
Universität Karlsruhe
Fakultät für Informatik
Institut für Betriebs- und Dialogsysteme (IBDS)
Lehrstuhl Systemarchitektur

Design and Implementation
of Exchangeability for

Linux Schedulers

STUDY THESIS

Bin Zheng

September 19, 2007

Advisors: Prof. Dr. Frank Bellosa
Dipl.-Inf. Andreas Merkel

2

Abstract

The scheduler is one of the most important parts within the kernel of an operat-
ing system. For most of todays operating systems, it is built fixed in the kernel
and does not allow online replacement. Any improvements to a scheduler or even
replacing it with a new one will inevitably require a complete recompilation of
the whole kernel and thus also a system restart and service breakdown, which is
quite inconvenient especially for commercial servers with heavy loads. There-
fore, to solve this problem, the goal of this thesis is to design and implement the
online exchangeability of kernel schedulers by realizing them in kernel modules
under Linux. Along with this objective, we will define a standard interface be-
tween schedulers and the rest of the kernel, design and implement the mechanism
of switching between schedulers and finally make tests to verify that the achieved
scheduler exchangeability does not cause too much performance overhead.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Structure . 2

2 Background and Related Work 3
2.1 Introduction to the Linux Scheduler 3
2.2 A Solution by Hewlett-Packard 5

3 Proposed Solution 7
3.1 OS Independent Design . 7
3.2 Implementation for Linux . 8

3.2.1 Interface Abstraction - Data Structures 8
3.2.2 Interface Abstraction - Functions 9
3.2.3 Registration and Storage of Schedulers 10
3.2.4 User Interface . 11
3.2.5 Invoking Scheduler Functions 12
3.2.6 Switchover between Schedulers 12
3.2.7 Implementation . 15
3.2.8 Boot Scheduler . 17

4 Test and Verification 19
4.1 Test Scheduler . 19
4.2 Function Test . 20
4.3 Performance Test . 20

4.3.1 Kernel Compilation . 22
4.3.2 SPEC Benchmark . 23

5 Conclusion 25

iii

iv CONTENTS

Chapter 1

Introduction

1.1 Overview

Most of the operating systems come with a scheduler as a fixed part of their kernels,
for example, Windows, Linux and BSD. Ideally, this universal scheduler should
be able to achieve different kinds of objectives (e.g. fairness, high throughput,
good user interactivity) under all circumstances (e.g. uniprocessor, multiprocessor,
heavily loaded, lightly loaded). Regretfully, such an omnipotent scheduler does not
exist. All schedulers have their own weaknesses. Furthermore, there will always
be new requirements which the current schedulers can not accommodate, for ex-
ample, energy awareness. In such cases, an improved scheduler has to be compiled
with the whole kernel, which will be later installed into a system to replace the old
one running an unsuitable scheduler. Restart of the system and service breakdown
are inevitable.

On the other hand, modifying code of a running kernel is nowadays possible via
loadable modules. Hardware drivers are a good example. Delivered as modules,
compiled driver code can be dynamically linked into and unlinked from the kernel
and function the same way as any other parts of it. This feature allows users to
load and unload hardware drivers any time when needed. Moreover, unlike some
older unix systems, this can be done without recompilation of kernel code and any
interference to the services that the system is currently providing.

So, a straightforward thought would be to implement schedulers as independent
modules to achieve the flexibility that we want. But in fact, a scheduler is much
more complex and important than a hardware driver. As it is extremely widely used
in a kernel, other core functionalities depend heavily on the scheduler and can be
easily affected by even tiny changes in it. Therefore, a standard interface between
schedulers and the rest of a kernel must be defined. The schedulers which conform
to this interface can be switched over from one to another without jeopardizing
other parts of the kernel. An important supplement to the scheduler interface is
the mechanism of handing over tasks between schedulers, as they probably have

1

2 CHAPTER 1. INTRODUCTION

their own task holding structures. Furthermore, in some operating systems, (e.g.
Linux and Windows) certain scheduling related informations are accessible from
user space. This means users and user applications can help making scheduling
decisions and query informations from the scheduler. Thus, to avoid misunder-
standings, those user interfaces should be kept as stable as possible. Also, as a
fundamental element of an operating system, a scheduler gets woken up at the very
beginning in the system initialization phase and terminates right before the whole
system halts or restarts. During this period it is active almost all the time and
the majority of its functions are made use of at an extremely high frequency. These
characteristics lead to the fact that efficiency is one of the key points when develop-
ing schedulers and it also requires a lot of effort when designing and implementing
online exchangeability between schedulers. It is unreasonable when the achieved
flexibility would significantly slow the actual scheduling down.

1.2 Structure

There is already some related work to make schedulers more flexible and sched-
ulers themselves evolve continually, too, with new thoughts and requirements show-
ing up all the time. In Chapter 2, some background informations and former work
will be introduced as well as their advantages and shortcomings.

Our proposed solution will be explained in detail in Chapter 3. As already men-
tioned in the overview, in the progress of designing and implementing the ex-
changeability there are some points which should be especially paid attention to.
So, based on the general thought of implementing schedulers as modules, those
issues and the ways to resolve them will be described in detail.

In Chapter 4, 5, tests and their results will be presented to verify our solution and
its usability. Also, after summing up, a perspective of how it might progress further
is going to be introduced briefly.

Chapter 2

Background and Related Work

Along with the development of operating systems, schedulers have also progressed
enormously from batch schedulers at the very beginning to today’s complex mul-
titasking schedulers. Meanwhile, a great deal of effort has been invested to make
them more flexible and capable to fulfill as many different kinds of needs as pos-
sible. The current Linux scheduler is chosen as an example here because Linux is
a widespread operating system and every one is allowed to download, study and
modify its code. As a matter of fact, our design and implementation also takes the
kernel source code of Linux as a basis. Other than the Linux scheduler, a solution
of Hewlett-Packard to implement Linux scheduling policies as loadable modules
will be introduced as well because it has similar objectives and uses also analogous
techniques as we do.

