Universitat Karlsruhe (TH)
Institut for
Betriebs- und Dialogsysteme

Lehrstuhl Systemarchitektur

Porting L4Ka::Pistachio to Mips32

Thomas Blattmann

Studienarbeit

Verantwortlicher Betreuer: Prof. Dr. Frank Bellosa
Betreuende Mitarbeiter: Dipl.-Inf. Uwe Dannowski

31. Januar 2006

Hiermit erklare ich, die vorliegende Arbeit selbsténdig verfafit und keine anderen als die
angegebenen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only cited sources have been
used.

Karlsruhe, den 31. Januar 2006

Thomas Blattmann

Contents
1 Introduction

2 Background

2.1 The Mips32-4K Processor Core family
2.2 Register Set L
2.3 Memory Management
2.3.1 Virtual Memory Segments
2.3.2 Translation Lookaside Buffer
233 Cache o
2.3.4 Exception Handling
2.4 Simics Simulator oL

3 Major Design Decisions

3.1 Memory Management
3.1.1 Physical Memory Layout
3.1.2 Virtual Memory Layout
3.1.3 I/O-Ports
3.1.4 AddressSpaces
3.1.5 Translation Lookaside Buffer
3.1.6 Mapping Database

3.2 Thread Control Blocks

3.3 Resource Management,

3.4 Exception Handling
3.4.1 Interruptso
3.4.2 TLB-miss exception
3.4.3 Breakpoints Lo

35 L4 AP . . . oo
3.5.1 Thread Control Registers
3.5.2 Exception Messages,
3.5.3 System Calls,

4 Implementation

4.1 Compiler and ABT

4.2 System Calls
4.2.1 Invocationinusermode
4.2.2 Handling in kernel mode
4.2.3 Return from Syscall,

4.3 Context Switch and Notifications

4.4 Restrictionso

5 Evaluation

6 Conclusion
6.1 Suggestions for future work

A Systemcalls 27

A.1 Kernellnterface e 27
A2 Schedule 27
A.3 ExchangeRegisters 28
A4 SpaceControl 28
A5 ThreadSwitcho 29
A6 Clock e 29
A7 Unmap. 29
A8 TPC 30
A9 ThreadControl 30

1 Introduction

A microkernel is a type of kernel which provides a very simple abstraction over
the hardware. Only a minimal set of security relevant services such as thread
management, address spaces and interprocess communication are implemented.
Other services that are commonly offered by monolithic kernels, including net-
working, device drivers and pagers are implemented in user-space programs and
are not part of the kernel itself. Microkernels aim at extracting as much policy
out of the kernel as possible in order to make them suitable for different fields
of applications and to keep them easily maintainable.

The L4Ka::Pistachio is the latest L4 Microkernel developed by the System
Architecture Group at the University of Karlsruhe. The L4 kernel was originally
designed and implemented by Jochen Liedtke (see [4] and [5]) and has become
popular due to its outstanding IPC performance. Most architecture independent
parts are written in C++ and ports for altogether eight architectures exist.

This work describes the major design decisions that were made when porting
L4 to the Mips32 architecture. It also gives some illustrative code extractions.
The last two chapters show the result of an IPC performance test and describe
implementation alternatives.

The existing Mips64 port by Carl van Schaik served as a template for most
design decisions. Some parts were simply adopted and adjusted accordingly. In
general, it was tried to keep things as simple as possible while trying to get the
most basic things run. Later optimizations (as e.g. described in Section 6) can
still be done but were not part of this thesis.

The port made is for a Mips32-4Kc single processor system to which I’ll
therefore confine myself in the remainder of this document unless it is noted
otherwise.

2 Background

This section gives a brief overview of the Mips32-4K architecture, including the
Mips32-4Kc processor for which the port was made. Further Simics, a system
level instruction set simulator on which all testing and development was done,
is introduced.

2.1 The Mips32-4K Processor Core family

The Mips32-4K processor cores are high-performance, low-power, 32-bit RISC
cores intended for custom system-on-chip applications. Although the cores im-
plement a 32-bit architecture, many features (e.g. the MMU) are modeled after
the ones that can be found in the 64-bit R4000 family. The 4K family has
three members. The 4Kc contains a fully associative Translation Lookaside
Buffer (TLB) based MMU and a pipelined multiply-divide unit (MDU). The
TLB itself consists of three address translation buffers: a 16 dual-entry, fully
associative Joint TLB (JTLB), a 3-entry instruction micro TLB (ITLB), and a

3-entry data micro TLB (DTLB). Both micro TLBs are hardware managed and
inaccessible to the system programmer. The JTLB, however, is controlled and
refilled solely by system software.

The 4Km and 4Kp processors use a fixed mapping mechanism instead of a
TLB-based MMU, which performs a simple translation to get the physical from
the virtual address. Unmapped segments are treated identically by all cores
and are described in [2], Chapter 3. The simple translation takes part in the
lower 2 GB of the virtual address space. For more details refer to [1], Chapter
3, "Memory Management”. While the 4Km processor uses a pipelined MDU as
in the 4Kc core, the 4Kp processor has a smaller non-pipelined MDU.

