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13.Juni 2006
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Abstract

This thesis presents a new concept to schedule virtual machines in a multiprocessor
environment due to their energy consumption. We propose to divide the process of
energy-aware scheduling in a virtual machine environment into two parts: guest-
level scheduling and host-level scheduling. Thereby an energy-aware scheduler
can benefit from the varying scheduling information available on both scheduling
levels.

At first we measure the energy consumption of threads and virtual machines.
We suggest to use the energy consumption of threads and virtual machines in com-
bination with energy budgets to come to scheduling decisions. Furthermore we
elaborated the framework required to implement energy-aware scheduling policies
on both scheduling levels. High scheduling accuracy because of fine-grained en-
ergy profiles for threads characterizes guest-level scheduling. Host-level schedul-
ing is equipped with mechanisms to overcome non-energy-awareness or malfunc-
tioning of guest operating systems. Additionally it supports a better exploration of
energy capacities of all CPUs in a multiprocessor environment by migrating com-
plete virtual machines.

The flexible design of our framework supports the implementation of various
energy-related scheduling policies, for example energy-aware balancing. Due to
the two-leveled approach we can participate from fine-grained scheduling deci-
sions on guest-level based on the energy consumption of threads as well as from
scheduling decisions based on informations only available on host-level (for exam-
ple the energy consumption of physical CPUs).
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Chapter 1

Introduction

Virtualization as an approach for server consolidation is a promising idea to reuse
and to better exhaust available hardware resources, especially as server hardware
is very expensive. However, server hardware typically is not only expensive. It
also consumes a lot of energy and thus requires considerable expenses for cooling
the system. This further increases the costs for server. An example for this is-
sue which recently gained public attention for cooling and energy costs was when
Google’s chief engineer reported the strong increasing of energy costs on Google’s
server farms [3]. Thus, if the virtualization technology shall be an alternative on
the server market of the future, a framework controlling the energy consumption
of virtual machine environments is indispensable.

Classic approaches to control energy consumption, for example frequency scal-
ing, can not be employed in a virtualization environment: Different virtual ma-
chines eventually require different operating frequencies. An efficient mechanism
which allows to agree on one frequency is not available. Approaches, which
move the energy control mechanism from hardware level to software level, like
the approach introduced in [12], which shows how to balance the power consump-
tion of multiprocessor systems, are far more promising for virtual machine envi-
ronments. We believe that especially the energy-aware scheduling demonstrated
in [12], which utilizes event-based energy estimation introduced in [4, 5], is an ap-
proach with the potential to offer ideas to control energy consumption in virtual
machine environments with additional support of multiprocessor systems.

1.1 Problem

Energy-aware scheduling is a complex process. Policies which schedule energy-
aware require non-standard operations of an operating system. For example energy-
aware scheduling leverages resource containers in order to account energy [1, 12].
Such a scheduler furthermore requires a mechanism to throttle energy consumption
and to balance energy consumption.

The approach in [16] discusses basic issues concerning energy-aware schedul-
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2 CHAPTER 1. INTRODUCTION

ing of virtual machines. It offers a couple of solutions to these issues, for example
energy accounting in virtual machines or direct reaction to a CPU’s temperature.
However, this paper is focused on throttling the energy consumption of threads
within a virtual machine due to their energy consumption. Besides this paper no
further work is known discussing energy consumption of virtual machines and con-
sequently none exploring issues of multiprocessor systems in this context, too.

1.2 Approach

The non-disposability of a solution motivated us to explore a new framework re-
quired for energy-aware scheduling in a virtual machine environment with support
for multi-processor systems. We propose to divide the issue into two subproblems.
Firstly we suggest extensions to guest-level scheduling to control the virtual ma-
chine internal energy-aware scheduling. Secondly we propose new mechanisms
for host-level scheduling to implement global energy-aware scheduling policies.

The separation between guest-level scheduling and host-level scheduling is
based on the observation that the granularity of information available within a
virtual machine environment differs significantly between guest and host. Fine-
granular informations for individual threads are available only within an operating
system’s kernel. To exhaust these informations we introduce a number of new
facilities we subsume to the term guest-level scheduling, for example energy bud-
gets, which finally offer a fine-granular energy-aware scheduling within a virtual
machine. Host-level scheduling is residing in the major component of a virtual
machine environment: The virtual machine monitor. The virtual machine monitor
has no access to the fine-granular thread information. But it has access to glob-
ally available, energy related informations like the CPU temperature or the battery
state. Furthermore, it knows about the existence of all virtual machines; an advan-
tage essential to an energy-aware scheduler which tries to even out the energy con-
sumption of virtual machines or CPUs. Our approach equips the virtual machine
monitor with a number of new operations sufficient to apply global information to
the energy-aware scheduling process.

In order to evaluate our approach we implemented a prototype which demon-
strates the practicability of our extensions to guest-and host-level scheduling. We
have applied our design to the L4Ka Virtualization Environment developed by the
System Architecture Group of the University of Karlsruhe [21]. We successfully
extended the existing virtualization environment with our design ideas and ex-
tracted relevant evaluation data. On an Intel Pentium D clocked at 3 GHz we
monitored the functionality of guest-level scheduling and host-level scheduling by
analyzing different scenarios, for example energy balancing of physical CPUs us-
ing host-level scheduling. We furthermore proved that our design induces only
a negligible energy overhead if implemented in a suitable way. Additionally we
evaluated the performance of our major components to get an idea about the capa-
bilities and about limits of these components. Finally we conducted experiments
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analyzing the network throughput in order to further demonstrate the different ad-
vantages of guest-level scheduling and host-level scheduling.

1.3 Outline

This thesis is structured as follows:

• Chapter 1: Introduction
The introduction offers some basic reasoning for this thesis and gives an
abstract view to our approach.

• Chapter 2: Background
The background chapter reviews some major contributions to our approach
in detail. We show the similarities and differences. Furthermore we partially
reason some of our basic functionality.

• Chapter 3: Design
Chapter 3 presents the design of our approach. We focus on a clear structure
beginning with a coarse description of our solution and moving more and
more into details with each section.

• Chapter 4: Implementation
The implementation chapter offers a discussion of the implemented proto-
type. We focus on the major topics as a complete discussion is beyond the
scope of this thesis.

• Chapter 5: Evaluation
This chapter contains the evaluation data we produced with our prototype.
It demonstrates the functionality in detail and for different situations. Fur-
thermore it proves the low energy overhead created by our design. Finally
we address the performance of our host-level components and discuss the
advantages of guest-level scheduling and host-level scheduling.

• Chapter 6: Conclusion
Finally we give a conclusion and offer some approaches for future work.
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Chapter 2

Background

This chapter presents some background material closely related to our work. In
some words we discuss virtual machines before we proceed to event-based energy
estimation and the problems of energy estimation in virtual machines. Furthermore
we take a look on migration as it is an important key mechanism for this thesis. We
shortly outline Linux migration as well as live migration of virtual machines, which
gave us some initial ideas in this context, especially for the implementation of our
prototype.

2.1 Virtual Machines

The term virtual machine environment describes an architecture consisting of a vir-
tual machine monitor and multiple guest operating systems being executed in par-
allel, yet completely isolated from each other in so called virtual machines. Code
execution is separated into native instruction execution and virtual instruction ex-
ecution. The instructions to be executed virtualized form the sensitive instruction
set [15]. Virtualized instruction execution is to take a sensitive instruction and
to replace it by code of execution adopted to the virtual machine monitor. This
process is called code emulation. Sensitive instructions normally are related to re-
source management because resources (for example memory management or inter-
rupt assignment) are shared by the guest operating systems. For example, it is quite
comprehensible that two guest operating systems should not access the same part
of memory. Virtualization environments require prohibiting them from accessing
resources directly to achieve the guest isolation. Therefore sensitive instructions
are replaced by a new set of instructions which inform the virtual machine monitor
to execute the emulation code so that other virtual machines take no notice about
it.
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6 CHAPTER 2. BACKGROUND

Approaches

Different approaches of virtualization have been elaborated. A technology called
pure-virtualization is an approach which provides emulation code for each sensi-
tive instruction. Non-sensitive instructions are executed further on directly by the
hardware. The injection of emulation code allows to run unmodified guest oper-
ating systems. Unfortunately, this process leads to a significant performance loss
as the virtual machine monitor needs to detect the sensitive instructions and af-
terwards has to replace them by emulation code. A virtual machine using pure-
virtualization which recently gained a public audience is VMware Workstation
[24].

The second approach called para-virtualization requires no further injection of
emulation code for each instruction in the sensitive set. The virtual machine moni-
tor provides a number of interfaces to the emulation code which has to be invoked
by the guest for themselves. Thus detecting instructions which require the injection
of emulation code vanishes. Thereby the performance of the code execution is in-
creased. Additionally no switches between address spaces for code emulation are
required, as parts of the virtual machine monitor are located in the address space of
the guest operating system. However, the fact, that no further detection of sensitive
instructions is utilized, implicates, that each guest operating system which shall
run upon this extended architecture needs to be modified. The developer has to re-
place all sensitive instructions manually. This is a time intensive procedure which
requires outstanding skills in operating system development. Para-virtualization is
adopted by the L4Ka Virtualization Environment [21] and Xen [27].

A third approach is called pre-virtualization. This relatively new concept tries
to reduce the engineering effort to port a guest operating system to a virtualization
architecture which follows the para-virtualization approach. At the same time the
authors try to solve the issue of performance loss which appears in pure-virtualized
architectures. In [8] the authors demonstrate the reduction of engineering time re-
quired to port a guest operating system to a virtualization architecture. They devel-
oped a new pre-compiler which injects code fragments when the operating system
is built. These code fragments simplify the detection of sensitive instructions and
consequently they reduce the performance loss, too. A further considerable advan-
tage of pre-virtualized operating systems is that they can be executed directly on
hardware as well as on pure-virtualized architectures.

Conclusion

We implemented our prototype for a para-virtualized architecture. It induces the
minimum performance loss to a system. Thus the loss of energy capacities due
to the virtualization architecture can be expected to be minimal, too. Event-based
energy estimation which we use for measuring energy [see Section 2.2.1] uses
besides other parameters the performance of a system in the estimation process by
considering the CPU’s time stamp counter. Therefore in order to keep down the
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energy loss as low as possible using a para-virtualized architecture suggests itself.

2.2 Energy-Aware Scheduling

In this section we review energy-aware scheduling, its related components and
scheduling algorithms which can be used with energy-aware scheduling in different
manner. We begin with a summary of event-based energy estimation itself and
continue by reviewing energy-aware scheduling of virtual machines. Afterwards
we discuss some potential scheduling algorithms. Finally we elaborate the basic
functionality required to realize such algorithms in a multiprocessor driven virtual
machine environment.

2.2.1 Event-Based Energy Estimation

Event-based energy estimation is the state-of-the-art approach to measure energy
consumption, first published in [5]. It offers a mechanism to determine an on-the-
fly energy value from the CPU without the requirement of any further hardware.

The idea is leveraging the so called performance counters available on a proces-
sor counting energy related performance events. On a Pentium 4 CPU there are 48
different events and 18 counters available [18]. This partially reasons the success
of this method as demonstrated in [5]. The basic proceeding is the periodical in-
spection of the deviance of 8 energy related performance events (for example mis-
predicted branches or unhalted cycles). Afterwards the energy consumption for
an inspected period can be calculated. The deviance of each performance counter
therefore is multiplied with a weight which is elaborated for the used processor
type. An adequate adoption of this approach can provide the consumption of each
thread running in an operating system [5].

2.2.2 Energy-Aware Scheduling of Virtual Machines

Energy-aware scheduling uses the energy consumption of threads to set up a sched-
ule originally designed for SMP systems [14]. Threads are assigned to processors
in order to balance the energy consumption of all system CPUs.

Energy-aware scheduling of virtual machines considers the new problems of
the process addressed above for single processor machines running a virtual ma-
chine. Measuring the energy consumption of threads is no more reduced to the
measurement of the energy consumption on a processor. The virtual machine tech-
nology permits the operation of multiple guest operating systems which may run
multiple threads each. However, event-based energy estimation is still capable to
offer a reliable approach to measure the energy consumption in a virtualization en-
vironment. Therefore the energy consuming source has to be identified on thread
level and on virtual machine level. As we will demonstrate this implicates support
of energy estimation in the virtual machine monitor. Classic energy estimation
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within each guest operating system would result into an accounting of the con-
sumed energy to multiple guest operating systems [16]. Thus we have to correct
the assignment of energy to threads and to virtual machines. In the design section
we discuss an approach how to overcome this problem we call virtualized per-
formance counters. We additionally discuss an implementation of this solution in
Chapter 4.

2.2.3 Scheduling Algorithms

The implementation of scheduling algorithms executing an energy-aware schedul-
ing of virtual machines in a multiprocessor environment requires a minimal set of
mechanisms, which we will consolidate in Chapter 3. In this section we deduce
this minimal set of functionality by reviewing some scheduling algorithms which
can be reused for energy-aware scheduling of virtual machines in a multiprocessor
environment in different ways.

Lottery Scheduling

Lottery scheduling is a randomized resource allocation mechanism. The utilization
of a resource is represented by a ticket which is allocated to clients in a lottery [26].
Tickets are transferred to the client which won a lottery explicitly. The tickets are
expressed by using a currency fitting to the resource the scheduler is controlling.

Lottery scheduling requires two features of a resource allocator. At first it has
to offer a mechanism assigning a budget, as the ticket owner only may consume a
partial amount of the resource. Second it requires a representation for this amount,
the currency.

Imprecise Computations Scheduling

The class of the quality assuring schedulers contain a lot of schedulers required
in modern systems, for example multimedia scheduler or real-time scheduler. We
selected imprecise computations scheduling as it is the essential scheduling poli-
cies of this kind. This scheduling approach separates the resource’s total quantum
in two parts: The mandatory part and the optional part. The mandatory part has
to be executed definitely within the considered period. The optional part may be
executed if resources still are left following a predefined distribution function [11].

Imprecise Computation Scheduling requires two features of a resource alloca-
tor. At first it has to assign a mandatory budget which is available definitely in a
period. At second it needs to assign an optional budget which can be exhausted
after its mandatory one is consumed already.

Temperature-Aware Scheduling

In [14] temperature-aware scheduling has been introduced as an approach to bal-
ance the temperature of CPUs in a SMP system. It calculates the energy consump-
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tion for each CPU as addressed above. In the following the algorithm determines
energy limits from predefined temperature limits. Afterwards it migrates threads
from hot CPUs (CPUs exceeding their energy limit) to others. By repeating this
procedure periodically the temperature of all CPUs can be kept balanced.

