
Universität Karlsruhe (TH)
Institut für

Betriebs- und Dialogsysteme

Lehrstuhl Systemarchitektur

Hardware virtualization support for Afterburner/L4

Martin Bäuml

Studienarbeit

Verantwortlicher Betreuer: Prof. Dr. Frank Bellosa
Betreuender Mitarbeiter: Dipl.-Inf. Jan Stöß

4. Mai 2007

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfaßt und keine anderen als die
angegebenen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only cited sources have been
used.

Karlsruhe, den 4. Mai 2007

Martin Bäuml

Abstract

Full virtualization of the IA32 architecture can be achieved using hardware sup-
port. The L4 microkernel has been extended with mechanisms to leverage In-
tel’s VT-x technology. This work proposes a user level virtual machine monitor
that complements L4’s virtualization extensions and realizes microkernel-based
full virtualization of arbitrary operating systems. A prototype implementation
within the Afterburner framework demonstrates the approach by successfully
booting a current Linux kernel.

Contents

1 Introduction 5

2 Background and Related Work 6
2.1 Intel VT-x . 6
2.2 Virtualization Hardware Support for L4 7
2.3 Afterburner Framework . 8
2.4 Xen . 8

3 Design 9
3.1 Virtualization environment . 9
3.2 Nested Memory Translation . 11
3.3 Privileged Instructions . 14
3.4 Interrupts and Exceptions . 15

3.4.1 Event Source and Injection 15
3.5 Devices . 17
3.6 Boundary Cases . 17

4 Implementation 19
4.1 Integration into Afterburner Framework 19

4.1.1 Resource Monitor . 19
4.1.2 Device Models . 20

4.2 The Monitor Server . 20
4.2.1 Virtualization Fault Processing 20

4.3 Interrupts . 22
4.4 Guest Binary Modifications . 22

5 Evaluation 23
5.1 Booting . 23
5.2 Network Performance . 25
5.3 Webserver Performance . 25

4

Chapter 1

Introduction

With the performance advancements of processors, virtualization has become
applicable to personal computers and small servers. On recent processor gener-
ations the performance overhead due to virtualization is more than acceptable.
This development led to widely-used applications like server consolidation, sys-
tem isolation and migration.

A virtual machine monitor (VMM) can run on bare hardware, without a
full operating system supporting it. Such a VMM, also called hypervisor, has
full control over the hardware rather than going through abstractions provided
by the operating system. Therefore, a hypervisor can optimize for performance
and improve reliability. That is, the VMM cannot crash because of bugs e.g. in
the Linux kernel, but only depends on a correct implementation of the VMM
itself. In other words, the trusted code base is minimized to the VMM.

A hypervisor is much like an microkernel. It is a thin software layer on
top of the hardware and provides a clean interface to the next software layer
above. In the case of a hypervisor, the interface is a subset of the Instruction
Set Architecture, rather than a set of system calls. Both provide abstractions
and mechanisms for execution entities, isolation and communication. Based
on the thesis that microkernels and hypervisors are similar enough to justify an
integration of both, the L4 microkernel [7] was extended [4] to support hardware
virtualization extensions like Intel VT-x [11].

The goal of this thesis is to detail the design and functionality of a user level
VMM on top of the L4 microkernel leveraging L4’s hardware virtualization
support. It will be integrated in the already existing Afterburner framework, a
set of servers and device models targeted for pre-virtualization [6] on top of L4.
The resulting VMM will be able to run an unmodified Linux guest.

This thesis is organized as follows: The next chapter gives a short introduc-
tion into Intel’s virtualization hardware extensions, the extensions made to L4
and some related work. The third chapter presents the design and functionality
of the user level VMM. The last two chapters give details about the imple-
mentation of the VMM within the Afterburner framework and present some
performance results.