Optional data and instruction caches can be flexibly configured at proces-
sor built time for various sizes, organizations and set-associativities. A System
Control Coprocessor (CPO0) is responsible for virtual-to-physical address trans-
lation, cache protocols, the exception control system, operating mode selection,
and the enabling/disabling of interrupts. It also provides configuration infor-
mation such as cache size, TLB size and associativity. CPO is part of each Mips
CPU even though its name might suggest that it is not.

All cores execute the Mips32 instruction set architecture (ISA) containing all
Mips II instructions as well as special multiply-accumulate, conditional move,
prefetch, wait or zero/one detect instructions.

2.2 Register Set

The processor has 32 user accessible general-purpose registers. The hardware
itself makes few rules, but conventions on the usage of the different registers
exist. The register called zero is hard wired to zero. at is reserved for the
assembler to translate pseudo instructions into actual instructions or sequences
of instructions. It is commonly not used by the programmer. v0 and v! are
used to return values from functions. a0 to a8 contain the first four parameters
that are passed to a function and pointers to them, respectively. t0 to t9 are for
general purpose. They are not preserved through function calls. s0 to s8 are to
be saved and restored by the callee so that the register content is the same as
before when returning from a function call. fp is intended to be a frame pointer,
gp a global pointer which the compiler can use to point into a static memory
region for a faster (gp-relative) access. sp holds the current stack pointer and
ra the return address from a function call. k0 and kI are both reserved for the
operating system. Their content can change any time to arbitrary values from
a user application’s point of view.

Coprocessor0 has 32 registers to be used by the operating system. That
register set is only accessible in kernel mode.

General purpose registers are referred to as GP[name] hereafter. CP0[name/bits]
denotes a Coprocessor(Q register in which the optional ’bits’ names a bitfield
within a register.

(OXFFFFFFFF
KSEG3 (512MB)

0xE0000000
[OXDFFFFFFF

KSEG2 (512MB)
l0xC0000000
OXBFFFFFFF

KSEG1 (512MB)
0xA0000000
(OXOFFFFFFF

KSEGO (512MB)
0x80000000

OXTFFFFFFE

KUSEG (2GB) KUSEG (2GB)

Virtual Memory Segments in kernel mode Virtual Memory Segments in user mode

Figure 1: Virtual Memory Segments

2.3 Memory Management
2.3.1 Virtual Memory Segments

The 4 Gigabyte address space is divided into five areas as can be seen in Figure
1.

kuseg The low 2 Gigabyte, denoted kuseg, are addresses permitted in user
mode and kernel mode. The system maps all user mode references to
kuseg through the TLB. Data and instructions in this segment can be
cached once the cache is initialized. In kernel mode, the processor can
be set up to map kuseg’s virtual addresses directly to the same physical
addresses, or to use the TLB for translation.

kseg0 The 512MB of virtual memory in kseg0 are translated contiguously into
the low 512MB of physical memory. This region is accessed through the
cache. The main parts of the kernel are commonly loaded and executed
in this segment.

ksegl The next 512MB make up ksegl. They give a duplicate mapping of
the first 512MB of physical memory. Accessing ksegl will not involve the
cache and is thus the only chunk of memory map that is guaranteed to
behave properly from system reset. It is therefore used to access the initial
program ROM.

kseg2/kseg3 Being in kernel mode, software has access to the entire address
space including kseg2 and kseg3 with 512MB each. They are both trans-
lated through the TLB. The mapping of kseg3 changes if Debug mode is
entered. In Debug mode, a special debug segment is mapped into kseg3.

2.3.2 Translation Lookaside Buffer

The 4Kc core implements a 16 dual-entry, fully associative Joint TLB that maps
32 virtual pages. It is organized as pairs of even and odd entries to minimize the
overall size. Each pair is tagged by an 8-bit Address Space Identifier (ASID) and
translates two consecutive pages that can range from 4KB to 16MB. The ASID
is compared to CPO[entryhi/asid] each time a translation proceeds. Entries
whose ASID tag does not match CPO[entryhi/asid] are ignored. A global bit
can be set for each double entry. If set, the ASID field is ignored on lookups
and the pages are global to all address spaces.

Apart from a CPO register that holds the current ASID, the TLB makes up
the whole MMU hardware. The Operating System uses the TLB as a cache to a
memory-resident page table. Thus, no particular format of page table is needed.
When presented with an address it can’t translate, the TLB triggers a special
exception to invoke a software routine. It is then up to system software to put
the faulting address into the TLB or to handle the exception appropriately.

2.3.3 Cache

A 4Kc processor supports separate instruction and data caches, which allows
instruction and data references to proceed simultaneously. Both caches are
virtually indexed and physically tagged. This way, cache access and virtual-to-
physical address translation can be done in parallel. As the physical address is
used to tag each cache line, flushing the cache on a context switch should not
be necessary in most cases. Each cache line is completed with valid bits for each
data word cached as well as a locked bit to prevent cached data from getting
replaced.