2.1 Introduction to the Linux Scheduler

As its core data structure, the 2.6 Linux scheduler [1] has for each CPU in the
system a separate runqueue to keep track of all runnable tasks assigned to it and
some other scheduling related information that needs to be kept on a per CPU basis.
The brilliance of the runqueue is how tasks are contained in it. The following data
structure serves this purpose.

struct prio_array {
int nr_active;
struct list_head queue[MAX_PRIO];
unsigned long bitmap[MAX_PRIO+1];

}

The second member of this structure, named queue, is an array of MAX PRIO
heads of linked lists. MAX PRIO has usually the value 140, which is the highest
value of a priority and contrarily denotes the lowest priority a task can get. It means
the Linux scheduler has for each priority level a list and when a task is added to
a priority array, it is added to the list which corresponds to its priority level. The
structure member bitmap of size MAX PRIO + 1 has bits set for each priority level

3

4 CHAPTER 2. BACKGROUND AND RELATED WORK

that contains active tasks. In order to find the highest priority task in a priority
array, the scheduler only has to find the first bit set in the bitmap. Multiple tasks of
the same priority are scheduled round-robin; after running, tasks are put at the end
of their priority levels list, so, the first task in a list is always the first one that gets
picked to be running within this list. Because finding the first bit in a finite-length
bitmap and finding the first element in a list are both operations with a finite upper
bound on how long the operation can take, the Linux scheduler realizes an O(1)
scheduling algorithm for selecting the next task.

Linux tasks are classified into two categories by the scheduler according to their
priorities. Soft realtime tasks have priorities from 0-99 while non-realtime task
priority values map onto the internal priority range 100-140. Because RT tasks
have lower priorities than non-RT tasks, they always preempt non-RT tasks. As
long as RT tasks are runnable, no other tasks can run because the scheduler gives
them different scheduling schemes, namely SCHED FIFO and SCHED RR, while
non-RT tasks always operate with SCHED NORMAL, which is default scheduling
behavior.

SCHED FIFO tasks schedule in a first-in-first-out manner. If there is a SCHED FIFO
task on a system it will preempt any other tasks and runs for as long as it wants
to. SCHED FIFO tasks do not have timeslices. Multiple SCHED FIFO tasks are
scheduled by priority; higher priority SCHED FIFO tasks will preempt lower pri-
ority SCHED FIFO tasks.

SCHED RR tasks are very similar to SCHED FIFO tasks, except that they use
timeslices and are always preempted by SCHED FIFO tasks. SCHED RR tasks
are scheduled by priority, and with a certain priority they are scheduled in a round-
robin fashion. Each SCHED RR task with a certain priority runs for its allotted
timeslice, and then returns to the end of the list in its priority array queue.

Priority and scheduling schema of a task can be altered during its life time either
via special function calls to the scheduler such as sys nice and sched setscheduler
or by the scheduler itself based on interactivity heuristics to give I/O-bound threads
prior access to CPUs over CPU-bound threads. How the heuristics really works is
beyond the scope of this thesis.

As can be seen from the above short introduction, the current Linux scheduler has
already reached certain level of flexibility. Normal and soft-realtime tasks can both
be served by it. Besides, scheduling policies do not stay fixed, both users and the
nature of the tasks can have impacts on them. As designed for a general-purpose
operating system which concerns above all the versatility, the Linux scheduler is
totally adequate.

Even though, it is still not omnipotent. There are situations which it is not able to
handle. For example, in an energy aware system, a scheduler is supposed to make

2.2. A SOLUTION BY HEWLETT-PACKARD 5

scheduling decisions according to the energy consumption of the whole system and
each task. The only way to adapt the current Linux scheduler is to rework its code
and then recompile the kernel and that brings back the problems which have al-
ready been mentioned in the first chapter, namely system restart and service black
out. Thus a clear conclusion is, despite the flexibility the current Linux scheduler
has already achieved, a mechanism to realize online and seamless exchangeability
between schedulers can still be beneficial and makes Linux even more versatile.

2.2 A Solution by Hewlett-Packard

The Management Solutions Lab of Hewlett-Packard has published a scheme to im-
plement exchangeable Linux scheduler policies in 2000 [2]. Although this scheme
is based on the 2.2 and 2.4 Linux kernel, which are quite old today, it is still worth
mentioning here because it also takes advantage of loadable modules to avoid ker-
nel recompilation and system restart when switching scheduler policies.

The most important data structure that this solution brings into the Linux kernel is
the scheduling policy structure:

struct sched_policy {
int sp_runnable;
struct task_struct *(*sp_choose_task)

(struct task_struct

*current, int cpu);
void (*sp_preemptability) (struct task_struct *current,

struct task_struct *thief,
int cpu);

void (*sp_handle_ticks) (struct task_struct *current,
int ticks);

char sp_private[0];
}

When a scheduler module is loaded into a system, a new sched policy structure
must be created by its init module function and the three function pointers, namely
sp choose task, sp preemptability and sp handle ticks are to be linked to the actual
functions which are implemented in the module. The last element, sp private is
preserved for schedulers to save their own private scheduling related information.

In the original Linux task structure, a new field is added to associate a certain
sched policy to processes and for CPUs, a new global per-CPU array is declared:

struct sched_policy ** policy_of_cpu;

If a policy has been defined for particular CPUs or processes, the desired functions
are invoked through the corresponding function pointers in its sched policy struc-
ture, otherwise, the logic falls through to the default Linux scheduling behavior, as

6 CHAPTER 2. BACKGROUND AND RELATED WORK

illustrated in the following code fragment in the core scheduler function schedule,
and that is how an exchangeable scheduler substitute the default Linux scheduler
to perform the actual scheduling according to its own policy.

if (policy_of_cpu && policy_of_cpu[this_cpu]sp_choose_task){
next = (*policy_of_cpu)[this_cpu]\

sp_choose_task)(prev, this_cpu);
goto choice_made;

}

P = init_task.next_run;
/* Default process to select.. */
Next = idle_task(this_cpu);

This implementation is actually quite simple. It does not involve many modifica-
tions in the existing kernel functions and data structures. A standard interface is
defined for scheduler developers and according to the performance measurement
that the author provides; negative impacts on system performance are kept at a
minimum level. These are also essential objectives which should be reached in our
solution.

