
Universität Karlsruhe (TH)
Institut für

Betriebs- und Dialogsysteme

Lehrstuhl Systemarchitektur

Studienarbeit

In Place Migration by Using
Pre-Virtualization

Yaowei Yang

Verantwortlicher Betreuer: Prof.Dr. Frank Bellosa

Betreuender Mitarbeiter: Joshua LeVasseur

Stand: March 20, 2006

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfasst und keine anderen als
die angegebenen Litraturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only citied sources have
been used.

Karlsruhe, March 20, 2006 Yaowei Yang

4

Abstract

The development of hardware virtualization makes it possible to migrate entire op-
erating system instances across distinct physical machines. Different strategies have
been discussed recently, and self migration is one of those impressive ones. By using
this solution the OS migration does not need help from the underlying hypervisor. Fur-
thermore the services downtime during the migration can be minimized. Nevertheless
self migration has it own shortcomings.

With the help of pre-virtualization technique, we try to keep all advantages of self
migration and overcome its main drawback by using a new migration technique, “In
Place Migration”, in this thesis. We introduce firstly pre-virtualization, compare it
with other classical hardware virtualization, show its strength, and then discuss how
we use the new concept of “In Place Virtual Machine Monitor”(In Place VMM) from
pre-virtualization to design and implement “In Place Migration”.

Contents

1 Introduction 1

2 Background 3
2.1 Virtualization . 3

2.1.1 Overview . 3
2.1.2 Pure- and Para-Virtualization 4
2.1.3 Pre-Virtualization . 5

2.2 Migration . 7
2.2.1 Overview . 7
2.2.2 Migration Management . 9
2.2.3 Migration and In Place VMM 10

2.3 Virtual Machine Environments . 11
2.3.1 L4Ka . 11
2.3.2 Xen . 14

3 Proposed Solution 15
3.1 Design Overview . 15
3.2 Virtual Machine State . 16
3.3 Communication between In Place VMMs 17
3.4 Memory Migration . 19
3.5 Local Resource Migration . 20

4 Implementation 23
4.1 Building The Migration Monitor . 23
4.2 Starting The Migration . 24
4.3 Suspending and Restarting the Machine 24
4.4 Memory Copy . 25

5 Conclusion 27

iii

iv CONTENTS

Chapter 1

Introduction

Hardware virtualization makes it possible for one physical machine to host many same
or different operating system instances. Normally it will be used to consolidate servers,
normalize hardware resources, and isolate applications on the same physical server.
Another important advantage of hardware virtualization is that migrating entire oper-
ating system instances between hosts is much easier with its support. From the virtu-
alization software’s perspective every operating system instance atop the virtualization
software is encapsulated in an object named virtual machine(VM). To migrate an oper-
ating system people need only copy VM state from source to the destination. Because
of this advantage many techniques of migration have been discussed in recent years.

Among variants of migration techniques live migration discussed the possibility of
migrating a system with very short downtime. The clients can be unaware of services’
relocation while the migrating progress is running. On base of live migration, another
possibility of migration, called self-migration, has been discussed. This art of migra-
tion tries to migrate the entire operating system instance by the operating system itself.
Self migration is described to be more secure, more flexible and more portable than
VMM-Driven live migration(section 2.2.2). But self migration has its own drawback.
This methods embeds a paradox that an operating system must save its suspended state
when it is still running. Although the problem is solved with a pseudo final state(that
means a machine state checkpoint before the real suspending of machine) by the au-
thor, it is better if we can save the real final state of VM for migration. Moreover, as
self-migration settles down in the operating system’s space, the migration infrastruc-
ture must be re-implemented for different operating systems.

“In Place Virtual Machine Monitor”(In Place VMM), a new concept from pre-
virtualization technique, seems to show us a way for keeping the advantages of self
migration and overcoming its drawback as well. “In Place VMM” is originally intro-
duced as a bridge between the world of pure-virtualization, which needs minor engi-
neer effort for porting operating system to its virtualization environment, and the world
of para-virtualization, which has much better performance than pure-virtualization,
and try to combine both advantages. It lives in the same VM space together with its
supporting operating system, uses high level interface(for performance purpose) pro-
vided by the underlying privileged resource monitor, i.e. hypervisor, to emulate the
Platform identical interface(for zero engineer effort) for the operating system. Because
of this responsibility, we can use the “In Place VMM” to collect all necessary VM
states for OS migration. We will show this possibility in this thesis and try to show
that Migration by using “In Place VMM”, called “In Place Migration”, can achieve our

1

2 CHAPTER 1. INTRODUCTION

goal of keeping Self-Migration’s advantages and overcoming its drawback.
In chapter 2 the related works and background of virtualization and migration tech-

nique will be introduced. Pure-virtualization, para-virtualization and pre-virtualization
will be described and compared. We will also carry out the detailed explanation for
live migration and self migration. Chapter 3 figures out the major design part of our
“In Place Migration”. In the end, in Chapter 4, a part of “In Place Migration” imple-
mentation on top of L4 Marzipan, a native resource hypervisor, will be explained.

Chapter 2

Background

2.1 Virtualization

2.1.1 Overview
Virtualization, which was firstly formally discussed in the 70s’ [4], is revived in re-
cent years. One obvious motivation is that modern small computer system is powerful
enough for hosting more than one operating system to improve its utilization. It can
significantly alleviate the hardware cost. But more important reason for rebound of vir-
tualization is that it can provide a clear isolation approach for different services running
on one bare hardware. This improves the security, flexibility and portability of services.
Furthermore virtualization can also solve a number of problems in many other quite
dissimilar contexts, including intrusion detection, debugging, backward compatibility
with older or out-of-production hardware and so on [8].

Commonly virtualization replicates the resource into several virtual machines(VMs).
Different programs, called “guest”, can run in the VM in term of the virtualized plat-
form. These programs range from simple application program to the entire operating
system(OS) instance. According to different virtualization type, Instructions Set Ar-
chitecture(ISA), Application Binary Interface(ABI) and Application Programming In-
terface(API) will be emulated in the virtualization environment [14]. The emulation
normally happens in a layer between bare hardware platform and VMs, called virtual
machine monitor(VMM). It has the full control over all hardware resources and dis-
tributes the resource among VMs.

Two types of VM were discussed in paper [14] according to the virtualization level.
Process VM, one of these two types, is introduces as a virtualization environment with
virtual ABI and API. Replication, emulation and optimization will be provided by pro-
cess VMs [14]. It doesn’t concern ISA because from the perspective of process ma-
chine is represented only by ABI and API. Also guests in VM is limited to process.
The most familiar process VMs are High-Level-Language VMs, e.g. Sun Microsys-
tems Java VM [10]. Process migration can be discussed under this VM definition. But
in this thesis, which is about entire operating system migration, more attention should
be called to the other type of VM, system VM. In constrast to process VM, system
VM duplicates hardware resource by virtualizing the platform ISA for the guests with
either the host machine ISA or the host operating system’s ABI and API. With this ISA
level virtualization infrastructure, a conventional operating system can run in the virtu-
alization environment either with or without modification. As we discussed above, the

3

4 CHAPTER 2. BACKGROUND

VMM of System VM has access to, and manages, all the hardware resource. For shar-
ing the resources among many VMs, it captures or rewrites the privileged instructions
or operations executed by the guest OS, intercepts them, checks their correctness and
performs them on behalf of the guest [14]. Three properties of virtualization have been
argued in [12].

The efficiency property All innocuous instructions are executed by the
hardware directly, with no intervention at all on the part of the control
program

The resource control property It must be impossible for that arbitrary
program to affect the system resources, i.e. memory, available to it; the
allocator of the control program is to be invoked upon any attempt.

The equivalence property Any program K executing with a control pro-
gram resident, with two possible exceptions, performs in a manner indis-
tinguishable from the case when the control program did not exist and
K had whatever freedom of access to privileged instructions that the pro-
grammer had intended.