The write-through strategy eases things with respect to cache programming.
Once the cache is initialized only little management effort should be necessary.
The programmer has to be aware of possible timing delays for I/O register access
caused by a write buffer. Further, the system software has to handle cache
coherency issues within the memory hierarchy that can affect an additional
memory master (e.g. a DMA controller). The OS’s memory management must
also avoid cache aliases that can arise when the same physical address may be
described by different virtual addresses of different threads.

2.3.4 Exception Handling

The processors receive exceptions from a number of sources, including TLB
misses, arithmetic overflows, I/O interrupts, and system calls. Whenever the
CPU detects an exception, the normal sequence of instructions is suspended and
the processor enters kernel mode, disables interrupts and jumps to a software
exception handler. Table 1 shows the most common exceptions along with their
corresponding vectors. For a detailed description refer to [2] and [3].

On an exception, CPO[epc| contains the instruction pointer (IP) that points
to the instruction where execution should be resumed after the exception. CP0[cause]
is set up so that software can see the reason for the exception. On a TLB-miss

10

EXCEPTION | VECTOR |

Reset, Soft Reset, NMI | 0xbfc00000
TLB miss exception 0x80000000
TLB invalid exception | 0x80000180
Interrupts 0x80000180
Breakpoints 0x80000180
All other exceptions 0x80000180

Table 1: Exception Vectors

exception CPO[badvaddr] contains the faulting address. Other than that no
registers are saved by hardware.

Mips exceptions are precise, meaning that all instructions preceding the
exception victim in instruction sequence are completed; any work done on the
victim and on any subsequent instructions (due to the pipeline) has no side
effects the software needs to worry about.

2.4 Simics Simulator

Simics is a system level instruction set simulator supporting various target sys-
tems. It models the Mips32-4Kc processor with a limited set of devices from
the Mips Malta development board. All development and testing has been done
on version 2.2.19. Earlier versions contain bugs (e.g. movez instruction) and
prevent the kernel from executing properly.

Unfortunately, there are a few limitations and features not yet supported by
Simics/Mips. I state the ones with an immediate impact on what was imple-
mented (confer to Section 4.4, Restrictions). Other limitations can be found in

[6].

e There are a few instructions that have not yet been implemented. Other
instructions are simply 'nops’ and doing nothing. One of them is the
‘cache’ instruction, which is used for cache management. Another one is
'wait’, used to enter standby mode.

e As no cache model has been connected to Simics/Mips, reads and writes
to the corresponding control registers in CP0 have no effect at all.

e The simulator supports little-endian mode only.

e Simics/Mips doesn’t consider instruction hazards caused by the pipeline.
A real Mips processor would need nops following some instructions to

11

0x00000000 | 128MB of RAM are mapped at address zero

0x18000070 | Dallas Semiconductor DS12887 real-time clock (CMOS clock)

0x180003f8 | National Semiconductor PC16550 serial port controller (UART)

0x1f000000 | Malta board specific LCD display

0x18000000 | Intel i8259 interrupt controller

Table 2: Memory mapped I/O-devices

keep the pipeline happy. As a consequence, execution on Simics works
but might fail on real Mips hardware

e No boot loader is available. Instead the kernel is loaded directly into
Simics and no boot information is provided.

e It does not implement a floating-point unit.

As is common on the Mips architecture, all IO devices are memory mapped.
Table 2 shows where in physical memory what devices are mapped in the Simics
configuration that was used.

3 Major Design Decisions

This section describes the major design decisions made when porting L4 to the
Mips32 architecture. It first gives details on memory management, continues
with Thread Control Blocks, Resource Management and the exception handling
mechanism and is closed with a description of the L4 API. The Mips64 port
served as a template for many design decisions. Hence some design was simply
adopted and adjusted accordingly.

3.1 Memory Management
3.1.1 Physical Memory Layout

The kernel ELF binary spans around 190KB and is loaded into memory starting
at physical address 0x400. The area below contains entry points for exception
handlers. The following 16MB are reserved for use by the kernel memory allo-
cator. All remaining physical memory is registered in the KIP and made user
accessible.

12

3.1.2 Virtual Memory Layout

The area from 0x00000000 to 0x80000000 (lower 2GB) is available for user
applications. The whole kernel is linked into ksegl. kseg0 remains unused as
result of the lacking cache simulation. The lower 8MB of kseg2 are reserved to
establish a temporary mapping in an address space (communication window) on
a Long IPC (cf. to [4]). The remainder of kseg2 and kseg3 contain the virtual
array of Thread Control Blocks (see Section 3.2).

3.1.3 I/O-Ports

The physical memory area containing I/O-devices can be shared among various
address spaces. It is put into the KIP with memory descriptors set to ’shared’.

3.1.4 Address Spaces

Each address space contains a page directory and an Address Space Identifier
(ASID). The page table is organized hierarchically. One page directory per
address space and up to 1024 pages can map up to 4GB virtual address space.
For user address spaces the page tables need to be able to map the first 2GB
and a communication window while kseg0/1 and most parts of kseg2/3 remain
unused. Hence, parts of the page table that are not needed are used to store
some address space management related data. The kernel address space on
the other hand only has to map the TCB area. The lower half is unused.