5

Chapter 2

Background and Related
Work

In this chapter I will first give a brief introduction to the Intel VT-x extensions
which allow full virtualization of the IA-32 architecture. Section 2.2 is dedi-
cated to the extensions made to the L4 microkernel which provide abstractions
and protocols for hardware virtualization support. The next section is a short
overview over the Afterburner framework in which the implementation of this
thesis will be integrated. In the last section I present Xen, a popular open source
hypervisor, which supports Intel VT-x extensions in its most recent release 3.0.

2.1 Intel VT-x

The IA-32 architecture has never been efficiently virtualizable according to the
formal requirements introduced by Popek et al. [8]. One of those requirements
demands that all virtualization sensitive instructions are a subset of privileged
instructions. This is not the case for example for the instructions MOV from GDT
or POPF. Although it is possible to build VMMs upon IA-32 using sophisticated
virtualization techniques like para-virtualization (used by Xen [9]) or binary-
translation (used by VMWare [13]), it is payed by either performance and/or
high engineering costs. They also suffer from deficiencies like ring compression,
which means that the guest OS runs at another privilege level than it was de-
signed for (e.g. ring 3 instead of ring 0). The main design goal for the Intel VT-x
extensions was to eliminate the need for sophisticated virtualization techniques
like para-virtualization or binary translation and make efficient virtualization
of the IA-32 architecture possible [11].

Intel VT-x introduces two new execution modes, VMX root mode and VMX
non-root mode. VMX root mode is comparable to IA-32 without VT-x. A
virtual machine monitor running in VMX root mode can configure the CPU to
fault on every privileged instruction of code running in VMX non-root mode.
Every fault causes a transition from non-root mode to root mode. This transi-
tion is called VM Exit. The VMM can determine the reason of the exit by the
value of the basic exit reason register. It can also access and modify all guest
state (registers, flags etc.). The VMM can therefore emulate the privileged
instruction, update the guest state and resume guest execution by reentering

6

non-root mode.
Both root mode and non-root mode contain all four privilege levels (i.e.,

rings 0, 1, 2, 3). Therefore deficiencies like ring compression can be overcome
because the guest OS can run at the privilege level it was designed for. Then
the guest can for example efficiently use the low latency system call instructions
SYSENTER and SYSEXIT, which would otherwise cause expensive traps into the
VMM.

Intel VT-x provides also support for managing guest and host state between
transitions and mechanisms for efficient event injection.

2.2 Virtualization Hardware Support for L4

The L4 microkernel is a second generation microkernel. It provides abstractions
for address spaces, threads and IPC. Biemüller suggests in [4] a small set of
extensions to L4 to allow user level threads to leverage hardware virtualization
support. According to the minimality principal of microkernel design only those
parts were integrated into the kernel that could not be realized by a user level
server, or prevent the system from being usable, if implemented outside the ker-
nel. The extensions undertake four fundamental tasks that need to be addressed
in a Intel VT-x based hypervisor:

Provision of execution entities and isolation containers L4 already pro-
vides threads and address spaces as primary abstractions for execution and
isolation. The virtual machine model therefore maps each guest OS to one
address space, and each virtual CPU to a thread within this address space.
These abstractions are extended minimally that the kernel knows whether
an address space caters for a virtual machine. Thus the kernel can resume
each thread in this address space by a VM Resume instead of returning
to user level.

Management of VMCS structures Intel VT-x introduces Virtual Machine
Control Structures (VMCS). A VMCS is a data structure where guest and
host state are kept when the CPU is in VMX root mode or VMX non-root
mode, respectively. The kernel is responsible for allocating and manag-
ing the VMCS structures transparently for user level VMMs. A VMM
can access relevant portions of the guest state through the virtualization
protocol (see below).