However, what is loadable and exchangeable here are actually scheduling policies
not schedulers themselves. The default Linux scheduler is never replaced in this
case, its behaviors are merely overridden on occasions when a new policy is de-
fined for CPUs and processes. This means as well that all data structures which are
used by the default scheduler have to stay untouched. For example, if we transplant
this solution onto the 2.6 Linux kernel, the runqueue and the prio array structures
which have already been mentioned in Section 2.1, can not be altered. It is just not
possible if one wants to improve prio array to make the organization of runnable
tasks more efficient and applicable for his own scheduling algorithms.

One other inconvenient point with this implementation is the global per-CPU array.
When a scheduler module loads itself, it has to check this array to make sure there
is not already a global policy defined, and stop proceeding and rolls back all work
it has accomplished if there is. Therefore, at most one scheduler module can be in
the system at any time. If an user needs to switch from one policy to another, he
has to firstly remove the old module and than load the new one, and meanwhile the
system has to suffer a scheduling policy switchover from the old one to the default
Linux policy and than again from the default to the new one.

Chapter 3

Proposed Solution

3.1 OS Independent Design

Already in the introduction, we have outlined the general idea of implementing
schedulers as modules. Behind this straightforward idea, there are several prob-
lems to be taken care of. The first thing is, the scheduler is not a standalone part
of an operating system. Many other kernel functions rely on the scheduler to work
properly. Accordingly, exchangeable schedulers and the action of switching be-
tween them should by no means interfere the other functionalities of a system. A
standard interface, or more accurately, a group of functions has to be defined for
this purpose. By calling these functions, expected scheduling services will be pro-
vided. How these jobs are actually done, stays opaque to the world out side of
a scheduler. Any schedulers, which conform to this interface, can be considered
online exchangeable.

The second point is the actual switching from one scheduler to another. With help
of the standard interface, the cut-over consists of two parts, namely switching code
of the methods which are declared in the interface and the hand over of currently
active tasks. For the latter one, the current scheduler could connect all the active
tasks together and pass them on to the next scheduler. To transfer tasks as a standard
linked list solves the problem that different schedulers might organize tasks differ-
ently. The code switching of functions, on the other hand, is much more complex
and operating system dependent. An example implementation under Linux will be
presented later in this chapter.

The last thing is how loaded schedulers are held in the system and how users can
actually switch them. Again, we can use a list structure here. A special registration
block which contains basic information of a scheduler(e.g. name) will be created
for each scheduler upon loading and hooked up to the list of the already installed
schedulers. Users have the possibility to list all loaded schedulers and pick one of
them to replace the current running one by reading and writing to a special system
file. The realization of this system file is usually OS dependent.

7

8 CHAPTER 3. PROPOSED SOLUTION

3.2 Implementation for Linux

Since Linux is an open source operating system, our example implementation takes
the code of its scheduler as a basis. The version of the kernel that has been used is
2.6.18. It was the latest released stable kernel when this thesis started.

3.2.1 Interface Abstraction - Data Structures

The effort to abstract a scheduler interface consists of two parts. The first part is
to draw scheduler dependent information out of the data structure which is used by
the Linux default scheduler, namely the runqueue structure that contains informa-
tions like active threads on the local CPU and the amount of them. This structure
as well as per CPU static variables of this type are all defined in sched.c and not
referenced anywhere else. So, it is sure that this structure is not directly accessible
to the rest of the kernel and it can be safely tailored as needed. Our approach is
to leave scheduler independent fields still in the runqueue structure and provide a
new pointer to reference the private data block that schedulers can use to store their
own information. When a new scheduler is selected to be running, it just has to ini-
tialize its own data block and redirect this pointer to it. The rest of the runqueue
can stay untouched. Other than this pointer, we also add some new fields, but they
are irrelevant here and will be introduced later in Section 3.4.

The reason why we split the runqueue into scheduler dependent and independent
part and do not scheduler developers decide the whole structure is, some univocal
members of the structure could be read indirectly from outside of the a scheduler
by means of calling special facility functions exported in sched.c and are therefore
supposed to be available permanently, for example, the counter which tells how
many active threads are there in the runqueue. Furthermore, in order to avoid any
misunderstanding, the interpretation of these fields should not vary from scheduler
to scheduler. Under this circumstance, the splitting of runqueue structure brings
the advantages that the per CPU runqueues will still be allocated statically by the
kernel, schedulers just need to take care of the memory space for their private data,
and the existing facility functions mentioned above could be reused without any
modifications.

Some representative members left in the runqueue are listed as following:

spinlock_t lock; /* the lock to protect
this structure */

unsigned long nr_running; /* current number of
runnable threads */

unsigned long nr_uninterruptible; /* current number of
uninterruptible
threads*/

unsigned long long nr_switches; /* total number of

3.2. IMPLEMENTATION FOR LINUX 9

context switches */
atomic_t nr_iowait; /* current number of

threads waiting
for IO */

struct task_struct *curr, *idle; /* the current and
idle process of
this CPU */

void *scheduler_private; /* private data of
the of the current
scheduler */

The private data block of a scheduler comprises first of all the organization of ac-
tive processes on the local CPU, for example the prio array structure introduced in
Section 2.1. What else falls into this category depends totally on its developers.
For the default Linux scheduler, the private block is also used to save information
about load balancing between processors.

3.2.2 Interface Abstraction - Functions

After separating the runqueue structure, the next step is to decide which functions
should appear in the scheduler interface. This is the most significant job of the
whole design because these functions essentially represent a scheduler. The rest
of the kernel calls these functions to obtain the whole scheduling service while
schedulers differ from each other by implementing these functions differently. We
make the decision based on the splitted data structure and how functions defined in
sched.c are employed.

Firstly we find out the current boundary between the default Linux scheduler and
the rest of the Linux kernel. It can be done conveniently with the help of cross-
references of Linux kernel code. With cross-references, we can browse the whole
kernel code and click an identifier, such as a function name or a variable name, to
demand all information about in which file it is declared, defined and referenced
This makes it obvious if the identifier is accessed somewhere else in the kernel.
So, we have to check all non-static functions in sched.c, since the static functions
are only reachable from inside of the file. However, there is a shortcoming with
this method. The functions which do not have any external reference listed must
be rechecked because the cross-reference tool does not include the files that are
written in assembly language and they might use some of the scheduling functions
too. One example found here is preempt schedule irq. We take the Linux pattern
searching tool, grep as a supplement here.

