduction

With the rising power dissipation of modern hardware, energy manage-
ment is becoming an important issue in system design. Especially in
server systems, the cost for power supply and cooling plays a major
role. Limiting the energy consumption of the hardware avoids overpro-
visioning of power supply and cooling facilities. Furthermore, reducing
the operating temperatures increases stability and reliability of the com-
ponents. Most of the current hardware features built-in energy manage-
ment that disables certain device features or reduces the speed during
phases of low utilization. However, because the hardware is unaware of
the executed software, it cannot respond to application- or user-specific
requirements. Therefore, research has proposed several approaches to
dynamic energy management that control energy consumption in the op-
erating system [3, 35]. In contrast to the hardware, the operating system
has enough context information to implement fine-grained energy man-
agement at the level of individual tasks.

In the last years, virtualization technology has been gaining popular-
ity as a way of consolidating servers. Hypervisor-based virtual machine
environments offer a scalable solution to host several isolated virtual
machines on one physical computer. Executing multiple virtualized op-
erating systems on one server improves hardware utilization and thus
reduces cost. However, virtualized systems pose new challenges for a
successful energy management. Because the virtualized operating sys-
tems are confined to virtual machines, the scope of guest-internal en-
ergy management is limited. The guest operating systems are unaware
of other virtual machines and of global, machine-wide energy require-
ments. Conversely, energy management in the virtual machine monitor
lacks the fine-grained information of the guest operating system. Simi-
lar to hardware-based energy management, the virtual machine monitor
is oblivious to the applications that are encapsulated within the virtual
machines.
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Figure 1.1: Overview of our approach. The virtual machine monitor estimates the
energy consumption of the hardware and accounts it to the virtual machines. Each guest
operating system obtains the energy consumption of the virtual devices and charges it
to the running applications.

We argue that virtualized server systems need energy management on
both layers, in the virtual machine monitor and within virtual machines.
On the one hand, only the guest operating systems can implement fine-
grained energy management, having regard to application-specific de-
mands. On the other hand, only the virtual machine monitor can control
global, machine-wide energy requirements and manage the energy con-
sumption across virtual machines. This two-level approach also enables
basic energy management for legacy and energy-unaware guest operat-
ing systems. Although, in this case, guest-intrinsic requirements have
to be neglected, the virtual machine monitor can still control the en-
ergy consumption of the complete virtual machine. In the same way, it
can enforce given energy requirements for malfunctioning or malicious
guests.

1.1 Energy Accounting for Virtual Machines

Energy accounting is a prerequisite for energy management. For dy-
namic energy management, accounting and management form a feed-
back loop: energy accounting supplies the energy consumption of in-
dividual tasks to support management decisions and to control their re-
sults. For this purpose, the accounting infrastructure has to estimate the
energy consumption of the hardware and account it to the tasks. In vir-
tualized environments, however, this information is distributed between
the virtual machine monitor and the guest operating systems: the virtual
machine monitor knows the hardware and can estimate the amount of
energy consumed by the devices, but only the guest operating systems
can account the energy consumption to guest-internal applications.

This thesis presents a two-level accounting infrastructure for hyper-
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visor-based virtual machine monitors. The device subsystems of the hy-
pervisor estimate the energy consumption of the hardware and apportion
it between virtual machines. The guest operating systems further split
the energy consumption between the applications. In order to enable
guest-level energy management, the guest operating systems must be
able to estimate the energy consumption of virtual devices. However,
virtualized hardware does not adhere to the assumptions made by classi-
cal approaches and is therefore not accounted correctly. Thus, the virtual
machine monitor simulates energy-related behavior of real hardware to
enable correct accounting of virtual devices. Alternatively, we install
paravirtualized device drivers within the guest operating systems, that
query the energy consumption directly from the virtual machine moni-
tor. Figure 1.1 gives an overview of our approach.

To evaluate our solution, we implemented a prototype for the L4Ka
virtual machine environment, a virtualization framework based on the L4
microkernel. We extended the virtual machine monitor and a user-level
disk driver to support energy accounting. Furthermore, to demonstrate
guest-level accounting, we adapted an existing energy-aware operating
system to execute within our virtualized environment. Performance mea-
surements show that the worst-case overhead caused by the accounting
infrastructure is about 3.2 percent.

1.2 Structure of this Thesis

The remainder of this thesis is structured as follows. Chapter 2 provides
background information and relates this work to previous research in the
fields of virtualization and energy management. Chapter 3 presents the
design of our accounting infrastructure. Chapter 4 describes the imple-
mentation of our prototype, which we use for the evaluation in Chapter
5. Finally, Chapter 6 summarizes our approach and points out directions
for future work.
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Chapter 2

Background and Related Work

Our solution brings together two fields of research: virtualization and
energy accounting. In this chapter we will provide background infor-
mation and discuss previous work in both fields. First, we will discuss
the design of and, in particular, the differences between existing virtual-
ization environments. Afterwards, we will present several approaches to
resource accounting and and how they are used to account energy con-
sumption.

2.1 Virtualization

Many virtualization environments are available, using different approa-
ches. We will look at three areas relevant to our design, where virtual-
ization environments implement different solutions, namely the structure
of the virtual machine monitor1, the applied virtualization technique, and
the virtualization of I/O devices.

2.1.1 Virtual Machine Monitor Structure

We can distinguish two basic structures of virtual machine monitors:
hosted and hypervisor-based. The hosted monitor runs on an existing
operating system, the host. It can leverage the infrastructure (e.g. the
device drivers) of the host operating system but is also limited to the
constraints set by the host. Because the virtual machine monitor runs
as a user-application on top of the host operating system, it does not
have full control over the system resources, but is subject to the CPU
and resource scheduling policies of the host. Available hosted solutions
include VMware Workstation and VMware Server (formerly: VMware
GSX Server).

1In this thesis, we will use the term virtual machine monitor to denote the complete software stack
providing the virtual machine abstraction.
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Hypervisor-based solutions do not require a host operating system.
Instead, a small hypervisor runs directly on the hardware. The hypervi-
sor has full control over the hardware and decides freely how to subdi-
vide it between the virtual machines. This leads to a better performance
and scalability of hypervisor-based systems [13], which renders them
more suitable for server systems. However, while hosted virtual ma-
chine monitors can take advantage of the energy management features
of the host operating system, existing hypervisor-based solutions, such
as L4Linux [28], Xen [7], and VMware ESX Server do not implement
any energy management.

2.1.2 Platform Virtualization

Apart from their structure, virtual machine monitors differ in the used
virtualization technique. We can distinguish two different approaches,
full virtualization and paravirtualization, that virtualize the underlying
architecture to a different extent.

Full virtualization faithfully simulates the architecture expected by
the guest operating system. It allows for running unmodified operating
systems within virtual machines. To ensure that the guest operating sys-
tems are isolated from each other, the virtual machine monitor has to
discover instructions that could affect other virtual machines, so-called
sensitive instructions, and emulate them appropriately. This procedure
is costly and degrades the performance of virtualized guest operating
systems. Existing solutions that implement full virtualization include
Microsoft Virtual PC and the virtualization environments by VMWare.