The major problem in the hardware virtualization is to balance the leverage between
VM performance and engineer cost for porting an operating system into the virtualiza-
tion environment, in another words, keeping both efficiency property and equivalence
property. For this purpose many hardware virtualization techniques have been devel-
oped. But before the appearance of pre-virtualization, only one of these two important
properties can be well kept. In the following sections pure-virtualization, which aims
at the low engineer cost, and para-virtualization, which in contrast reaches better VM
performance, will be introduced. After that pre-virtualization will be discussed and
compared with its progenitors.

2.1.2 Pure- and Para-Virtualization
Pure-virtualization is a classical hardware virtualization. It virtualizes the whole plat-
form ISA. All resources are in fact managed and distributed by VMM. From the per-
spective of guest OS, it would not be aware that they are running in a virtualization
environment. Major advantage of this design is that minor engineer effort is needed for
porting a guest OS to the virtualization environment, because virtual machine is iden-
tical to the raw machine from perspective of guest OS. Nevertheless there are some
problems existing for pure-virtualization. While a large portion of instructions can be
directly forwarded to the real hardware and executed, a portion of instructions, which
can interfere the virtualization environment, should be executed with the intervention
from VMM. These instructions are normally privileged instructions, e.g. enable and
disable interrupt, I/O instructions, etc. Because VM is mostly running in the non-
privileged user space, VMM can control these instructions’ execution by catching the
system traps caused by illegal accessing from these instructions, but some architec-
tures do not support this pure-virtualization solution, e.g. IA-32. Executing certain
supervisor instructions, which should be caught by the VMM, fail silently rather than
raising a convenient trap on these platforms [11]. In order to solve this problem, the
complexity and overhead of virtualization may be increased dramatically. For example,
VMWare ESX server tries to catch these special instructions by dynamically inserting

2.1. VIRTUALIZATION 5

code. More CPU cycles and other resources, e.g. memory, are wasted with this so-
lution. One simple instruction may be executed with tons of additional detection and
simulation codes. This definitely increases the executing cost and reduces the perfor-
mance of virtual machine. A conclusion can be drawn from the discussion about the
three properties of virtual machine that pure-virtualization sacrifices efficiency prop-
erty for the equivalence property on some platform.

In contrast to pure-virtualization para-virtualization [11] pays more attention to
the efficiency property rather than equivalence property. It doesn’t identically emulate
all low-level hardware interfaces; instead, it maps some of them(devices, interrupts)
to a high-level interface abstraction, e.g. Xen. Furthermore some para-virtualization
technique is only designed for special purpose and eliminates part of ISA for better
performance, e.g. Denali. Because of these specialties, VMM of para-virtualization is
also called hypervisor. By using the high-level interface abstraction, mode switch and
related privileged operation can evidently be reduced. The sensitive instructions, which
doesn’t cause any trap during their illegal execution, can be replace by customized high
level interfaces and doesn’t need to be caught any more. Furthermore the guest oper-
ating system is also permitted to directly access some privileged low-level interfaces
including reading page table, reading real clock time, etc. This makes some operations
in the guest OS more precise and effective. With these options the virtual machine
performance was improved close to the performance of native system. But a penalty
is incurred. In order to use the high level interface provided by para-virtualization
technique, the original operating system must be modified to fit the virtualization envi-
ronment. Intuitively the engineer cost for porting different existing operating system is
enormous.

2.1.3 Pre-Virtualization
As we described in last section, efficiency property is sacrificed for equivalence prop-
erty in pure-virtualization, whereas equivalence property is heavily broken in order to
get much better VM performance in para-virtualization. In other words, it seems no
way to balance the lever between engineer cost for porting Guest OS to the virtualiza-
tion environment and high virtual machine performance. But this is true only before
the appearance of pre-virtualization technique. By using the API translator in pre-
virtualization, which is called In Place VMM, the para-virtualization high level API
will be mapped back into Guest-visible Platform API, which is identical to the low-
level instruction sets from the Guest OS’ perspective. By doing so, the modification of
Guest OS can be avoided. From the perspective of Guest OS the underlying virtualiza-
tion environment is similar to the pure-virtualization. From the hardware abstraction’s
perspective they will be virtualized by a para-virtualization hypervisor. There are two
main concepts introduced by pre-virtualization, i.e. Afterburning and In Place VMM.

Afterburning

In order to redirect the original sensitive instruction to their scapegoat, Pre-Virtuali-
zation must know the place where these instructions will be executed. Unlike conven-
tional “Trap Catcher” mechanism in pure-virtualization, Afterburning is used in Pre-
Virtualization technique to detect and replace the sensitive instruction. Afterburning
occurs only during the compilation stage. pre-virtualization changes assembly lan-
guage compiler, e.g. gas, so that the compiler can annotate Guest OS source codes,
find out sensitive instruction and replace them with customized emulation instructions

6 CHAPTER 2. BACKGROUND

(a number of macros). By doing so the sensitive instructions doesn’t need to be dynam-
ically caught any more when the Guest OS is running. The result is that instruction de-
tection overhead in pure-virtualization was effectively removed and VM performance
is improved. We call the binary, that has been afterburned, virtualization friendly bi-
nary.

As a result, afterburning replaces sensitive instructions with customized function-
aly equivalent macros. According to different types of these macros, afterburning can
be divided into two types, static afterburning and dynamic afterburning. For static
Afterburning macros will be filled with hypervisor-dependent High Level APIs. That
means these macros only be executed atop the corresponding para-virtualization hy-
pervisors. For example, if the macros are written by using Xen-dependent APIs, the
afterburned binary with these macros cannot be executed in other virtualization envi-
ronment. In contrast dynamic Afterburning is more flexible. Macros will be only filled
with enough nop operations in necessary place. During the period that the OS binary
is loaded into VM, the nops in macros will be dynamically replaced with correspond-
ing hypercall from the underlying para-virtualization VMM. Obviously this macros
rewriting requires more startup time than that with static afterburning. But this rewrit-
ing process is one-off. It doesn’t affect the OS execution later.

Besides sensitive instructions some sensitive memory operations have also been
discussed in pre-virtualization. These operations should be discovered and replaced, as
well.

In Place VMM

In Place VMM is another brand new concept from pre-virtualization. It lives in the
user space and executes in the same isolated domain with its supported guest OS. That
means that every VM on top of Hypervisor has its own In Place VMM. As we in-
troduced above, In Place VMM builds a bridge between pure-virtualization and para-
virtualization. It maps Guest Platform API into the Hypercall of para-virtualization for
the Guest OS. By doing so, the Guest OS can be not aware when they are running on
a para-virtualization environment. Another task of In Place VMM is to rewrite the em-
ulated instruction macros for dynamic afterburned guest OS binary. In fact, a database
for instruction macro rewriting is stored in a separate ELF section after the source code
of guest OS is compiled and linked. In Place VMM uses this database to translate
sensitive instructions from original platform API to target macros.

As a bridge, In Place VMM consists of two ends (see figure2.1), front-end and
back-end. Front-end is responsible for emulating the platform architecture. Cus-
tomized compiler uses Front-end platform emulation interface, the macros, to replace
the sensitive instructions. On the other hand, back-end translates platform operations
to the hypervisor API. That means, macros of front-end are filled with the functions
provided by back-end, and these functions are written through the hypervisor API.
The performance of pre-virtualization also relies on the division between front-end and
back-end. For example, with this division we can pend interrupts in back-end and
batch their handling to front-end so that the mode change overhead can be definitely
eliminated.

2.2. MIGRATION 7

Figure 2.1: Pre-Virtualization Environment and In Place VMM construction

2.2 Migration

2.2.1 Overview
Why do we need migration? We can answer the question by setting up a scenario.
For example, we have an emergency and have to go back home. However we are still
waiting for the results from an application program that has been running for hours.
The program is installed in a desktop and cannot be interrupted. One perfect solution
to the problem is to migrate the current work system to your laptop and let the program
continue to run after the migration. This example shows us only one potential usage of
Migration. Migration can also be used in system management, backup [13], computing
grid [7] and so on.