After all the external referenced functions are found, we have to decide which of
them are really necessary to be included in the scheduler interface. Firstly, the
functions which operates on the scheduler private data (refer to Section 3.2.1) must

10 CHAPTER 3. PROPOSED SOLUTION

be included. Secondly, although some of the functions are not directly related to
the data, they reflect anyhow an individual scheduling strategy, in other words they
are scheduling algorithm dependent. Those functions must also be contained in
the interface too. We take can nice as an example to make the last sentence more
understandable. This function call serves the purpose to judge whether the priority
of a thread is allowed to be altered. To give scheduler developers the freedom to
design their own priority systems, this function should also be implemented ac-
cordingly. So, it must be included too. Based on the those two rules, we pick out
totally 21 functions for the interface.

Other than the externally used functions there are still hundreds of static utility
functions in sched.c. We also apply the two rules mentioned above to them. They
can be in fact divided into three parts. The scheduler dependent utility functions
have to be realized by scheduler developers themselves and therefore erased from
the file. The common utilities which can be useful for all schedulers, such as for
locking and unlocking a runqueue structure, are moved to a separate file called
sched-dev.c and declared correspondingly in its header file sched-dev.h, so sched-
uler developers can take advantage of them. The rest still stay in sched.c.

After having found all scheduler dependent functions, we put a set of pointers, one
for each function to hold their addresses, in a new data structure named sched structure.
This new structure can be seen as the interface between a scheduler and the rest of
the kernel as scheduler functions are now only accessible via the function pointers
declared in this structure. Also, since these interface functions represent the char-
acteristic of a scheduler, an instance of sched structure represents hence an actual
scheduler.

3.2.3 Registration and Storage of Schedulers

As schedulers will be implemented as modules, they are able to be loaded into and
unloaded from kernels whenever it is necessary. So, we need a mechanism to let
kernels keep track of the existence of schedulers. The idea is to create a registration
block for every scheduler and link them together in a list which enables the kernel
to traverse all loaded scheduler modules by going through this list. The registra-
tion block is a simple data structure and it has currently the following five members:

char name[20]; /* name of the scheduler, must be unique */
atomic_t usage; /*is this scheduler currently in use */
int (*switch_on)(struct list_head *task_list);

/* a function that switches the scheduler on duty */
int (*switch_off)(int (*switch_on)(struct list_head \

*new_task_list));
/* a function that switches the scheduler off duty */

struct list_head scheduler_list; /* a helper structure to
link schedulers together */

3.2. IMPLEMENTATION FOR LINUX 11

The switch on member of this data structure points to a function that actually makes
the named scheduler to be the active scheduler in a system. The switch off mem-
ber, on the other hand, turns the named scheduler to be inactive if it is the current
running scheduler. Scheduler modules must provide codes for both functions be-
cause they depend exceedingly on the realization of schedulers. How these two
functions are called to carry out the scheduler switchover will be explained later in
this chapter.

Such a registration block can be treated as an identity of a scheduler within a sys-
tem. When one scheduler is being loaded, it is responsible for creating and initial-
izing this identity and linking it to the identity list by calling a registration function
which is also provided by us. If a scheduler is not currently in use, which can be
seen from the member usage, it can then call the deregistration function to with-
draw its identity and finally release it if users request the scheduler module to be
uninstalled.

3.2.4 User Interface

Providing an user interface to enable system administrators to access loaded sched-
ulers and switch between them is an important aspect of the design. Under Linux,
we decided to realize such an interface by taking advantage of a pseudo file system,
the so called Sysfs [3], which is a new feature of the 2.6 Linux kernel. Sysfs is an
in-memory filesystem which exports information about devices and drivers from
the kernel device model to userspace, and is also used for online kernel configu-
ration. This means Sysfs provides a way to query and influence a running kernel
from userspace, which is totally suitable for our needs.

So, we set up in the virtual filesystem under the object kernel a new attribute sched-
uler, which is an ordinary file /sys/kernel/scheduler if seen from the userspace. This
attribute can be accessed both for reading and writing. If an user issues a command
on this file to view its content, it eventually triggers to call the show function of
the corresponding kernel attribute and this function traverses all the registration
blocks linked to the scheduler list which was introduced in the last section and
delivers all scheduler names with the active scheduler having a current tag on the
side back to the userspace . This means, by reading this file a list of all loaded
schedulers is printed with the active one especially accented. Based on the listed
scheduler names, an authorized user can find out which scheduler is currently the
active one and which others are available in the system and can therefore make an
informed decision of choosing an appropriate scheduler. Choosing a new sched-
uler can only be done by writing its name into this special kernel attribute file, the
/sys/kernel/scheduler. This triggers the store function of this attribute, which seeks
out the registration block of the named scheduler and carries out a scheduler switch
by invoking the switch off function of the active scheduler and the switch on func-
tion of one which is about to become the active. After the store function returns,

12 CHAPTER 3. PROPOSED SOLUTION

the user can read again from the attribute file and this time the the current flag
ought to appear on the side of the new scheduler.

3.2.5 Invoking Scheduler Functions

As already introduced in Section 3.2.2, a scheduler provides its own implemen-
tation of scheduling algorithm in a module and this algorithm itself is opaque to
the outside of the module. The only way to make use of a scheduler is to invoke
its functions, which are declared in the standard scheduler interface. Since these
functions are mostly referenced by other parts of the kernel, which are not aware
of the existence of this new interface, we are in need of a bridge to accomplish
a seamless function call from the current Linux kernel to the interface functions
realized by scheduler modules. To solve this problem, our design is that we keep
such interface functions still in the old sched.c file as an entrance so that the other
parts of the kernel will not have any problem finding them. But most of them are so
simplified that they do not do anything else than invoking again their counterparts
in the active scheduler module. By this means, the scheduling requests of the Linux
kernel can be served dynamically by the current scheduler without the knowledge
of where the exact functions are.