Paravirtualization eliminates the performance problems of full vir-
tualization by executing the guest operating systems cooperatively. In-
stead of isolating virtual machines at hardware-level, paravirtualization
provides isolation by modifying the source code of the guest operat-
ing systems appropriately. The guests use an extended hardware inter-
face, in place of the original architecture, that includes calls to the vir-
tual machine monitor. These hypercalls are used to circumvent sensitive
instructions. In contrast to full virtualization, paravirtualization offers
performance close to native hardware. The price for paravirtualization,
however, is high: each guest operating system has to be ported to the
extended hardware architecture manually. Furthermore, paravirtualiza-
tion is only possible for operating systems whose source code is avail-
able. Nevertheless, paravirtualization has recently gained much public
interest, especially in conjunction with Linux as guest operating system.
Virtual machine environments implementing paravirtualization are, for
example, L4Linux and Xen.
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2.1.3 I/O Device Virtualization

The virtual machine monitor not only has to virtualize the CPU, but also
all the devices that shall be shared between virtual machines. For this
purpose, it provides one device driver that has exclusive access to the
real device. Every device access in the guests is redirected to this driver.
Hosted models can use the device drivers of the host operating system.
In contrast, hypervisor based models have to provide their own device
drivers (e.g. ESX Server) or reuse the drivers of guest operating systems
(e.g. Xen [10], L4Linux [16]). To reuse a device driver within a vir-
tual machine, the hypervisor grants pass-through access for the device
to the respective guest operating system. Within this operating system,
an additional software component exports the device’s functionality to
other virtual machines. This approach complicates energy accounting,
because the accounting infrastructure has to consider energy consump-
tion of devices which are managed by distributed subsystems.

Similar to CPU virtualization, the virtual machine monitor either fully
simulates real devices, reusing the existing device drivers in the guest,
or it installs paravirtualized device drivers that cooperate with the virtu-
alization environment. Again, the paravirtualized approach offers better
performance but requires much effort to support new guest operating
systems. Simulating real devices allows for running guest operating sys-
tems out of the box, without installing custom device drivers. Further-
more, this approach supports legacy operating systems whose internals
are unknown.

Using custom device drivers in the guest is not limited to environ-
ments that apply paravirtualization. It is common practice to install pa-
ravirtualized device drivers in fully virtualized guests (such as Windows
running on VMware). Although no modifications to the guest’s source
code are required, custom device drivers can be considered as paravirtu-
alization, because the guest kernel is effectively modified.

2.2 Energy Accounting

Energy management requires on-line energy accounting that supplies in-
formation about the energy consumption of individual tasks. We will
discuss energy accounting in two parts. First, we will look at different
approaches to resource accounting in general, then we will discuss how
existing solutions apply this to account energy consumption.
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2.2.1 Approaches to Resource Accounting

For effective resource management it is critical to charge resource usage
to the resource principal that caused it. By resource principals, we de-
note all entities in the system that consume resources. For example, if
two applications interact in a client/server relationship, the client should
be charged for the resources the server uses while handling the requests.
Classical operating systems usually account resource usage to threads or
processes (protection domains). Thus, services located in other protec-
tion domains are not accounted correctly. Requests are scheduled within
the server’s scheduling context, with the server’s priority, and resource
consumption is charged to the server.

Vertical Structuring

One way to avoid the aforementioned problem is to structure the op-
erating system vertically: a vertical structured system abandons shared
services and executes as much as possible within the protection domain
of each application. This approach has first been proposed by the design-
ers of Nemesis [14]. Nemesis is a research operating system designed
from scratch to support multimedia applications. It provides resource ac-
countability of applications by multiplexing all resources at a low level.
Nemesis is based on a microkernel, but unlike other microkernel-based
systems it does not build on shared servers. Protocol stacks and most
parts of device drivers are implemented in user-level libraries.

Hypervisor-based virtual machine environments are structured simi-
larly. The hypervisor also multiplexes the system resources between the
virtual machines at a low level. Each virtual machine uses its own pro-
tocol stack and services. Unfortunately, one exception is the usage of
I/O devices. Because only one device driver can use the device exclu-
sively, all guests share a common driver provided by the virtual machine
monitor. To process requests, this shared device driver causes CPU cost,
which is not accounted to the virtual machines. Recent experiments [5]
showed that the CPU overhead for I/O processing is substantial and can-
not be neglected. However, the problem of I/O emulation overhead is
not limited to CPU cost. In the same way, the shared device drivers can
use other devices to fulfill requests, causing additional cost that has to be
accounted to the originating virtual machine. As an example, the virtual
machine monitor can simulate a local disk drive to the virtual machines,
but store data on a network attached storage. In this case, the cost for the
network usage have to be charged to the correct virtual machine as well.

Thus, the vertical structure of virtual machine environments is not
sufficient to ensure accurate resource accounting. Because the virtual
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machines still share common device drivers, we need additional mecha-
nisms that allow us to account for interaction between different protec-
tion domains.

Thread Migration

Thread migration as described in [9] is a first step to decouple resource
accounting from protection domains. Threads are split into the execution
context and the actual thread of control. An execution context represents
the context in which a thread can run and is bound to a protection do-
main. The thread of control, however, can migrate between execution
contexts that are located in different protection domains. Resource us-
age is accounted to the thread of control. During client/server interaction
the thread of control migrates into the servers protection domain and ex-
ecutes server code. Thus, all costs are automatically accounted to the
client that initiated the request.

Although thread migration brings better accountability for CPU-bound
services, it is not suitable for accounting of I/O devices. Most devices
are interrupt-driven and thus work asynchronously to the current thread
of control.

Resource Containers

Thread migration still keeps a static mapping between threads and re-
source principals. Banga and colleagues [1] propose to completely de-
couple the resource context from existing operating system objects. They
represent resource contexts by a new abstraction: resource containers. A
resource container contains all resources being used by a certain activity.
It can be bound dynamically to processes and other kernel abstractions.
This resource binding notifies the kernel about who is to be charged for
the cost caused by the process.

The concept of resource containers overcomes the limitations of thread
migration by allowing services to switch between different resource con-
tainers independent of thread switches; if a device driver receives an in-
terrupt, it switches to the resource container that is responsible for the
device activity. However, resource containers are designed for mono-
lithic kernels that have full control over all resources. In a virtual ma-
chine monitor, where the device subsystems can be distributed between
different protection domains or even virtual machines, resource contain-
ers are not applicable.
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2.2.2 Accounting of Energy Consumption

To implement fine-grained energy accounting, the operating system has
to break down the overall energy consumption of the hardware to the
level of single tasks. This is complicated by the extensive parallelism in
the hardware and the operating system. The CPU and other devices are
time-multiplexed between tasks, and most devices handle multiple re-
quest simultaneously, asynchronously to the CPU. For example, the disk
may handle a request by a task A, while the network card is processing a
packet sent by task B and the CPU is executing a third task C.

In order to attribute energy values to individual tasks, the operating
system has to measure the energy consumption for each device individ-
ually and with a high temporal resolution. Today’s hardware offers no
direct way to query energy consumption and installing adequate mea-
surement instruments is too expensive. Thus, existing approaches moni-
tor the visible behavior of devices to estimate their energy consumption.
In the remainder of this section, we will look at different solutions that
implement fine-grained energy accounting.

ECOSystem

ECOSystem [35] is a modified Linux kernel that manages the energy
consumption of mobile systems to extend their battery lifetime. It uses
resource containers for accounting. The ECOSystem kernel estimates
the energy consumption of tasks based on an energy model of the system.
It attributes power consumptions to the different states of each device
(e.g. standby, idle, and active) and measures the time a device spends in
the respective state. If a task causes a device to switch to a higher power
state, the kernel charges the task with the additional cost.

The presented currentcy model allows to manage the energy con-
sumption of all devices in a uniform way. Having estimated the en-
ergy consumption, the kernel does not distinguish between the cost con-
tributed by different devices; all cost that a task causes is accumulated to
one value. This allows the kernel to control the overall energy consump-
tion of the system without considering the currently installed devices.
However, this renders the approach unsuitable for energy management
schemes such as thermal management which have to control the energy
consumption of individual devices.

Event-Driven Energy Accounting

Bellosa and colleagues [3] propose to estimate the energy consumption
of the CPU for the purpose of thermal management. Also based on re-
source containers, the approach leverages the performance monitoring
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counters present in modern processors to accurately estimate the energy
consumption caused by individual tasks. However, here the estimated
energy consumption is just a means to an end. Based on the energy con-
sumption and a thermal model, the kernel estimates the temperature of
the CPU. If the temperature reaches a predefined limit, the system can
throttle the execution of individual tasks according to their energy char-
acteristics.