There are no restrictions on how the page tables are organized in memory as
the TLB is software loaded on a miss. Nevertheless, data in the page tables are
stored so that they can be written into the TLB without further conversions.
Page tables are allocated on demand. Each entry has 32bits. The provided
Linear Page Table Walker was used for virtual-to-physical address translation
as well as FlexPage mapping and unmapping. It was set up accordingly.

The processor uses an Address Space Identifier to keep TLB entries from dif-
ferent address spaces apart. Because the architecture supports only 512 ASIDs,
an ASID engine that had already been used in some other L4 ports was taken.
Whenever a thread in a certain address space is scheduled, it is checked whether
a valid ASID is already assigned. If it’s not, an allocated ASID is preempted
from another address space according to an LRU algorithm and assigned to the
scheduled thread’s one after cleaning up the TLB.

13

3.1.5 Translation Lookaside Buffer

The Translation Lookaside Buffer (TLB) uses a simple LIFO replacement strat-
egy as offered by the hardware. User translations are tagged with an Address
Space Identifier. Consequently they do not need to be flushed on a context
switch. Apart from the TCB area, the kernel’s code and data are located
in memory segments that do not involve the TLB. TCB area translations are
marked global when put into the TLB, implying that TCBs can be accessed in
kernel mode independently of CPO[entryhi/asid].

The cacheability flags are set for each TLB entry to indicate whether the
data is cacheable or not. Writable and valid bits are used as provided by the
hardware. There is no hardware dirty bit to indicate whether a translation was
accessed or not, however.

One TLB dual entry is hard wired and set up to provide the translation of
the currently running thread’s TCB. The reason for this is described in section
3.4.2.

3.1.6 Mapping Database

A mapping database is the kernel’s view of all address spaces, i.e. recursively
mapped or granted FlexPages. Each mapping entry in the page table is supplied
with an additional link to its mapping database entry and vice versa.

The Mapnode links for page table entries are located in an array appended
to each user page table. In order to obtain the link, an offset of 4KB needs to
be added to the address of the corresponding page table entry.

3.2 Thread Control Blocks

Two segments, kseg2 and kseg3 contain a virtual array of Thread Control Blocks
(TCBs) with 4096 Bytes each. The size of this area limits the total number of
active threads in the system to 254K. TCBs are mapped only in the kernel’s
address space. No virtual area is shared among different address spaces, making
any kind of synchronization superfluous.

A Thread Control Block contains some thread related data (like local/global
id, state, pointer to UTCB) as well as a stack (see [4]) and is only accessible in
kernel mode. The stack is used by threads running in kernel mode, i.e. whenever
a thread switches from user to kernel mode its stack pointer is set to point to
the kernel stack within its TCB. The user context is always stored at the very

14

bottom of the stack.

3.3 Resource Management

The communication area for the temporary mapping during Long IPC is cur-
rently the single resource in use as no Floating Point Unit was available. The
lower 8MB of the kseg2 segment are reserved to establish that mapping. There
is one reserved area per address space. An existing mapping is saved on each
Thread Switch and restored when switching back to the thread.

3.4 Exception Handling

Exceptions include interrupts, system calls, TLB misses, breakpoints, invalid
operations or privileged operations performed in user mode. On an exception,
the processor switches to kernel mode and continues execution at predefined
locations within the exception vector area. Interrupts are turned off and the
faulting thread’s context is stored on the kernel stack in its TCB. A global, ker-
nel accessible variable always holds a pointer to the currently running thread’s
kernel stack. Interrupts remain turned off in kernel mode and are not re-enabled
until it is switched back to user mode or to the idle thread.

The kernel initializes exception vectors at system startup, i.e., exception
code is copied to the proper addresses in physical memory. Since there are only
128 bytes available between different vectors, the copied code does nothing but
jump to the actual exception handler routines.

Several exceptions share the same exception handler located at physical ad-
dress 0x00000180. To be able to keep them apart, the exception code field in
CPO[Cause] is set by hardware. This value is used as an index into a pointer
array with pointers to the respective exception handler.

3.4.1 Interrupts

The architecture distinguishes eight different interrupts sources: Two software
and six hardware interrupts. The timer interrupt is used by the kernel and
cannot be forwarded to user applications. Software interrupts remain unused.
The other five hardware interrupts are only acknowledged by the kernel but
not used for internal purposes. User threads can register themselves to get
notification whenever one of those interrupts occurs.

On interrupts, the whole user context is stored. The kernel uses a pointer

15

array, indexed by the interrupt number, to jump to the appropriate interrupt
handler. This array is initially set up to let handle_interrupt(), which delivers
interrupt IPCs, be the default interrupt handler.

The interrupt exception handler checks the bits in CPO[cause] to find out
the interrupt source. It starts with the highest bit that is occupied by the timer
and continues with the next lower etc. This order defines the priority of each
interrupt in cases in which multiple interrupts occur at the same time.