Dispatching/Virtualization Protocol For most VM Exits L4 dispatches
the handling of the exit to a user level server. The kernel communi-
cates with the user level VMM using the Virtualization Protocol which is
based on IPC. Most VM Exits require intervention of the user level VMM.
Therefore the kernel sends a virtualization fault message, similar to a page
fault message, to the VMM on behalf of the guest. The message contains
the reason for the exit and some additional guest state. The exact con-
tents of the message can be configured by the virtualization fault handler
on a per-exit-reason basis. The VMM also uses IPC to reply with state
modifications and eventually to resume the guest thread.

Shadow pagetables The guest OS does not have access to real physical mem-
ory. Instead it runs on virtual memory provided by its VMM (which is

7

always also its pager) in an L4 address space, which the guest sees as
physical memory. The kernel performs the additional translation step
between real physical memory, L4 virtual memory and guest virtual mem-
ory. When the guest is running, the kernel installs a modified version of
the guest’s page table, a shadow pagetable or virtual TLB (vTLB), which
contains mappings from real physical memory to guest virtual memory.
Shadow pagetables are explained in more detail in section 3.2.

2.3 Afterburner Framework

The Afterburner framework [5] provides a set of tools and servers to support
virtualization on L4. The original main target was to support a technique called
pre-virtualization or afterburning. Pre-virtualization uses a semi-automated ap-
proach to prepare a guest binary for virtualization. The approach is somewhat
similar to para-virtualization, but works at assembler level, allows the prepared
binary to run on both bare hardware and a virtual machine monitor and reduces
the engineering effort of preparing a binary by about one order of magnitude [6].

Although the framework contains an increasing number of L4 servers and
virtual device models to support the construction of a VMM, it lacks the possi-
bility to run a unmodified guest OS. Modification is not always possible, because
there are operating systems whose source code and therefore assembler code is
not available (e.g. Microsoft Windows).

2.4 Xen

Xen [9] is a popular open source hypervisor. In early revisions Xen only sup-
ported para-virtualized guests. With assistance of Intel VT-x, Xen 3.0 now also
provides virtualization for unmodified OSs. Xen consists of a privileged hypervi-
sor (running in ring 0, and in VMX root mode while using Intel VT-x extensions)
and a user level component. The user level component (called Dom0) is a para-
virtualized Linux that has passthrough access to the machines hardware. It uses
Linux device drivers for hardware access and provides virtual device models for
disks, network cards etc. to other guests. A modified version of the full system
emulators QEMU and Bochs provide emulation of the whole PC platform. One
process of QEMU or Bochs runs in Dom0 for each guest and emulates guest IO
accesses. The guest domains communicate with Dom0 via shared memory which
is set up as ring buffers. Dom0 also runs VM management and configuration
utilities.

The main differences between Xen’s approach and ours are that Xen’s hy-
percall interface is designed for virtual machines only and not generic enough
to build arbitrary light-weight systems on top of the hypervisor and that Xen
keeps far more logic (for example the emulation of heavily used virtual devices
like programmable interrupt controllers) in the privileged part of the VMM.

8

Chapter 3

Design

A generic virtual machine monitor can be divided into three parts: the dis-
patcher, the allocator and the interpreter [8]. The dispatcher is the main entry
point for exits from the virtual machine. The allocator allocates and manages
resources. It also ensures that different virtual machines do not access the same
resource in an uncontrolled way. The interpreter emulates unsafe instructions
and commits resulting state changes back to the virtual machine. In our case,
the kernel already implements the dispatcher by sending virtualization IPC
messages on behalf of the guest. Therefore, the user level monitor needs to
implement allocator and interpreter.

The user level monitor complements the extensions for hardware virtualiza-
tion support made to the L4 microkernel. It controls and multiplexes accesses
to physical resources using abstractions and mechanisms provided by the ker-
nel. In particular, it is the major IPC endpoint for virtualization messages sent
by the microkernel. It also serves as the virtual machine’s pager and provides
mappings for the guest physical memory.

In this chapter I will propose a design for the user level VMM. Section 3.1
will give an overview over the VMM server and its address space layout. In
section 3.2 I will explain in detail how the kernel and the VMM perform nested
memory translation. In section 3.3 I will analyse which instructions need to be
handled by the VMM, and the last three sections deal with interrupts, excep-
tions, devices and boundary cases.