This scheduling policy requires a special feature of a resource allocator: The
migration.

Conclusion

We have shortly reviewed 3 representative scheduling policies, which can be ap-
plied to schedulers in a virtual machine environment with multiple processors.
We tried to deduce a minimal set of functions required for this purpose. Lottery
scheduling requires the assignment of budgets and the availability of a represen-
tation of the assigned amount. Our design will adopt this by introducing energy
budgets, which use energy as representative. Imprecise Computation Scheduling
requires assigning of two classes of resource quantities: A mandatory part and an
optional one. We will not go into details by offering two separated classes of energy
budgets. In order to still address overload situations, we will introduce a recalibra-
tion mechanism. It allows to redistribute energy budgets from virtual machines
with a lower energy consumption to virtual machines which have exhausted their
energy capacities. Furthermore this policy needs to rely on the keeping of these
budgets. Consequently we will offer a suitable mechanism adopted to our prob-
lem called suspension. Temperature-aware scheduling finally requires migration.
Migration will be available within our design, if energy-aware scheduling can be
applied. Recapitulating our design has to offer the functionality of energy budgets,
suspension and migration if common scheduling policies shall still be applicable
upon our design.

2.3 Migration

Migration is a basic concept we are strongly relying on in our design. We give
a short overview on the related concepts. At first we review the Linux scheduler
which supports the migration we reuse. Then we take a look at live migration of
virtual machines, which however is only partially of interest for our problem. It
contained some initial ideas when we implemented virtual machine migration for
our prototype.

2.3.1 Linux Migration

The Linux scheduler offers migration in order to perform load balancing on the
CPUs of a multiprocessor system. For each CPU the scheduler maintains a run-
queue. This queue contains all threads on its related CPU currently runnable. Fur-
thermore it keeps a variable which contains the current CPU load. The CPU load is
calculated in dependency to the number of threads on this CPU. After a rebalance
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period has passed the scheduler inspects the load of the current CPU. It compares
this value to the CPU load on all other CPUs. If there are significant differences
(25% or more) between two CPUs the scheduler pulls over 1 or more tasks in case
there are more than 1 task running on the source CPU.

Basically the Linux migration offers facilities we reuse later when we imple-
ment our prototype. But we have to modify the scheduler such a way it controls the
CPU’s energy consumption, not the CPU load. Additionally we will see in Chapter
4 that there are issues concerning the fluctuation of a CPU’s energy consumption
which require further modifications to the Linux scheduler.

2.3.2 Live Migration of Virtual Machines

Live migration of virtual machines offers a mechanism to move complete virtual
machines including their operating system and their applications between different
host machines. The design considers different phases to also migrate memory (the
push phase, stop-and-copy-phase and the pull phase). The authors state, that imple-
mentations eventually would only rely on one or two of the described phases (ex-
emplified by pure stop-and-copy migration, pure demand-migration and pre-copy
migration). They additionally mention the problem of starving network services in
case memory images are sent in a round-trip manner. The network bandwidth can
be exhausted then. They consider the migration of local resources especially for
network resources (open connections shall be kept without any forwarding mecha-
nism). The design offers an six step protocol for the migration of virtual machines.
It focuses on the required processes in order to completely migrate the virtual ma-
chine within a short period of time.

Live migration of virtual machines offers some ideas for our migration of local
virtual machines we will discuss in Chapter 3 and 4. We will not consider issues
arising from keeping open network connections available, migrating memory or the
consequences of bandwidth loss. We will focus on virtual machine migration be-
tween different (local) CPUs, which yet includes some of the introduced migration
stages (for example 0: pre-migration, 3: stop-and-copy or 5: activation).



Chapter 3

Design

In this chapter we introduce our solution for energy-aware scheduling of virtual
machines in a multiprocessor environment. We start with the definition of our
design goals followed by a short overview on our scheme. After this we consider
the major parts of our design in more detail. Thereby we proceed in a way that
we refine our ideas from section to subsection. In the last section we give a short
summary including the verification of our design goals.

3.1 Design Goals

We begin by defining our major design goals our design has to reflect. We verify
them within the scope of the summary in the last section of this chapter.

• Accuracy. As we are dealing with accounting and distribution of energy we
need accuracy as a virtual machine must not be billed for more energy than
it really consumed. Furthermore it has to be able to consume all the energy
it has been assigned. Any malpractice leads to unjustifiable punishment, for
example a virtual machine is suspended by the virtual machine scheduler, a
thread is descheduled by the guest’s scheduler.

• Safety. The energy balance of our system has to be kept even. Malicious
virtual machines (for example virtual machines which are not familiar to
energy-aware scheduling) must not be able to undermine our design’s mech-
anisms. Consequently our design has to control correctly uncooperative vir-
tual machines.

• Flexibility. We support the implementation of different scheduling algo-
rithms (see Section 2.2.3) upon our design. Furthermore we allow schedul-
ing algorithms to be located as well in the virtual machine itself as in the
virtual machine scheduler. Thus, the advantages of the different schedul-
ing levels (for example obtaining precise scheduling decisions or leveraging
global scheduling parameters like the CPU temperature), which we introduce
below, can be employed.

11
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• Efficiency. Some of our design’s components are executed very often within
the guest kernel or within the virtual machine monitor in order to support
the adequate accuracy for accounting and scheduling decisions. Therefore
these components need to be designed as efficient as possible. Our design’s
components must consume only a little amount of energy. Furthermore it
must not slow down the complete system significantly.

3.2 Our Scheme

This thesis introduces a novel approach for energy-aware scheduling of virtual ma-
chines within multiprocessor environments. We provide a framework which offers
the mechanisms to schedule threads on virtual CPUs for the guest’s scheduler and
which additionally provides the support to schedule virtual machines to physical
CPUs by the virtual machine scheduler in an energy-aware manner as depicted
in Figure 3.1. The mechanisms are designed to be used for the implementation
of different scheduling policies within both schedulers. In the following we call
threads the scheduling principals and virtual CPUs the scheduling resource of the
guest’s scheduler. Virtual machines are considered as the scheduling principal of
the virtual machine scheduler and physical CPUs as its scheduling resource. A fur-
ther term is the scheduling entity which embraces the scheduling principal and the
scheduling resource. We only refer to this term if the relation between scheduler,
principal and resource is evident.

Our proceeding to consider both levels of a virtual machine environment, the
guest-level and the host-level, offers the optimal exploration of the properties of
the considered scheduling resources, the virtual CPUs on guest-level and physical
CPUs on host-level. Scheduling policies can benefit from the informations avail-
able on their level. For example policies implemented in the guest-level scheduler
can rely on fine-granular informations available for threads, for example the energy
consumption of threads. However, a scheduling policy on host-level can consider
informations which are only available globally, for example the temperature of
physical CPUs. In order to transfer these benefits to our scheme we divide the de-
sign in two major parts: Guest-level scheduling and host-level scheduling.

The term guest-level scheduling generally relates to the scheduling process of
threads within the virtual machine. We extend this term by introducing energy as
the decision criterion for the guest-level scheduler. The guest-level scheduler is
considered to be the manager of the guest’s threads. It assigns them to its available
virtual CPUs in an energy-aware manner. We present all required facilities to im-
plement energy-aware scheduling policies already within a virtual machine. This
covers energy budgets as well as a suspension mechanism and a mechanism for
migration.

The term host-level scheduling describes the functionality for the virtual ma-
chine monitor to actively interfere to the energy consumption of virtual machines.
Host-level scheduling manages the assignment of virtual machines to physical
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CPUs and regulates the energy consumption of the virtual machines. We introduce
the mechanisms which are necessary for the virtual machine monitor to implement
energy-aware scheduling policies. Especially we consider the required key func-
tionality called virtual machine migration and virtual machine suspension. These
mechanisms allow to utilize energy capacities of physical CPUs on the one hand
and enforce energy limits for physical CPUs on the other hand. We gain the pos-
sibility to react on free energy capacities by migrating a virtual machine and we
have mechanisms to keep energy limits. In the following we discuss the concepts
and ideas to be met by our design in detail:

Figure 3.1: Abstract view to our design: The collector provides the virtualized
performance counters for the consecutive energy estimation. The virtual machine
scheduler may migrate the virtual machines between physical CPUs depending on
energy budgets. The virtual machines may migrate threads to virtual CPUs due
to the virtual CPUs’ energy budgets. Virtual machines which are not scheduling
energy-aware are kept within their boundaries by the virtual machine scheduler.
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Guest-Level Scheduling. The virtual machine runs a guest operating system. Thus
the guest operating system’s scheduler maintains a fine-grained view to the
properties of its threads and its virtual CPUs. Especially it knows about the
energy consumption of its threads and its virtual CPUs. We use the energy
consumption of threads and energy consumption of virtual CPUs as deci-
sion criterion for guest-level scheduling. Therefore, guest-level scheduling
requires the energy consumption of threads and virtual CPUs, its scheduling
principal and its scheduling resource. The energy consumption is derived
from virtualized performance counters. They are supplied by a new com-
ponent, called the collector which resides within the virtual machine mon-
itor. It provides the virtualized performance counters as well as the energy
consumption required to compile the energy profiles for host-level entities.
Furthermore we introduce energy budgets which support the limitation of the
energy consumption of a virtual machine. In order to solve overload situa-
tions we supply guest-scheduling with a recalibration mechanism allowing
redistribution of energy capacities between the virtual machines.

Host-Level Scheduling. Guest-level scheduling is a feature located in the vir-
tual machines themselves. However, some issues can not be solved by us-
ing guest-level scheduling. If a virtual machine fails to perform energy-
aware scheduling, for example because they are not capable of energy-aware
scheduling, guest-level scheduling failures effect other virtual machines, too.
For example non-energy-aware guests can consume more energy than as-
signed. Thus other guests are penalized, as there is only a limited amount
of energy available per scheduling period. Furthermore balancing the en-
ergy consumption of physical CPUs is not possible at all using guest-level
scheduling. The virtual machines have no knowledge about the energy con-
sumption of physical CPUs. The virtual machine monitor is the sole compo-
nent which has an overview about the physical resources. It is the only place
where we can prepare the monitoring of the energy consumption of all re-
sources and principals in our virtual machine environment (physical CPUs,
virtual machines and virtual CPUs in the multi-processor case). Thus only
a host-level mechanism can schedule virtual machines to physical CPUs ac-
cording to their real energy consumption. Therefore we require a migration
mechanism for virtual machines. Additionally the introduction of virtual
machine suspension to the virtualization layer can compensate the lack of
energy-aware scheduling within a guest’s operating system. Non expected
energy consumption can be balanced by the virtual machine monitor by sus-
pending the corresponding virtual machine.

The described design keeps the guest operating system’s fine-grained knowledge
about energy consumption using guest-level functionality and, coevally, we ensure
our design is not susceptible to the influence of virtual machines unaware to guest-
level scheduling by offering virtual machine suspension. Furthermore the energy
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Figure 3.2: Guest-level scheduling: The performance counter deviance related to
threads and virtual CPUs are reported to the corresponding virtual machine which
thereafter estimates their energy consumption. The guest’s scheduler afterwards
suspends threads in case its energy budget is exhausted. If another virtual CPU
still has energy capacities left it can migrate a thread to the corresponding virtual
CPU.

capacities of all physical CPUs can be exhausted using the mechanism of virtual
machine migration. In the following we consider the main functionality of guest-
level scheduling and host-level scheduling.

3.3 Guest-Level Scheduling

For this thesis guest-level scheduling denotes the scheduling of threads to virtual
CPUs with the background of energy-awareness of the guest operating system. As
can be seen in Figure 3.2 we migrate threads due to available energy capacities to
the virtual CPUs to balance the energy consumption of the virtual CPUs. Further-
more guest-level scheduling provides the capability of suspension by controlling
its threads’ energy consumption. We use guest-level suspension to keep energy
budgets, for example not to exceed temperature limits [12]. Guest-level schedul-
ing allows to benefit from the fine-granular scheduling and from energy-related
information available only within the guest operating system. Thereby guest-level
scheduling achieves more exact scheduling results compared to host-level schedul-
ing. In the following we give an overview to the components required for guest-
level scheduling.

We rely on energy consumption of threads and of virtual CPUs as a decision
criterion for guest-level scheduling. Therefore we utilize energy profiles. Energy
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profiles offer the energy consumption of an entity (scheduling resources and prin-
cipals) observed for some past scheduling periods [13]. Energy profiles require an
approach to measure the energy consumption for an observed scheduling entity (the
scheduling resources and the scheduling principals). We selected energy estima-
tion from performance counters as approach [5] to measure energy consumption.
But a virtual machine environment relying on this approach requires further con-
siderations. We need to virtualize the performance counters in order to measure the
energy consumption of threads. Additionally we need a method for gathering the
energy consumption for host-level entities (for example physical CPUs, virtual ma-
chine...). The virtualization of the performance counters is driven by a component
executing in the virtual machine monitor called the collector. It also provides the
energy measurement for virtual CPUs, physical CPUs and the virtual machines.

By using energy estimation guest-level scheduling can obtain the energy con-
sumption of threads. As next step it requires a facility to account this energy con-
sumption to its related thread. An approach to account energy consumption to its
related thread is described in [16]. This approach leverages resource containers [1]
for accounting of the energy consumption. To control energy consumption by the
virtual machine monitor it requires a flexible mechanism which can be used to set
energy budgets for virtual machines. We assign to each virtual machine a local
available energy budget which can be updated from scheduling period to schedul-
ing period. The guest-level scheduler employs furthermore thread suspension and
thread migration in order to implement energy-aware scheduling policies.

In the following sections we discuss all major topics in more detail: The energy
profiles, the collector, energy budgets, thread suspension and thread migration.

3.3.1 Virtual Energy Profiles

Classic operating systems do not support the measurement of any energy consump-
tion. Thus they are not capable of behaving energy-aware. To bridge this gap we
leverage energy profiles. Energy profiles [13] offer the monitoring of energy con-
sumption of an entity and the prediction of the energy consumption from those
monitored values. Guest-level scheduling entities to consider are the threads of
virtual machines and the virtual CPUs of virtual machines. They are the relevant
entities for our guest scheduler policy. If we want to offer energy profiles we have
to discuss the source of the energy values. For this purpose we firstly have to
consider how energy consumption can be virtualized.

Virtualizing Energy Consumption

We leverage virtual energy profiles to monitor the energy consumption of the dif-
ferent resources and principals of the virtual machine environment. To determine
energy consumption on operating system level, we reuse the mechanism of event-
based energy estimation as proposed in [5]. We shortly discussed this topic in
Section 2.2.1. Leveraging this approach for a virtual machine environment addi-
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tionally requires to virtualize energy consumption. The classic approach assumes
there is only one operating system running. In our case there might be running
several of them at the same time. Virtualizing energy is to divide out the energy
consumption of other virtual machines running in parallel to the considered one.
Virtualizing energy consumption can be done by the virtual machine monitor. It
has access to the performance counters and knows about the virtual machines and
when they run. Accessing and virtualizing the performance counters is discussed
in the next subsection.