Merkel et al. [19] apply the same mechanisms to balance the power
consumption (and thus the temperature) of processors in SMP systems.
They propose to analyze the energy characteristics of processes to iden-
tify hot tasks; that is, tasks that cause a high energy consumption on
the processor. The scheduler then allocates the hot tasks equally among
the CPUs to avoid thermal imbalances between them. This prevents the
individual CPUs from overheating and thus reduces the need for throt-
tling.
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Chapter 3

Design

Previous work has proposed several approaches for energy accounting,
including solutions for server systems [3, 19]. All approaches are de-
signed for monolithic kernels and assume full knowledge of the system
resources and the resource principals. In virtualized systems, however,
this information is distributed: On the one hand, only the virtual ma-
chine monitor has access to the hardware and can estimate the energy
consumption of the devices. On the other hand, only the guest operat-
ing systems have fine-grained information about the applications that are
running on the server.

We propose an energy accounting infrastructure for hypervisor-based
virtual machine monitors that complements existing guest-internal ap-
proaches. In order to enable energy accounting in the guest operating
systems, the virtual machine monitor estimates the energy consumption
of the physical devices and accounts it to virtual devices. The guest op-
erating systems obtain the energy consumption of the virtual devices and
account it to their resource principals.

In addition, the accounting infrastructure provides accounting infor-
mation to the resource monitor, a component within the virtual ma-
chine monitor that implements host-level energy management. The re-
source monitor controls global, machine-wide energy requirements and
enforces given requirements for energy-unaware or uncooperative guest
operating systems.

3.1 Basic Architecture

The ultimate goal of energy management is to control the energy con-
sumption of the hardware. Thus, the first step for energy accounting is
to estimate the energy consumption of the physical devices. Most of the
current hypervisor-based virtual machine monitors reuse device drivers
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Figure 3.1: Overview of the accounting architecture. Accounting components in each
device subsystem estimate the energy consumption of the device and apportion it be-
tween the virtual devices. The virtual devices export their energy consumption to the
guest operating system, which charges it to its resource principals. Based on the ac-
counting information provided by the device subsystems, the resource monitor controls
the energy consumption of physical and virtual devices.

located within virtual machines [10,16]. Hence, the knowledge required
for energy estimation is distributed in the system. Therfore, we estimate
the energy consumption of each device in a separate accounting compo-
nent, located with the corresponding device subsystem. Due to the vast
number of different devices and device drivers, it is important to be able
to adapt to new devices easily. Thus, our solution will implement en-
ergy estimation with minimal changes to the driver that is managing the
device.

In order to apportion the energy consumption of physical devices cor-
rectly between the virtual machines, the virtual machine monitor has to
assign each device activity to the originating virtual machine. In par-
ticular, we have to account for interaction between different devices.
For example, the disk driver uses the CPU to process requests. More-
over, it may even need the network to transparently access data located
on network attached storage. Unlike existing accounting facilities, such
as resource containers [1], we cannot assume a monolithic kernel that
comprises all device subsystems. Because of the distributed nature of
our accounting architecture, we have to account for device interaction
across protection domains. For this purpose, we augment the normal re-
quest data with accounting information and charge energy consumption
recursively between the various device subsystems.

The guest operating system is unaware of the real devices and their
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energy consumption. Its energy accounting is based solely on the ac-
counting information provided by the virtual machine monitor. To be
able to account energy consumption to individual resource principals,
the guest operating system has to know the cost separately for each vir-
tual device (see Section 2.2.2). The virtual machine monitor has to map
the estimated energy consumption of physical devices to the virtual de-
vices in a way that enables effective guest-level energy management. We
will define an energy model for virtual devices that satisfies the demands
of energy management in guest-level and host-level and enables a wide
range of policies.

Finally, to enable guest accounting, we have to import the energy
consumption of virtual devices into the guest operating system. We can
do so by installing paravirtualized device drivers into the guest operating
system. Knowing internals of both levels, the driver queries the energy
consumption from the virtual machine monitor and accounts it to the
guest-internal resource principals. However, we also want to support
energy accounting in fully virtualized guests. For this purpose, we simu-
late the energy characteristics of real devices to enable energy estimation
within the virtual machine.

Figure 3.1 gives an overview of our approach. In the remainder of
this chapter, we will discuss the different parts and aspects of our solu-
tion in more detail. We will first discuss energy estimation for physical
devices (Section 3.2). We will then define an energy model for virtual
devices (Section 3.3). Afterwards, we will discuss how we account for
device interaction in our distributed accounting infrastructure (Section
3.4). Finally, we will present methods to import the energy consumption
of virtual devices into the guest operating system (Section 3.5).

3.2 Per-Device Energy Estimation

Energy estimation and accounting requires detailed knowledge about the
device. This includes static information in form of an energy model of
the device, as well as runtime information such as the current power state
and the clients that are currently using the device. The runtime informa-
tion of a device is only available to the subsystem that is managing the
device (unless we have a monolithic kernel). Thus, we implement en-
ergy accounting directly within each device subsystem. It estimates the
energy consumption of the device and apportions it between the clients
that use the device.

Despite these close links between the device driver and energy ac-
counting, we want to reuse existing drivers with minimal modifications.
Because of the multitude of different devices and device drivers, it is
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Figure 3.2: User-level accounting of CPU energy consumption. The priviledged hy-
pervisor writes information about the CPU into a log file shared with a user-level CPU
accountant. The CPU accountant analyzes the log entries and charges the energy con-
sumption of the CPU to other components (e.g. to user-level device drivers or virtual
devices).

necessary to be able to add accounting support to new drivers easily.
Below, we propose two ways to achieve this.

3.2.1 Unmodified Driver Reuse

In [16], LeVasseur and colleagues present a flexible method to reuse
unmodified legacy device drivers by executing them inside virtual ma-
chines. They export the device drivers functionality by means of a sepa-
rate translation module that mediates requests between the device driver
and external clients. The translation module runs in the same address
space as the device driver and handles all requests sent to and from the
driver. Consequently, it has access to all information relevant for ac-
counting. We can implement accounting completely in the translation
module, without changing the original device driver.

3.2.2 Instrumentation and Event Logging

In some cases, implementing energy accounting in the same component
that is controlling the device is undesirable or unfeasible. For exam-
ple, implementing energy accounting in the privileged hypervisor affects
system reliability and flexibility. However, the CPU and possibly other
devices are managed directly by the hypervisor. To decouple energy ac-
counting from such critical components, we use system instrumentation
and event logging as presented in [25]. To instrument existing compo-
nents with log handlers, we still have to modify their code. However, the
modifications are uncritical and do not change the original behavior of
the component.
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Figure 3.3: Simplified power consumption of a device, split into base cost and access
cost.

In our case, we instrument the critical component to record relevant
information for the respective device into an in-memory log file. The log
file is shared with a user-level accounting component, which periodically
analyzes the data. This user-level accountant estimates the energy con-
sumption of the device and accounts it to the clients, based on the data
contained in the log file. In Figure 3.2, we depicted how event logging
can be used to account CPU energy consumption.

3.3 Virtual Energy Model

Virtualization introduces an additional layer of indirection between the
operating system and the hardware. In contrast to real hardware, vir-
tual devices have side effects on more than one physical device. This
leads to a more complex energy model for the virtual devices. The en-
ergy consumption of one virtual device comprises energy consumption
of several physical devices. In this section, we will define an energy
model for physical and for virtual devices and discuss how we map the
energy consumption of the hardware to virtual devices.

As a first step, we break down the energy consumption of each phys-
ical device into base cost and access cost. Base cost is the minimum
power consumption of the device; the amount of energy the device needs
even if it is idle. This portion of the cost cannot be influenced by the op-
erating system. Access cost is the additional energy consumption that is
caused by clients using the device. For energy management, access cost
is the more important part. It is the portion of the energy consumption
that the operating system can influence by controlling device activity.
Because of this fundamental difference between base cost and access
cost, energy management, to be effective, has to be able to separate the
two. Figure 3.3 illustrates the concept of base cost and access cost.