3.1 Virtualization environment

The virtualization software stack consists of a set of L4 servers. In cooperation
with the kernel they provide the necessary services to host virtual machines.
Figure 3.1 shows the basic architecture of the software stack.

Resource monitor The resource monitor is the root server of the monitor
instances (VMM1 and VMM2 in figure 3.1). It manages all physical re-
sources available to the virtual machines. During system bootup it creates
a monitor server for each virtual machine and reserves for it the requested
amount of memory, if available. On later request by the monitor server,
the resource monitor provides mappings for physical device access in such

9

Figure 3.1: Overview over the virtualization environment architecture.

way that just one guest at the same time has access to a specific physical
device.

Monitor server The monitor constructs and manages the virtual machine en-
vironment. It creates an L4 hardware virtualized address space as isola-
tion container for one guest. In this address space it initializes one thread
per virtual CPU (VCPU). The monitor allocates enough memory for the
mapping of guest physical memory and loads necessary binaries for the
bootup process to the guest physical memory. The monitor also serves as
the virtual machine’s pager and provides mappings on page faults on the
guest physical memory.

Each monitor instance caters for exactly one virtual machine. The guest’s
physical address space is identity-mapped into the monitor’s address space
starting at address 0x0. The size of the guest physical memory can be
configured at load time of the monitor. The monitor’s code is outside the
guest physical memory region, so that the guest can not interfere with the
monitor. If the guest is granted passthrough access to memory mapped
IO, the monitor needs to map the IO pages to a safe device memory area
inside its own address space, before it can map it on to the guest. See
figure 3.2 for an overview of the address space layout.

Although each monitor instance only holds one virtual machine, it is still
possible to run multiple virtual machines in parallel by running multiple
monitor instances. This way each virtual machine is securely isolated
using L4’s address space protection.

Device Driver A set of device driver servers provides access to the machines
hardware.

This architecture allows to build arbitrary applications next to the virtual-
ization stack. They can either be completely independant from the virtualiza-

10

Figure 3.2: The monitor’s address space contains a one-to-one mapping of the
guest physical address space. Device memory might be mapped to a safe address
region in the monitor.

tion environment or for example use services provided by some legacy software
running inside a virtual machine.

3.2 Nested Memory Translation

In this section I will explain how the L4 kernel virtualizes guest physical memory
in collaboration with the user level monitor.

In a virtual machine environment, the guest OS cannot have direct access to
physical memory, because the hardware does not support fine grained protection
of physical memory. Instead, the guest physical memory is abstracted by an L4
address space, for which hardware guarantees protection. The monitor uses L4’s
mapping mechanisms to populate the guest’s address space with guest physical
memory. Because the guest expects to be on a real machine, it will implement
virtual address spaces itself on top of the guest physical memory. On the other
hand the kernel cannot allow the guest to manipulate the kernel’s page table
for security reasons. Unfortunately, current hardware does not (yet) support
such a nested virtual memory hierarchy. So the illusion of a nested memory
translation has to be provided by the kernel. Therefore, the kernel uses the
Intel VT-x extensions to make the guest trap on all page table related events,
that is, pagefaults, MOV to CR3 and INVLPG, as well as the rare case of flipping
the PG bit in CR0 (turning paged mode on or off). On each such event, the kernel
modifies the virtual TLB (vTLB), also called shadow page table, the real page
table installed by the kernel and seen by the MMU. It contains the mappings to
perform the correct and safe guest-virtual to host-physical address translation.

In the following I will cover each of the above page table related events

11

Figure 3.3: Nested memory translation using shadow page tables. (a) Vir-
tual memory translation generated by L4’s page table for the monitor’s address
space. (b) Mapping from monitor’s address space to the guest’s L4 address
space. (c) Virtual memory translation as defined in the guest’s current page
table. (d) The vTLB combines translation steps a, b and c into one L4 page
table, generating the illusion of nested memory translation.

and instructions in more detail. See also figure 3.3 for an overview over nested
memory translation using shadow page tables.