To distribute the energy consumption to its threads is the task of the guest-level
scheduler itself. It has to assign the energy consumption to its threads for itself as
the collector does not know about the threads of the guests at all. However, the
collector can provide the guests with either the performance counters deviance or
directly with the energy consumption.

In the following we show how to virtualize performance counters. Afterwards
we discuss the collector which is the component to virtualize energy consumption
for host-level entities.

Virtualizing Performance Counters

Performance counters monitor the occurrence of different performance-related events,
for example unhalted cycles, and store them in related counter registers [17]. We
start with host-level monitoring. In order to virtualize performance counters we re-
quire the counters in a place which is capable to assign the results to the considered
resources and principals, virtual and physical CPUs as well as virtual machines.
This component reads the counters on each context switch and thereafter assigns
these values to all affected entities. For example if virtual CPU 2 of a virtual ma-
chine is assigned to physical CPU 1 the performance counters are accounted on
context switch to the virtual machine, the virtual CPU 2 and the physical CPU 1.

The guest-level’s principal - threads - and its resource - virtual CPUs - have to
be considered separately. The virtual machine monitor generally has no knowledge
about a guest’s threads. Thus each guest needs to assign the energy consumption
to threads by itself. We accommodate for this fact by passing the deviance of the
performance counters directly to the guest. But we only pass those which occurred
when the considered guest was running. In the following the guest can assign the
estimated energy to the threads. Thereby the guest is furthermore capable of deter-
mining the energy consumption of virtual CPUs. The guest knows which thread is
running on which virtual CPU. In Chapter 4 we will discuss the prototype. Then
we will return to the virtualization of the performance counters as the further pro-
ceeding is an implementation dependent one.

Collector

We have considered how performance counters are virtualized in order to gain
virtualized energy, additionally. Having virtualized performance counters we still
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Figure 3.3: Recalibration of energy budgets: Energy budgets allow to limit the
energy consumption of a virtual machine and its virtual CPUs. In order to react
on consumed energy (the black area in the figure) we can recalibrate the energy
budgets for the next scheduling period due to the lower energy consumption in the
last scheduling period of virtual machine 1.

require the component performing the virtualization of the energy, the assignment
of the virtualized performance counters and the virtualized energy to the correct
scheduling entity, the maintaining of a database for all scheduling entities and the
offering of an interface to get the database entries. In the following we introduce
this component that we call the collector. The collector virtualizes the perfor-
mance counters as described above. These virtualized performance counters have
to be shared with the guests. For example this can be realized by providing shared
memory which is filled with the deviance of the performance counters. As dis-
cussed above the guest performs the assignment of the estimated energy for itself.

Afterwards the collector estimates the consumed energy for considered host-
level entities (for example virtual machines or physical CPUs). The energy values
now are stored in the database separately for each involved entity. Finally the col-
lector offers an interface that can be used to read a required energy value. If the
virtual machine monitor now requires the energy consumption of the virtual ma-
chine, the physical CPUs or the virtual CPUs it simply queries the offered interface
and receives the energy consumed of this scheduling entity since the last query in
return. Using the collector on host-level is addressed again in Section 3.4.1 in more
detail.
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3.3.2 Energy Budgets

A virtual machine is regarded as a guest in the virtual machine environment. In
order to schedule energy-aware a guest requires limits considering its energy con-
sumption so it can decide when to migrate a thread or when to suspend it. In the
context of energy-aware scheduling this means to define energy budgets, limits
which have to be kept by the virtual machine for itself. Therefore we assign an
energy budget to each virtual machine per virtual CPU. It is assigned by the virtual
machine monitor. Thereby the virtual machine monitor can actively engage to the
scheduling process within the guest. It can instruct a guest to suspend in case the
energy budget is exhausted on all virtual CPUs or to migrate threads in case the
energy budget is only exhausted on some virtual CPUs.

Recalibration

Energy budgets require to be recalibrated regularly in order to support solving
overload situations in certain virtual machines or simply to better exhaust energy
capacities of available CPUs in multiprocessor systems. Recalibration means to re-
define the energy budgets to new values by the virtual machine scheduler because
of the energy which has been consumed by a guest within the last scheduling pe-
riod.

The energy consumption of all guests is only known to the virtual machine
scheduler. In order to support a better exhaustion of energy capacities already on
guest-level, the recalibration mechanism is provided by the guest-level scheduler.
It gives the virtual machine monitor the possibility to better engage to the schedul-
ing process of its guests and thereby participate from the benefits of guest-level
scheduling.

For example, let us consider Figure 3.3 which explains the necessity of recali-
bratable energy budgets for a guest in order to avoid the waste of energy. A virtual
machine is consuming less energy than assigned. If a recalibration mechanism is
available the energy budgets can be corrected for the next schedule period and less
energy is wasted. The other virtual machines can be assigned a higher budget.
Thereby we also can react on overload situations in sole virtual machines. Virtual
machines expecting an overload situation can be assigned more energy which is
taken from one with a lower energy profile.

3.3.3 Suspension and Migration

So far we considered the required facilities in order to measure energy consumption
and to define energy budgets to limit the energy consumption of virtual machines.
However, there are no mechanisms which support a reaction on these budgets. Ba-
sically we can react in two different ways if the energy budget for a virtual CPU
is exceeded. A virtual machine is suspended if all its threads running on the same
virtual CPU have exhausted their energy capacities. Furthermore we can migrate



20 CHAPTER 3. DESIGN

Figure 3.4: Host-level scheduling: The virtual machines internally have assigned
threads to virtual CPUs. The virtual machine scheduler however controls the as-
signment of the virtual machines’ virtual CPUs to physical CPUs. By reordering
them it can migrate virtual machines between different physical CPUs.

such threads to another virtual CPU still having energy capacities available. There-
fore the guest-level scheduler needs not only to monitor the energy consumption
of its threads as discussed in Section 3.3.1 but it also needs to monitor the energy
consumption of its virtual CPUs. This yet is not really a problem as the guest op-
erating system knows which thread is running on which virtual CPU. Summing up
their energy consumption yields the energy consumption of the virtual CPUs.

Suspension of threads in virtual machines due to energy budgets already has
been discussed in [16]. This approach utilizes a power control mechanism based
upon resource containers introduced in [25]. We can easily reuse this approach for
suspension in guest-level scheduling.

Furthermore we propose to migrate threads to improve the exhaustion of the
energy budgets of different virtual CPUs. If the energy budget of one virtual CPU
is consumed completely the guest-level scheduler migrates a thread to another vir-
tual CPU. Thus a better exhaustion of energy capacities can be achieved. Migration
is a mechanism basically known to modern operating systems. When we present
our prototype in Chapter 4 we will present how the standard Linux-scheduler can
be extended to migrate energy-aware.

3.4 Host-Level Scheduling

In the last section we discussed the guest-level scheduling located in a virtual ma-
chine in detail. In the following we discuss its complementary part residing in the
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virtual machine monitor called host-level scheduling. Host-level scheduling pro-
vides all required facilities to schedule complete virtual machines by the virtual
machine monitor’s scheduler. In contrary to guest-level scheduling we do not con-
trol virtual CPUs, we directly consider physical CPUs.

Host-level scheduling is designed not only to be an alternative to guest-level
scheduling. It is rather complementary to guest-level scheduling in different ways.
On host-level we have access to informations not available to the guest operating
system. For example we may read the temperature of physical CPUs. Also the vir-
tual machine only aggregates informations concerning the energy consumption of
all virtual machines. Thus enforcement of a global energy policy has to be managed
by the virtual machine monitor. Furthermore host-scheduling offers a possibility to
observe each virtual machine’s energy consumption. In case a virtual machine is
not capable of energy-aware scheduling or it is malfunctioning the virtual machine
monitor’s scheduler may interfere and enforce an assigned energy budget. Once
again we argue guest-level scheduling and host-level scheduling are two comple-
mentary partners rather than being an alternative which is illustrated in Figure 3.4.
In the following we give a component-wise overview to host-level scheduling.

Host-level scheduling requires energy profiles, especially about physical CPUs
and virtual machines (in the multiprocessor case for virtual CPUs, too). For exam-
ple a scheduling policy can consider to limit the energy consumption on a physical
CPU or the energy consumption of a virtual machine (per virtual CPU in the mul-
tiprocessor case). Therefore we may reuse the database which is maintained by
the collector. The virtual machine scheduler implements the scheduling policy. It
relies on the energy profiles and on the energy budgets for the considered entities.
The virtual machine scheduler controls the guest-level scheduler by invoking the
recalibration mechanism for energy budgets of the guest-level scheduler as dis-
cussed in section 3.3.2. Using this facility the host-level scheduler is capable of
distributing energy for physical CPUs to virtual machines and virtual CPUs. How-
ever, complete virtual machines are the first-class entities the host-level scheduler
is handling. Therefore host-level scheduling offers energy budgets for virtual ma-
chines. Energy budgets for virtual machines can be assigned either statically or
dynamically. Dynamic assignments support more complex schedulers requiring
periodically updates of energy budgets while static assignments reduce complex-
ity and energy overhead induced by host-scheduling. For example static budgets
are suitable for scheduling policies just offering a fair energy distribution as a sole
initial energy distribution is sufficient here. In order to implement energy-aware
scheduling policies in the virtual machine monitor we need two further basic facil-
ities. Firstly we use virtual machine suspension which can be used in combination
with energy budgets to enforce these budgets. Secondly we use virtual machine
migration. Together with energy budgets we can implement energy-aware balanc-
ing algorithms on host-level.

Below we discuss host-level scheduling in further detail and show the assembly
of the major components.
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3.4.1 Virtual Machine Scheduler

The virtual machine scheduler resides in the virtual machine monitor. It imple-
ments a scheduling policy which assigns virtual machines to physical CPUs and
distributes energy budgets, we have addressed in guest-level scheduling. The de-
cision criterion of the virtual machine scheduler are the energy profiles of virtual
machines (and their virtual CPUs in the multiprocessor case) and physical CPUs.

The energy profiles are made available by the collector, which we introduced
in section 3.3.1. It has access to the energy consumption of the virtual machines
and physical CPUs. The host scheduler invokes a function offered by collector to
query the energy profiles of the virtual machines and of the physical CPUs.

To implement its policy the scheduler requires the same mechanisms as the
guest-level scheduler: Energy budgets, suspension and migration. We discuss these
mechanisms in the sections below.

Energy Profiles of Virtual Machines

In section 3.3.1 the energy profiles were introduced in detail. We presented the
collector as the component gathering them. Now we describe how the energy con-
sumption of virtual machines can be detected in more detail.

Creating the energy profiles of virtual machines means to calculate the energy
consumption of each virtual machine by dividing out the energy consumption the
other virtual machines have consumed. As we use energy estimation this can be
achieved by reading the performance counters on each virtual machine switch.
From this we get the deviance of the performance counters for the scheduling pe-
riod a virtual machine has been running. Afterwards the collector can estimate
the energy consumption based on these values. Further conclusion to the energy
consumption of the virtual CPUs (in case we handle multiprocessor virtual ma-
chines) and the physical CPUs can be made. We monitor the performance counter
deviances per virtual machine and per physical CPU. Thereby we have the energy
consumption per physical CPU, too. As the virtual machine monitor knows about
the virtual CPU-to-physical CPU mapping the collector furthermore can calculate
the energy consumption per virtual CPU.

Using the Collector

The collector component represents the central database offering the energy pro-
files. As we need to query the collector for the profiles we have to provide a
corresponding function offering the access to the database entries as can be seen
in Figure 3.5. Components residing in the virtual machine monitor itself (in this
case the virtual machine scheduler) normally can not invoke interfaces which are
defined to be used with virtual machines.
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Figure 3.5: Reusing the collector: The virtual machine scheduler reuses the
database maintained by the collector. It monitors the energy consumptions of vir-
tual machines and physical CPUs. After querying the energy the scheduler can de-
cide dependent on its policy which virtual machine needs to be migrated to which
CPU or which virtual machine better is to be suspended.

3.4.2 Controlling the Guest-Level Scheduler

The guest-level scheduler’s energy budget controls the energy consumption of
threads on a guest’s virtual CPUs and thus the energy consumption of the com-
plete virtual machine. A preassigned energy budget is kept per virtual CPU. These
budgets can be defined by the scheduler of the virtual machine monitor. By of-
fering this mechanism the scheduler can actively participate from the advantages
of guest-level scheduling, for example from its higher preciseness. An appropri-
ate virtual machine scheduler can be reduced to analyze and distribute the available
energy on the physical CPUs which the virtual CPUs of the current virtual machine
are assigned to. The combination of guest-level mechanisms and those we are in-
troducing below however often is inevitable, for example if guest-level schedulers
do not support energy-aware scheduling.

3.4.3 Energy Budgets on Host-Level

The virtual machine scheduler can rely on the guest-level mechanisms as addressed
above. But the scheduler still lacks of a mechanism to exhaust all energy capacities
available, for example if the virtual machines initially are not running on all phys-
ical CPUs. The energy capacities on the unused CPUs will never be touched. Fur-
thermore it was not capable to enforce the assigned energy budgets of the guests.
Therefore we have to offer mechanisms on host-level scheduling handling those
issues. Host-level scheduling principals are virtual machines running on physical
CPUs. Thus at first we require energy budgets for virtual machines (once again
per virtual CPU to support the multiprocessor virtual machines) and for physical
CPUs.
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Static Energy Budgets

Energy budgets are a mechanism to divide available energy capacities on the phys-
ical CPUs between all virtual machines on host-level. The virtual machine sched-
uler assigns these energy budgets. Static energy budgets are the first model avail-
able, offered due to its lower complexity and the lower energy overhead. The
energy budgets are assigned on start-up and will not be changed anymore. This is
enough for scheduling policies which want to achieve fairness between all virtual
machines or simply require only a fixed distribution.

But especially those scheduling policies which want to achieve fairness be-
tween all virtual machines better rely on guest-level functionality. As we will
demonstrate in Chapter 5 guest-level mechanisms achieve a higher preciseness
in keeping their energy budgets and a more even distribution of energy between
threads.