3.4.2 TLB-miss exception

A TLB-miss exception is initiated in user and kernel mode when a TLB-mapped
virtual address is referenced and the translation is not available in the TLB. A
higher-level C routine is responsible for looking up the faulting address and
updates the TLB if a translation is found in the pagetable. Prior to invoking it,
the interrupted thread’s context is stored on the thread’s kernel stack. A page
fault (no matching translation found in page table) causes the routine to call the
main L4 pagefault handler (space_t::handle_pagefault). On return, the missing
mapping is looked up again in the page table and the translation is put in the
TLB if available. The thread’s context is restored and execution continues with
the faulting instruction.

A TLB-miss on the currently running thread’s TCB would result in a never-
ending TLB-miss recursion. It arises when the kernel tries to store the faulting
threads context on the kernel stack in the TCB. This access causes another TLB-
miss before the first one could be handled successfully and so on. Therefore, the
TCB translation for the current thread is hard-wired in the TLB and updated
on a thread switch.

3.4.3 Breakpoints

The ’break’ instruction is another way to enter the kernel and to continue ex-
ecution at a predefined location, respectively. It is mainly used to enter the
kernel debugger when one of the breakin functions (for debugging purposes) is
invoked. It can also be used by user applications to perform ’putc’ and ’getc’
I/O functions.

16

VirtuaISender(32) +36

Intended Receiver ,,, +32
ErrorCode 5,, +28
XferTimeout sz +24

- (16) CopFIags(s) PreemptFlags g, +20

ExceptionHandler s, +16
Pager s, +12
UserDefinedHandle ,, +8
ProcessorNo (s, +4
MyGloballd 35, UTCB address

Figure 2: Thread Control Registers

3.5 L4 API
3.5.1 Thread Control Registers

Thread Control Registers (TCRs) are part of the User Thread Control Blocks
(UTCB). The address of the current thread’s UTCB is the same as the thread’s
local ID, and is thus immutable. The UTCB (and hence local ID) is made
available in the GP[kO] register by the kernel. GP[k0] should be treated as
read-only. If modified, the effects are undefined.

Message registers MR|[0] through MR][7] map to the processor’s general
purpose registers GP[s0] to GP[s7] for IPC. The remaining message registers
map to memory locations in the UTCB. MRJ[8] starts at byte offset 96 in the
UTCB, and successive message registers follow in memory.

All buffer registers map to memory locations in the UTCB. BRJ0] is at
byte offset 320, BR[1] at byte offset 324, etc.

3.5.2 Exception Messages

The kernel handles some exceptions. A default exception handler exists for all
other exceptions. If there is a user exception handler registered with the faulting
thread, it generates and sends an exception message as shown in Figure 3. In
reply, the handler thread can set the faulting thread’s IP, SP and user flags.
If there is no handler thread registered, the kernel debugger, which is part of
current L4 implementations, is entered.

17

LocallD ,,, MR,
ErrorCode ,, MR,
ExceptionNo s, MR,
Flags s, MR,
IP(32) MR,
'5 (16) 0(4) t = 0 u= 6 M R 0
Figure 3: General Exception Message
The following is a table of values for the EzceptionNo:
Exception ExceptionNo ErrorCode Delivered
Interrupt 0 - No
TLB Write Denied 1 - No
TLB Miss Load 2 - No
TLB Miss Store 3 - No
Address Error (load/execute) 4 BadVAddress Yes
Address Error (store) 5 BadVAddress Yes
Bus Error (instruction) 6 - Yes
Bus Error (data) 7 - Yes
System Call 8 - v0 >0
Break Point 9 - 1(-104 > AT > -100)
Reserved Instruction 10 Instruction AT # 0x141fcall
Coprocessor Unavailable 11 Number CPO, CP2, CP3
Arithmetic Overflow 12 - Yes
Trap 13 - Yes
Watch Point 23 - Unless used by kdb
Machine Check 24 - Yes

Note, not all of these exceptions will be delivered via exception IPC. Some
will be handled by the kernel. Delivered exceptions are indicated in the last

column of the table above.

18

3.5.3 System Calls

The system call entry code is located in the Kernel Interface Page area. Pointers
within the KIP contain their absolute addresses. In general, it is tried to follow
the 032 calling conventions whenever possible, i.e. parameters are passed in
general-purpose registers (GP[a0]-GP[a4]) and results are returned in GP[v0].
This works out for system calls with less than five parameters and a single
return value. Other system calls pass additional parameters in GP[s0] to GP[s3]
in order not to rely on a valid user stack pointer. Additional return values are
returned in GP registers as well. The kernel expects GP[v0] to contain a constant
indicating which system call is to be performed.

Generally, registers accessible by user applications are not preserved across
system calls but contain return values or are undefined. Appendix A shows for
each implemented system call the register content before and after the ’syscall’
invocation.

4 Implementation

This sections shows how syscalls and thread switches are done. Both trans-
actions are explained along with code extractions. Finally, restrictions of the
current implementation are stated.