Another issue of the design is how the kernel can find the current scheduler and its
functions. Since we already have an abstracted data structure sched structure,which
is introduced in Section 3.2.2, to represent the scheduler interface, we assign one
instance of it to each CPU of the system. As opposed to the default Linux ker-
nel, which uses always the same scheduler on all processors, we think, it might be
a beneficial feature if different CPUs can have their own schedulers. This is the
reason why we make instances of sched structure CPU-local instead of using one
global instance. For the purpose of creating per-CPU data instances, we use the
kernel macro DEFINE PER CPU. As its name says, this macro defines variables
on a per CPU base and these variables are allocated at kernel compilation. The
function pointers of this per CPU variable are linked to the implementation of the
active scheduler. Therefore, the problem of finding the current scheduler and its
functions is turned into finding the data structure variable of the local CPU and this
step can be easily done by using another macro per cpu. So, the whole process of
calling a scheduler function consists of the following steps; the entrance defined in
sched.c gets invoked, it does certain scheduler independent work, it retrieves the
local variable of the scheduler structure and finally runs the code which has been
linked to the function pointer in this variable.

3.2.6 Switchover between Schedulers

Based on the idea of the last section, a switchover between two schedulers seems
quite intuitive. One just needs to redirect the function pointers in the local variable

3.2. IMPLEMENTATION FOR LINUX 13

of the scheduler structure to the function implementations in the new scheduler
module. This way, the new scheduler will be in use and the old one will be of no
effect. However, it is quite difficult to realize.

The reason is switching scheduling functions is a critical step. Some threads might
run in the old functions when the switchover takes place. Suppose we have a
thread that is creating a new child thread and it ends up running the sched fork
function, which is also one of the scheduler interface functions, when it is being
taken away from the CPU. Regardless of whether it has no more time slices left or
a higher priority thread becomes active and preempts it. Coincidentally, a sched-
uler switchover begins while our thread is waiting to continue which means the old
sched fork function that our thread is executing becomes invalid and the value of
the EIP register, which points at the next instruction to be executed, of the saved
context of out thread now points to something whose content is unpredictable if
the old scheduler module has been removed and the memory space used by that
module has been overwritten. This will most likely result in a system crash and
leave behind some even more serious damages. So, this kind of situations have to
be avoided in any case.

The easiest way to resolve this is that all the scheduler interface functions run in
an atomic manner and to hold a spinlock and keep local interrupts disabled when
the interface functions are running to assure the atomicity. It means, as long as the
spinlock is free, the pointers of interface functions can be innocuously linked to
new code because it is for sure no thread running the old one.

The advantage of this solution is its simplicity. The work of holding as well as
releasing spinlocks and disabling as well as enabling interrupts will be done in the
entrance functions defined in sched.c and the scheduler developers only need to
make sure that their functions are unblocking which by the way is obligate anyway
since these interface functions are not allowed to perform any action that blocks
the current thread and moves it out of the runqueue to some waitqueue. If they do
block, threads that run these functions will be taken out of a runqueue and their
states will be changed to sleep either interruptibly or uninterruptibly, which leads
to the fact that when a scheduler switchover takes place, all threads in the system
instead of only the active ones in the runqueues have to be scanned and if some of
them are running scheduler functions which block these threads to wait for some
resources to be available or some events to happen we have to postpone the switch-
ing and wait until all of them finish the blocking operations and return from the
scheduler functions. It not only tremendously complicates the implementation but
also results in an unpredictably long time in the worst case for a scheduler exchang-
ing to be done.

Although the solution of atomic functions is simple to realize, it also has a weak-
ness, as it does not take into account that the 2.6 Linux kernel brings a new feature

14 CHAPTER 3. PROPOSED SOLUTION

named Kernel Preemption. Without Kernel Preemption, a thread can only be pre-
empted, which means forced to relinquish CPU and replaced by another thread,
when it is running in user mode. Once it executes kernel functions and enters ker-
nel mode, it can not be preempted anymore until it either gets blocked and moved
out of the runqueue of active threads or finishes its kernel operations and return
back to user mode. The disadvantage of it is threads which are doing more critical
jobs have to wait for a lower priority thread to switch back into user mode even
when they are ready to run. Such situations of priority inversion are unwanted. To
reduce the dispatch latency of the user mode processes and improve system inter-
activity, kernel preemption is implemented in Linux kernel. With this new feature,
a thread can be replaced by other threads even when it is currently executing kernel
code. This is relevant to our design because not all scheduler functions have to be
executed without interruption. If we hold a spinlock and disable local interrupts
while running them, we can assure their atomicity and have no problem substitut-
ing them with new functions. But the convenience comes at the price that it is not
possible any more to pause a thread whose executing path is happen to be in one
those functions and put the CPU to use for something more important, even when
a short interruption is definitively harmless to the thread.

So, to be able to take advantage of Kernel Preemption we choose to abandon the
simple solution with atomic functions and design a more elaborate switching mech-
anism. We set up a new in-scheduler flag for every thread in its task structure. This
flag is actually an atomic integer and its value gets increased by one if the thread
goes into a scheduler function and decreased by one when it backs out. With this
flag we can easily find out whether a thread is using scheduler functions, in such
cases its flag must have a positive value. The reason of taking an integer instead of
a bit is because scheduler functions can be called in a nested manner. For exam-
ple, while a thread is running sched fork to create a child thread, a timer interrupt
occurs and calls scheduler tick, which is also a scheduler function, in its interrupt
handler. Since interrupt handler works in the context of the thread that gets inter-
rupted, it looks like the thread in our example calls scheduler tick in sched fork. In
such cases, we can use the atomic integer to keep track of how deep a thread is in
nested scheduler function calls. With the help of this flag and based on the fact that
scheduler functions are not allowed to block, which excludes the possibility that
any threads which do not appear in the runqueues are using scheduler functions,
we made in the following an demonstration design of the switch off and switch on
functions in the schedulers registration block which is mentioned in Section 3.2.2.