Dynamic Energy Budgets

Static energy budgets however are not sufficient if fairness between virtual ma-
chines or physical CPUs is not the only goal. In particular for the achievement
of an optimized workload in our system it is essential to be able to dynamically
reassign energy budgets after each scheduling period in a similar way recalibration
offers reassigning budgets for the guest-level scheduler’s scheduling entities (see
section 3.3.2). A potential virtual machine scheduler requires to react on different
workloads of a virtual machine. It needs to reassign lower energy budgets if the
virtual machine did not exhaust its energy budget completely; otherwise it has to
assign higher budgets if a virtual machine reached its limit.

Resource allocation strategies utilizing this mechanism can leverage it to de-
fine a global scheduling policy independent of the scheduling policy of the guest’s
scheduler. For example temperature-aware scheduling (see section 2.2.3) can ben-
efit from dynamic energy budgets. The scheduler can assign energy budgets de-
duced from the temperature of physical CPUs to virtual machines which are cur-
rently running. At first glance guest-level scheduling can be adducted for this task.
The problem is that the guest-level scheduler can not be forced to support energy-
aware scheduling. In this case a single virtual machine can undermine the policy of
our system by consuming as much energy as possible. Balancing the temperature
obviously is not possible then.

3.4.4 Virtual Machine Suspension

To this point we discussed the basic control mechanism for energy-aware schedul-
ing: Energy budgets for virtual machines per virtual CPU and physical CPUs. En-
ergy budgets offer the possibility for virtual machine scheduler to control the en-
ergy consumption of the virtual machines. However, it requires further operations
in order to react to the reaching of limits. As first mechanism we discuss suspen-
sion of virtual machines.
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As addressed above guest operating systems can not be forced to operate with
energy-aware scheduling. Wrong configuration on compile-time, non-availability
or simply malfunctioning because of implementation issues risk potential damages
to the underlying hardware. Besides hardware issues suspension is justified by the
fact that energy illegally consumed by a non-energy-aware virtual machine reduces
the energy capacities available to other virtual machines. Both issues call for the
control of virtual machines by the virtual machine scheduler.

Suspension of a virtual machine is a possible solution for both problems. A
virtual machine can be halted for the rest of a scheduling period if it has consumed
its assigned energy budget. The reaction time of virtual machine suspension must
be kept rather low to avoid impreciseness. Therefore, depending on the final vir-
tual machine scheduling algorithm, a trade-off between impreciseness and further
induced energy overhead has to be made. To return to the example of temperature-
aware scheduling, the CPU temperature is a rather slowly changing value in ser-
vice [12]. Once a CPU reaches its working temperature the latter changes slowly
within multiple seconds even on high workload. Thus reaction times within a sec-
ond can be considered adequate.

3.4.5 Virtual Machine Migration

Virtual machine suspension addresses issues related to guests disregarding the vir-
tual machine scheduler’s energy distribution. However, we also require a mecha-
nism to explore energy capacities available on CPUs no virtual machine is assigned
to. Otherwise those capacities were definitely lost. For example two virtual ma-
chines share the physical CPU 0. If the energy capacities of this CPU are exhausted
they are suspended. A better alternative is to assign them to the physical CPU 1 to
avoid suspension and exhaust these additional energy capacities. Figure 3.6 illus-
trates the benefits of virtual machine migration for a 2 CPU system.

Virtual machine migration as demonstrated in [6] can be consulted as an ap-
proach to overcome this issue. A virtual machine is completely migrated between
different physical CPUs. Thereby we are capable to exhaust the energy capacities
available on unused physical CPUs.

Once again we have to consider a trade-off, in this case between the exhausting
of energy capacities on the one hand and the energy overhead and performance loss
induced by the migration process itself on the other hand. A generalized answer to
this topic is difficult as it depends on the implementation of the participating com-
ponents. But, as we will demonstrate in Chapter 5, we can implement migration
of virtual machines with a low energy overhead. Thus virtual machine migration
offers a possibility to benefit from energy capacities on unused CPUs.
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Figure 3.6: Migration vs. suspension of virtual machines: The scheduler can im-
plement host-level scheduling policies relying on suspension and migration. Dif-
ferent policies like energy-aware scheduling or throttling can be realized quickly
using this facilities.

3.5 Summary

We introduced scheduling mechanism on both levels of a virtual machine environ-
ment. Guest-level scheduling offers mechanisms which admit the guest’s sched-
uler to keep energy budgets on its virtual CPUs. The guest’s scheduler can employ
energy budgets, thread suspension and thread migration, and offers a recalibra-
tion mechanism for its energy budgets to the virtual machine monitor. Host-level
scheduling consists of a collection of mechanisms which can be used for the im-
plementation of scheduling policies having an energy background only measurable
or controllable by the virtual machine monitor. The virtual machine scheduler can
rely on static/dynamic energy budgets, virtual machine suspension and virtual ma-
chine migration. Furthermore it can actively interfere to the guest’s scheduling
process if it supports guest-level scheduling by using the recalibration mechanism
of a guest’s energy budget.

Initially we presented four design goals we claimed to follow. To finalize this
section we present their achievements here.

• Accuracy. At first we mentioned accuracy. Accuracy is closely dependent
to the implementation of our design. Because of the splitting into guest-level
and host-level our approach offers high accuracy if required. A scheduler
requiring high accuracy can rely on guest-level scheduling as far as possible
(see section 3.3 for reasoning).

• Safety. Second we mentioned safety in the context of non-energy-aware vir-
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tual machines. We solved this problem by introducing host-level suspension.
It can be used to enforce energy budgets by the virtual machine monitor (see
section 3.4.4.).

• Flexibility. Third we addressed flexibility. The developer of the scheduling
policy is capable to decide which mechanisms must be used depending on
the goals the scheduling policy wants to achieve. As the scheduler can be
implemented in the guest, in the host or in both components, flexibility is
granted, too.

• Efficiency. Fourth we requested efficiency. The efficiency of our approach
is given as we add only a minimal set of new functionality to a virtual ma-
chine environment required for energy-aware-scheduling (see section 2.2.3).
Further proof for the efficiency will be given in Chapter 5 when we evaluate
our prototype.
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Chapter 4

Implementation

We have implemented energy-aware scheduling support for virtual machines in a
multiprocessor environment for an existing virtualization environment: The L4Ka
virtualization environment developed at the University of Karlsruhe. Implemented
upon a fast micro-kernel resides the L4Ka para-virtualization layer. It offers all
common facilities like virtual CPUs or guest isolation [23]. The virtualization
layer also includes network support and disk support by using an approach for de-
vice driver reuse [9]. Multiprocessor support basically is given, too.

We implemented a prototype of guest-level schedulers and host-level sched-
ulers supporting the described platform. Guest-level scheduling is capable to sched-
ule threads to multiple virtual CPUs in an energy-aware manner. It dynamically
reacts on changes of the assigned energy budgets. The virtual machine scheduler
has been extended to support host-level scheduling. We completely virtualized
the performance counters, the energy consumption and implemented the collec-
tor. Support for energy profiles is given for all essential entities on each level. We
also implemented an effective facility to distribute energy budgets. Virtual machine
suspension and virtual machine migration is implemented, too. For a better evalua-
tion we further implemented two energy-aware scheduling policies: Energy-aware
balancing and throttling for both guest-and host-level scheduling.

4.1 Overview

In this section we present the design’s components we implemented for our pro-
totype. We begin by discussing the implementation of guest-level scheduling. We
present the realization of energy budgets and an efficient way to recalibrate them.
We show how we implemented the virtualization of the performance counters and
the energy consumption. We discuss the collector responsible for the calculation of
the energy profiles for the different scheduling entities. Afterwards we outline the
energy budgets. Then we discuss guest-level suspension and guest-level migration.
Finally we shortly address two energy aware scheduling policies: Energy-aware
balancing and energy-aware throttling implemented for guest-level scheduling.

29
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Figure 4.1: Environment: Upon a Pentium D, 2x3GHz, a L4 micro-kernel driven
virtualization environment hosts a various number of guest virtual machines.

Thereafter we consider the components of host-level scheduling. As it is a ba-
sic component we begin by discussing the virtual machine scheduler and by doing
so we show how to reuse the collector. Then we proceed with the implementation
of the energy budgets for virtual machines. A major part takes the implemen-
tation of virtual machine migration and virtual machine suspension. Finally we
show how we implemented energy balancing and energy throttling in the virtual
machine scheduler.

4.2 Environment

Our prototype is implemented for the L4Ka virtualization environment developed
at the System Architecture Group of the University of Karlsruhe (see Figure 4.1).
In contrast to other virtual machine monitors like Xen [2], our virtual machine
monitor is an unprivileged user-level instance which is running on top of a micro-
kernel. The used micro-kernel is the L4 micro-kernel [10,20], developed also at the
University of Karlsruhe. The L4Ka virtualization environment does not provide an
own scheduler. Instead it relies on the scheduler implemented in the L4 micro-
kernel. The L4 scheduler implements a priority-driven round robin scheduler. It
additionally offers timeslices to control thread preemption. By a clearly speci-
fied interface it allows the implementation of user-level schedulers by modifying
the schedule parameters of associated threads. However, we provide a framework
which abstracts from this interface to offer a better comprehension of the ongoing
processes.

The guest operating systems are Linux 2.6 called L4Linux [7], which are para-
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virtualized kernels so they cooperate with the L4 virtualization architecture. The
environment provides device drivers for network and disk applying the technology
of unmodified device driver reuse [9]. These drivers are running in dedicated vir-
tual machines executing a L4Linux instance which has pure access to the related
hardware. Furthermore it offers a server which can be accessed by a specified
interface. Client virtual machines install a client driver which can communicate
with the server and perform actions by invoking this interface. Communication
between virtual machines and the virtual machine monitor is implemented as hy-
percalls. These calls reuse the IPC mechanism offered by the L4 micro-kernel to
transfer information. They are fast enough to create only an insignificant overhead
on communication [22].

4.3 Guest-Level Scheduling

Guest-level scheduling is concerned with scheduling threads to virtual CPUs in
an energy-aware manner. Virtualized energy is the basis for our energy account-
ing facility. We reused resource containers [1] for the accounting of energy con-
sumption. We assign energy consumption to the thread which originally caused it.
Energy budgets offer a flexible mechanism to limit the consumption of energy on
thread-level. The approach of [25] which provides resource accounting and con-
trolling is applied with modifications introduced in [16] (see section 2.2.2). In ad-
dition we outline the way we support communication between the different virtual
machine components (for example to transfer energy budgets). Virtual machine en-
vironments offer the possibility to share informations by using synchronous IPCs
or shared memory. We discuss both approaches and reason our applied selection.
Afterwards we detailed engage in suspension and migration. We conclude this
section by shortly introducing two implemented energy-aware scheduling policies:
Energy-aware throttling and energy-aware balancing. Furthermore we demon-
strate how to implement energy-aware scheduling policies straight forward upon
our framework.

4.3.1 Virtualizing Energy

Virtualizing energy is a process originating in event-based energy estimation [5].
Energy estimation is based on the CPU’s performance counters. By quantifying
them with CPU-adjusted weights the energy consumption can be calculated. Thus,
at first, we have to discuss how to obtain performance counters in a virtual machine
environment, a process we call virtualizing the performance counters. This process
is to divide up the performance counters as far as possible in order to assign it to all
scheduling entities available in a virtual machine environment: Threads and virtual
CPUs for the guest scheduler; virtual machines and physical CPUs for the virtual
machine scheduler.
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LOG_CODE(log_time, u32_t this_domain)
{

u64_t buf64=0;
cpu = current_cpu();

if (LOGGING_THREAD_EXIT(LOGGING_RESOURCE_CPU, this_domain))
{

PC_ASM_RDTSC( buf64 ); // Time Stamp Counter
NEW_TSC[cpu] = (unsigned int) buf64;
dTSC = NEW_TSC[cpu] - PMC_TSC_OLD[cpu];

PC_ASM_RDPMC( 0, buf64 ); // MSR_P4_BPU_PERFCTR0
NEW_UC[cpu] = (unsigned int) buf64;
dUC = NEW_UC[cpu] - PMC_UC_OLD[cpu];

// ... continued for all further performance counters ...

PC_ASM_RDPMC( 16, buf64 ); // MSR_P4_IQ_PERFCTR4
NEW_UKN[cpu] = (unsigned int) buf64;
dUKN = NEW_UKN[cpu] - PMC_UKN_OLD[cpu];

log_counters(this_domain, dTSC, dUC, ..., dLDM);
}

if (LOGGING_THREAD_ENTRY(LOGGING_RESOURCE_CPU, this_domain))
{

PC_ASM_RDTSC( buf64 ); // Time Stamp Counter
PMC_TSC_OLD[cpu] = (unsigned int) buf64;

PC_ASM_RDPMC( 0, buf64 ); // MSR\_P4\_BPU\_PERFCTR0
PMC_UC_OLD[cpu] = (unsigned int) buf64;

// ... continued for all further performance counters ...

PC_ASM_RDPMC( 16, buf64 ); // MSR_P4_IQ_PERFCTR4
PMC_UKN_OLD[cpu] = (unsigned int) buf64;

}
}

Figure 4.2: Virtual performance counters: Logging calls LOG CODE on
thread enter and on thread exit events. On a thread enter event we determine the
current performance counters for the CPU the virtual machine is running on. On
a thread exit event we read the performance counters once again and afterwards
calculate the deviance. Finally we sent the deviance of each counter to our logger.
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Virtualizing Performance Counters

In this section we describe the virtualization of the performance counters. On each
context switch of a virtual machines we read the performance counters and store
them. Context switches of virtual machines take place in the L4 micro-kernel. Thus
the logging of the switches has to be implemented here. An efficient approach to
log system characteristics is introduced in [19]. We use this approach to monitor
the performance counters’ deviance for each virtual machine switch. As demon-
strated in Figure 4.2 we read the current performance counters if a virtual machine
begins to run. The logging facility sends an thread enter event to inform us about
this occurrence. On a thread exit we can determine the performance counters once
again. Thereafter we have to calculate the deviance of all performance counters.
Finally we write them to the log file. When we call the log counters-function we
additionally pass the virtual machine identifier. The logging facility passes this
identifier to our LOG CODE function. When we discuss the collector we will
see the support which offers this availability to determine the energy consumption
for the considered host-level entities (virtual machines, physical CPUs and virtual
CPUs).

The logged data however is still not available to the guest. For now they are
only separated for each virtual machine. Thus we have to send them to guest. This
can be implemented by sharing the logged performance counters in an aggregated
way with the guest. We sum up the deviances for a considered scheduling period
and then we share the aggregated values with clients. Thereby the resource alloca-
tor within the guest can continuously calculate the energy consumption and assign
it to the last executed thread.