21



3.3.1 Access Cost

Access cost is the portion of the devices’ energy consumption that can
be attributed to individual activities which are executed within the vir-
tual machines. To enable the guest operating systems to charge energy
consumption to the correct resource principal, we must account all en-
ergy consumption to the virtual device that initiated a request. We can do
so transparently, by adding the cost of all involved devices to one value.
This accumulated value is, however, not sufficient for all applications.
Thermal management, for example, needs to control each physical de-
vice separately. If we transparently add all cost involved in a disk opera-
tion and charge it as disk energy consumption to the virtual machine, the
guest operating system does know neither the real energy consumption
of the disk nor the real energy consumption of the CPU. Thus, we have
to to pass on the energy consumption of all physical devices explicitly.

3.3.2 Base Cost

Although the base cost plays a minor role for energy management, its
correct handling is required for some applications: the resource mon-
itor has to know the base cost to be able to calculate the total energy
consumption of the system. In addition, the total energy consumption
is needed for monitoring or billing of device usage on host-level and
guest-level.

In contrast to the access cost, the base cost of a virtual device does not
include base cost of different physical devices. Each device driver calcu-
lates the base cost of its device and apportions it to the virtual machines,
for example by dividing it equally between them. Each guest operating
system further splits its portion of the cost between the guest-internal
resource principals.

Multiple Power States

Most devices have several sleep modes that disable certain device activ-
ity and thus reduce idle cost. Suspending devices, however, is unrealis-
tic for server systems because current devices need too long to wake up
from sleep modes and thus would cause unacceptable latencies. Espe-
cially disk drives need several seconds to wake up, because they have to
spin up to full speed before they can handle requests. Furthermore, on a
reasonably utilized server, the phases where a device is idle are too short
to amortize the additional cost that is caused by the transitions between
different power states.

A promising approach for server systems is having multiple active
modes instead of sleep modes. In an active power saving mode, the
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device can handle requests with lower speed and does not have to wake
up. Recent server systems already use processors that support frequency
scaling to reduce power dissipation. A similar approach for disks has
been presented in [11]. In this paper, Gurumurthi and colleagues propose
multi-speed disks that allow for running disks at lower spinning speed
during phases of low disk utilization.

To account for multi-speed devices, we pass on changing base cost to
the virtual devices. We propose to decouple the current power state of
the physical device and the virtual devices to enable fair accounting of
base cost. Virtual machines that do not use the device are charged for
the lowest active power state. Higher base costs are only charged to the
virtual machines that are actively using the device.

3.4 Distributed Accounting

With resource containers, all accounting information is stored in global
data structures. To charge cost to a resource container, device drivers just
have to add it to the respective counter variable; the changes are imme-
diately visible to every other device. In our model, the accounting com-
ponents reside in different protection domains and do not share global
data structures. Thus, accounting information is distributed between the
devices. To share this information, the device subsystems have to export
it explicitly through interfaces or shared memory.

3.4.1 Recursive Request-Based Accounting

To correctly account for interaction between different devices, we charge
energy consumption recursively. If one device subsystem uses other
physical devices to fulfill a request, it charges these additional costs to its
client. This way, we propagate the energy consumption of all physical
devices involved in an I/O operation to the corresponding virtual device.

If the device subsystems are distributed in the virtual machine mon-
itor, they already have interfaces through which they communicate. In-
stead of introducing a new interface, we add cost information to the nor-
mal request data. As described in Section 3.3.1, the cost information of
different devices must not be accumulated to one value, but has to be
transferred separately. Thus, each request explicitly carries the energy
consumption it has caused on each device.

As an example, we regard a shared disk driver which uses the net-
work to transfer data to network attached storage. The network driver
estimates the energy it consumed when processing the network pack-
ages and returns it to the disk driver. The disk drivers adds the cost of
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Figure 3.4: Recursive accounting of energy consumption. The virtual disk sends a disk
request to the shared disk driver (1.). To fulfill the request, the disk driver uses the
network driver (2.), which estimates the cost for processing the request and returns it
to the disk driver (3.). Finally, the disk driver charges the energy consumption of the
disk and the network interface to the virtual disk (4.).

all network packages used to transfer a disk block and charges it to the
virtual disk, together with the disk energy consumption and the CPU
energy used to process the disk request. The procedure is depicted in
Figure 3.4.

3.4.2 Energy Meters

The base cost of a device cannot be attributed clearly to requests. To
account these cost, each device provides an virtual electricity meter, or
energy meter, for each virtual machine. It indicates the virtual machine’s
share in the total energy consumption of the device (including the cost
already charged with the requests).

Another case where request-based accounting is impossible is the
CPU. The CPU cost cannot be attributed to requests, because the CPU
does not work request-based. Rather, the kernel usually gives each thread
the illusion of running exclusively on a CPU and switches transparently
between different threads. Thus, we also use energy meters to account
CPU cost. CPU accounting provides a meter for each virtual machine
and each device. Other accounting components which use the CPU can
query the meter each time they switch between clients to determine their
respective energy consumption.

3.4.3 Global View

To implement global energy management policies, the resource monitor
needs a global view of the accounting data; it has to gather the data
that is distributed in different devices. In contrast to the request-based
accounting for virtual devices, the resource monitor only needs coarse-
grained information to support system-wide decisions.
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We propose to export the required accounting data via shared mem-
ory. That way, the resource monitor can access detailed information
about the energy consumption of virtual devices without additional com-
munication cost. The resource monitor shares a separate memory region
with the accounting component of each physical device. Through the
shared memory region, each device exports accounting information for
each virtual device. To provide current information to the resource mon-
itor, the devices have to keep the values stored in shared memory up-to-
date. Immediately after a device completed a request and estimated the
consumed energy, it updates the respective value in the shared region.

3.5 Guest Accounting Support

So far, we discussed how the virtual machine monitor accounts energy
consumption to virtual devices. To enable guest-level energy manage-
ment, we have to import the energy consumption of virtual devices into
the guest operating system.

As described in Section 2.1, virtual machine monitors use two differ-
ent approaches to virtualize devices: emulating standard devices or in-
stalling custom device drivers in the guest. Emulating a standard device
allows for keeping the original, unmodified device driver of the guest.
The virtual device and the guest communicate only via the hardware in-
terface. Thus, the guest operating system can use the same driver in a
virtual machine and on real hardware. In contrast, custom device drivers
use a paravirtualized device interface and communicate directly with the
physical device driver. We will discuss each of the two approaches sepa-
rately and suggest energy accounting support that preserves their respec-
tive goals and advantages.

3.5.1 Energy-Aware Device Emulation

Current hardware offers no direct way to query energy consumption.
Instead energy estimation uses certain device characteristics, which cor-
relate to the energy consumption of the device. By emulating the ac-
cording behavior for the virtual device, we support energy estimation in
the guest without modifications to the guest’s energy accounting (that is,
if the guest operating system implements energy accounting, which is
not the case for most current operating systems). For example, we can
virtualize the processors performance counters to support event-driven
energy accounting [3] in the guest operating system1, or simulate differ-
ent power states to support the energy model applied by ECOSystem.

1We follow this approach in our prototype implementation. See Section 4.3 for more information
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Energy estimation is based on parameters that depend on the exact
device model. For example, the energy consumption of a disk can be es-
timated based on its power consumption in idle and active mode and the
time it remains in active mode to handle a request. Before the estimation
yields accurate results, it has to be calibrated for the respective device.
Thus, it supports only a predefined set of devices that have been mea-
sured beforehand. To support energy estimation for virtual devices, we
have to notify the guest operating system about their respective energy
parameters. Therefore, we propose to make these energy parameters
configurable by a user-level application. The application can look up a
table with supported devices to set up energy accounting or – in our case
– query the virtual machine monitor for the correct parameters.