When a scheduler switchover takes place, the switch off function of the current
scheduler gets called. As this function is supposed to hand over a list of all active
threads to the next scheduler, it scans its private runqueue which holds all active
threads and checks the in-scheduler flag of all task structures. If the flag of a thread
does not have a positive value, it will just be removed from the runqueue and linked
to a thread list which will later be passed on. If the value of the in-scheduler flag

3.2. IMPLEMENTATION FOR LINUX 15

is positive, the thread that is actually responsible for switching scheduler, in other
words, the thread that is currently running the switch off function, puts itself on
hold by calling the function schedule and let the in-scheduler thread run one more
time. The CPU time that the in-scheduler thread gains is only for it to finish all
its scheduling related operations. Once it accomplishes them, which means the
value of its in-scheduler flag turns eventually zero, it loses the CPU again. This
is checked every time a thread exits a scheduler function. After that, the thread
that is running the switch off function gets scheduled again and goes on with the
scanning. This procedure repeats again and again until there is nothing left in the
runqueue and all active threads are moved to the thread list. At this point, the job
of the switch off function is in fact done because the thread list to be passed to the
next scheduler is ready and the functions of the current scheduler are no longer in
use which means they are safe to be replaced. Now the switch on function of the
new scheduler is invoked to generate its own private runqueue on the basis of the
thread list and redirect pointers of the scheduler functions to the codes provided
in the new scheduler module. Upon return of this function, we consider a sched-
uler switchover finished. Although we provide an example design of the switch off
function here, it is not supposed to a standard one. Scheduler developers are free
to implement it on their own will.

As opposed to the solution of atomic functions, the advantages of this design is
that it allows kernel preemption in scheduler functions which gives the developers
the possibility to design their schedulers in a way that follows the Linux guideline
of assuring system interactivity and favoring user interactive tasks. Although this
will not help improving the overall performance, it makes the system react more
timely to user requests and thus make the users feel like the system has better per-
formance. The disadvantages of this design are on one hand that it is more complex
and on the other hand that it relies more on the scheduler developers to realize the
scheduler exchanging mechanism correctly.

3.2.7 Implementation

We realized the design mentioned above both in the default Linux scheduler and
the test scheduler which will be introduced in the next chapter. The implementa-
tion of the key points of this design are explained here in detail. This will make the
whole idea more understandable.

The first point is the thread that performs the switch from one scheduler to another.
We identify it by calling the Kernel Macro current, which returns the pointer of
the task structure of the currently running thread, in the store function of the kernel
attribute file /sys/kernel/scheduler because the whole switching process takes place
in this function. What it exactly does, can be found in Section 3.2.3. Once we find
this thread, we give it virtually the highest priority. This is achieved by add the

16 CHAPTER 3. PROPOSED SOLUTION

following code block in the scheduling algorithm for selecting a thread to run.

if (unlikely(is_exch_scheduler(rq) && rq->exc)) {
if (prev != rq->exc)

next = rq->exc;
}

The variable rq is a pointer to the private runqueue structure, the exc member of
this structure points to the task structure of the thread that do the switchover job
and is exch scheduler is a macro that we provide to tell if a scheduler switchover is
currently active. The code inside the brace pair has the effect that if the exc thread
exists, it always gets picked to run next and if it is the previous thread that needs to
be replaced, the next one will be picked through the normal thread selecting logic.
The latter case happens when the exc encounters a thread which has a positive in-
scheduler flag while scanning the runqueue. So, it gives up CPU by calling the
function schedule and that in-scheduler thread will definitively be picked to run
because all threads prior to it have already been removed from the runqueue to a
thread list. Once this in-scheduler thread no longer uses any scheduler functions,
it relinquishes the CPU by calling schedule. After that, the exc gets the CPU and
proceeds with the scanning.

Secondly, we bring in a pair of new macros, namely ENTER SCHEDULER and
EXIT SCHEDULER, to enwrap a call to scheduler specific code in the entrance
functions in sched.c. The definition of ENTER SCHEDULER looks as following:

if (unlikely(is_exch_scheduler(rq)) {
if (atomic_read(&x->in_scheduler) <= 0)

schedule();
}
atomic_inc(&x->in_scheduler);

The x here represents the current thread. This macro normally increases the value
of the in-scheduler flag to record that the thread just enters a scheduler function. It
also prevents a thread from proceeding if a scheduler switch is taking place and this
thread is not yet in any scheduler code. We do this to speed up the switch process by
avoiding the case in which too many threads are still in scheduler code and we have
to switch too many times between the exc thread and them to let them finish their
scheduling work. However, if a thread is already running scheduler functions, we
should not make them to relinquish its CPU because this brings two more unnec-
essary thread switches. One from the current one to the exc thread because it calls
the function schedule and one switch from the exc thread back to it because it is
still in scheduler functions and we have to let it run again after the if condition until
it finishes all its scheduling operations. The definition of EXIT SCHEDULER is:

3.2. IMPLEMENTATION FOR LINUX 17

if (atomic_dec_and_test(&x->in_scheduler)) {
if (is_exch_scheduler(rq))

schedule();
}

This macro decreases and checks the in-scheduler flag of a thread when it exits a
scheduler function. If a scheduler switch is happening and the current thread is not
any more in any scheduler functions, it gives up the CPU and let the exc continue.

There is an exception that we do not use these macros when calling a scheduler
function. It is the function schedule. This function consists basically two parts,
selecting the next thread to run and switching context of the previous thread to the
one of the next thread. The second part is completely scheduler independent but
finding the next thread comprises the core algorithm of a scheduler and this func-
tionality is also provided by one of the scheduler interface function. The reason
why we do not need those macros is that this interface function executes while the
calling thread is holding a spinlock with interrupts disabled which is also imple-
mented like this in the default Linux scheduler. This guarantees the atomicity of
this scheduler function. So we do not have to worry about threads getting pre-
empted when they are executing this function, hence this function can always be
safely replaced while we are holding the spinlock.

3.2.8 Boot Scheduler

The basic idea of our solution is to implement exchangeable schedulers as inde-
pendent kernel modules, which means schedulers can be added and unloaded at
run time. This is, however, not always applicable. We need a built-in scheduler,
which the kernel can use for the boot process. The reason is that the scheduler
is one of the parts that get initialized and start operating at the very beginning in
the starting phase of a Linux kernel and unlike disk driver modules, which are dis-
pensable at first and can be loaded later from the initial ramdisk during the boot
process when they are actually needed, at the time when the scheduler starts, there
is not even support for modules yet. Without a correctly functioning scheduler, a
system not only fails to start, it even does not provide any boot messages on the
console. In this phase, users still do not have access to the system and hence have
no chance to install a valid scheduler. So, users have to wait for the boot process
to end to be able to load a scheduler module and the system can boot only with a
valid scheduler. This is a chicken and egg problem.