Energy of Threads

The performance counters now are virtualized and available from the shared mem-
ory page within a guests. In the following we have to estimate the energy con-
sumption of the threads. The estimation formula is described in [5]. To perform
the calculation we consult the virtual performance counter deviances we stored in
the logging database. By weighting the aggregated deviances with the values from
the paper above we gain the energy consumption of the thread we calculated the
deviance for. By iteratively inspecting the logged data a proper function of the
guest’s scheduler can calculate the energy consumption of the thread which ran
last.

Collector: Energy Profiles on Host-Level

On host-level the energy consumption is required at least for physical CPUs and
for the virtual CPUs of each virtual machine in order to support multiprocessor vir-
tual machines. We now discuss the collector which implements the calculation of
energy consumption of physical CPUs and virtual machines. Furthermore to sup-
port multiprocessor virtual machines we demonstrate how we gather the energy
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void accounting(cpu, vm)
{

while (count < LOG_ENTRIES(c)) {

DEC_LOG(current_idx, c);

// read all 8 pmc for the correct domain and cpu.
counter8 = *current_idx;

DEC_LOG(current_idx, c);
counter7 = *current_idx;

...

DEC_LOG(current_idx, c);
counter1 = *current_idx;

DEC_LOG(current_idx, c);
currentthread = *current_idx;

// calculate energy consumption of current thread ...
energy = 6.17 * (counter1/100) + ... + 29.96 * (counter7/100)

+ 13.55 * (counter8/100);

// store energy consumption of physical CPU and virtual machine
energy_consumption_CPU[cpu] += (int) energy;
energy_consumption_VM[vm] += (int) energy;

// finally store the energy consumption for the virtual CPU
vm->update_energy(cpu, energy);

}
}

Figure 4.3: Energy accounting by the collector: At first we read all 8 counters
from the log file. Then we estimate the energy consumption. per CPU and virtual
machine. This procedure is finalized by saving the energy consumption for phys-
ical CPUs, virtual machines and virtual CPUs (in order to support multiprocessor
virtual machines).
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consumption of a virtual machine’s virtual CPUs.
The collector at first is the connection of the virtual machine monitor to the

logging facility, especially to the logged performance counters. We extract the vir-
tualized performance counters per virtual machine and per physical CPU. Thereby
we can calculate the energy consumption for each entity relevant on host-level:
Virtual CPUs and physical CPUs.

Figure 4.3 shows the main function of the collector accounting(cpu, vm), which
is executed for each CPU and each virtual machine. We parse the logged entries
and thereby we obtain the counters’ deviance. For each entry the energy consump-
tion is calculated. Now the energy consumption for the last scheduling period is
available. The next step is to assign this value to all scheduling entities we have
to consider. The first entity is the physical CPU. We add the energy consumption
directly to a dedicated array as the logging facility observes all physical CPUs any-
way. The same holds for virtual machines.

In order to support multiprocessor virtual machines finally we have to assign
the energy value to the virtual CPUs of the considered virtual machine. We have
written a wrapper that basically determines the virtual CPU from the physical CPU
which we pass as first argument to the update energy(vcpu, energy)-function. This
function stores the energy in a dedicated array for the determined virtual CPU of
the currently regarded virtual machine.

4.3.2 Energy Budgets

We offer energy budgets to our guest-level scheduler in order to define limits for
energy consumption on virtual CPUs (see section 3.3.2). Our prototype offers
the assignment of energy budgets per virtual CPU. This is realized by assigning
a buffer shared between a virtual machine and the virtual machine monitor. This
buffer contains parts reserved for the energy budget of each virtual CPU; it can be
written by the virtual machine scheduler if it decides to assign new budgets to the
virtual machine’s virtual CPUs. The counterpart in the guest scheduler periodically
inspects this buffer. If it encounters a new value for the energy budget of a virtual
CPU it refreshes its local buffer and informs the guest-level scheduler to imply
them in the next scheduling period. Thus we coevally have solved the problem of
recalibrating the energy budgets. The guest-level scheduler consequently can rely
on energy budgets and it offers a recalibration mechanism which can be used by
virtual machine scheduler.

4.3.3 IPC vs. Shared Memory

We implemented the data flow (the setting of energy budgets) between virtual ma-
chines and virtual machine monitor using shared memory. The alternative are IPCs
used to implement hypercalls.

Originally we implemented the complete data flow (setting energy budgets,
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Figure 4.4: IPC vs. shared memory communication exemplified between the guest-
scheduler and collector: An IPC offers a synchronous dataflow. However it con-
sumes much energy. SM only offers an asynchronous dataflow. Therefore it re-
quires almost no energy.

querying energy consumption, etc.) by using the IPC functionality of the L4 micro-
kernel since it is a fast and reliable facility [22]. However, speed has its tribute as
it seems. Neither the energy consumption was static nor was it low. So we had to
face the problem how to deal with this variable energy overhead. A further issue
arises when we use more than one virtual machine as the number of IPCs then in-
creases, too.

So finally we decided to dedicate each virtual machine a shared memory buffer
with the virtual machine monitor. We reserved an amount of this memory buffer
which can be used for the dataflow of all functionality (such as setting energy
budgets) as illustrated in Figure 4.4. We decided to sacrifice the advantage of
synchronism (a little more precise energy accounting) offered by IPCs in order to
reduce the energy overhead introduced by the virtual machine monitor. The loss of
synchronism can be neglected as we are updating the shared buffer with high fre-
quency. As we will see in the evaluation chapter the energy overhead of the virtual
machine monitor using shared memory is continuously below 1 watt.

4.3.4 Suspension and Migration

To this point we discussed the fundamentals to implement the guest-level schedul-
ing for our prototype: Energy budgets and communication. In this subsection we
focus on the mechanisms required to react on energy related events, such as sur-
passing the energy budget.

Suspension

Guest-level suspension is derived from the approach introduced in [16]. The ap-
proach relies on a system to control resource consumption of operating systems
[25]. Resource containers are applied to store the resource consumption - in our
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context energy consumption - for each thread in the guest system. Furthermore a
mechanism is offered which ensures only such threads are scheduled which still
have energy left. Therefore we monitor the energy consumption of threads using
the resource container technology to account and control it. Using this mechanism
a scheduler can assign each thread in a fine-granular way an energy budget which is
ensured to be available. We assign this energy budget in away the energy budget of
the virtual CPU is not exceeded, for example uniformly distributed. Thus we gain
a functionality controlling the energy behavior of threads and coevally the energy
behavior of the virtual CPUs by controlling the energy consumption threads.

In case we found the energy consumption of threads running on a considered
virtual CPU is beyond the virtual CPU’s energy budget we additionally can pre-
vent it from scheduling any further threads to this virtual CPU until the energy
budget of this virtual CPU is refreshed again. The described functionality offers
virtual machine suspension per virtual CPU by keeping energy budgets on thread
granularity.

Migration

Guest-level migration allows to assign threads to other (virtual) CPUs. Our guest
operating system, L4Linux 2.6, offers migration of threads between different CPUs
in well a tested way. We demonstrate how the standard Linux scheduler can be ex-
tended for migrating energy-aware instead of due to the CPU load.

In a first step we have to modify the Linux scheduler to install energy as the
migration criterion. This can be done in the rebalance tick-function where the run-
queue workload of the current CPU is updated. Instead of updating the current
runqueue with the new CPU load we update it with the energy consumption of
the current CPU. Thus afterwards the Linux scheduler uses energy consumption of
threads as decision criterion.

After some testing however we found two problems: At first the energy con-
sumption has very high fluctuations. Thus the calculated energy consumption of
virtual CPUs directly is not the best indicator. Second we want to have a sole func-
tion where the energy-aware scheduling policy itself can be implemented. Both
issues required further changes. In our implementation we do not assign the en-
ergy consumption of CPUs directly. Rather we assign an imaginary high or low
value which ensures migration from or to this CPU is performed by the Linux
scheduler. This offered a further opportunity: We can merge the determination
of the energy characteristics and the mechanism for migration (and suspension)
to one fixed point in our code. Thus we provide a sole point to implement the
scheduling policy requiring only a little knowledge about the implementation of
our prototype. We implemented high abstractions such as set cpu(vcpu) to set the
target virtual CPU for the thread migration logic, no energy available() to be capa-
ble to additionally halt the virtual machine in order to increase the preciseness and
energy available cpu(vcpu) to decide if energy budgets are exhausted on a virtual
CPU or capacities are still available.
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void energy_aware_throttling()
{

while (1) {

if ( !energy_available_cpu(0) || ... ||
!energy_available_cpu(n) ) {

no_energy_available();

}
}

}

Figure 4.5: Energy-aware throttling: Using the proposed functionality its a straight
forward and fast task to implement energy-aware policies.

set cpu(vcpu) receives the virtual CPU where we migrate threads to if rebal-
ance tick() called next. It is implemented by setting the work load of the consid-
ered virtual CPU to a low value while setting the other virtual CPUs’ work load to
a very high value. Therefore the scheduler has the possibility to downscale even-
tually appearing fluctuation of the energy consumptions before assigning the work
loads, for example by calculating the exponential average of the energy consump-
tion. no energy available() halts the execution of threads for a scheduling period,
for example to ensure the energy budgets of virtual CPUs are kept. At the mo-
ment our prototype can not halt a single virtual CPU. It rather halts the complete
virtual machine. We implemented the mechanism by setting a variable which tells
the Linux scheduler not to schedule any further threads. It is considered as addi-
tional mechanism to overcome the impreciseness of the resource container based
mechanism we normally use for accounting and controlling the energy consump-
tion of threads. energy available cpu(vcpu) receives the considered virtual CPU
as parameter and returns if energy is still available. We implemented this function
by parsing the shared memory page for the energy budget for the requested virtual
CPU. Afterwards we compare it to the energy consumption which happened to the
very moment on this virtual CPU.

Having those mechanisms policies for guest-level scheduling can be imple-
mented. We demonstrate this in the next section by implementing guest-level throt-
tling and guest-level balancing.

4.4 Guest-Level Policies: Throttling and Balancing

We elaborated mechanisms which are required to implement an energy-aware schedul-
ing policy. Now we demonstrate their efficiency in order to implement a policy
upon those mechanisms. As examples we consider energy-aware throttling and
energy-aware balancing.
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4.4.1 Energy-Aware Throttling

Energy-aware throttling is a straight forward policy which stops the execution of
threads if the energy budget for a virtual machine is exhausted. Our prototype is not
capable of doing so per virtual CPU. An extension to this can be easily made by
extending the no energy available()-function. The basic energy-aware throttling
algorithm as illustrated in Figure 4.5 continuously probes if there is still energy
available on all virtual CPUs. If not it halts the virtual machine. Energy-aware
throttling is not very efficient as we do not exhaust the limits of virtual CPUs.
However, the claimed self-control of its energy budget is given to each guest. In
order to better exhaust the energy capacities of virtual CPUs we now consider
energy-aware balancing.

4.4.2 Energy-Aware Balancing

Energy-aware balancing ensures the energy consumption on all virtual CPUs is the
same. On each scheduling period it controls if the consumed energy on available
CPUs is significantly different. In case the difference passes a predefined threshold
it sets a new virtual CPU where threads have to be migrated to. This is done by
invoking the function set cpu(vcpu). By doing so iteratively energy consumption
on all virtual CPUs is balanced.

This algorithm does not care at all about migration side effects, like CPU affin-
ity. However, as we use the Linux scheduler, major side effects of migration are
considered by the Linux scheduler for itself. For a better implementation one only
has to extend our functionality by getting some further informations from the Linux
scheduler, like the cache affinity of threads which have to be migrated. Getting
further details about threads indeed is no problem as we implemented the policy
within the guest’s scheduler. Furthermore averaging the energy consumption of
the virtual CPUs over a period of time can prevent threads to be migrated in a
ping-pong fashion.

4.5 Host-Level Scheduling

In the following we discuss the major parts of host-level scheduling, our approach
to support global energy-aware scheduling policies and to control non-energy-
aware guests. At first we have to discuss the structure of the virtual machine sched-
uler. The virtual machine scheduler is the point where the host-level scheduling
policy is implemented. Thereafter we discuss how to reuse the collector and how
to define energy budgets for virtual machines. The major host-level mechanisms,
suspension and migration finalize the features of our prototype. In order to for-
tify our implementation we finalize the chapter by shortly discussing energy-aware
throttling and balancing as example policies.
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Figure 4.6: Virtual machine scheduler: The scheduling process is split up into
two processes: Host-level migration and host-level suspension, each relying on its
corresponding mechanisms

4.5.1 Virtual Machine Scheduler

In this section we extend the virtual machine scheduler to supply the functionality
required to schedule virtual machines to physical CPUs due to energy budgets. Its
final actions depend on the policies the scheduler has implemented. As Figure 4.6
demonstrates we decided for our prototype to split up the decision process into two
subprocesses. The first one controls the migration related tasks and the second one
the suspension related tasks. Thereby we achieve the possibility to handle policies
in the same way as we did in guest-level scheduling. The process of synchronizing
both policies thereby gains transparency. Furthermore we can define independent
policies for each part. This is a point of interest if a policy requires only one of both
mechanisms. For example, if we only use host-level migration in order to exhaust
energy capacities of all physical CPUs, we can deactivate host-level suspension.
By doing so additionally the energy consumption of the virtual machine monitor is
reduced.

The procedure itself is basically as follows. The virtual machine scheduler
calls the functions for host-level migration and suspension if a violation of one
of its rules considering the energy budgets is detected (see Figure 4.8). Within
these two functions the policies are implemented. Both functions have access to
the energy budgets and energy profiles of the related entities (virtual machines
and physical CPUs) and can make use of virtual machine suspension and virtual
machine migration to realize a scheduling decision. All required informations and
mechanisms are available in one place. Implementing the policies thus is straight
forward as we will see in section 4.6.

4.5.2 Energy Profiles and Energy Budgets

The information we require for an energy-aware scheduling policy on host-level are
the energy consumption of the virtual machines and of the physical CPUs. Thus we
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Figure 4.7: Inplace monitor state diagram: Beginning from a virtual machine
state set to VM SELF we can stop (VM STOP), start (VM START) and migrate
(VM MIGRATE) a virtual machine.

require the services of the collector which can provide those informations by pro-
viding the energy profiles of the virtual machines and the profiles of the physical
CPUs. In section 4.3.1 we described the way we calculate the energy consumption
of virtual machines and of physical CPUs. Energy profiles can be compiled eas-
ily by taking the energy consumption of an entity and afterwards calculating the
average for a number of scheduling periods. For our prototype considering more
than one scheduling period did not offer any advantages than directly to take the
energy consumption as scheduling indicator. Thus we consider only the current
scheduling period and set the energy profiles equal to the energy consumption of
the current scheduling period.