In the beginning, migration was discussed in process level. People tried to mi-
grate processes from one OS environment to another. However, a well-known prob-
lem, called residual dependency [6], comes with these solutions, because one process
can be related with a lot of other processes, e.g. resource sharing in the source OS
environment. It is not easy to construct a similar or identical environment in another
OS environment for process migration. Because of this difficulty, migration was not
considered as a practical technique in those days.

With the resurgence of hardware virtualization, migration technique also revives
recently. This time, migration is discussed on operating system level. People try to
migrate an entire operating system along with its applications rather than only to mi-
grate the application processes. Because operating system directly interacts with the
hardware interface, the complex relationship reconstruction during process migration
doesn’t exist any longer during OS migration. Hence OS migration bypasses the resid-
ual dependency problem. In this thesis the OS migration will be our discussion point.

OS migration mainly concerns migrating CPU states, VM’s memory and VM’s
local resource. Among them, migrating memory attracts more attention of people be-
cause of its indispensability and large capacity. In contrast the states of CPU and other
devices, except hard disk , are really small amount of information to be transferred.

8 CHAPTER 2. BACKGROUND

Moreover local resource, e.g. hard disk, could be replaced with shared resource. For
example, we can use NFS and VFS instead of mounting local file system. We can
simply physically unmount the filesystem during the migration and re-mount it after
the migration through network, while the logical connection between the NFS or VFS
server and the migratee isn’t interrupted.

Live Migration

Service downtime is a key criterion in the migration technique. The effect of migration
on the service accessing from client should be as little as possible. Pausing a VM during
the migration will cause the service inaccessible for long time. Hence live migration
appears as a solution to this problem. Live migration is designed for short service
downtime. Its rudiment appeared firstly in paper [7] and implemented on L4Linux.
Later it was discussed, expanded and re-implemented in Xen para-virtualization envi-
ronment [2].

Live migration discussed in detail about memory migration since it takes most part
of migration time. Generally the memory transferring can be divided into three phases
[2].

push phase: The source VM continues running while certain pages are
pushed across the network to the new destination. To ensure consistency,
pages modified during this process must be re-sent.

stop-and-copy phase: The source VM is stopped, pages are copied across
to the destination VM, then the new VM is started.

pull phase: The new VM executes and, if it accesses a page that has not
yet been copied, this page is faulted in (“pulled”) across the network from
the source VM.

These three phases must not be used together to migrate memory. For example, we
can use the pure stop-and-copy for memory migration [2], which halts the VM, copy
all pages to the destination and restarts the service. Although this way costs the least
migrating time, it brings the unacceptable service downtime. Live migration balances
service downtime and migration time by combining a bounded iterative push phase
and a very short stop-and-copy phase. During the iterative push phase, Pre-Copy [7]
technique is used. Pre-copy copies all memory pages of source operating system to the
target machine in the first iterative push-phase. After that only the dirty pages will be
transported to the target machine. The iterative push phase won’t be finished until the
number of dirty page appears to be constant. Then the short stop-and-copy phase will
be started to suspend the source machine, collect its running states and transfer them to
the target machine. Target machine gets the final state of source machine, rewrites its
running environment and restart the service in the end.

Moreover, live migration also discussed about the network device migration and lo-
cal storage migration. Live migration migrates VM’s network device including all pro-
tocol state(e.g. TCP PCBs) and its IP Address. An ARP announcement will be trigged
after the VM migration. This ARP tells the others that the IP and NIC combination
has been changed after migration, the packets should be sent to the new destination.
Although some packets will be lost during the switch phase, the number of these will
be very small, and they can be retransmitted later. Local storage is a real problem for
the migration. It takes too much time and network resource to clone the local storage to

2.2. MIGRATION 9

another host. Hence the author [2] uses network file system to solve the problem which
is uniformly accessible for all host machine. The author also discusses another way of
using the RAID protocol to clone the local storage as another local storage migration
approach briefly.

2.2.2 Migration Management
In the last section we introduced the idea of migration, discussed migration technique
from the perspective of service downtime, and introduced live migration as a technique
that balances the migration time and service downtime.

Another point in the migration technique that should be discussed is how to manage
the migration progress. We will discuss two main migration management schemes in
this section.

VMM-Driven Migration

Virtual machine monitor, as we discussed in section 2.1, normally lives between the
VMs and raw hardware interface. It manages the resource allocation and monitors
the VM states. Hence using the VMM to manage the migration progress seems very
rational. Migration scheme is called VMM-Driven Migration, when people uses VMM
as the migration manager. Most mature VMM or hypervisor provides certain VM
management interfaces, that can be used to query a VM’s running state information,
e.g. virtual CPU states, virtual device states, VM’s memory contents and so on. So the
management unit can be constructed directly in the VMM. But commonly a privileged
VM is dedicated for migration management because a commodity operating system
running on the privileged VM can provides more conventional development tool and
communication methods (e.g. TCP/IP connection).

At the beginning of migration, the migration manager on source machine informs
the manager on target machine to start a new container for migration. After the pre-
migration work finishes, the source manager VM uses the interfaces or hypercall pro-
vided by hypervisor to collect the necessary information for migration and transfer
them to the target. The manager on the target machine gets the information, recon-
structs the OS running environment in new container. At last the migrated OS is re-
sumed in new container on the target machine. For example, live migration uses the
Xen’s VMM interfaces to iteratively copy all memory pages of migratee to the target
machine. During the short stop-and-copy phase the final state of VM will also be col-
lected and sent to the target machine. After that the migrated OS is restarted to continue
running on the new Machine.

Although VMM-Driven migration uses clear and intuitive VM management scheme,
adding the migration control interfaces or mechanism to the hypervisor increases the
complexity of the hypervisor and reduces the security level. It also reduces isolabil-
ity between the VMs. How to control the interface access right is a key issue in this
scheme. It is possible for a vicious attacker to use the incorrect protected interface to
destroy the whole virtualization environment or knock-down the VM performance.

Self Migration

In order to overcome the shortcoming of VMM-Driven migration, another management
scheme called self migration [6] was introduced. In contrast to VMM-Driven migra-
tion, migration progress will be controlled with a little external help by the migratee

10 CHAPTER 2. BACKGROUND

itself. As the author described in his paper, operating system can get all necessary
migration information by itself, because it is also a resource manager. For example,
it is not difficult for a Guest OS to read the current states of registers. It is also no
problem for an operating system to scan all memory pages under its control. Further-
more the operating system can also use its own network stack to transfer the migration
information. Although self migration is recently designed and implemented in the Xen
para-virtualization environment, it theoretically can be started, proceeded and finished
without any help from hypervisor. Compared with the VMM-Driven migration, self
migration approach has the following advantages [6].

Security: By placing migration functionality within the unprivileged guest
OS, the footprint and the chance of programming error of the trusted com-
puting base is reduced.

Accounting and Performance: The network and CPU cost of perform-
ing the migration is attributed to the guest OS, rather than to the host En-
vironment, hereby simplifying accounting. This has the added benefit of
motivating the guest to aid migration, by not scheduling uncooperative
(for instance heavily pagefaulting) processes, or by flushing buffer caches
prior to migration.

Flexibility: By implementing migration inside the guest OS, the choices
of network protocols and security features are ultimately left to whoever
configures the guest instance, removing the need for a network-wide stan-
dard, although a common bootstrapping protocol will have to be agreed
upon.

Portability: Because migration happens without hypervisor involvement,
this approach is less dependent on the semantics of the hypervisor, and can
be ported across different hypervisors and microkernels, and perhaps even
to the bare hard ware.