Because we have to translate the energy consumption of devices from
our energy model to the parameter-based model of the respective guest
operating system, the accuracy of the energy estimation in the guest is
limited. The guest does not get the energy consumption for every re-
quest. Instead, the virtual machine monitor has to pre-estimate the en-
ergy consumption of the devices, including maintenance cost, to calcu-
late the energy parameters of the virtual devices. Because maintenance
and idle cost for a device are shared between the virtual machines, the
parameters can change if the number of virtual machines on the system
changes. To ensure accuracy in the long run, the guest has to ask the
virtual devices regularly for updated parameters.

Accounting I/O Emulation Overhead

Another limitation, if we simulate the energy behavior of a real device,
is that we cannot account for emulation overhead properly. The guest
operating systems are unaware of side effects between the devices. We
will discuss two methods to notify the guest operating systems about
emulation overhead, without changing the guest’s device drivers.

Ony way is to charge emulation overhead transparently, together with
the cost of the respective virtual device. For this purpose, the virtual de-
vice increases the energy parameters of the device to cover cost of other
physical devices as well. The guest operating system does not have to be
aware of the CPU usage of the disk; it is automatically accounted to the
right resource principal. However, this solution has one drawback: the
guest does not know the energy it really has consumed on the physical
CPU, because part of the CPU energy consumption is charged as disk
I/O cost. This renders this approach unsuitable for certain applications,
such as thermal management (see Section 3.3.1).

Alternatively, we can use energy ballooning to inform the guest oper-
ating system about emulation overhead. Similar to the concepts of mem-
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ory and time ballooning presented in [31] and [29], energy ballooning
allows us to inject artificial cost into the guest operating system, without
modifying the guest’s accounting code. For example, to account CPU
overhead, we create a balloon thread in the guest operating system and
assign the CPU overhead cost to it. Similarly, we can use dummy net-
work packages to account for network overhead. Energy balloons allow
us to inform the guest about its total cost for a specific device; however,
the guest is unable to attribute emulation overhead to the originating re-
source principal.

None of two approaches satisfies the requirements of all energy man-
agement policies. We have to choose the more adequate approach de-
pending on the desired goals. If the guest has to know the energy con-
sumption of each physical device separately, we have to use energy
balloons, otherwise, accounting emulation overhead transparently with
each virtual device is to be preferred, because it allows the guest operat-
ing system to charge the cost to the originating resource principals and
is less intrusive.

3.5.2 Paravirtualized Device Drivers

Paravirtualized device drivers are not confined to the virtual hardware
interface and communicate directly with the virtual machine monitor.
They know about both sides: the physical devices and the guest-internal
resource principals. Therefore, in this case, accounting energy consump-
tion to the guest’s resource principals is straightforward: The device
driver queries the cost directly from the physical device subsystems and
charges it to the right resource principals.

Because the device driver has access to the guest’s accounting system,
it does not have to account emulation overhead transparently but can
charge all cost explicitly to the right resource principal. However, this
implies that the driver is able to account the according cost. If it is not,
we have to fallback to one of the methods described before.

27



28



Chapter 4

Implementation

To evaluate our solution, we implemented a prototype for an existing vir-
tual machine environment. In addition to the accounting infrastructure in
the virtual machine monitor, we implemented an energy-aware guest that
uses the accounting information provided by the host. We support two
main energy consumers: CPU and disk. Furthermore, we implemented a
simple resource monitor that has access to accounting information of all
devices via shared memory but does not apply any energy management
policy.

Before we discuss our implementation, we will describe the compo-
nents our virtual machine environment consists of (Section 4.1). The
subsequent sections describe the different parts of our solution. Section
4.2 discusses our implementation of the resource monitor. Sections 4.3
and 4.4 address energy accounting for CPU and disk; both sections first
describe host-level and then guest-level accounting.

4.1 Environment

We implemented our prototype for the L4Ka virtual machine environ-
ment. The environment consists of a user-level virtual machine monitor
and a paravirtualized Linux kernel, called L4Linux, both running on top
of an L4 microkernel. To offer device access to the Linux instances,
the environment uses designated device driver virtual machines that host
Linux device drivers and export their functionality to the other virtual
machines. To demonstrate guest-level accounting, we use an extended
version of L4Linux that supports energy accounting with resource con-
tainers. In the remainder of this section, we will shortly describe the
different parts of our environment.

29



4.1.1 L4Ka Virtual Machine Environment

The L4Ka virtual machine environment [28] is an infrastructure for run-
ning virtual machines on top of L4Ka::Pistachio, the latest implemen-
tation of the L4 microkernel developed at the University of Karlsruhe.
L4 offers two basic abstractions: threads and address spaces. It supports
inter process communication (IPC) and flexible mapping of memory re-
gions between address spaces.

The guest operating systems are modified Linux 2.6 kernels that use
L4 as hypervisor, instead of running on real hardware. The paravirtu-
alized L4Linux uses the abstractions and operations provided by L4 to
implement Linux abstractions. Accordingly, Linux threads are mapped
onto L4 threads and Linux address spaces correspond to L4 address
spaces. The Linux kernel executes as a separate thread in its own ad-
dress space and communicates with the user-level tasks via IPC.

Furthermore, the infrastructure comprises a user-level virtual ma-
chine monitor, running as an L4 task, that manages the Linux instances
and provides additional services. The environment allows for running
unmodified Linux applications and native L4 applications side by side.

4.1.2 User-Level Driver Architecture

The virtual machine environment implements the driver architecture pro-
posed in [16]. It uses unmodified Linux device drivers running in a des-
ignated virtual machine. The drivers are encapsulated in an L4Linux in-
stance that has pass-through access to the respective devices. To export
the device to client virtual machines, the driver virtual machine contains
a translation module that translates between client requests and Linux
primitives. On the client side, a custom device driver receives requests
and forwards them to the device driver virtual machine, using the inter-
face exported by the translation module.

4.1.3 L4Linux with Resource Containers

As an example for an energy-aware guest operating system, we use an
extended version of L4Linux that supports resource containers. The
original resource container extension is described in [30]. We adapted
the implementation to our paravirtualized environment and added sup-
port for disk accounting (see Section 4.4.2).
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4.2 The Resource Monitor

Implementing as little policy as possible within the kernel is a central
design principle for the development of the L4 microkernel that ensures
its flexibility and generality. Because the resource monitor is intended to
be the place for global energy management policies, we implemented it
in user-level. Moreover, this allows us to add new policies at runtime by
replacing the resource monitor with an updated version.

Our implementation of the resource monitor does not apply any en-
ergy management policy. Nevertheless, we provided it with on-line ac-
counting information of all devices to show the feasibility of our ap-
proach and to obtain the energy measurements presented in Chapter 5.
In order to provide accounting data for global policies, all device drivers
have to register with the resource monitor. Upon registration the re-
source monitor maps a memory region into the device subsystem’s ad-
dress space. Within this shared region, the device subsystem stores ac-
counting information for each of its clients.

All device subsystems use the same data structure shared t to hold
the accounting information within their shared memory region. The
shared t data structure contains another data structure client_in
fo_t for each virtual machine, which in turn contains the energy con-
sumption the virtual machine caused by using this device subsystem.
The following code segment lists the data structures.

typedef struct {
energy_t base_cost;
energy_t access_cost[MAX_DEVICES];

} client_info_t;

typedef struct {
client_info_t clients[MAX_VMS];

} shared_t;

4.3 CPU Energy Accounting

We choose an approach based on performance monitoring counters to
get accurate energy consumption. The microkernel multiplexes the coun-
ters between virtual machines. At each switch between virtual machines
it writes performance counter values into an in-memory log file shared
with a CPU accountant in user-level and with the guest operating sys-
tems. The user-level accountant periodically analyzes the log file and
calculates the energy consumption of each virtual machine. We also use
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event weight [nJ]
time stamp counter 6.17

unhalted cycles 7.12
µop queue writes 4.75

retired branches 0.56
mispredicted branches 340.46

memory retired 1.73
MOB load replay 29.96
ld miss 1L retired 13.55

Table 4.1: Used event counters and their energy contribution. The selection of events
and their respective weights are according to [3].

the logged values to virtualize the performance monitoring counters at
guest-level.