We now give a hint how we organize and access the energy data. We focused
on a fast and low energy consuming solution in order to keep the energy consump-
tion induced by the virtual machine monitor as low as possible.

We store the energy profiles for each virtual machine in an array for a schedul-
ing period per virtual machine and per CPU. These variables are globally available
by what each access to the informations requires only negligible low energy con-
sumption. By maintaining the information as well for virtual machines as for both
CPU types (virtual/physical) the virtual machine scheduler can react in the moment
a violation of a rule occurs. There is no need to post-process the data before they
can be used. Low reaction latencies are the consequence.

Furthermore a scheduling policy requires energy budgets. We define energy
budgets per scheduling period for each virtual machine per virtual CPU to support
multiprocessor virtual machines and for physical CPUs. They are stored in an ar-
ray which once again can be accessed globally for the same reasons as stated for
the energy profiles.
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4.5.3 Sharing the Inplace-Monitor

The L4Ka virtualization environment has a speciality concerning the virtual ma-
chine monitor. Parts of it currently reside within the address space of the virtual
machine itself. The so called inplace-monitor deals with pagefaults and performs
some of the instruction virtualization. It is created for each virtual machine one
time within the boot process of the system. The inplace-monitor implements parts
of the virtual machine suspension and the virtual machine migration. Because
there is only one inplace-monitor per virtual machine it can only perform one of
both tasks at once. A concept for sharing the inplace-monitor of a virtual ma-
chine is required. Thus we added a virtual machine state variable to each virtual
machine. The virtual machine state variable indicates if the inplace-monitor is al-
ready performing one of both actions (suspension/migration). It prohibits the vir-
tual machine monitor from the initiation of a new action if another one is already
processing .

The state diagram of the inplace monitor is illustrated in Figure 4.7. It shows
that VM SELF is the original state. After each process the state variable is reset
to this value. Only if the variable has this state the virtual machine scheduler is
capable to start a new action. If VM STOP is set the inplace-monitor is addressed
to stop a virtual machine. VM START consequently addresses it to (re-)start a vir-
tual machine. Setting VM MIGRATE indicates the inplace-monitor shall perform
a virtual machine migration.

4.5.4 Virtual Machine Suspension

Virtual machine suspension is to halt a virtual machine for a period of time and
afterwards restart it. We suspend a virtual machine by halting all threads to the
considered virtual machine ,including the Linux kernel thread and the L4 IRQ-
thread.

Monitoring Thread Creation

Creation of new threads for guests is done in the virtual machine monitor of the
L4Ka virtualization environment to ensure only a limited number of threads can be
created. In order to know all threads running within a certain virtual machine we
monitor the event of thread creation within the virtual machine monitor.
Whenever a virtual machine creates a new thread this process is passed to the vir-
tual machine monitor. In the following the virtual machine monitor creates the
thread and returns the thread identifier back to the virtual machine. Then we store
a mapping from thread to virtual machine in a dedicated buffer which we attached
to each virtual machine. This buffer can be read by the virtual machine mon-
itor by calling the function pair get first dmapping(), get next dmapping(). As
we discuss later we furthermore require a function pair get first mapping(cpu),
get next mapping(cpu) in order to find threads dependent on which physical CPU
they are currently running.
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Figure 4.8: Host-level throttling and balancing: The diagram shows the design of
the scheduler, the rule violations, and the separation of both policies.

Compiling the Thread List

Now the virtual machine has to be suspended. The suspension process itself is
separated into two steps. At first the virtual machine monitor compiles a list con-
taining all threads which have to be halted. We can compile this list by calling the
functions described above(get first dmapping(), get next dmapping()). Afterwards
the virtual machine monitor has to write this list to the buffer reserved within the
shared page of the considered virtual machine. Finally it initiates the suspension
process by setting the virtual machine state to VM STOP. Setting the virtual ma-
chine’s state is done by invoking vm set thread state(state) from within the virtual
machine scheduler.

Halt and Restart

The second part is done by a component we shortly introduced in section 4.5.3:
The inplace-monitor. We extended the inplace-monitor in such a way it can ac-
cess the compiled list of threads and the aimed virtual machine status. If it rec-
ognizes a VM STOP status it processes the current thread list and thereafter stops
every virtual machine related thread. Stopping a thread is performed by calling
L4 Stop(threadid), a convenient function of the L4 micro-kernel based on the sys-
tem call L4 ExchangeRegisters().

The counterpart of stopping is restarting the virtual machine. The virtual ma-
chine monitor initiates the restarting process by setting the virtual machine state to
VM START. The inplace-monitor in the following starts the threads on the current
thread list mentioned above by invoking L4 Start(threadid), a further convenient
function of the L4 micro-kernel based on the system call L4 ExchangeRegisters().
By setting the virtual machine state thus the virtual machine monitor has the re-
quested feature to suspend and restart a virtual machine.
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4.5.5 Virtual Machine Migration

Virtual machine migration is closely related to virtual machine suspension. As we
demonstrate in this section we implemented virtual machine migration and suspen-
sion in such a way they can share some of the required operations. Virtual machine
migration is also separated in parts which are done by the virtual machine monitor
and parts which are done by the inplace-monitor. For our prototype virtual machine
migration is implemented in the function migrate vm vcpu(virtual machine, vcpu,
cpu).

Initiating Migration

Live migration of virtual machines [6] offers a staged migration approach for vir-
tual machines. As we only migrate threads between local CPUs just some of the
stages are of interest for us. Basically virtual machine migration is performed by
remapping the virtual CPUs to other physical CPUs than before and afterwards
migrate all threads to this new physical CPU.

In stage 0 called pre-migration we identify our target CPU. This stage typi-
cally is reserved to be implemented by the virtual machine scheduler. It is the one
to determine a new target CPU due to its policy. In stage 1, the reservation, we
perform two tasks. At first we reuse the thread list compiler to create the thread
list of the virtual machine. However, this list now depends on the CPU a thread
is running on. We only migrate the threads of the defined CPU rather than of
the complete virtual machine. Thus our interface to read the thread list slightly
changed to the function pair get first mapping(cpu), get next mapping(cpu). Fur-
thermore this change requires to monitor the physical CPU a thread is created on.
Therefore we can extend the corresponding feature implemented for virtual ma-
chine suspension as described above. After we wrote the thread list to the buffer
in the shared page we set the virtual machine status to VM MIGRATE , still by
invoking vm set thread state(state). Before doing so, we additionally have to call
migrate(vcpu, cpu) which is implemented for each virtual machine. This function
sets the new mapping of virtual CPU to physical CPU.

Performing Migration

The second part again is performed by the inplace-monitor of the current virtual
machine. This time the virtual machine’s state variable is set to the VM MIGRATE
state. Now stage 3 - stop-and-copy - begins. This stage is strongly stripped as we
have only to stop the threads. The copy part is replaced by the migration of the
threads belonging to the virtual machine. We migrate a thread by calling a further
convenient function of the L4 micro-kernel called L4 Set ProcessorNo(threadid,
cpu) which is based on L4 Schedule(). This function migrates a thread to the spec-
ified CPU. Afterwards stage 4, the commitment, informs the virtual machine mon-
itor about the successful migration process by setting the virtual machine state to
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VM SELF. This indicates the virtual machine monitor the availability of the mi-
gration (or suspension) part implemented in the inplace-monitor. Finally stage 5
called activation starts all thread of the virtual machine again and the migration
process is completed. The prototype supports migration of multiple virtual CPUs
at once as the thread list can be compiled per virtual CPU.

A remark: The selection of threads which have to be migrated in order to re-
ceive a running system after a migration process can differ from one virtualization
environment to another. The L4Ka virtualization environment requires to migrate
all user-level threads related to the considered virtual machine: All application
threads, the kernel thread, the irq dispatcher thread and the inplace-monitor itself.

4.6 Host-Level Policies: Throttling and Balancing

We discussed the basic mechanisms available for the virtual machine scheduler to
implement scheduling policies: Energy budgets, virtual machine suspension and
virtual machine migration. In the following we demonstrate the implementation
of two basic scheduling policies for host-level scheduling which we already in-
troduced for guest-level scheduling. Both scheduling policies will be evaluated in
Chapter 5.

4.6.1 Energy-Aware Throttling

Energy-aware throttling on host-level offers additional control to the virtual ma-
chine scheduler over its guests. It can be utilized if the scheduler faces the issue of
non-cooperative virtual machines, for example in case a virtual machine does not
support guest-level scheduling or it is infected by a virus. Our implementation is
capable to enforce energy budgets for each CPU and each virtual machine.

Implementing a basic energy-aware throttling policy having energy budgets,
energy profiles and a suspension mechanism for the considered scheduling prin-
cipal, the virtual machine, is straight forward. We have a suspension mechanism
for virtual machines, energy budgets for virtual machines and their energy pro-
files. As seen in Figure 4.8 the virtual machine scheduler is called every collector
tick. Thereby we receive a low reaction latency. The scheduler itself compares the
current energy profiles of the virtual machine to the energy budget of the virtual
machine. In case a rule violation is detected for the virtual machine the energy-
aware throttling procedure is called. This procedure detects all virtual machines
which consume too much energy and initiates suspension afterwards.

Suspended virtual machines have to be restarted again. Otherwise they sleep
from the point of suspension. We implemented the restarting logic within the
scheduler. It probes at first if there is a virtual machine already suspended. If
this is the case it looks if energy is still available and thereafter switches the state
of the virtual machine to VM START.
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Figure 4.9: Switching the virtual CPUs: If a virtual machine covers all physical
CPUs we require switching the virtual CPUs in order to support energy-aware bal-
ancing.

4.6.2 Energy-Aware Balancing

Energy-aware scheduling on host-level is required to balance the energy consump-
tion of different physical CPUs. In contrast to this, energy-aware balancing on
guest-level only provides balancing the virtual CPUs. This, however, is not enough
for the case we have more physical CPUs then the virtual machines cover with their
virtual CPUs. In this case we require a mechanism to exhaust energy capacities on
other available physical CPUs, too. Our implementation offers such a mechanism,
virtual machine migration, and thus it is capable to ensure all physical CPUs con-
sume the same amount of energy.

As discussed for the collector’s reuse of energy profiles for virtual machines
and for physical CPUs in section 4.5.2 we have the energy consumption of both
scheduling entities available in time. The scheduler is again called on every col-
lector tick. Thus we again receive a low reaction latency. In a first step the sched-
uler tests if there is a rule violation. In case there is a rule violation, the sched-
uler calls the virtual machine migration routine migrate vm vcpu(virtual machine,
vcpu, cpu). This routine searches for a physical CPU which has energy capacities
left. In the following it migrates virtual machines which have energy capacities left
to this found CPU. For our experimental environment in Chapter 5 we addition-
ally implemented an extended version of migrate vm vcpu(virtual machine, vcpu,
cpu) in order to migrate a virtual machine called switch vm vcpus(virtual machine,
vcpu, vcpu). This routine is capable to switch two virtual-to-physical-CPUs map-
pings at once. It allows to demonstrate the practicability of virtual machine mi-
gration also in the case each virtual machines’ virtual CPUs cover all physical
CPUs. As Figure 4.9 shows the proceeding however remains quite similar to mi-
grate vm vcpu(virtual machine, vcpu, cpu). After we compiled the thread list now
for both virtual CPUs we call the migration routine of the virtual machine which
afterwards initiates the migration process in the inplace-monitor (see section 4.5.5).
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Besides the requirement for our experimental environment this solution is nec-
essary to be able to migrate multiple virtual CPUs to another physical CPU in one
single scheduling decision. Dividing this problem for n virtual CPUs into n mi-
gration processes is not possible as we get another result then. The threads of first
the migrated virtual CPU already would change the energy consumption on the
second virtual CPU eventually. Thus the scheduler could come to another deci-
sion as within the last scheduling period. Let us consider the following example
using migrate vm vcpu(virtual machine, vcpu, cpu). Virtual CPU 0 is mapped
to physical CPU 0 and virtual CPU 1 is mapped to physical CPU 1. If virtual
CPU 0 was migrated to physical CPU 1 in scheduling period 1, the virtual machine
scheduler consequently detects a higher energy consumption on physical CPU 1
in the next scheduling period. The threads of virtual CPU 0 are now running on
physical CPU 1. Thus instead of migrating virtual CPU 1 to physical CPU 0 it
decides to migrate both virtual CPUs to physical CPU 0. This result is a dif-
ferent mapping of virtual CPUs to physical CPUs then the expect one if we use
switch vm vcpus(virtual machine, vcpu, vcpu): Virtual CPU 1 should be running
on physical CPU 0 and virtual CPU 0 should be running on physical CPU 1.
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Chapter 5

Experimental Results

The goal of our work, to provide a framework, which supports energy-aware schedul-
ing for virtual machines in multiprocessor environments is evaluated in this chapter.
We conducted experiments to demonstrate our approach achieves this goal. We
consider different scenarios for the guest-level scheduling policies and the host-
level scheduling policies we discussed in the implementation chapter. Furthermore
we assess the energy-overhead our implemented prototype induces to our system.
Additionally the performance of our base mechanism on host-level (virtual ma-
chine suspension and virtual machine migration) is evaluated. Finally we give an
analysis of the advantages of guest-level scheduling vs. host-level scheduling. This
chapter presents our experiments and discusses the results we found.

5.1 Experimental Environment

The experimental environment is the same we used for the implementation of our
prototype. We use the L4Ka virtualization technology which is built upon the fast
L4Ka::Pistachio micro-kernel [20]. We can benefit from the stability of this sys-
tem as well as from its proved rapidness of its base mechanism (such as IPCs). The
well elaborated virtualization environment provides additional features like device
driver reuse which simplifies the controlling of the measurements in different cases.
The guest operating systems are L4Linux instances which are para-virtualized in
a way to work with our virtualization architecture. It bases upon a Linux 2.6 ker-
nel. To get an completely bootable system available we use a Debian installation.
The hardware consists of an Intel Pentium D system, clocked with 3 GHz on both
CPUs. Furthermore the system is equipped with 2 GByte memory. We measured a
maximum power consumption of 58 watt for each CPU.

Our experiments often execute an application called bitcnts. Bitcnts is a simple
application which creates CPU load by making extensive use of bit shifting func-
tions of the CPU. Thereby it creates CPU load and consumes around 52 watt. All
experiments are measured in intervals of 5000 msecs until further notice.

We conducted the experiments in such a way that we control the energy con-

49
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Figure 5.1: Starting point: The power consumption of our experimental environ-
ment if energy-aware scheduling is disabled. There is no balancing of the energy
consumption at all, neither on the virtual CPUs nor consequently on the physical
CPUs (both virtual CPUs are mapped idempotent to the physical CPUs).

sumption for the discussed scheduling entities. We assign energy budgets which
results into a power consumption of the same value (for example if we assign an
energy budget of 25 joule this results into an average power consumption of 25
watt). Power consumption is a more meaningful value and can be better evaluated.
Therefore we monitor the power consumption for these scheduling entities rather
than the energy consumption.