Yet nothing is perfect. Self migration has its own drawback. Because self migration
is implemented inside Guest OS, it needs to be re-implemented for each type of guest
OS. While the implementation for Linux has been proved relatively simple, for other
system this may not be general. Otherwise transferring final state of migratee is also
impossible. The running OS alters its own states endlessly. To solve the latter problem,
pseudo final state has been discussed and used in the self migration. A checkpoint is
set before the stop-and-copy phase and all dirty pages, changed states will be saved in
a shadow region and transferred in the stop-and-copy phase. After this checkpoint the
OS is assumed to be halted. All state changes or dirty pages after the pseudo final state
will be ignored.

2.2.3 Migration and In Place VMM
Now if we look back to the section 2.3.2 where the In Place VMM is introduced, we
may find out the solution for the two major drawbacks of self-migration. In this section
we will firstly discuss the feasibility of using In Place VMM to manage the migration
and then take a look at the solutions the In Place VMM brings to us.

Conditions for migration [13] in virtualization environment have been discussed
before. Firstly virtual machine monitor should encapsulate all of the machine state
necessary to run software and mediates all interactions between software and the real

2.3. VIRTUAL MACHINE ENVIRONMENTS 11

hardware. Secondly this encapsulation allows the monitor to suspend and disconnect
the software and virtual device state from the real hardware and write that machine state
to a stream. Similarly, the monitor can also bind a machine state to the real hardware
and resume its execution. Finally the monitor should require no cooperation from the
software running on the monitor.

Accordingly In Place VMM lives between the Guest OS and the underlying Hy-
pervisor, which controls all real hardware resource, and is supported to translate all
platform ISA into the hypercall of underlying VMM. Hence every interaction between
the Guest OS and real hardware will be mediated firstly by In Place VMM and then by
the underlying VMM. Furthermore because Guest OS interacts directly only with the
In Place VMM, In Place VMM satisfies the second conditions for migration. Although
In Place VMM lives with supported Guest OS in the same address space, it is transpar-
ent to the Guest OS and needs no help from the Guest OS atop it. Thus it can be seen
that In Place VMM is a very suitable monitor for migration.

Now we take a look at how the In Place VMM solves the two main problems in
self migration. For the first issue, because the In Place VMM’s duty is only to emulate
the Platform API for the Guest OS and doesn’t need any cooperation from Guest OS,
implementing migration in this layer makes the migration independent on the Guest
OS. The only thing that Guest OS should do is to trigger the migration startup by using
a special exception provided by In Place VMM. The other problem can also be solved
simply, because In Place VMM is not a part of Guest OS, it will not alter the Guest OS
final state as self migration does. More interesting is whether using In Place VMM to
manage the migration keeps all advantages of self migration. Security of self migra-
tion comes from the unprivileged property of Guest OS. This could also be achieved
by In Place VMM because it lives also in unprivileged space. “Accounting and perfor-
mance” advantage is from the perspective of Virtual machine. Certainly the In Place
VMM stays in the same virtual machine with its Guest OS, it can also keep this advan-
tage. Although the flexibility advantage of self migration cannot be kept, “Unmodified
Device Driver Reuse” [9] project provides us another way to flexibly construct the
communication layer in the In Place VMM as well. At last the portability advantage
can also be theoretically kept because of the division design concept in In Place VMM.
The unit for migration can use the standard interface provided by back-end part of In
Place VMM and achieve the in-dependability upon the underlying hypervisor. But we
will see later there are still some hypervisor related parts during the implementation, if
the In Place VMM doesn’t provide a very flawless back-end interface.

2.3 Virtual Machine Environments

2.3.1 L4Ka
The name of L4Ka represents a series of projects from Operating System Group at
University Karlsruhe. Microkernel project “Pistachio” is the central project among
all of the L4ka projects. Most of the other projects base on the “pistachio” kernel,
either show the usage and benefits of microkernel or use the microkernel as its native
experiment environment. IDL4 provides a simple and semantic way under the CORBA
infrastructure to use the Microkernel. L4Linux shows us how we can port the Linux to
the pistachio virtualization environment. pre-virtualization project is the latest project
in University Karlsruhe, which uses Pistachio as one of its experiment environments.

Otherwise L4 has also other versions. Fiasco kernel is the one that has been devel-

12 CHAPTER 2. BACKGROUND

oped by University Dresden. NomadBios is based on this version of L4 kernel.

L4Ka::Pistachio

Pistachio is the 4th generation microkernel [5] from System Architecture Group at
University Karlsruhe. It mainly consists of four base abstractions, including threads,
address spaces, IPC, and mapping. Fast IPC is one distinguish characteristic of Pista-
chio. While pistachio is still too small and native to become a virtual machine monitor,
it can be used as a very small and fast low level part of the VMM to control the CPU
related resource. It also provides primitive APIs to manage the whole machine memory
and page abstraction for more effective memory allocation and usage.

L4Ka::IDL4

IDL4 is an IDL compiler, which comes together with Pistachio microkernel. It was
designed in order to significantly shorten the development cycle on pistachio. IDL4
supports CORBA and DCE syntax and has an integrated C++ parser which can parse
C/C++ header files. IDL4 can generate highly optimized RPC stub code for kernel
API and ABI, the hardware architecture, and the C/C++ compiler. The RPC consists
of three steps. In the first step all parameters are marshaled into a message buffer. This
message buffer is then sent using the system’s communication primitives and finally
un-marshaled at the destination. Although providing a large memory-based register
file usually has a significant impact on the cache footprint of message transfers, using
specifically optimized marshaling stubs can completely eliminate the additional costs
and result in better overall performance.

Because In Place Migration is firstly tried to be implemented in the virtualization
environment comprised of Pistachio microkernel and Marzipan Resource Allocator,
IDL4 is a very powerful and useful tool for our implementation.

L4Ka::Marzipan

Marzipan is a very native Resource Separator from L4Ka Team. It uses the pistachio
as its underlying hypervisor who manages the CPU resource for the clients. Its duty is
to distribute other main local resources (e.g. memory, interrupt) for the virtual machine
above it. Marzipan uses grub menu option for booting VMs. Each VM, which will
run on the Marzipan, should be declared as a multi-module in the startup menu of
grub. Marzipan analyzes the grub menu modules, recognizes the VM module and
allocates the resources for the VM. Marzipan uses Sever-client infrastructure to manage
the resource, it runs as a server atop pistachio. VMs used idl interfaces provided by
Marzipan to access the resources.

Marzipan is very simple. VM management functionality is missing in Marzipan.
The Virtual machine can only be allocated by using Grub Modules and be destroyed
when the raw machine stops. Actually it is not a good VMM for migration. But on
the other hand, because of its simplicity, it is a good VMM for analysis and experi-
mentation. Our approach’s implementation is VMM-related. That means for different
hypervisor maybe the In Place Migration ought to be re-implemented under the same
infrastructure. Implementing on a simple VMM reduces the effort to prove the correct-
ness of our approach.

2.3. VIRTUAL MACHINE ENVIRONMENTS 13

Unmodified Device Driver Reuse

“Unmodified Device Driver Reuse” (UDDR) discussed how an unmodified device can
be unmodified reused in a virtualization environment. The dependability will be im-
proved. This infrastructure uses a dedicated Guest OS to actually host one device
driver. This Guest OS is called DD/OS(Device Driver Operating System). It runs as a
server to serve the other clients requesting for a specialized device access. The client
OS uses a standard driver to access the device. But this access will be replaced by the
actual driver of the DD/OS. In other words “Unmodified Device Driver Reuse” project
para-virtualizes the device for the client OS.

Pre-virtualization emulates the standard device based on UDDR infrastructure for
client VMs. The real Device Driver, which provides service for others, is encapsulated
in a dedicated VM. This dedicated VM has the right to directly access the hardware,
read and write the register set. On the other hand, it provides high level interfaces for
the clients. These clients in pre-virtualization project are not the Guest OS themselves,
but the In Place VMM under the Guest OS. In Place VMM first captures the device
access platform API from Guest OS(as mentioned before, by using the afterburning).
Then it translates these access requests or operations into the Hypercall provided by
corresponding DD/OS. After DD/OS finishes the requests, In Place VMM will be in-
formed asynchronously. The Emulated Device states will also be updated.