4.1 Compiler and ABI

The port was made on an x86 machine using a mipsel-unknown-linux-gnu gcc
cross compiler version 3.4.2 with traditional Mips 032 calling conventions. A
description of the 032 standard can be found in [1], Chapter 10, ” C Programming
on Mips”.

4.2 System Calls
4.2.1 Invocation in user mode

A user application is provided a library that contains the actual kernel entry
code. Prior to executing the syscall instruction, parameters and the syscall
identifier constant are put into predefined GP registers. The kernel expects
a valid syscall identifier in GP[v0] and parameters in GP[a0]-GP[a4] as well
as GP[s0]-GP[s3] when needed. The following code illustrates what is done in

19

user mode to perform a L4 ThreadControl system call. It is assumed that all
parameters have already been loaded into GP registers.

__asm__ __volatile__ (
"lw $2, __L4_ThreadControl \n\t" /#* entry point in KIP (absolute) */
"subu $29, $29, 0x10 \n\t" /* space on the stack as by 032 */
"jalr $2 \n\t" /* jump */
"addu $29, $29, 0x10 \n\t" /* clean up stack */
"move %0, $2 \n\t" /* result */

: "=r"(r_result)
: "r"(r_dest), "r"(r_space), "r"(r_schedule), "r"(r_pager), "r"(r_utcb)

The code located in the KIP area sets GP[v0] and performs the ’syscall’
instruction:

BEGIN_PROC (user_thread_control) ;

1i v0, SYSCALL_thread_control; # syscall identifier
syscall; # kernel entry
j ra;

END_PROC (user_thread_control) ;

The ’L4_Kernellnterface’ system call is an exception to the general proceed-
ing since the KIP and the ’syscall’ instruction are not used. Instead, an illegal
instruction is executed to enter kernel mode after a magic value was placed in
GP[at]. On an illegal instruction, the kernel compares GP[at] with that magic
constant and executes the L4_Kernellnterface system call if they match.

4.2.2 Handling in kernel mode

A ’gyscall’ instruction in user mode causes the processor to switch to kernel mode
and to continue execution at a predefined location. Apart from some essential
registers (e.g. Instruction Pointer, Stack Pointer) no user context is saved. The
syscall handler puts all arguments that were passed in GP[s0]-GP[s3] on the
stack as by the 032 calling conventions and jumps to higher level C routines.

[...]
save some user context on kernel stack

[...]

20

jump here on return from sys_thread_control
addiu ra, %lo(mips32_l4syscall_five_in_return)

subu sp, sp, 0x14 # Space for 5 in parameters
sw s0, 0x10(sp) # pass arg no 5 on stack

j sys_thread_control;
nop

[...]

4.2.3 Return from Syscall

The kernel puts all returned values in GP registers, restores some user context
and finally executes the ’eret’ instruction in order to continue execution in user
mode.

4.3 Context Switch and Notifications

On a Thread Switch, the running thread stores its global pointer, frame pointer
and return address on its kernel stack. The stack pointer is stored at a fixed
location within the ’old’ thread’s TCB. The actual switch takes place in two
steps after the hard-wired TLB entry was updated. First, the new ASID is put
into CPO[entryhi]. Subsequently, the stack pointer is set to its new value. The
new thread simply restores its switch context and returns.

The following code extraction illustrates this procedure. Before it is exe-
cuted, an ASID for the target address spaces is determined and stored in the
local variable 'new_asid’.

asm volatile__ (

/* execution of the old thread */

"addiu $29,$29,-20 \n\t" /* allocate switch frame */
"la $31,0f \n\t"

"sw $16,0(%$29) \n\t" /* save registers */

"sw $17,4($29) \n\t"

"sw $30,8($29) \n\t"

"sw $28,12(%$29) \n\t"

"sw $31,16($29) \n\t"

/* hard wire TCB translation */

21

/* the actual thread switch */

"mtcO %[new_asid], "STR(CPO_ENTRYHI)" \n\t" /* set new asid */

"move $29, %[new_stack] \n\t" /* set new sp */
"or % [new_stack], 4096-1 \n\t"

"addiu Y%[new_stack], 1 \n\t"

"sw %[new_stack], 0()[stack_bot]) \n\t" /* "epcO" */

/* execution of the new thread */

"lw $31,16($29) \n\t"
"lw $16,0($29) \n\t"
"lw $17,4($29) \n\t"
"lw $30,8($29) \n\t"
"y $28,12($29) \n\t"
"addiu $29,$29,20 \n\t"
"jr $31 \n\t"
"0: \n\t"

As explained in section 3.4.2, the hard-wired TLB entry is updated on each
thread switch. That code part was omitted in the extraction above. It is
quite straightforward though: First it is checked, whether a valid translation is
already available in the TLB. If not, the target TCB is simply touched to cause
a TLB miss. Finally, the old hard-wired entry and the entry to be hard-wired
are swapped in order to place the new one into the hard-wired area.

Notify functions enable the kernel to force a thread to execute specific kernel
functions when scheduled before it continues execution normally. All such a
function has to do now is to put a 20 byte switch stack on top of the interrupted
threads kernel stack that contains the function to call, up to two arguments and
the return address.