Pagefault on Guest Virtual Memory A guest pagefault is by far the most
frequent event to trigger a vTLB update. It is raised when the guest tries
to access a virtual address which has no mapping in the vTLB or only
insufficient access rights. Although this is true for all guest page faults,
because the vTLB is the actual page table which is used by the MMU for
address translation, we can distinguish several causes, why the vTLB does
not contain a valid mapping. The kernel determines the exact reason by
parsing the guest’s page table, and potentially the vTLB, too. We can
distinguish the following cases:

1. The guest page table does not contain a valid mapping, or only a
mapping with insufficient access rights for the faulting address. This
must be handled by the guest. Therefore the kernel injects the page-
fault back into the guest, which can update its page table accordingly.

12

When the guest repeats the faulting instruction, another pagefault
will be raised, because the vTLB still does not contain a valid map-
ping. Only in the uncommon case that the guest ignores the pagefault
(e.g. because a user process accessed an invalid memory area), no
second pagefault will be raised.

2. The guest’s mapping points to a guest physical page, which is not
mapped into the guest’s address space. Such a pagefault does not
exist on a real machine. Therefore the kernel and the monitor handle
it transparently for the guest. L4 translates the pagefault into a page
fault IPC to the monitor, which in return provides a mapping for the
faulting guest physical address. The monitor can use flexpages of any
size for the mapping, although larger mappings should be favored for
efficiency reasons. The monitor can refrain from replying with a
mapping for the emulation of memory mapped IO. For details see
section 3.5.

3. The guest physical page has insufficient access rights for the guest
access (e.g. a write on a read only page). This case occurs when the
monitor implements a copy on write mechanism for guest physical
memory [12]. Then the monitor makes a copy of the page before it
grants the guest write access to the page.

4. If non of the above reasons apply, the relevant vTLB entry does not
yet reflect the guest’s and the monitors’s mappings. Therfore, the
mapping in the vTLB needs to be updated for the faulting virtual
address. The kernel determines the associated guest physical page
from the guest’s page table and, using L4’s mapping database, the
host physical page frame which backs the guest physical page. It now
updates the vTLB with a mapping from the guest virtual address to
the host physical address, therefore providing the illusion of a nested
memory translation. The access rights for the page are derived from
the guest’s page table. This also includes the kernel bit, which is
important for the guest kernel’s protection from its user processes.
In two cases the kernel unsets the write bit, although it is set in the
guest page table. Firstly, if the monitor implements a copy on write
mechanism and only provides a read only mapping. Secondly, the
vTLB also emulates the dirty bit in the guest page table. The MMU
sets the dirty bit correctly in the vTLB, but the guest expects it to
be set in its own page table on the first write access to the page.
So if the first access to the page is a read, the kernel maps the page
read only, so that the first write access to it raises another pagefault.
On this pagefault, the kernel can finally update the dirty bit in the
guest’s page table. This is not necessary if the first access is a write
access. The kernel then sets the dirty bit immediately.

MOV to CR3 A MOV to the control register CR3 loads a new page table and im-
plicitly invalidates all previous cached mappings. Because the guest must
not have access to the real page table, the kernel traps on this instruction.
The kernel reloads CR3 itself with a new vTLB. If it implements a caching
strategy, it might already have a cached, prepopulated vTLB for this guest
page table. Caching promises to increase performance because each pre-

13

populated vTLB entry might save a pagefault. On the other hand, an
elaborate mechanism is needed to detect changes to the guest page table,
so that the vTLB does not reflect an old, now incorrect mapping.

To hide that it installed a different page table than the guest expects, the
kernel ensures that the guest does not read the real CR3 register. Intel
VT-x provides a shadow CR3 register, which content is returned on every
CR3 read by the guest.