One thing special in UDDR is that data exchange between server and client will
not traverse through the hypervisor. A memory region will be mapped to the DD/OS
so that server and client will share the same Memory pages. This increases the effi-
ciency but reduces isolability. Nevertheless DD/OS is only one of choices for the pre-
virtualization. Some para-virtualization technique provides already the Device Emu-
late mechanism, for example, Xen. In Place VMM can directly use the High level
interface from these para-virtualization environment to emulate the Platform API. In
other words, UDDR is a good choice for native hypervisor, but for some mature para-
virtualization environment, using their original high level interface is a better choice.

NomadBIOS

NomadicBIOS is a virtualization environment based on TU-Dresden’s Fiasco L4-microkernel
and hosts L4Linux as its guest OS. Pre-Copy and live migration concept was firstly
mentioned in this master thesis. Later the technique discussed in NomadBIOS, e.g.
Pre-Copy, is used in project “live migration on Xen”, too.

The main purpose of NomadBIOS is to introduce a migratable environment on
top of L4 microkernel. The state of Guest OS running in this environment can be
checkpointed, transported to and restarted on another instance of NomadBIOS. More
Important NomadBIOS achieved live migration with downtime less than one tenth of a
second. While its ability is still limited at that time, it provides a very interesting idea
for migration and new usage of hardware virtualization. From some respects, Nomad-
BIOS host environment looks like a very native para-virtualization environment. It is
due to memory allocation and task allocation for its guest OS. Because of this charac-
teristic, live migration mechanism can be simply transplanted on top of other mature
para-virtualization environment as the thing happened on Xen.

14 CHAPTER 2. BACKGROUND

2.3.2 Xen
In 2003, the concept of Xen was firstly brought up on SOSP conference by Univer-
sity of Cambridge. People could say that Xen has a successful para-virtualization
environment design for the most popular IA-32 architecture. Unlike previous para-
virtualization environment, such as Denali, Xen was designed not for a special sense
or special mini operating system but for hosting commodity OS operating system, e.g.
Linux, Windows XP. In contrast to its precursor it has not only much better at compati-
bility with popular OS but also with significant performance near that of bare hardware
architecture. Four principles run through the whole design of Xen [11]:

1. Support for unmodified application binaries is essential, or users will
not transition to Xen. Hence Xen must virtualize all architectural
features required by existing standard ABIs.

2. Supporting full multi-application operating systems is important, as
this allows complex server configurations to be virtualized within a
single guest OS instance.

3. Para virtualization is necessary to obtain high performance and strong
resource isolation on uncooperative machine architectures such as
x86.

4. Even on cooperative machine architecture, completely hiding the ef-
fects of resource virtualization from guest OSes risks both correct-
ness and performance.

Since Xen is a very popular para-virtualization solution in the world, it is used as
one of major experiment underlying VMMs in pre-virtualization project. Furthermore
live migration was once employed in Xen environment, either with VMM-driven mi-
gration’s management scheme or with self migration’s management scheme. It is also
useful for us to evaluate our In Place Migration approach by comparing it with the
existing example.

Chapter 3

Proposed Solution

3.1 Design Overview
Firstly, we must consider which core migration scheme we should choose in our vir-
tualization environment. Because live migration is a very good migration mechanism
with short service downtime and high migrating efficient, we choose live migration as
our core migration scheme. Furthermore since pre-virtualization technique is base on
variants of para-virtualization Hypervisor and there are some successful implementa-
tions of live migration in para-virtualization environment, e.g. live migration in Xen,
they could be good guide for our migration design and implementation.

Secondly, we need to consider the migration management scheme. Although VMM-
migration and self-migration scheme can both be implemented in pre-virtualization en-
vironment, we still try to design a new management scheme that uses the brand new
concept from pre-virtualizaton. In section 2.2.3 we discussed the possibility of using
In Place VMM to manage the Migration progress. The discussion told us that using
In Place VMM makes it possible to overcome the shortcomings of self migration as
well as to keep almost all of its advantages. We call this approach of live migration
in pre-virtualization environment “In Place Migration”, which uses In Place VMM to
manage the whole progress of migration.

It is clear that migrating an OS, no matter which core migration scheme is used, e.g.
live migration, pure stop-and-copy migration, how the migration information should
be collected and transferred is always the center problem that should be solved. For
In Place VMM collecting migration information is not very difficult. It emulates all
necessary platform interfaces for the Guest OS and records current states of virtual
CPU and virtual devices. The memory or cache modification can also be caught by
In Place VMM. In order to collect the information In Place VMM need only read the
corresponding virtual device register set or the memory pages, marshals them in the
migration data structure, and send to the destination. On the destination side, informa-
tion is firstly un-marshaled, and then corresponding virtual device registers or memory
pages are set or rewritten with this information by In Place VMM. After all neces-
sary information is transferred, In Place VMM on the destination is due to restart the
instruction execution of this migrated VM.

The whole migration progress can be described as follows:

15

16 CHAPTER 3. PROPOSED SOLUTION

Stage 1: starting migration Like self migration guest OS is responsible to start
the migration. pre-virtualization technique already uses a special exception number
to account some debug information. We also use this mechanism in our approach.
A special exception number is added to the exception emulation part in the In Place
VMM. Guest OS passes some migration parameter, e.g. target machine hostname or
IP address, and then triggers the special exception. In Place VMM gets the exception,
reads the corresponding parameter, and prepares for the migration.

Stage 2: finding a new container After “starting” phase, In Place VMM knows at
least who the target machine is. After it validates the machine information, it sends a
request to the target and asks the target to find or allocate a new container for migration.
New container allocation could be treated centralized or autonomically. We can ded-
icate a VM to deal with the VM allocation request. Or we can also broadcast request
in the virtual network domain on the target machine in order to ask all In Place VMM
layer, which VM is now in “zombie” state (see section 3.2), if we use the Zombie con-
cept in our virtualization environment. If new container cannot be allocated because
of lack of resource or no suitable Zombie machine can be found, the whole migration
progress will stop and source VM will be informed to continue running his service.
User will get a failed message from In Place VMM. Otherwise next stage comes.

Stage 3: transferring migration data After new container has been found, In Place
VMM on source machine starts the iterative Pre-Copy phase. Guest OS’ memory pages
will be transferred to target. On target side, new container’s In Place VMM rewrites its
memory by using the memory information from source machine.

Stage 4: stop-and-copy When the number of dirty pages becomes constant, Pre-
Copy phase stops. Now In Place VMM will collect the final state of Migratee. It
suspends the Guest OS, reads the Virtual CPU states, virtual device registers, and the
final dirty pages, packs them, and sends them to the target In Place VMM. Target In
Place VMM gets the data, rewrites its own virtual environment.

Stage 5: activating At last In Place VMM on the destination will start its virtual
machine and resume the service. If every thing works fine, target In Place VMM sends
a successful packet back to the source In Place VMM. Source In Place VMM can then
make itself into Zombie state or just inform underlying VMM to deallocate its resource.
If restarting VM fails on the destination, target In Place VMM will tell the source In
Place VMM this bad news. Source In Place VMM restarts its virtual machine again to
resume the interrupted service. A message will be showed to tell the user that migration
failed.

3.2 Virtual Machine State
In the classical operation system process and thread have their own state to represent
what they are doing so that the resources could be more effectively used and allocated
by the operating system. In the real world, there are also states for a bare hardware,
for example, running, shutdown and suspended. So the concept of state could be also
used in virtualization world. For example, we can give every virtual machine on the
hypervisor its own state. These states will not only concern with running, shutdown

3.3. COMMUNICATION BETWEEN IN PLACE VMMS 17

and suspended but also some state concepts borrowed from process and thread, for
example, Zombie. With these states the virtual machine may be more clearly and
easily managed. The resource could be more flexibly used, as well.