4.3.1 Host-Level CPU Accounting

We use event-driven energy accounting to estimate CPU energy con-
sumption. In [3] Bellosa and colleagues argue that using CPU load as an
indicator for energy consumption yields imprecise results. They show
that on modern processors high-power tasks can consume 70% more en-
ergy than low-power tasks. Event-driven energy accounting leverages
event counters embedded in modern processors to get accurate results.
Originally intended for performance monitoring, the counters can be
used to count energy-critical events. In contrast to real energy measure-
ments, reading event counters is fast enough to be read at each context
switch. Thus, it is possible to estimate energy consumption for each
individual task.

To estimate energy consumption of a processor, we assign energy val-
ues (weights) to events. We can then count the occurrences of each event
by means of the performance monitoring counters to calculate the energy
consumption of the CPU. Because the available counters are specific to
the CPU model, the used counters and weights vary and have to be cali-
brated for the CPU. We implemented event-driven energy accounting for
the Pentium 4 and used the values from [3] (see Table 4.1).

Instrumentation and Event Logging

The performance monitoring counters consider all code that is executed
on the CPU. As we want to estimate the cost for each virtual machine, we
have to read the event counters at every switch between them. The kernel
has to multiplex the counter values between virtual machines, because
context switches are transparent to user applications.

32



As mentioned before, the microkernel should offer generic mecha-
nisms only. Thus, we want to keep the policy for energy estimation
out of the microkernel. We use instrumentation and event logging [25]
to transfer the relevant counter values to a user-level CPU accounting
thread. At each switch between virtual machines, L4 reads the counter
registers, and records them into a log file shared with a user-level CPU
accountant. By setting up the performance monitoring counters from
the CPU accountant, we can choose the counted processor events from
user-level.

Host-level accounting has to split cost between virtual machines. L4,
however, does not know about virtual machines. The virtualization en-
vironment maps Linux processes to L4 threads, which would result in
too detailed counter values emitted by the kernel. We use the concept
of accounting domains presented in [25] to group threads belonging to
a virtual machine. Accounting domains map resource principals (in this
case threads) to accountable entities. The logging infrastructure does not
consider context switches or any other interaction within one accounting
domain, but treats all resource principals contained in an accounting do-
main as one.

User-Level Energy Estimation

We implemented a CPU accountant as part of the user-level virtual ma-
chine monitor, which analyzes the log file and estimates the energy con-
sumption of each virtual machine. Every 20 milliseconds, the CPU ac-
countant checks the log file of each virtual machine for new entries. The
values calculated by the CPU accountant serve solely for global account-
ing because the guest operating systems, for performance reasons, do
not query their energy consumption from the virtual machine monitor
but also read the log file written by the microkernel.

Instead of charging the complete energy consumption of each period
to the according virtual machine, we subtract the base cost and split it
between the virtual machines. The time stamp counter, which is included
in the values recorded by L4, together with its energy weight supplies us
with an accurate estimation of the processor’s idle cost. It is the only
counter that advances if the CPU is idle, and it constantly advances if
the CPU is utilized. Thus, the energy estimation looks as follows:

// calculate idle energy
idle_energy = 6.17 * counter1;

// split idle energy between domains
idle_energy /= (max_domain - min_domain + 1);
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for (d = min_domain; d <= max_domain; d++) {
clients[d].base_cost += idle_energy;

}

// calculate and charge access cost
energy = 7.12 * counter2 +

4.75 * counter3 +
0.56 * counter4 +

340.46 * counter5 +
1.73 * counter6 +
29.96 * counter7 +
13.55 * counter8;

clients[current].access_cost[RES_CPU] += energy;

4.3.2 Guest-Level CPU Accounting

The guest operating system does not charge resource usage to processes,
but to resource containers [1]. To support CPU accounting, each process
has a resource binding to a resource container. When the kernel sched-
ules a process, it binds the process’s current resource container to the
CPU. Each time the current resource container of the CPU changes, the
kernel estimates the energy consumption and charges it to the previously
active resource container.

A switch between resource containers happens when the scheduler
dispatches a process with a different resource container, when the cur-
rent process is bound to another resource container, or when an interrupt
arrives. As these events happen frequently, the energy estimation must
not cause significant overhead. Although L4 implements very fast IPC,
polling energy consumption from the CPU accountant thread via IPC
causes too much overhead. Each context switch or interrupt in Linux
would involve two additional context switches in L4.

To avoid these communication latencies, we also apply event-driven
energy accounting directly in the guest operating system to estimate the
energy consumption of the virtual CPU. For this purpose, the virtual
machine monitor configures the performance monitoring counters to be
readable from user-level. However, the counters consider all executed
code, regardless of the virtual machines. To (para-)virtualize the coun-
ters, the host-level CPU accountant maps the log file containing the val-
ues recorded by the microkernel into the guest kernel’s address space.

At each switch between resource containers, the guest operating sys-
tem reads the counter registers from the processor and calculates the
difference to the previously measured values. Before we calculate the
energy consumption from these values, we check for new entries in the
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log file. If it contains new log entries, other virtual machines have been
running in the meantime; we use the recorded values to factor out the
portion that is contributed by other virtual machines.

4.4 Disk Energy Accounting

Disk drives are a major contributor to the overall power consumption of
servers [4, 36]. Especially in systems with several disks, the power con-
sumption of the disks is substantial and exceeds the power consumption
of the CPU. Furthermore, we need disk accounting to account for CPU
overhead during disk emulation. Disk accounting differs from CPU ac-
counting in several ways:

• The disk driver is located in user-level within a virtual machine,
instead of in the privileged microkernel.

• Disk accounting has to charge cost of two physical devices: the
disk and the CPU. Thus, we have to apply recursive accounting.

• Disk accounting is based on requests. We have to apportion cost
between requests and transfer it with the request data.

We will first discuss energy estimation and apportionment in the user-
level disk driver (Section 4.4.1). We will then describe our extensions
to the resource container implementation, which allows for energy ac-
counting per disk request within the guests (Section 4.4.2).

4.4.1 Host-Level Disk Accounting

To handle disk requests, the virtual machine environment uses unmodi-
fied Linux drivers encapsulated in a designated virtual machine. A trans-
lation module within the virtual machine receives disk requests from
other virtual machines, translates them to basic Linux block I/O requests,
and passes them to the original device driver. When the device driver has
finalized the request, the module again translates the result and returns
it to the client virtual machine. According to Section 3.2.1, we did not
modify the device driver and implemented energy estimation and ap-
portionment completely in the translation module. Because it handles
all disk requests from the clients to the driver and vice versa, it has all
information required for accounting.

The cost for the virtualized disk consists of the energy consumed by
the disk and the energy consumed by the CPU while processing the re-
quests. The translation module estimates the energy consumption of the
disk using a simple energy model and, like the client virtual machines,
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estimates the CPU energy consumption based on the paravirtualized per-
formance monitoring counters. We separate both values into base cost
and access cost; the access cost are charged with the result that is re-
turned to the client, whereas the base cost is exported through an energy
meter. The client operating system can query the energy meter via IPC.

Disk Energy

To estimate the energy consumption of the disk, we use an energy model
that depends on the specific disk model. Instead of attributing energy
consumption to events, we attribute power consumption to different de-
vice states. As mentioned earlier, suspending the disk is unrealistic for
server systems. Thus, we do not consider sleep modes. Nevertheless,
we have to distinguish two different power states: active and idle. We
also need the transfer rate of the disk to calculate the transfer time of a
request; that is, the time the device remains in active state to handle a
request. In reality, the energy consumption of disks is more complex; to
simplify energy estimation, we ignore several parameters that affect the
energy consumption of requests, such as the seek time or the rotational
delay, and assume constant values.