4.4 Restrictions

Even though the implementation runs flawlessly on Simics, there are limitations.
The kernel in the current state won’t run on real hardware. The main reason is
the cache management, which has been ignored. Another one are CP0 hazards
that might arise even though nops were added according to [3]. It has never been
tested on real hardware though. The missing boot loader (and thus memory

22

untyped words sent | instructions counted | difference

0 918 -

1 992 + 74
2 1014 + 22
3 1036 + 22
4 1058 + 22
5 1080 + 22
62 2552 -

63 2574 + 22

Table 3: Short IPC (Inter-AS)

descriptors) made it necessary to hard code the entry point address of Sigma0,
Sigmal and the Roottask. As stated above Simics/Mips does not implement
the 'wait’ instruction that could have been used in the idletask to enter standby
mode while waiting for interrupts. Instead, a global variable is set to indicate
a timer interrupt. The idletask stays in a loop actively waiting for the variable
to become one.

Two syscalls are unimplemented, that is ProcessorControl and MemoryCon-
trol. Finally, interrupts are not enabled during a Long IPC, delaying the context
switch and potentially allowing the communicating threads an excessive time
slice.

5 Evaluation

The Mips32 port described in this work targets the simulated Malta board with
a Mips-4Kc processor. Since no real hardware was available, the performance
is evaluated in Simics instructions. Table 3 shows the number of instructions
that were counted for a Short Inter-AS IPC with different numbers of untyped
words and no types words.

6 Conclusion

The L4 microkernel port that is described in this document was done in the
context, of my study thesis ”Porting L4Ka::Pistachio to Mips32”. It’s primary
goal was to get a working port for the Mips32 core and little attention was given
to optimizations.

23

The port was tested and developed on the Simics instruction set simulator
(cf. Section 2.4). Test cases comprise an L4 test suite as well as some avail-
able user applications (including PingPong and GrabMem). Nevertheless there
remain parts of the implementation that were not covered by any test cases.
There is no guarantee that those parts and also the tested parts are free of
errors.

Having basic knowledge of the L4 internals, a port to a new architecture can
be done quite straightforwardly as a result of existing C++ template classes
and methods. These templates compose a documented framework of the as
yet unimplemented architecture dependent parts of the kernel that are called
from somewhere within the architecture independent parts. Only those classes
and methods are to be implemented while architecture independent parts can
be thought of as a black box that you do not need to worry about. The tem-
plates do not impose any restrictions on design and implementation and give
the programmer the freedom to create whatever is best suited to the underlying
architecture.

The Mips32 port uses those templates and made no changes to architecture
independent code necessary. Many design decisions as well as some source code
could be easily adopted from the port of the related Mips64 architecture.

Apart from restrictions as stated in Section 4.4, L4/Mips32 works flawlessly
when executed on Simics and passes all test cases.

6.1 Suggestions for future work

TLB miss handling could be implemented faster. As is, the whole user context
is stored and the translation is looked up and inserted into the TLB in a higher
level C routine. If a pointer to the page directory was stored at a fixed address
or within an unused CPO register (e.g. CPO[context/PTEbase]), the faulting
address could be looked up and inserted into the TLB within a few cycles. A
second, more powerful handler would only be invoked if no translation is found
in the page table (pagefault).

What the Mips architects had in mind was a contiguous non-hierarchical
virtual 2MB page table in kseg2 for each user address space. This, on the
one hand, saves physical memory since the unused gap in the middle of the
page table will never be referenced. On the other hand it provides an easy
mechanism for remapping a new user page table when changing context. By
simply changing the CP0[entryhi/asid] value on a context switch, the pointer to
the page table is automatically remapped onto the correct page table. A TLB-
miss recursion, caused by TLB-misses within the kseg2 area, can be avoided
by having a slower, more general handler routine that gets invoked on nested

24

exceptions. The Mips hardware supports such a kind of linear page table in
form of the CPO[context] register. If the virtual page table starts at a 1MB
boundary and CPO[entryhi/PTEbase] is set up with the high-order bits of the
pagetables base, the Context register will automatically point to the address of
the required translation on each user refill exception.

One would need to reserve 2MB in kseg2 for the virtual page table. The
global bit for that area would not be set in order to have the page tables per
address space. An additional 512 byte per address space within an unmapped
section (e.g. kseg0) could be used as page table to translate that 2MB area.

A never-ending TLB-miss recursion as described in section 3.4.2 is avoided
by using hard-wired entries. You could also provide an additional static kernel
stack to handle nested miss exceptions. The static stack would be global to all
threads and used on TLB-miss exceptions that arise when touching a thread’s
kernel stack.

By using a fast TLB-miss handler (that does not save any context) as de-

scribed above, one could even omit the hard wired TLB entry if it is guaranteed
that the TCB is mapped in the page table on a miss.