Zombie State

We introduce the zombie state of virtual machine in this paragraph. It will be used to
represent a migrated and suspended but not deallocated virtual machine in the virtu-
alization environment. Normally this virtual machine should be deallocated from the
Virtual Machine list by the hypervisor so that its resource can be reallocated for other
demand. But keeping this inactivated VM container in the virtual machine list may be
helpful in some senses. For example, we need migrate a virtual machine into a virtu-
alization environment where another virtual machine has just been moved out. Using
zombie state for the outgoing VM container is a good selection in this situation because
we can just pick up the existing container for the incoming VM and get rid of some
initialization cost for starting a new container. This is helpful to the In Place migration.
The whole migration progress by using a zombie VM could be even proceeded some-
times without any help from hypervisor, i.e. starting a new container, and the 2. stage
of migration can be directly handed up to the In Place VMM level. Another motivation
for using Zombie state is that some hypervisor doesn’t provide the functionality to dy-
namically start a virtual machine and deallocate them, for example, Marzipan. It may
not be very complex to add the management functionalities in the hypervisor. But with
the Zombie concept the changes in the hypervisor could be as small as possible.

3.3 Communication between In Place VMMs
We have discussed briefly about the whole migration progress in section 3.1. One
thing to be considered now is how to transfer the migration data during the migration.
Although we have chosen live migration for migrating system with minimal service
downtime, and In Place VMM as the manager, how live migration approach can be
implemented by using In Place VMM is still a question. In this section we will answer
the question and take a look at how the In Place VMM really communicated.

The most part of communication happens in the second stage. In this stage the In
Place VMM of migratee has been informed to start the migration progress and gotten
the target machine’s information, e.g. host name or IP address. Now the communi-
cation channel must be created between the source and destination. But we encounter
a problem. In Place VMM hasn’t any OS level firmware, e.g. network device driver
because it emulates only the platform interface for the Guest OS. In another word it
seems that we cannot get the high level communication layer, e.g. TCP layer, as we
can get from an operating system. Two ways have been thought about to solve this
problem.

In Place Device Driver The first solution is based on the front-end of In Place VMM.
In this solution we simply build a Device Driver for the In Place VMM just like operat-
ing system does on the bare machine. By doing so we can use an existing conventional
device driver rather than trying to add an additional network device handler in the In
Place VMM layer. This can definitely reduce the engineer effort.

Because of the transparent property of In Place VMM, This driver is only visible for
its In Place VMM. So we call it In Place Device Driver. Grub is a very useful example

18 CHAPTER 3. PROPOSED SOLUTION

for this solution, because it also builds a device driver without any help from operating
system. Furthermore in the virtualization environment, we can standardize the network
device that be emulated. For example, pre-virtualization use dp83820 as its standard
network device. This advantage eliminates the additional cost for driver selection. The
only driver we should build is the driver for dp83820. Additionally in order to save
the critical resource of In Place VMM we decide to choose UDP stack with some
confirmation mechanism rather than to implement a TCP stack. Nevertheless planting
a device driver in the In Place VMM is still very expensive.

Unmodified Device Driver Reuse Another way is using idea from the Project “Un-
modified Device Driver reuse”. With help from this project there will be some high-
level interfaces that In Place VMM can use. To transfer packets In Place VMM will
firstly map the packets to a producer/consumer ring. After the packets have been
queued, In Place VMM informs the DD/OS by using the interface from DD/OS. After
DD/OS being informed, it gets the data directly from the address space of In Place
VMM and transfers them to the destination. In the situation of receiving the packets,
DD/OS filters the packets for different In Place VMM, sends them to the corresponding
producer/consumer ring and informs the In Place VMM to retrieve them. (See figure
3.1) By using “Unmodified Device Driver Reuse” infrastructure it is simpler for us
to construct the UDP communication channel between two In Place VMMs without
additional device driver. Problem of this solution also exists, since “Unmodified De-
vice Driver Reuse” technique requires the modification of hypervisor. For example, we
need re-implementation the “Unmodified Device Driver Reuse” in the Xen virtualiza-
tion environment. But if “Unmodified Device Driver Reuse” is a standard part of the
pre-virtualization technique, it won’t be a big matter for our migration approach.

Figure 3.1: Communication with “Unmodified Device Driver Reuse” technique

After we got the way to create the communication channel, the source In Place VMM
will try to ask the target machine for an empty container. According to the different
designs this will be implemented in different ways. If the target machine has a Dedi-
cated VM for building and finding an empty container, for example Domain0 in Xen,

3.4. MEMORY MIGRATION 19

the request will be directly forwards to the Dedicated VM who checks his VM list and
looks up firstly a Zombie VM. If a Zombie VM has been found, the Dedicated VM
sends the necessary information of the Zombie machine back to the requester, at least
the IP address of empty container’s In Place VMM. Otherwise dedicated VM creates a
new container as empty container. After the source In Place VMM received the empty
container’s information, a communication channel will be tried to create between the
source In Place VMM and the empty container’s In Place VMM. After successfully
creating this communication channel the subsequent migration stages will be contin-
ued progressed. Another way for asking the empty container is directly asking for a
zombie machine if there is no centralized VM Manager, e.g. in marzipan. The source
machine just sends a request to the target machine and this request will be broadcasted
in the target machine’s virtual network. If any In Place VMM of the Zombie machine
receives the request and considers that it is fit to be an empty container, it will send
a reply to the source In Place VMM. After that the communication channel will be
created and used as above. One weakness of the second implementation is that if there
is no Zombie machine on the target machine, the migration cannot work.

3.4 Memory Migration
Without correct Memory image, a suspended Guest OS cannot be restarted correctly.
Thus Memory Migration is the main point in many migration discussions.

In contrast to the small sum of virtual machine state (register, flags), the amount of
memory is really big. In recent 256M memory is the lowest recommendable standard
for most commercial operating system. 512M or more is also common in real life. On
the other hand the memory is also one of the frequently changed parts in computer
system. One round transportation is not sufficient for migrating an operating system
that is still running during the migration, since the operating system alters its own
memory pages rapidly. Thus iterated memory copy is required. Pre-Copy technique
from live migration fills these requirements, so we use it in our In Place Migration
approach.

Migrating such a large amount of memory from one machine to another will occupy
a lot of bandwidth of network and reduce other services response time in the same
network environment. Pre-Copy technique also mentioned this problem and tried to
solve it with idea “Writable Working Sets”. The first Pre-Copy round will copy all
memory of source Guest OS to the destination as quickly as possible. In subsequent
iteration copy only the dirty pages need be copied. This set of dirty pages is called
“Writable Working Set”.

For getting the Writable Working Set, We need to be aware of the activity of mem-
ory. Page table is one of the best choices for detecting the dirty pages. If the page table
provides the dirty page bit, the dirty pages can be simply detected by checking the dirty
bit. For setting the dirty bit of a page, every page entry will be set to read only in the
beginning of migration. Hence a Page Write operation will cause an exception in the
hypervisor. Hypervisor can catch this exception and check if the corresponding page
is really writable. If it is writable, the dirty bit of this page will be set and the write
operation will be proceeded as normal. When the Pre-Copy round comes, Migration
Monitor checks all page tables and transfers the pages whose dirty bit is set. This way
of determining dirty pages can be implemented in the pre-virtualization environment,
because In Place VMM emulates also the page table operation instruction and main-
tains the Guest OS’s page tables with its own page table structure. We can catch the

20 CHAPTER 3. PROPOSED SOLUTION

page table operation, sets the dirty bit in the page table structure of the In Place VMM,
and use them to finish our writable working set analysis.