INVLPG Changes to a page table are not guaranteed to take immediate effect
because the hardware TLB caches mappings from the current page table.
The INVLPG instruction is used to remove a cached mapping from the
TLB, so that on the next access to the page the translation is re-read
from the current page table. With the vTLB in place, the kernel not
only invalidates the TLB by re-executing INVLPG on behalf of the guest
but also removes the corresponding mapping from the vTLB. Otherwise
the MMU would find the the old mapping in the vTLB, which would not
reflect a possible new mapping in the guest page table. The kernel does
not immediately translate the new guest mapping, because it might still
change until the next page access.

Nested memory translation is implemented in the kernel mainly because of
performance reasons. If implemented in the monitor, each guest pagefault would
require the monitor to map the corresponding guest physical page from its own
address space to the guest’s address space at the requested virtual address. This
additional mapping operation is considered too expensive [4]. Also, L4 does not
support mapping of kernel pages (the kernel bit set), which would be needed
to ensure protection for the guest OS. Thirdly, upcoming hardware promises to
support nested paging in hardware, rendering software solutions obsolete but for
older processors. On the other hand, the monitor needs to implement guest page
table parsing and pagefault injection anyway to emulate IO string instructions
such as REPZ INSW.

3.3 Privileged Instructions

The monitor handles privileged instructions in one of three possible ways. I will
use the IO read instruction INB as an example in each case. INB reads a byte
from an IO port to the EAX register.

Emulation The hardware traps on the instruction and the kernel transfer con-
trol to the monitor by sending a virtual fault message on behalf of the
guest. The monitor uses the virtual fault message to determine the faulted
instruction. It updates the state of the guest by emulating the instruction
in a safe way. Example: The monitor notifies the virtual device for this
port about the INB instruction. The virtual device returns the current
value of the virtual IO port according to the device’s current state. The
monitor updates the guest’s EAX register with the return value before it
resumes guest execution. No real device is accessed during the emulation.

Execution on Behalf Analogously to emulation, the hardware traps on the
privileged instruction and the monitor is notified through a virtual fault

14

message. The monitor makes sure that the parameters for the instruction
are safe or adjusts them as needed. Then it executes the privileged in-
struction on behalf of the guest. The return value, if any, is verified to be
safe before the monitor updates the guest with the new state. Example:
The monitor executes the INB instruction itself, but might choose a dif-
ferent port number. That way, the monitor can grant passthrough access
to a real device, but keeps complete control and can for example redirect
COM0 access to COM1 transparently for the guest.

Passthrough The guest is allowed to execute the instruction without trapping.
In this case the monitor has no longer control about the execution of the
instruction nor does it get notified. To reenable complete control, the
monitor can reactivate the hardware trap. Passthrough execution must
only be allowed if isolation is not harmed. Example: Intel VT-x lets the
monitor specify fine grained passthrough access rights to IO ports. If a
device is assigned to a single virtual machine, the monitor can grant full
access to the devices IO ports for performance reasons. A guest INB in-
struction (and every other IO instruction) on these ports executes without
fault which saves the cost of a VM Exit and reentry. Access to all other
IO ports still raises a fault.

3.4 Interrupts and Exceptions

The guest expects interrupts and exceptions to be delivered similar to native
execution. As each guest has a different set of interrupt handlers, it implements
its own interrupt descriptor table in its guest address space. The VMM divides
interrupts and exceptions into two classes: those which are critical to host/VMM
operation, and those which are not. All non-critical events will be directly
delivered to the guest (i.e., do not raise a VM Exit), whereas all critical events
are configured to raise a VM Exit. In the following there is a short overview
which event belongs to which class:

Critical Events As already discussed in 3.2, the pagefault exception is used to
virtualize guest physical memory and is therefore a critical event. Exter-
nal interrupts are critical, too, because the VMM cannot allow the guest
to handle external interrupts directly for security, isolation and multiplex-
ing reasons. They are handled by either L4 device drivers or by a generic
interrupt server in the VMM. Although the debug registers are not crit-
ical to host operation, they can be used to set breakpoints in the guest
for debugging the VMM and/or the guest. In this case, also the debug
exception is configured to exit the guest.