After the device driver completed a request, the translation module
estimates the energy consumption of the request, depending on the num-
ber of transferred bytes:

// estimate transfer cost for size bytes
time = size / transfer_rate;
energy = time * (active_power - idle_power);

Because the idle cost are independent of the requests, they do not have
to be calculated for each request. However, we have to update the cost
periodically, to supply the resource monitor with up-to-date accounting
data. In addition, we estimate the idle cost every time one of the guest
reads its energy meter.

// estimate idle energy since last time
time = now - last;
idle_energy = idle_power * time;

// divide between clients
idle_energy /= client_count;
list_for_each(l, &clients) {

c = list_entry(l, struct client_entry, list);
clients[c->domain].base_cost += idle_energy;

}
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CPU Energy

The translation module and the device driver consume energy when they
process disk I/O requests. Moreover, they are encapsulated in a full
Linux kernel, which also uses the CPU. It is infeasible to track the en-
ergy consumption of individual requests through the Linux kernel. Linux
combines requests to get better performance and delays part of the pro-
cessing in workqueues and tasklets. Estimating the CPU energy con-
sumption between each request would cause too much overhead. Thus,
we only estimate the energy consumption at times and apportion it be-
tween the requests.

The Linux kernel constantly consumes a certain amount of energy,
even if it does not handle disk requests. According to our energy model,
we do not charge this base cost with the requests. To be able to distin-
guish the base cost from the access cost, we approximate the base cost
of the Linux kernel at boot time, before the client virtual machines use
the disk.

We assume constant CPU cost per request to predict the energy con-
sumption of future requests. Every 50 request, we estimate the CPU
energy consumption by means of the virtualized performance monitor-
ing counters and adjust the expected cost for the next 50 requests. The
following code illustrates how we calculate the cost per request. In this
code segment, the static variable cpu_unaccounted keeps track of
the deviation between the consumed energy and the energy consump-
tion that we have already charged to the clients. The function get cpu
energy() returns the CPU cost since the last query.

// estimate base cost
time = now - last;
base_energy = cpu_base_power * time;
cpu_unaccounted -= base_energy;

// calculate cost per request
req_count = 50;
cpu_energy = get_cpu_energy();
cpu_unaccounted = cpu_unaccounted + cpu_energy

- (cpu_req_energy * req_count);
cpu_req_energy = cpu_unaccounted / req_count;

4.4.2 Guest-Level Disk Accounting

The Linux kernel is optimized for performance. Especially the block de-
vice subsystem is heavily optimized to compensate the latencies of hard
disks compared to CPU and main memory. The kernel caches every data
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transfer to or from the disk in the page cache and delays every write-
out to the disk. Unfortunately, this optimizing for performance worsens
resource accountability.

In the client virtual machines, we use a custom device driver to for-
ward disk requests to the device driver virtual machine. The custom
device driver receives single disk requests from the Linux kernel. The re-
quest contains no information about the user-level application that caused
it. At this stage it is impossible to find out who initiated the request.

We use resource containers to track disk requests through the page
cache. For this purpose, we add a pointer to a resource container to every
data structure involved in a read or write operation. When an application
starts a disk operation, we bind the process’s current resource container
to the according page in the page cache. When the kernel writes the
pages to the disk, we pass the resource container on to the respective
buffer heads and bio structures.

The custom device driver in the client accepts requests in form of
bio objects and translates them to a request for the device driver virtual
machine. When it receives the reply, together with the cost for process-
ing the request, it charges the cost to the resource container that is bound
to the bio structure.
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Chapter 5

Evaluation

We evaluated our solution from two different perspectives. In the first
series of experiments, we measured the performance of our prototype
to determine the runtime overhead caused by energy accounting. In the
second series, we regarded the accounting information provided by our
infrastructure to show the feasibility of our approach.

5.1 Test Environment

For our measurements, we used the L4Ka::Pistachio microkernel, the
latest L4 microkernel developed at the University of Karlsruhe, and a
current version of the L4Ka virtual machine environment. In all exper-
iments we used one designated virtual machine that is hosting the disk
driver and one or two client virtual machines that execute our application
workload. The guest operating systems are paravirtualized L4Linux 2.6
kernels booting a Debian Woody installation from a ramdisk. We used a
desktop computer with an Intel Pentium 4 CPU, running at a clock speed
of 1.5 GHz, and 1.5 GB of main memory.

5.2 Performance

In order to be practical for real world applications, energy accounting
must not cause a visible degradation of the system performance. Thus,
we conducted several performance benchmarks within the virtual ma-
chines to measure the overhead of the extensions we made to the vir-
tualization environment. Measuring the performance within the guest
operating system reveals the effective performance of the system as it is
seen by the applications running on top of the guest operating system.
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5.2.1 Context Switch Latency

To determine the overhead caused by CPU accounting, we measured the
context switch latency in the guest operating system. To apportion cost
between individual tasks, the Linux kernel has to estimate and account
energy consumption at each switch between them. Thus, the most time-
consuming parts of CPU accounting are executed at context switches.
Because the context switch is a critical path in the kernel which is fre-
quently executed, CPU energy accounting must be fast.

To measure the context switching overhead, we used the lat ctx bench-
mark, which is part of the LMbench suite. LMbench is a collection
of mini benchmarks that evaluate the performance of UNIX systems.
Lat ctx measures the context switching time for a varying number of
processes with varying size. The processes are connected in a ring of
UNIX pipes and pass a token between each other. Before passing the
token, each process touches a certain amount of memory to pollute the
cache and simulate applications of different size. The LMbench script
starts several runs of lat ctx with process sizes ranging from 0 to 64 kilo-
bytes. During each run it varies the number of processes – starting with
1 and going up to 92 processes.

To attribute the accounting overhead to individual parts of our im-
plementation, we executed the benchmark with four different configura-
tions. Starting with the original system that does not implement energy
accounting, we add more functionality in each step. In the following
paragraphs, we will shortly describe the four configurations. Each con-
figuration includes all functionality of the previous configurations.

“none” The basic configuraton comprises the unmodified virtual ma-
chine environment without energy accounting.

“host CPU” This configuration adds host-level CPU accounting, which
comprises two elements: At each switch between virtual machines,
the microkernel records eight performance monitoring counters to
a log file. Furthermore, the CPU accountant wakes up every 20
milliseconds to analyze the new log entries and estimate the CPU
energy consumption of the virtual machines.
However, these two elements are not directly tied to guest-internal
context switches. Because we execute the benchmark only in one
virtual machine, the measurements do not include context switches
between virtual machines, and the kernel does not record perfor-
mance counter values. Accordingly, the log file contains no entries
and the CPU accountant is idle as well. Host-level CPU account-
ing should thus not influence the guest-internal context switching
times.
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Figure 5.1: Context switch latency measured with lat ctx.
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“host CPU, guest CPU” At each context switch within the virtual ma-
chine, the guest operating system reads the performance monitoring
counters and estimates the energy consumption of the previously
running task. In addition, it analyzes the log file written by the
microkernel to factor out the energy consumption of other virtual
machines.

“host CPU, guest CPU + rc” In the last configuration, the guest oper-
ating system uses resource containers for accounting. It charges
CPU energy consumption to resource containers instead of pro-
cesses. In our case, each process is bound to a separate resource
container. Thus, at each switch between processes, the kernel has
to switch resource containers as well.

Figure 5.2.1 shows the context switching times for process sizes of
0, 16, and 64 kilobytes. As we expected, host-level CPU accounting
does not affect the guest-internal context switches. The biggest part of
the accounting overhead is caused by the guest-level energy estimation,
which amounts to approximately 1 microsecond per context switch. Be-
cause the log file for virtualizing the performance monitoring counters
is empty, we attribute this overhead to the reading of the counters from
the processor.

Altogether, CPU energy accounting leads to a penalty of less than 2
microseconds for each context switch. In the unrealistic case of switch-
ing between two processes that do nothing, energy accounting doubles
the cost per context switch. However, if we increase the number of pro-
cesses and the process size, the relative overhead is getting smaller be-
cause the cache effects outweigh the processing cost.