One possible drawback of this method is that Guest OS could not use the Page
Table during the copy phase for the persistence of page state. Furthermore the loading
and searching the Page Table bring more overheads. So it is meaningful to borrow the
idea of bitmap from the paper [2]. Every bit in the bitmap represents one page in the
memory. The bit will be set when corresponding page is modified. The copy round
of Pre-Copy find the dirty pages by looking up in the bitmap. 6K memory should
be allocated for a 256M memory region in order to maintain the page modification
information. This is not a big problem when the migration is implemented by using
VMM-Driven strategy. But in the In Place VMM resource is very critical. 6K may be
a little big for In Place VMM. Besides searching the bitmap and interpreting the bit to
page address are also significant overheads for VM.

Since in every round of Pre-Copy, except the first, only the dirty pages should be
transported to the destination, we can also transport the pages when they are modified.
This implementation doesn’t require any external data structure except one dirty page
counter. The dirty page counter tells the migration manager if the number of dirty page
number is constant. If the number doesn’t change rapidly any longer, the Pre-Copy will
stopped and final stop-and-copy phase and activating phase finish the whole migration.
But this approach shows us another problem. The same page may be transported many
times between two Pre-Copy rounds. This affects directly the network performance.
Otherwise, the additional transportation of the same page is unnecessary. It is enough
for migration to transport only the final changed content of the dirty pages in every
Pre-Copy round.

After all we choose the idea of bitmap as our dirty page recording policy, because it
has fewer problems than other methods. The problem of critical resource was also tried
to be solved by borrowing the pages from guest OS. After the first round of Pre-Copy,
we try to find some pages of guest OS, those will potentially be no more changed,
map these pages into the address space of In Place VMM, and allocate them for the
bitmap who records the dirty pages. Although this seems to be simple to solve the
critical resource problem, we still realized that we should be careful when we use the
pages from guest OS. If the guest OS suddenly needs these pages again, we should
not give the allocated pages back, but allocate some new pages to the guest OS. For
these purpose, the pages, which we map to the address space of In Place VMM, will be
labeled as protected. Whenever the guest OS try to use these pages again, a page fault
exception happens and new page is allocated to the guest OS. One more thing should
be done is to request the target machine to transfer the original data of these pages back
and the source In Place VMM rewrites them in the corresponding pages.

3.5 Local Resource Migration
Memory can be simply copied to the new host, but some local resource cannot be so
easily migrated. For example, local storage is too big to be copied. Live migration ar-
gues two ways to solve the problem of migrating disk storage. The first one is to use the
network-attached storage(NAS) device instead of local device. By using this method
migrating local storage is eliminated. Furthermore NAS can be simply administrated
centrally, has widespread vendor support, and reduced failure rate. With this solution
the NAS device will be unattached from migratee in the first stage of migration and re-
attached to the destination in the final stop-and-copy stage. Although it is also possible

3.5. LOCAL RESOURCE MIGRATION 21

to use RAID-5 and iSCSI functionality to mirror the disk for migration, this method
isn’t mature, yet. During the design progress we also mentioned other possible solu-
tions. One of them is using RAM disk. This solution is only suitable for system that
provides tiny service. For some small service 100M space may be sufficient. So using
a ram disk for the system is possible. Otherwise ram disk can be migrated as a part of
memory. Because disk operation is not so often as memory operation, the most part of
ram disk needs to be transferred only once in the first Pre-Copy round. Furthermore we
can also combine the NAS and ram disk approach. We can use the ram disk for quickly
restarting the Guest OS and recording the system level changes, since the OS kernel is
relative small and is the most important part of filesystem during migration. The other
files or data changes of service can be recorded in the NAS filesystem. Another way
is to pre-migrate the disk storage. That means that we can copy the whole disk pages
from source to the target before migrating the OS instance. This pre-migrating phase
may take more than one hour because the disk capability normally is very huge. But
during this phase the source server doesn’t need to degrade performance. After that
the disk migration will be similar with the memory migration and use the Pre-Copy
mechanism. This way is useful for the migration, which allows relative long time to
preparing for the migration, e.g. server maintenance.

Another important local resource, which should be migrated, is network device.
After the migration all protocol state (e.g. TCP PCBs) and VM’s IP address should be
kept. Main problem is the MAC-IP combination. Packets will use this combination to
find the final destination. But after the migration, this combination will be broken. In
pre-virtualization every VM gets its private MAC Address base on the official MAC
address of the host machine, half of the MAC address will be used for private use,
so that nice property of decentralized management of virtual MAC addresses can be
achieved. Since the migration target machine and migration source machine have dif-
ferent official MAC address, the new VM’s MAC address on the target machine is also
different from the MAC address of migratee. Hence after migration new MAC-IP must
be announced so that packets for the migratee can find its new destination. In the LAN,
an ARP packet will be broadcasted to the other machines. This can inform the others
the new MAC-IP combination [2].

22 CHAPTER 3. PROPOSED SOLUTION

Chapter 4

Implementation

We didn’t implement complete In Place Migration in this work because current version
of pre-virtualization is only an experimental version, and some functionality in this
environment is still under the development, e.g. pre-virtualization supporting for Xen.
Correspondingly L4 pistachio pre-virtualization environment is more mature than the
other, so we chose it as our first experiment environment. All changes only concern
In Place VMM layer. We didn’t change any thing currently in the Marzipan Resource
Manager and Pistachio hypervisor. Moreover we used Linux as the guest OS running
on top of the In Place VMM.

4.1 Building The Migration Monitor
The pistachio In Place VMM consists of three L4-threads, an exception monitor thread,
an irq monitor thread, and the main VM thread. Exception monitor thread is used to
deal with the exceptions that happen in the In Place VMM. Irq monitor is used to treat
the irq event from the Guest OS. And Guest OS binary will be planted in the VM
thread. Similarly, we can construct the migration monitor in the In Place VMM (See
figure 4.1). We used the interfaces provided by pistachio In Place VMM to allocate and
start the migration thread.

Figure 4.1: In Place VMM with Migration Monitor Unit

The main responsibilities of migration monitor are to start the migration, copy the

23

24 CHAPTER 4. IMPLEMENTATION

memory pages, transfer machine final state, suspend migratee on the source side, and
receive the memory pages, reconstruct VM running environment, restart service on the
destination side. These works will be triggered by L4 IPC from different sources. We
simply used an infinitive loop to catch and deal with all IPC events.

4.2 Starting The Migration
Pistachio In Place VMM catches every interrupt instruction and passes them from the
back-end part to the front-end part. Then "backend_handle_user_exception"
deals with the exception and jumps into the corresponding exception handler according
to the exception number. Besides the ordinary exceptions, e.g. divided by zero, we can
also insert our own special exception number into it in order to treat some special situa-
tions. For example, pre-virtualization uses 0x69 and 0x70 to dump the counter number
and profile some instructions. So we decided to use 0x68 as special exception number
for our approach. If the Guest OS uses "int0x68" instruction, this exception will be
caught by VM main thread. After that VM main thread will send a L4 IPC to the mi-
gration monitor for starting the migration. But to start the migration we need not only
trigger the migration monitor but also pass some initial migration parameter to the mon-
itor, e.g. hostname of destination. So it is better to create a module in Linux to manage
these things. The module provides an interface for user, e.g. start_migration().
It can take one parameter, which is a point referencing to a ’struct’ of migration initial
information. User can fill the ’struct’ with Destination IP, Destination hostname and
some flags for migration. Migration Module gets and validates this information, and
passes them to the place where migration monitor can read them. By using the module
concept we can control the migration better and avoid some attacks. For example, we
can also require the user authentication information in the initial struct for the access
control.

4.3 Suspending and Restarting the Machine
Before we finish the final migration stage, we need to do two things. Firstly we suspend
the VM and secondly we must get all machine states. The latter task is relatively sim-
ple, because the emulation part of In Place VMM has already provided data structure
for the virtual CPU and virtual devices. What we need to do is to save the necessary
information from these structures after the VM has been suspended.

Suspending the VM is more complex. Pistachio In Place VMM maps every thread
of Guest OS into a L4-thread for better performance. In other words Pistachio In Place
VMM catches all threads or tasks creation event in Guest OS and actually creates them
by using the pistachio threads maintenance interface. So we must firstly suspend the
running threads one by one before we suspend the main VM thread.