We solve this problem by putting a restriction that at least one scheduler has to be
built into the kernel, which therefore can not be unloaded later, and one of these
built-in schedulers has to be defined for the boot purpose. This so-called boot
scheduler is initialized and used when the kernel starts. After users gain access to

18 CHAPTER 3. PROPOSED SOLUTION

the system, they can choose to replace the boot scheduler with their own or keep
using it because from the point of view of scheduling functionality, the boot sched-
uler is not different from the ones provided by other scheduler developers at all.

In our implementation, we provide two schedulers, the default Linux scheduler and
another test scheduler. In the kernel configuration menu, one can choose only one
or both of them to be compiled into the kernel and one of them must be selected
to be the boot scheduler. The selected boot scheduler sets up its private runqueues,
assigns its functions to the pointers included in the scheduler interface when the
kernel initializes it and becomes available for later use. One special restriction for
the boot scheduler is that at the time when it starts, the system is still in its very ini-
tial status, which means a lot of system functionalities are not ready yet, especially
the memory management. This leads to the fact that functions for memory alloca-
tion, for example kmalloc and get free page, are not available. So, the memory
space for its private runqueues and other purposes, which normally should be allo-
cated and released dynamically when a scheduler becomes active and inactive for
the sake of saving system resources, must be reserved at the compilation time of
the kernel and can never be released later.

Chapter 4

Test and Verification

4.1 Test Scheduler

For testing purpose, we need to have two schedulers to carry out switchovers be-
tween them. We tailored the default Linux scheduler according to the new sched-
uler structure to get one candidate. For the other one, we built a simple round-robin
scheduler out of the default Linux scheduler. A round-robin scheduling algorithm
is quite primitive. With such algorithm, all active threads get an equal portion of
CPU time, the so-called time slice, in one scheduling round and run one after an-
other. Once a thread starts working on the CPU, it becomes unpreemptable to other
threads until it runs out of its time slice or it voluntarily gives up the CPU. After
all of them use up their time slice, each obtains again one slice and a new round
begins.

The default Linux scheduler can be adapted to such strategy without major mod-
ifications because itself can also be seen as a round-robin scheduler which uses
time slices in inconstant lengths with extra features of priority levels and thread
preemption. So, what we do is always assigning the same priority to threads and
disabling all the priority recalculation logic in the former Linux scheduler. After
that, thread preemption is automatically stopped because preemption means that
threads with higher priority can rob the CPU from threads with lower priority for
themselves to proceed. Since all threads are at the same priority level now, none of
them is able to preempt others any more and hence we achieve a nonpriority and
nonpreemption scheduler. For the size of a time slice, we take the default length
defined in the default Linux scheduler, that is 100 milliseconds, as a constant value
and unlike in the default Linux scheduling algorithm, this value is completely in-
dependent from the priority and the interactive nature of a thread. We also use a
single linked list to hold all active threads on the local CPU. The scheduler always
picks the first thread in this list to run and after this thread finishes its timeslice, it
will be given another 100 milliseconds and moved back to the last position of the
list, which means it has to wait for the threads that located in front of it to finish
their slice and get positioned behind it, to run again.

19

20 CHAPTER 4. TEST AND VERIFICATION

4.2 Function Test

The whole test consists of two parts. One for demonstrating the functionality of
our scheduler-exchanging mechanism and the other one for verifying the usability
of our design and implementation by evaluating the extra performance cost which
the exchangeability brings into a system.

Since schedulers work in the background and users normally do not see that they
are running, we print out a message which says how many active threads are cur-
rently in the system followed by a scheduler name in the function scheduler tick
in both of our test candidates in order to make an exchange of schedulers visible.
We choose the function scheduler tick because it will definitively be invoked every
time a timer interrupt comes and since it runs in interrupt context it can tell which
thread is currently running being interrupted. Also we put printk statements in the
switch on and switch off functions to show how many threads are to be handed
over to the new scheduler and how many are actually accepted by it. The numbers
should be equal all the time.

In the command window (Figure 4.1), we firstly read the kernel attribute file and
see there are two scheduler in our test system while round-robin is the active one.
Then, we write ”default” into this file to switch from round-robin to the default
Linux scheduler and after that we read the file again. This time default becomes
the active one. At last we switch again from ”default” back to round-robin and
again we can see the flag of active scheduler, the (current), goes back to round-
robin.

In the console window (Figure 4.2), we can see the corresponding kernel messages
from the schedulers. At first, it is the round-robin scheduler which reports the
total number of threads in its runqueues and which task is running currently. Dur-
ing a switchover, one task is handed over from round-robin to default. After that,
all the kernel messages come from the default Linux scheduler. At last, another
switchover from default back to round-robin takes place. This time, three threads
are successfully transferred and round-robin become again the active scheduler.
These messages completely coincide with the command sequence that we input in
the command window. It means that our scheduler exchanging mechanism delivers
the expected result and therefore works correctly.

4.3 Performance Test

To verify the usability of our design and implementation we evaluate the perfor-
mance of a kernel with scheduler exchanging ability and using the adapted default
Linux scheduler against an original Linux kernel in two test scenarios. This way,

4.3. PERFORMANCE TEST 21

Figure 4.1: Command Window of the Test Computer

Figure 4.2: Command Window of the Test Computer

22 CHAPTER 4. TEST AND VERIFICATION

the performance difference between them is completely caused by the extra work
of employing schedulers through the new scheduler interface.

4.3.1 Kernel Compilation

In the first scenario, we make standard Linux kernel compilation with the two
different kernels. The reason why we choose kernel compilation is because in
this process many child threads are created and terminated and switching between
threads happens at a high frequency. It means accordingly that, in this test scenario,
scheduler functions will be run very often and thus produce much more extra per-
formance overhead than in a normal situation. If the extra overhead falls in an
acceptable range, we can say with certain confidence that our implementation will
not cause remarkable performance degradation under most of the circumstances.