5.2.2 Disk Throughput

In a second experiment, we measured the disk throughput with the Post-
mark benchmark. Postmark allows us to determine the performance of
disk energy accounting and shows how the increased context switching
latencies affect real applications. Postmark is an application-level bench-
mark that simulates the disk workload of a typical mail server. It creates
a large number of files and performs several transactions on them. We
configured Postmark to run 10000 transactions on 200 files with a file
size ranging between 500 bytes and 1 megabyte.

Using a real disk, we could not observe performance penalties caused
by our accounting infrastructure. Because of the large performance gap
between current disks and the CPU, the cost for disk accesses outweighs
the processing cost. In order to eliminate the overhead caused by the
disk, we conducted our measurements on a ramdisk with a size of 256
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megabytes. The measured results are thus a worst case estimate for the
overhead that is to be expected for real applications.

For the Postmark benchmark we used similar configurations as for
lat ctx but made some changes to measure the overhead caused by disk
accounting. In particular, we introduced the configurations “host CPU +
disk” and “host CPU + disk, guest CPU + rc + disk”, which add disk en-
ergy accounting for host-level and guest-level. Accordingly, we changed
subsequent configurations to include disk accounting as well. Hence, the
configurations for the Postmark benchmark look as follows:

“none” See Section 5.2.1.

“host CPU” See Section 5.2.1.

“host CPU + disk” This configuration is identical to “host CPU”, but
with additional energy accounting within the user-level disk driver.
For every request, the driver estimates the energy consumption of
disk by means of an energy model1. Additionally, the driver esti-
mates the CPU energy consumption every 50 requests and adjusts
the cost for future requests.

“host CPU + disk, guest CPU” Identical to “host CPU, guest CPU” in
Section 5.2.1, but with added host-level disk accounting.

“host CPU + disk, guest CPU + rc” Identical to “host CPU, guest CPU
+ rc” in Section 5.2.1, but with added host-level disk accounting.

“host CPU + disk, guest CPU + rc + disk” The last configuration con-
tains our extension to the resource container implementation. The

1Although the benchmark operates on a ramdisk, we used the energy model of a real disk to get compa-
rable processing cost for the energy estimation.
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guest operating system uses resource containers to track disk re-
quests through the page cache. It charges the energy consumption
returned by the driver virtual machine to the resource container that
is bound to the respective request.

For each configuration, we executed the Postmark benchmark five
times and calculated the mean value. Figure 5.2 depicts the measured
disk throughput for the six configurations. Except for the resource con-
tainers, each accounting component decreases the throughput between
0.5 and 1 percent, leading to an overall penalty of 3.2 percent. The re-
sults show that the cost can be attributed equally to CPU accounting
and disk accounting, each adding 1.6 percent overhead. As mentioned
before, the results are a worst case estimate for real applications; for typ-
ical server applications which use real I/O devices, the overhead will be
even lower.

5.3 Accounting Information

In the remainder of this chapter, we will present energy measurements
of several workloads to demonstrate the effectiveness of our approach.
We conducted our energy measurements on a real IDE disk instead of
the ramdisk used in the last section. However, to obtain realistic energy
values for a server system, we estimated the disk energy consumption
using the energy parameters for an IBM Ultrastar SCSI disk as reported
by [4].

According to our two-level approach, we regard host-level and guest-
level accounting separately. For both levels, we execute two instances
of the same application simultaneously and observe how the accounting
infrastructure apportions the energy consumption between the respective
resource principals. In Section 5.3.1 we will regard host-level account-
ing and how it apportions energy consumption between virtual machines.
In Section 5.3.2, we will focus on guest-level accounting.

5.3.1 Host-Level Energy Accounting

To demonstrate host-level energy accounting, we executed two instances
of Postmark simultaneously, each in a separate virtual machine. During
its measurements, the Postmark benchmark uses the CPU and the disk,
allowing us to analyze the energy consumption of both supported de-
vices. We started the second instance with a delay of ten seconds; to-
gether, the two runs take approximately 40 seconds. We obtained the
energy consumption of the virtual machines from the resource monitor
in a one second interval.
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Figure 5.3: Total energy consumption of two simulaneous Postmark runs.

Figure 5.3 gives the total energy consumption of the two supported
devices according to our estimation. As we can see, disk and CPU ex-
hibit very different energy characteristics. The power consumption of
the disk is dominated by the high base cost of approximately 10 Watt.
Disk activity only slightly increases the power consumption, leaving lit-
tle room for energy management policies without reducing the spinning
speed. In contrast, the CPU energy consumption is very dynamic. Al-
though the CPU base cost is lower that the disk base cost, its maximum
power consumption is much higher.

In Figure 5.4 we solely considered the access cost during the exper-
iment. We depicted three types of energy consumption separately: the
disk energy consumption (“disk cost”), the CPU energy consumption
that can be directly accounted to a client virtual machine (“direct CPU
cost”), and the CPU energy consumption of the shared device driver
(“processing overhead”). As we can see, the direct CPU energy con-
sumption is by far the highest portion. The processing overhead in the
device driver amounts to a total of 4 percent during the runtime of the
experiment.

In Figure 5.5, we depicted the energy consumption of each virtual
machine separately. As the chart shows, the resource monitor splits each
part of the cost correctly between the virtual machines. In particular,
the processing overhead in the device driver is accounted to individual
virtual machines.
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Figure 5.4: Access cost of two simulaneous Postmark runs.

5.3.2 Guest-Level Energy Accounting

In our last experiment, we executed two instances of factor within one
virtual machine. The factor utility finds the prime factors of a number
and is very CPU intensive. As with Postmark, we started the second in-
stance of factor with a delay of ten seconds. Figure 5.6 shows the total
energy consumption as seen by the resource monitor. Because the two
factor instances run within one virtual machine, the resource monitor is
unable to divide the cost between them. We used the accounting infras-
tructure in the guest operating system to obtain the energy consumption
of the individual processes (see Figure 5.7).
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Figure 5.5: Postmark access cost per virtual machine.
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Chapter 6

Conclusion

The goal of this thesis is to enable energy management in virtual ma-
chine environments by providing adquate accounting information. Al-
though research has proposed several approaches to energy accounting,
none of them is suitable for virtualized environments. All approaches
are designed for monolithic operating systems and assume full know-
ledge of the hardware and the running applications. In virtual machine
environments this information is distributed between the virtual machine
monitor and the guest operating systems.

We presented an accounting infrastructure for hypervisor-based vir-
tual machine monitors, that allows for reusing existing energy manage-
ment approaches within the virtual machines. For this purpose, the vir-
tual machine monitor estimates the energy consumption of the hardware
and accounts it to the virtual devices. Depending on the virtualization
technique applied by the virtual machine monitor, either the virtual de-
vices simulate the energy characteristics of real hardware to support en-
ergy estimation within the guest operating system or we import the ac-
counting information through paravirtualized device drivers. In addition,
we provide accounting information to a resource monitor located at host-
level, that serves as a place to implement global energy management
policies.

Our work is a first step towards energy-aware virtualization. For ac-
tive energy management in the virtual machine monitor, further work
has to be done. Although we discussed in detail how to obtain the energy
consumption of devices and of virtual machines, our solution does not
address how the resource monitor can take appropriate actions to control
it. This requires additional mechanisms and further extensions to the
interfaces between the device subsystems and the resource monitor.

Besides mechanisms, energy management on host-level needs poli-
cies that identify global energy requirements and make appropriate de-
cisions. In this thesis, we did not cover specific policies; however, we
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see our infrastructure as a foundation for a wide range of energy man-
agement policies. Existing energy and thermal management schemes for
server systems, such as [3] and [19], are promising approaches for vir-
tualized environments as well. Futher work needs to investiate how they
can be adapted to our infrastructure.
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