For suspending the threads we need to know how the In Place VMM manages the
threads of Guest OS first. Pistachio In Place VMM provides some data structure to
manage the thread and task information of Guest OS.

task manager t It is used to manage all tasks’ information. When address space is
going to be changed from one to another, Pistachio In Place VMM uses this structure
to find the corresponding task structure and to get the page directory entry address.

4.4. MEMORY COPY 25

task info t This structure records the page directory’s entry address of every task in
Guest OS. We can say that it holds the address space information for the task. Further-
more it manages the utcb space for all threads belonging to the same task. At the same
time it holds the main thread id of the task.

thread manager t This manages all threads created in the Guest OS and implements
the algorithms to find the thread information data structure according to the L4 thread
id.

thread info t This structure temporarily records the thread environment information.
This information is used to feed back some Guest OS requirement. For example pis-
tachio In Place VMM uses it to fill up the initial environment of a new created thread
in the Guest OS. Exception also uses these temporary information to jump back it
own running routine. Because of these characteristics, we can also get the running
thread information by triggering a forced exception and let the In Place VMM get
the current environment information of the running threads. Pistachio In Place VMM
uses these states to label the threads so that thread event can be treated correctly.
The structure defines some different states of thread for different purposes. We add
state_migration for our migration approach.

We found all existing threads by searching the threads array in thread_manager_t,
set special IP and SP to every thread by using the L4 interface and changed the thread’s
state in thread_info_t structure to state_migration. When the thread runs
with the special IP and SP, an exception will happen. This exception will end up
with “iret” instruction, and give out the correct running environment information in
the Guest OS environment. After getting thread’s corresponding thread_info_t
structure, handler knows that this thread is in the state of migration, then saves its
register states, and transfers them to the destination.

To restart the suspended machine on the destination, we did the reverse operation
to the suspending machine. Firstly the destination In Place VMM rewrites the structure
of virtual devices and virtual CPU by using the received migration packages. Then for
reconstructing the running environment on the destination, the threads should be recon-
structed on the destination machine. At the beginning there is only one main thread,
from the perspective of In Place VMM, running in the virtualization environment. But
from the perspective of Guest OS there are several services running in its environment.
Every time when a not really existing thread is going to run, an exception will happen.
In Place VMM catches this exception, find migration information for this thread, cre-
ates a corresponding new L4-thread and starts this thread with the register data from
migration information.

4.4 Memory Copy
Reading Pages

To read the memory pages of Migratee we used the mapping concept of pistachio. We
mapped the memory pages, which should be copied to the destination, “read only” to
the In Place VMM. After that they would be sent by Migration Monitor through the
communication channel to the destination In Place VMM.

26 CHAPTER 4. IMPLEMENTATION

Restricted Copy

In the first Pre-Copy round all of the migratee’s memory should be copied to the des-
tination. Because In Place VMM lives with the Guest OS in the same virtual machine
memory, the copy of memory should exclude the part of memory that In Place VMM
occupied. We can get the memory range of In Place VMM from some useful interfaces
provided by In Place VMM, e.g. vcpu’s get wedget paddr(), and skip this block.

Dirty Page Detection

After the first round, only dirty pages need to be transferred to the destination. In or-
der to get the dirty pages we tried to monitor the page operation during the migration.
Pistachio In Place VMM uses the hardware page table for monitoring the page table
operation. Every memory write operation can cause the setting of dirty bit in corre-
sponding hardware page entry. Moreover every time when the address space changes,
hardware page table will also be flushed. We use these two characteristics of hardware
page table and an additional bitmap for our dirty page detection purpose. When the
page table is flushed, the dirty bit of every entry’s dirty bit needs to be checked by
using L4_Unmap() so that the dirty pages could be recorded in the bitmap. In every
iterative round of Pre-Copy, the bitmap is used to find all dirtied pages and then reset
to the initial state(every bit in the bitmap will be reset to 0). In the last stop-and-copy
stage, both loaded page table and bitmap should be checked for dirty pages, because at
that time the dirty pages in the hardware page table are still not recorded in the bitmap.

Chapter 5

Conclusion

This thesis introduced the existing primary techniques of hardware virtualization and
OS migration, compared them and discussed their advantages and shortcomings. After
exploration of these areas we elaborated a migration approach for the pre-virtualization
environment. This approach is based on the idea from self migration and uses In Place
VMM Unit for implementation.

Main purpose of this approach is to overcome the main shortcoming of self mi-
gration as well as keep its advantages. The advantages of self migration, including
“security”, “accounting and performance”, “flexibility” and “portability”, are almost
be kept in our approach. Furthermore, our approach doesn’t need to add many mod-
ifications to the guest OS as self migration should do. We simply provide a special
exception for guest OS to starting migration rather than writing a lot of OS-dependent
codes in the operation system environment. This avoids the high OS-dependency of
self migration. Moreover our approach can really save the final VM states, while self
migration cannot achieve this.

Due to the constraints in the access of resources, we were only able to implement
part of the research design. However, this study managed to demonstrate the feasibility
and rationality of the idea.

Future work will focus on standardizing the interfaces of the In Place VMM in
order to achieve the flexibility of self-migration. Otherwise the “Unmodified Device
Driver Reuse” project will be reintegrated into pre-virtualization environment so that
In Place VMM communication can be experimented and achieved.

27

28 CHAPTER 5. CONCLUSION

Bibliography

[1] Marianne Shaw Andrew Whitaker and Steven D. Gribble. Scale and performance
in the denali isolation kernel. In Proceedings of the 5th Symposium on Operating
System Design and Implementation, Boston, MA, December 2002.

[2] Steven Hand Christopher Clark, Keir Fraser and etc. Live migration of virtual
machines. In Proceedings of USENIX NSDI 2005, Boston USA, 2005.

[3] Scott Devine Edouard Bugnion and Mendel Rosenblum. Disco: Running com-
modity operating systems on scalable multiprocessors. In Proceedings of the 16th
Symposium on Operating System Principles, Saint-Malo, France, October 1997.

[4] R. P. Goldberg. Survey of virtual machine research. Computer, 1974.

[5] System Architecture Group. The l4ka::pistachio microkernel white paper. Tech-
nical report, Fakultät für Informatik, Universität Karlsruhe (TH), May 2003.

[6] J. G. Hansen and E. Jul. Self-migration of operating systems. In Proceedings of
the 11th ACM SIGOPS European Workshop, September 2004.

[7] Jacob G. Hansen and Asger K. Henriksen. Nomadic operating systems. Master’s
thesis, Dept. of Computer Science, University of Copenhagen, Denmark, 2002.

[8] Joshua LeVasseur, Volkmar Uhlig, Matthew Chapman, Peter Chubb, Ben Leslie,
and Gernot Heiser. Pre-virtualization: Slashing the cost of virtualization. Techni-
cal Report 2005-30, Fakultät für Informatik, Universität Karlsruhe (TH), Novem-
ber 2005.

[9] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Unmodified de-
vice driver reuse and improved system dependability via virtual machines. In
Proceedings of the 6th Symposium on Operating Systems Design and Implemen-
tation, San Francisco, CA, December 2004.

[10] T. Lindholm and F.Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1999.

[11] Keir Fraser Paul Barham, Boris Dragovic and etc. Xen and the art of virtual-
ization. In Proceedings of the 19th Symposium on Operating System Principles,
October 19–October 22 2003.

[12] Gerald J. Popek and R. P. Goldberg. Formal requirements for virtualizable third
generation architectures. Communications of the ACM, 17, 1974.

29

30 BIBLIOGRAPHY

[13] Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow, Monica S.
Lam, and Mendel Rosenblum. Optimizing the migration of virtual computers. In
Proceedings of the 5th Symposium on Operating System Design and Implementa-
tion, Boston, MA, December 2002.

[14] James E. Smith and Ravi Nair. The architecture of vritual machines. Computer,
2005.