To visualize the starting point for our evaluation we measured the behavior
of the power consumption for our experimental environment occurring in case the
new scheduling mechanisms are disabled. To conduct the experiment we started 10
instances of bitcnts and monitored the power consumption of the virtual CPUs and
the one of the physical CPUs. But as Figure 5.1 shows there is no energy-aware
behavior at all. In fact it is worse. If you take the average of both virtual CPUs, vir-
tual CPU 0 has a significant higher power consumption than virtual CPU 1. This
is due to the natural behavior of the Linux scheduler which uses a performance
centric heuristic based upon the CPU load. The CPU load however, is found by
analyzing the length of the CPU’s runqueue. Thus we conclude there is no relation
between the migration criterion of the Linux standard scheduler (CPU load) to the
one we use for energy-aware scheduling: The energy consumption.
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Figure 5.2: Balancing energy consumption of two virtual CPUs: After a period of
free scheduling (30 secs) the guest scheduler balances both virtual CPUs

5.2 Guest-Level Scheduling

This section evaluates the prototype’s implementation of guest-scheduling. We im-
plemented two basic scheduling policies which prove that energy-aware scheduling
policies can be implemented upon our framework. In the following we demonstrate
its correct behavior for different scenarios. We start the evaluation of the balancing
policy followed by the throttling policy. We finalize this section by proofing that
energy-aware balancing is capable to exhaust existing energy capacities of virtual
CPUs.

5.2.1 Functionality: Balancing Energy Consumption

Energy balancing of virtual CPUs is to keep their energy consumption even. To
show this we assigned a virtual machine 2 virtual CPUs. After a successful boot
process we start an instance of bitcnts. Initially energy-aware scheduling is deacti-
vated. The process is running only on virtual CPU 0. Thus only virtual CPU 0 is
consuming a considerable amount of energy. After a period of 30 seconds guest-
level scheduling is activated. The energy balancing algorithm begins to work and
the thread is assigned energy-aware to both virtual CPUs by the guest’s scheduler.
As Figure 5.2 illustrates the application initially consumes about 50 watt upon vir-
tual CPU 0. 30 seconds later the scheduler begins to distribute it in a way both
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virtual CPUs consume around 25 watt. The deviance between the energy con-
sumption of both virtual CPUs is between 0 and 1 watt. This deviance is related to
the scheduling interval. Currently we are migrating threads to virtual CPUs around
every 10 msecs. Thus a power overhead up to 1 watt upon each virtual CPU is
reasonable.

5.2.2 Functionality: Throttling Energy Consumption

Another mechanism we analyze in the following is throttling within guests. The
settings for this scenario are a little different from the one before. We do not only
balance the power consumption of both virtual CPUs. Additionally we limit their
power consumption by using guest-level suspension. The energy budget of Virtual
CPU 0 is limited to 15 joule and virtual CPU 1 to 25 joule demonstrated in Figure
5.3. Again we start an instance of bitcnts. It consumes energy unthrottled on virtual
CPU 0 until after 30 seconds guest-level scheduling is activated. Now the thread
is migrated such that energy is consumed on both CPUs. However, the virtual
machine’s energy consumption on virtual CPU 0 is limited. Therefore it only has
a power consumption up to 15 watt. Consequently virtual CPU 1 should consume
around 35 watt. But this virtual CPU’s power consumption is limited to 25 watt.
Thus energy-aware throttling by the guest itself is behaving as expected.
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Figure 5.3: Throttling energy consumption of two virtual CPUs: At first two vir-
tual CPUs are consuming energy unthrottled. After 30 seconds virtual CPU 0 is
throttled to an energy budget of 15 joule and virtual CPU 1 is throttled to 25 joule.
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5.2.3 Exhausting Virtual CPU Capacities

The last both experiments showed that the basic functionality of guest-level schedul-
ing is available and works as expected. But, in order to show we can participate
from the higher computing power of multiprocessor systems, we need to demon-
strate in the following, the guest-level scheduler is capable to exhaust the offered
energy capacities of such a system.

The experiment is similar conducted as those before. However, this time we
run 10 instances of bitcnts. There is no budget defined. This experiment should
result into power consumption of around 50 watt on both CPUs. As Figure 5.4
shows this is the case. The guest-level scheduler migrates the threads in a way
both virtual CPUs are completely exhausted.
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Figure 5.4: Exhausting virtual CPU capacities: After starting 10 applications the
energy-aware guest-level balancer begins to distribute them to virtual CPUs so they
exhaust the capacities of both virtual CPUs.

5.3 Host-Level Scheduling

Host-level scheduling is the complementary part to guest-level scheduling used in
case a guest can not schedule energy-aware. Enforcement of energy budgets and
applying global informations (such as a physical CPU’s temperature) for schedul-
ing purposes moreover only can be solved using host-level scheduling.

In this section we demonstrate that energy-aware scheduling policies can be



54 CHAPTER 5. EXPERIMENTAL RESULTS

implemented if they rely upon our framework. Therefore we implemented energy-
aware balancing and energy-aware throttling for our prototype which is adducted
for evaluation now. To evaluate an important feature of host-level scheduling, the
enforcement of guest energy budgets by the virtual machine scheduler, we fur-
thermore conduct an experiment running an energy-aware virtual machine and a
non-energy-aware virtual machine.

5.3.1 Functionality: Balancing Energy Consumption

The energy-aware balancing policy we implemented for our prototype evens out
the energy consumption on multiple physical CPUs. Our balancing policy thereby
relies upon virtual machine migration and energy budgets for physical CPUs. In
order to keep the results of guest-level scheduling and host-level scheduling com-
parable we tried to reuse the guest-level scenarios as far as possible.

After a finished boot process an instance of bitcnts is started. Initially host-level
scheduling is deactivated. Therefore the power consumption on physical CPU 0 is
around 50 watt and the one on physical CPU 1 is 0 watt. After a time period of
30 seconds the host-level scheduler is activated and begins to even out the energy
consumption of both physical CPUs by migrating the virtual machine. Figure 5.5
shows that the power consumption on both physical CPUs is balanced to around
25 watt. However, in contrary to using guest-level scheduling the deviance now
is between 0 and 4 watt. This can be reasoned by the higher scheduling interval
which we set around a quarter second for host-level scheduling.

5.3.2 Functionality: Throttling Energy Consumption

Energy-aware throttling can be used to ensure a guest can not consume more (or
better: Significantly more) energy than its assigned energy budget. For the imple-
mentation we utilized virtual machine suspension and energy budgets for virtual
machines.

We once again set up the same scenario as for guest scheduling as far as pos-
sible. Virtual machine 0 is enforced to an energy budget of 15 joule while virtual
machine 1 may consume up to 25 joule. After the boot process is finished the bitc-
nts process is started within both virtual machines. Initially the virtual machine
scheduler is deactivated. Both virtual machines can consume energy freely. As
Figure 5.6 shows after 30 seconds energy-aware throttling is activated. In the fol-
lowing virtual machine 0 consumes around 15 watt and virtual machine 1 around
25 watt. For the deviance the same holds as for energy-aware balancing. The back-
ing mechanism is the same and operates again with a scheduling period of 250 ms.
However, enforcement of energy budgets is possible if the guest does not behave
energy-ware. We additionally demonstrate this in more detail in the next section
where guest-level mechanism and host-level mechanism are used in parallel.
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Figure 5.5: Balancing energy consumption: After a period of 30 seconds the host-
level scheduler tries to balance the power consumption of two physical CPUs.

5.3.3 Throttling on Host-Level and on Guest-Level

An important issue for energy-aware scheduling of virtual machines is the control
of non-cooperative virtual machines. The lack of a guest-level mechanism solving
this issue leads to energy imbalances for virtual machines which are behaving cor-
rectly. This results from fact that the non-energy-aware virtual machines consume
eventually too much energy. In the following we evaluate the possibility, our pro-
totype offers to overcome such an imbalance using host-level features.

We start by setting up two virtual machines running bitcnts. After creating
some load after 10 seconds guest-level throttling begins to keep the assigned en-
ergy budgets. But, as Figure 5.7 illustrates after 20 seconds only virtual machine 0
is behaving correctly. It throttles itself to consume only 20 watt. Virtual machine
1 however is running without throttling itself to its assigned budget of 30 joule.
Thus it is consuming more energy than its assigned budget and virtual machine 0
receives less computing power as it is entitled to. This can be seen within the time
interval 10 to 30 seconds. The virtual machine behaving correctly consequently
would be penalized for its correct behavior.

To solve this issue our prototype supports host-level throttling. Host-level
throttling can be used to throttle down a virtual machine’s energy consumption
to a certain limit. After a period of 30 seconds this mechanism is activated. As
Figure 5.7 shows the power consumption of virtual machine 1 is throttled to 30
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Figure 5.6: Throttling energy consumption: Two virtual machine consume energy
unthrottled for 30 seconds. Afterwards host-level suspension regulates VM0 to 15
watt and VM1 to 25 watt.

watt. Thereby virtual machine 0 in the following is no more penalized. It can con-
sume its assigned energy budget. Thus energy-aware throttling on host-level can
help to enforce energy budgets for virtual machines in case guest-level scheduling
is not available.

5.3.4 Exhausting Physical CPU Capacities

To demonstrate the possibility to exhaust the energy capacities of physical CPUs
we booted 4 virtual machines running 5 instances of bitcnts each. After a period of
20 seconds all virtual machines are up and the bitcnt instances are running. There
are no budgets assigned to the virtual machines. They all may consume as much as
they can get. This experiment demonstrates the energy capacities on both physical
CPUs are exhausted and even more they are balanced. This can be seen beginning
from time period 20 to 90 in Figure 5.8. Both physical CPUs consume the same
power which is around 50 watt each. Thus by using virtual machine migration we
are capable to exhaust the capacities of available physical CPUs.
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Figure 5.7: Throttling on host-level and on guest-level: 2 VMs are running, how-
ever VM1 does not support energy-aware scheduling. After 20 seconds VM0 reg-
ulates itself to 20 watt. VM1 still consumes as much energy as possible which
punishes VM0. Therefore host-level throttling interferes and throttles it down to
30 watt, which allows VM0 to run as expected.

5.4 Energy Overhead

An important goal we requested in section 3.1 is efficiency of our design. We did
not want to induce much energy consumption to our system. Of course a prototype
is rarely the best alternative to demonstrate a feature like efficiency. However, we
show that even our prototype only induces a low overhead of energy consumption
which fortifies our statement. To demonstrate this we evaluated the energy con-
sumption induced by the virtual machine in case we use guest-level migration or
host-level migration.

5.4.1 Energy Overhead on Guest-Level-Scheduling

We begin by evaluating the energy overhead of guest-level scheduling. The exper-
iment is conducted to start bitcnts instances after 10 seconds. After 20 seconds the
guest-level scheduler enables energy-aware balancing. The scheduler tries to even
out the energy consumption of the virtual CPUs. We evaluated this issue for 1, 2
and 4 virtual machines to see if there is a significant increase due to the number of
virtual machines.
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Figure 5.8: Exhausting physical CPU capacities: After starting 4 virtual machines
running five bitcnts instances each the energy-aware host-level scheduler begins to
distribute them to physical CPUs so they exhaust the capacities of both physical
CPUs. Remark: We did not(!) balance the virtual machines’ energy consumption
in this experiment!

At first we relate to the measurement for one virtual machine running. Re-
garding time interval 0-10 seconds, Figure 5.9 shows the power consumption if
the virtual machines are idle. The power consumption is around 0.8 watt. After
10 seconds bitcnts instances are started. This is expressed by a low increasing to
0.85 watt. At 20 seconds the guest-level scheduler is activated and thus the power
consumption increases to around 1 watt. This is the maximum we ever measured.
If we take in consideration, that there is only an increase of 0.2 watt from having
the virtual machines in idle state to the performing of energy-aware scheduling, we
argue this is negligible.

The second fact which is really considerable is the reduction of the power con-
sumption of the virtual machine monitor if we increase the number of virtual ma-
chines. Currently we do not have an explanation why this is happening. However,
as the overhead is going down rather than it increases, we can state the overhead
induced by the virtual machine monitor is around or below 1 watt.
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Figure 5.9: Virtual machine monitor’s energy overhead using guest-level schedul-
ing: The virtual machine monitor does not consume significantly more power be-
cause of the appliance of guest scheduling after 20 seconds.

5.4.2 Energy Overhead on Host-Level-Scheduling

The next point of interest is the increase of the energy overhead when using host-
level scheduling induced by the virtual machine monitor. We take into considera-
tion the energy consumption of one and two virtual machines. The other settings
are the same as for guest-level scheduling in the section below.

The power consumption of the virtual machine monitor is around 0.8 watt [see
time interval 0-10 in Figure 5.10]. This is a little more compared to guest-level
scheduling. The virtual machine monitor needs to perform extra controlling of en-
ergy budgets here (for example comparing the consumed energy of virtual machine
to its assigned energy budget). After ten seconds the bitcnts instances are started.
This results into some additional, yet low, overhead. It is even a little more if two
virtual machines are started. This peak is due to the monitoring we do for the com-
pilation of the thread list [see section 4.5.4 and 4.5.5]. After 10 more seconds the
virtual machine scheduler limits the energy consumption of each virtual machines.
However the activation of the host-level scheduler does not induce any significant
further energy consumption to our system. This is due to the fact, that there is
nothing further to do then to compile the thread list. This is documented in Figure
5.10, interval 20 to 90 seconds, as the power consumption does not increase.
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Figure 5.10: Virtual machine monitor’s energy overhead using host-level schedul-
ing: The virtual machine monitor continues to consume around 0.8 watt if the
host-level scheduling is applied after 20 seconds.

5.5 Performance

In this section we evaluate the performance of our prototype’s virtual machine
scheduler. We conducted two experiments: One for virtual machine migration
and one for virtual machine suspension. We did so as we found out that they
behave in different ways as we demonstrate below. These two measurements have
quite an impact if one implements new scheduling policies. They demonstrate the
minimal reaction time which has to be considered if one decides which part of
a scheduling policy has to be implemented within the guest-level scheduler and
which part within the host-level scheduler.

5.5.1 Performance of Virtual Machine Migration

For this experiment we started a virtual machine with a diversified number of
threads running. We tried to find a relation between the time virtual machine migra-
tion requires to migrate a complete virtual machine and the number of the virtual
machine’s threads. This gives us a hint about the minimal scheduling period if one
utilizes virtual machine migration for an energy-aware scheduler.