Test Total Time User Time System Time
1 14m6.867s 12m18.306s 1m23.021s
2 13m56.317s 12m15.386s 1m17.521s
3 13m57.029s 12m15.346s 1m17.769s
4 13m56.941s 12m15.674s 1m17.621s
5 13m56.599s 12m14.486s 1m17.889s

Average 13m58.7506s 12m15.8396s 1m18.7642s

Test Total Time User Time System Time
1 14m2.384s 12m17.026s 1m20.505s
2 13m59.826s 12m16.198s 1m20.041s
3 13m59.729s 12m16.222s 1m19.689s
4 13m58.008s 12m16.090s 1m19.409s
5 14m0.329s 12m16.042s 1m19.509s

Average 14m0.052s 12m16.3156s 1m19.8306s

Overhead 0.155% 0.065% 1.354%

Table 4.1: Kernel Compilation Test
– Standard Linux Kernel
– Our Test Kernel

In the above table, we can see that the extra performance overhead caused by the
online exchangeability of schedulers almost does not impact the total time and the
user mode time of a kernel compilation process as they are only 0.155 and 0.065
percent longer than those on a standard Linux kernel. A noticeable time expense
is in system mode which makes sense because the extra work that comes from
our implementation locates only in kernel and the time it takes is calculated into

4.3. PERFORMANCE TEST 23

the total time when the threads of the compilation process run in system mode.
The extra time expense which we have here is mainly caused by the two macros
ENTER SCHEDULER and EXIT SCHEDULER which we described in Section
3.2.4.2 and the standard Linux procedure of entering and exiting function calls on
scheduler interface functions. Although the time in system mode on our test kernel
is noticeable longer, 1.354 percent is still a tolerable number especially considering
our test scenario of calling scheduler functions at an extremely high frequency.

4.3.2 SPEC Benchmark

In the second test scenario we employ a standard and popular benchmark suite for
evaluating system performance from the organization Standard Performance Eval-
uation Corporation (SPEC) which aims to produce ”fair, impartial and meaningful
benchmarks for computers”. The benchmark which we use is CPU2006. This is
a newly developed combined performance test for CPUs, memories and compilers
and it covers most of the performance aspects of a computer system from program
compilation, data compression to popular XML Processing and so on. This means,
if our test kernel delivers a satisfying result under this test, in comparison with a
standard Linux kernel, we can be fairly sure that the users will not be aware of the
extra burden which the scheduler exchangeability puts on their computers.

Test Item Standard Kernel Test Kernel Overhead
400.perlbench 7.09s 7.15s 0.008

401.bzip2 68.9s 69.6s 0.010
403.gcc 7.87s 7.89s 0.003
429.mcf 30.2s 30.3s 0.003

445.gobmk 94.0s 94.3s 0.003
456.hmmer 15.7s 15.7s 0.000
458.sjeng 20.3s 20.3s 0.000

462.libquantum 0.467s 0.468s 0.002
464.h264ref 73.8s 74.2s 0.005
471.omnetpp 2.80s 2.82s 0.007

473.astar 56.0s 56.1s 0.002
483.xalancbmk 0.525s 0.524s -0.002

Table 4.2: Benchmark Test

In the above table we can see the performance overhead of the scheduler exchange-
ability stays at a very low level as its value varies between -0.2 to 1 percent for dif-
ferent applications. The negative value here is very interesting. It is caused by the
performance jitter of our test computer, otherwise this can never happen because
the computer is actually doing more work with our test kernel than with a standard

24 CHAPTER 4. TEST AND VERIFICATION

kernel. But it also argues from another angle that our design and implementation
do not have performance issues since the ignorable overhead can easily be covered
up by the tiny uncertainty of computer performance.

Chapter 5

Conclusion

With the goal of realizing online exchangeability for Linux schedulers, we defined
a standard interface between a scheduler and the rest of the Linux kernel, designed
and implemented the mechanism of switching between schedulers on a running
kernel and completed the whole solution by supplying the functionality of saving,
retrieving and removing schedulers as well as the means of user interactivity. For
our implementation, we took the 2.6.18 Linux kernel code as the basic.

With the results of the function and performance tests which we described in the
last chapter, we can see that the primary objective of this thesis about designing
and realizing scheduler online exchangeability is achieved and it is also verified
that our implementation is usable from the performance point of view. However,
1.354 percent more system time can still be reduced. One possibility of improve-
ment is to figure out a new mechanism to protect the scheduler interface structure
since our current mechanism seems to be the main source of the extra performance
cost.

A new feature might be worth to be developed as a supplement to our design,
namely the ability to support more than one scheduler simultaneously on different
CPUs. With our implementation, once a scheduler becomes active, it becomes ac-
tive on all CPUs. As the current Linux kernel is able to divide available physical
and logical CPUs into CPU domains to carry out load balancing within them, it
might as well be a good idea to assign different scheduling policies to them. With
this feature, tasks can be bound depending on their nature to a CPU domain that
is running an appropriate scheduler, either with or without user interference. This
will make computers more flexible and more capable of handling tasks with com-
pletely different requirements.

Another meaningful job would be to design an universal standard priority system.
Although itself has nothing to do with scheduler exchanging, it will greatly help
unloading the burden of scheduler developers. As we already mentioned in pre-
vious chapters, in Linux, priority information of threads are accessible from user

25

26 CHAPTER 5. CONCLUSION

space. To assure coherence, scheduler developers have to map their own priority
system to the existing Linux one if it does not fit. However, with a standard pri-
ority system which is ideally suitable for most of the scenarios, we can free those
developers from the whole mapping job.

Bibliography

[1] Daniel P.Bovet and Macro Cesati: Understanding the Linux Kernel,
O’REILLY, Edition. 3 (2005)

[2] Scott Rhine: Loadable Scheduler Modules on Linux(beta), Hewlett-Packard
Management Solutions Lab(MSL) (2000)

[3] Jonathan Corbet, Alessandro Rubini and Greg Kroah-Hartman: Linux Device
Drivers, O’REILLY, Edition. 3 (2005)

27

28 BIBLIOGRAPHY