25

References

[1] Dominic Sweetman: See Mips Run, Morgan Kaufmann Publishers

[2] Mips32 4K Processor Core Family Software User’s Manual Revision 01.17
(2002)

[3] Mips32 Architecture For Programmers Volume III: The Mips32 Privileged
Resource Architecture Revision 2.50 (2005)

[4] Jochen Liedtke: Improving IPC by Kernel Design 14th ACM Symposium
on Operating System Principles (1993)

[5] Jochen Liedtke: On u-Kernel Construction 15th ACM Symposium on Op-
erating System Principles

[6] Simics/Mips Target Guide Version 2.2.19 (2005)

26

A Systemcalls

Al

Kernellnterface
GPlat] 0x141FCA11
GP[vO0,v1] lign]
GPJ[a0..a3] lign]
GP[t0] lign]
GP[t1] lign]
GP[t2] lign] Kernellnterface
GP[t3] lign] opcode 0xF1000000
GP[t4..47] lign]
GP[s0..57] lign]
GP|t8,t9] lign]
GP[gp,sp] [ign]
GP[s8] [ign]
GPlra] [ign]

GPJat] lign]

GP[v0] [ign]

GP[v1] [ign]

GPJa0] dest

GP[al] time control

GP[a2] processor control

GP[a3] priority

GP[t0..t9] [ign] Schedule
GPIs0] preempted control —
GP[s1..87] [ign]

GP[gp] [ign]

GP[sp] [ign]

GPJs8] [ign]

GPlra] [ign]

27

id]
id]
id]

KIP base address
API Version
API Flags
Kernel ID

[id]

i

d
d
id
d
d
id

]
]
id]
]
]

A.3 ExchangeRegisters

GPfat] [ign]
GP[v0] [ign]
GP[v1] [ign]
GPJa0] dest
GPJal] control
GP[a2] SP
GP[a3] P
GP[t0] [ing]
GP[t1] [ign]
GP[t2..t9] [ign] ExchangeRegisters
GP[s0] flags -
GP[s1] userhandle
GP[s2] pager
GP[s3] local
GP[s4-s7] [ign]
GP[gp] [ign]
GP([sp] [ign]
GP([s8] [ign]
GPlra] [ign]
A.4 SpaceControl
GPJat] lign]
GP[v0] lign]
GP[v1] [ign]
GP[a0] space
GP[al] control
GP[a2] kip
GP[a3] utcb area
GP[t0..t9] [ign] SpaceControl
GP[s0] redirector —
GP[s1..57] lign]
GP[gp] [ign]
GP[sp) ign)]
GP[s8] lign]
GPlra] [ign]

[inv]
result
[inv]
control
SP
1P
flags
pager
userhandle
[inv]

[id
[id]
[id
[id

[inv]
[id]
[id]

[inv]

[inv]
result
[inv]
control

A.5 ThreadSwitch

GPfat] [ign] [inv]
GP[v0, v1] | [ign] [inv]
GPJa0] dest [inv]
GPJ[al..a3] | [ign] [inv]
GP[t0..t9] | [ign] | ThreadSwitch | [inv]
GP[s0..87] | [ign] - [id]
GP[gp] [ign] [inv]
GP[sp] [ign] [id]
GP/[s8] [ign] [id]
GPJra] [ign] [inv]
A.6 Clock
GPat] | [ign] in]
GP[v0] [ign] ticks (low 32 bits)
GP[v1] lign] ticks (high 32 bits)
GP[a0..a3] | [ign] [inv]
GP[t0..t9] | [ign] | Clock [inv]
GP[s0..s7] | [ign] — [id]
GP[gp] [ign] [inv]
GP[sp] [ign] [id]
GP[s8] [ign] [id]
GPJra] [ign] [inv]
A.7 Unmap
GPfat] [ign] [inv]
GP[v0,v1] [ign] [inv]
GPJa0] control [inv]
GP[al..a3] | [ign] [inv]
GP[t0..t9] lign] | Unmap | [inv]
GP[s0..s7] [ign] - [id]
GPlgp] | [fign] iny]
GPlsp] | [ign] id]
GPss] | [ign] id]
GPlra] | [ign] in]

29

A.8 TIPC

GP[at) lign] [inv]
GP[v0] [ign] result
GP[v1] [ign] [inv]
GP[a0] to [inv]
GP[al] from [inv]
GP[a2] time [inv]
GP[a3] [ign] [inv]
GP[t0..t9] | [ign] | IPC | [inv]
GP[s0] mr0 | — mr0
GP[s1] mrl mrl
GP[s2] mr2 mr2
GPJs3] mr3 mr3
GP[s4] mr4 mr4
GP[s5] mrb mrb
GPJs6] mr6 mr6
GPI[s7] mr7 mr7
GPlgp] | [ign] in]
GPlsp] | [ign] id]
GP[s§] [ign] [id]
GPlra] [ign] [inv]
A.9 ThreadControl

GPJat] lign]

GP[v0] lign]

GP[v1] [ign]

GP[a0] dest

GP[al] space

GP[a2] schedule

GP[a3] pager

GP[t0..t9] lign] ThreadControl

GP[s0] utcb -

GP[s1..s7] [ign]

GP[gp] [ign]

GP[sp] [ign]

GP[s8] lign]

GPlra] [ign]

30