As Figure 5.11 shows the time required to migrate a virtual machine increases
nearly linear with the number of threads. This offers a good prediction model for
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Figure 5.11: Performance of virtual machine migration and suspension: The time
required for migrating a complete virtual machine nearly linear increases with
number of threads. The time to suspend a complete virtual machine however is
nearly constant (with a slow increasing dependent on the number of threads).

the design phase of a new scheduler. It can be deduced a lower boundary for the
scheduling period required for host-level migration if the maximum of threads of
the system can be estimated. We can predict that virtual machine migration re-
quires 1ms per thread of a virtual machine.

5.5.2 Performance of Virtual Machine Suspension

This experiment is conducted the same as for virtual machine migration. However,
now we analyze what happens for virtual machine suspension. These timing values
are interesting in order to estimate the preciseness regarding the enforcement of
energy budgets which an energy-aware scheduler relying on host-level suspension
can grant.

Figure 5.11 demonstrates a result which can be considered quite welcome. The
time period required to suspend a virtual machine is nearly constant. It is increasing
very slowly with the number of threads. Thus invoking virtual machine suspension
can performed with a high frequency. Yet it has to be taken in consideration that a
suspended virtual machine needs to be restarted again. Thus the timing has to be
doubled at least.
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5.6 Host-Level vs. Guest-Level Scheduling

An important point of our design has been the availability of scheduling mecha-
nisms on guest-level and on host-level. We argued we require host-level schedul-
ing (besides others) if a guest is not scheduling energy-aware. We furthermore
argued that guest-level scheduling is more accurate and thus is required for precise
scheduling decisions. In the following we demonstrate the limits of guest-level
scheduling and host-level scheduling in a way to make an estimation, which mech-
anisms to use, is getting a more transparent task.
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Figure 5.12: Limits of host-level scheduling: Reducing the measurement interval
to 1000 ms leads to a significant deviance between the assigned energy budgets
and the kept one.

5.6.1 Limits of Host-and Guest-Level Scheduling

At first we conducted an experiment which clarifies the limits of host-level schedul-
ing. The limits of host-level scheduling we found in the granularity of the schedul-
ing decisions. Migrating a complete virtual machine due to its energy budget using
host-level scheduling is by far not this exact as guest-level migration.

This experiment basically is related to the one we discussed in section 5.3.1.
We demonstrated that our energy-aware scheduler is capable to balance the energy
consumption of physical CPUs. This experiment has been performed by using the
average sampled for 5000 msecs. In this section we reduce the sampling interval
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Figure 5.13: Limits of host-level scheduling: Reducing the measurement interval
to 500 ms leads to an even more significant deviance between assigned energy
budget and the kept one.

to 1000 msecs and afterwards to 500 msecs in order to show the deviance between
the energy budget and the kept energy budget increases.

Figure 5.5 documents the energy balancing with a measurement interval of
5000 msecs. As Figure 5.12 illustrates we gain an increasing of the deviance if we
reduce the measurement interval. The highest deviance is around 7 watt. Com-
pared to 3 watt for 5000 msecs this is a significant increasing. If we even more
reduce the interval to half a second the deviance once more increases to around 11
watt (see Figure 5.13). The explanation is found in the migration interval of virtual
machine migration which is currently set to around a quarter second. Therefore
only every 250 msecs the virtual machine scheduler can try to even out the power
consumption on both CPUs. It is not possible to balance the power consumption
of the CPUs having only 2 or 4 scheduling decision. Reducing this scheduling
period however is not the solution to this issue. We showed that the required time
to migrate threads is increasing with the number of threads running in a virtual
machine. A virtual machine with 200 threads already requires around 200 msecs
to migrate completely. Thus we have to conclude virtual machine migration is a
coarse-granular mechanism to even out the power consumption of CPUs.

The limitations of guest-level scheduling are rather found in the functionality
itself than by the impreciseness of the mechanism. As Figure 5.14 demonstrates
guest-level scheduling keeps balancing the power consumption of its virtual CPUs
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Figure 5.14: Limits of guest-level scheduling: Reducing the measurement interval
to 500 ms still offers the requested balancing. The limits of guest-level scheduling
we found in the functionality of the mechanism, not in its impreciseness.

even if we reduce the measurement interval down to half a second. This can be
reasoned by the fact hat scheduling decisions for virtual CPUs can be made with
a much higher frequency. Currently, we use a scheduling interval of 10 msecs for
guest-level scheduling. Thus every 10 msecs we come to a decision if threads have
to be migrated to a potential less energy consuming virtual CPU. Additionally we
do not require to migrate all threads, as we have to for virtual machine migration.
The Linux scheduler only migrates some of them in order to balance the power
consumption. This reduces the time required for guest-level balancing again.

However, guest-level scheduling is not capable to even out the power consump-
tion of physical CPUs generally. Only if there is an idempotent mapping of virtual
CPUs and physical CPUs (that is virtual CPU 0 is mapped to physical CPU 0, vir-
tual CPU 1 to physical CPU 1, and so on) and furthermore just one virtual machine
is executing in parallel, this goal can be achieved. Running only 1 virtual machine
stands in contrast to the definition of virtual machines. The purpose of virtual ma-
chine technology is to execute multiple operating systems in parallel. Therefore
the limitation of guest-level scheduling is rather due to its functionality than due to
its capabilities.
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Figure 5.15: Network throughput: If two different applications, one consuming
much energy (bitcnts) and one consuming less energy (scp), are competing for
computing power the assignment of host-level scheduling is unfair. Guest-level
scheduling however assigns both the same amount computing power. This fact is
represented by the network throughput of the scp instance. The throughput has
been measured for an average power consumption of 25 watt (no limitation), 15
watt and 10 watt.

5.6.2 Application Benchmark

The previous experiment revealed the difficulties of host-level scheduling to equally
distribute computing power if we consider small measuring intervals. We found a
further issue of host-level scheduling, when we considered the differences between
both scheduling levels concerning the assignment of computing power to threads.
Once again the more coarse-grained approach of host-level scheduling, which is
only controlling virtual machines, has significant disadvantages. For the next ex-
periments we use secure copy (scp) in order to transfer files to the virtual ma-
chines. Using our virtualized L4Linux we gain a network throughput of around 9
mbytes/sec if all our mechanisms are disabled. The virtual machine then consumes
nearly 25 Watt.
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Network Throughput

To visualize the assignment of computing power by the different scheduling-levels
we arrange an experiment copying a big file to a virtual machine using scp. We
monitored the network adapter’s throughput and assigned different energy budgets
to the virtual machine to find if there are differences between both scheduling lev-
els.

In the time interval 0-10 we did not assign any budget. As Figure 5.15 il-
lustrates the network throughput is the same for guest- and host-level scheduling
disabled as well as if one of them is enabled. It always is around 8.7 mbytes/sec.
The virtual machine consumes in this period around 25 watt. Beginning with sec-
ond 10 we throttled it to 15 watt. The virtual machine then has a throughput of
around 5.2 mbytes/sec for guest-level scheduling and around 3.2 mbytes/sec for
host-level scheduling. The values diverged even more when we throttled it down
to 10 watt. For guest-level scheduling the consumption is reduced to around 4.3
mbytes/sec and for host-level scheduling to 2.0 mbytes/sec.

We reason the differences of the network throughput by implementation issues.
As we have to halt and restart all threads of a virtual machine using host-level
scheduling rather than only a single thread when using guest-level scheduling, a
bigger performance loss is induced by the scheduling process. This performance
loss is a quite significant value as can be seen in Figure 5.11. Thus the loss of
performance results into the loss network packets.

Network Throughput using different Applications

To further support our analysis we considered the network throughput when a sec-
ond application, which consumes much energy (bitcnts once more), is running in
parallel to the scp instance. The budget assignments are the same as for the mea-
surements without bitcnts. The difference of the network throughput with bitcnts
as additional energy consumer seen in Figure 5.15 is due to the following issue:
Guest-level suspension and host-level suspension result into different assignments
of computing power to the threads. To further explain this point we consider an
example.

We have an application A (bitcnts) which is consuming 50 watt in case it is
allowed to run unthrottled. Furthermore we have an application B (scp) consuming
significantly less: 20 watt. Additionally, we set a budget of 20 watt. In case we use
guest-level scheduling to keep this budgets, the guest-level scheduler ensures both
applications consume 10 watt. Thus the scp instance (application B) transfers only
half of the packets than before (for the relation between energy consumption and
network throughput of scp please additionally refer to [16]).

If we use host-level scheduling to enforce the energy budget of the virtual ma-
chine the guest-level scheduler does not know about this fact. It schedules the
threads with the same ratio as before without energy budgets: With a ratio of 2
to 5. Thus application B consumes nearly 5-6 watt. Consequently scp can only



5.6. HOST-LEVEL VS. GUEST-LEVEL SCHEDULING 67

transfer a little more than a quarter of its normal throughput. As Figure 5.15 shows
host-level scheduled guests always have a lower (close to a half) network through-
put if bitcnts is running in comparison to guest-level scheduled guests. This is what
we can expect when we transfer the power ratio linearly to the network throughput.

Network Throughput using the same Applications

To fortify our analysis we evaluate a scenario running two instances of scp. We
ran a virtual machine: One time using guest-level scheduling and one time using
host-level scheduling once more. At first, we analyzed guest-level scheduling. As
Figure 5.16 illustrates the throughput for scp is sinking when we reduce the en-
ergy budgets. However, the energy remains evenly shared: The power ratio is 1:1
as both applications are scp instances. Afterwards we measured the same experi-
ment using host-level scheduling. As we have two applications of the same kind
the guest-level scheduler assigns them both the same amount of computing power.
Now host-level scheduling achieves the same results like guest-level scheduling.
Both scp instances have the same network throughput for guest-level scheduling
and host-level scheduling.

This result fortifies our statement that the host-level scheduler keeps the as-
signment of computing power of the guest-level scheduler. This time, both threads
consume the same amount of energy, as they are instances of the same applications.
Therefore the network throughput only is reduced to the half for both scp instances.
Due to these facts we argue, a righteous distribution of computing power to threads
can only be achieved using guest-level scheduling.

Conclusion

Due to the perceptions of the last paragraph we state it is preferable to implement
scheduling policies in the guest’s scheduler. At first, the scheduling policies can
benefit from the smaller scheduling periods (see section 5.6.1). Furthermore, the
distribution of computing power is more righteous (see section 5.6.2) resulting into
a better performance for lower energy consuming applications.

However, the replacement of host-level functionality by guest-level function-
ality only is applicable if the host-level scheduler supports this procedre. For ex-
ample if the host-level scheduler periodically assigns new energy budgets to the
guests, energy budgets of physical CPUs can be kept by using guest-level schedul-
ing. It requires a well distribution algorithm or the assignment of only one virtual
CPU of exactly one virtual machine per physical CPU. The guest-level scheduler
then balances the energy consumption of physical CPUs (without knowing this
fact), as it balances the one of the virtual CPUs.

This however, can also be considered as the basic limitation of guest-level
scheduling. It only can fulfill energy-aware scheduling for physical CPUs if the
virtual machine scheduler support the correct distribution of the correct energy
budgets and supports the required assignment of one virtual CPU to one physi-
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Figure 5.16: Network throughput: Now two scp instances are competing for
computing power. Then guest-level scheduling and host-level scheduling provide
nearly the identical results for the network throughput (the ones for host-level
scheduling are still a little bit less). The throughput has been measured for an
average power consumption of 25 watt (no limitation), 15 watt and 10 watt.

cal CPU for all virtual machines. Therefore we state host-level scheduling is also
required for successful energy-aware-scheduling of virtual machines.
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Conclusion

Our major goal has been the presentation of a framework which provides the re-
quired functionality to schedule energy-aware in virtual machine environments and
to support multiprocessor systems. Our solution introduced an approach which
separates the energy-aware scheduling process into two levels: Guest-level schedul-
ing and host-level scheduling. Thereby at first, we get the possibility to benefit from
scheduling relevant informations available only on one of both levels. Furthermore
we can enforce energy-aware scheduling using the host-level scheduler in case a
guest does not support energy-aware scheduling. Finally an energy-aware schedul-
ing policy can rely on fine-granular scheduling decision available in the guest.

Initially we stated that there is no real approach solving this topic. Some con-
tributions are available; none of it addresses the complete issue. Therefore this
thesis offers a framework based upon a collection of mechanism which achieve our
goal. We introduced guest-level scheduling in order to schedule fine-granular and
to keep energy-budgets with a high accuracy. Energy profiles and energy budgets
offer to control the energy consumption by the guest itself. Suspension and migra-
tion allows a guest to react on its energy consumption properly. Furthermore we
presented host-level scheduling which is capable to schedule complete virtual ma-
chines due to energy budgets defined per virtual machine and per physical CPU.
We came up with virtual machine suspension to offer the safety in a way that a
virtual machine can be enforced to keep its energy budget. We demonstrated that
virtual machine migration is required to exhaust the capacities of a multiprocessor
system. Our complete design is set up in way it provides the flexibility to choose
where to implement the scheduling policy: In the guest-level scheduler or in the
host-level scheduler. Finally our design has been proven to be very efficient con-
cerning its additional energy consumption.

We consider our work as the foundation for future work in the sector of energy-
aware processor management for virtual machine architectures. Energy-aware
scheduling is the approach to overcome the issues classical mechanisms like fre-
quency scaling can not offer for virtual machines. We believe that our framework
can be used as a starting point to transfer existing energy-related scheduling poli-
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cies, like temperature-aware scheduling, to virtual machine environments. Other
classic scheduling policies can be utilized to distribute energy budgets in differ-
ent ways, for example lottery scheduling using its tickets. As we did not offer a
complete solution for multimedia systems and real time systems further work can
try to elaborate mechanisms required to overcome overload situations and to de-
fine scheduling deadlines besides energy budgets. As our focus was set to a para-
virtualized architecture, when we implemented our prototype, future work could
try to evaluate how to port our approach to pure-virtualized or pre-virtualized ar-
chitectures. Currently we do not see any problems to this issue, nevertheless. Fur-
ther issues to explore are the collaboration of guest-level scheduling and host-level
scheduling and the partitioning of tasks in order to get a working energy-aware
scheduler. Thus mechanisms for the synchronization of the scheduling decision
on both levels on the one hand and a more simplified process to decide, where
to implement a part of energy-aware scheduling, on the other hand are still open
positions. Finally we propose to consider how to achieve a more efficient base
mechanism for virtual machine migration in order to get a better migration dura-
tion. As result the host-level scheduler could rely on lower scheduling periods and
thus achieve an even more precise balancing of the energy consumption of physical
CPUs.
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