Non-Critical Events All software-generated interrupts and all exceptions be-
side pagefaults can be handled directly by the guest and do not exit to
the VMM.

3.4.1 Event Source and Injection

Although all critical events are handled solely by the kernel, L4 device drivers
and the VMM, they can still be the source for virtual events for the guest. When

15

Figure 3.4: Interrupt injection.

the VMM has a pending event for the guest, it uses Intel VT-x’s event injection
mechanism to deliver it to the guest. We distinguish between interrupts and
exceptions:

Interrupts Figure 3.4 illustrates the source and injection model of guest inter-
rupts. The VMM runs a dedicated interrupt server which is responsible
for receiving and injecting virtual interrupts. Interrupts are either gener-
ated by real devices, or by virtual device models. Real device interrupts
are either received by a device driver (like vector Y), or by the interrupt
server if the guest has passthrough access to the device (like vector X).
For the latter, the VMM associates itself as the interrupt handler thread
for L4 interrupt IPCs. It only grants this kind of interrupt passthrough
when a device is exclusively assigned to one guest.

The VMM emulates two nested i8259 interrupt controllers which are stan-
dard programmable interrupt controllers (PICs). When the interrupt
thread receives either a real interrupt or a virtual interrupt from a de-
vice model, it updates the PICs’ state with the new interrupt pending.
The interrupt server now notifies the guest about the event. If the guest
is currently descheduled and waiting for interrupts, e.g. as a result of
executing the HLT instruction, the VMM rewakes the guest by perform-
ing the interrupt injection. If the guest is on the other hand currently
in an executing state (e.g. the last VM Exit only occured because of ex-
piration of the time slice), it could have interrupts disabled. Therefore,
the VMM uses Intel VT-x’s Interrupt Window Exit mechanism to force
a VM Exit on the next occasion when interrupts are allowed to be deliv-

16

ered (that is, the IF flag is set), without the need to poll the guest state.
The VMM can then inject the pending interrupt on the next Interrupt
Window fault. L4 exposes the Interrupt Window request feature by an
extension to the ExchangeRegisters system call. The permission, that
ExchangeRegisters can be called by any thread in the pagers address
space, is granted in an experimental extension to the L4 API.

Exceptions A pagefault exception is the only critical exception which the
VMM delivers to the guest. The common case is that the vTLB rein-
jects pagefaults into the guest whenever it determines that they are really
pagefaults on guest virtual memory. Also the emulation of instructions by
the VMM that access guest virtual memory is a source for virtual page-
faults. As the guest cannot mask out the reception of exceptions, the
vTLB and the VMM immediately inject the pagefault into the guest with
the next reentry.

Interrupt and exception handling in the guest procedes normally, i.e. the
guest interrupt handlers are triggered without further intervention of the VMM.

3.5 Devices

A virtual machine only makes real sense if the guest has access to devices which
it can use to communicate to the outside world. Therefore, the VMM should
cater for at least a network card and a harddisk, either through emulation or
by assigning a real device to the guest. The guest communicates with the
devices using IO ports and/or memory mapped IO. Intel VT-x provides fine-
grained access control to IO ports via bitmaps, so that an IO operation on a
restricted port (one that has not been assigned to the guest) raises a VM Exit.
The VMM then forwards the request to an appropriate device model which
emulates the instruction. L4 supports this fine-grained access control through
IO-Flexpages [10].

For emulation of memory mapped IO, the VMM uses pagefaults to determine
access to device memory regions. Instead of mapping the page, it triggers device
emulation. Even for guest assigned devices memory mapped IO might need to
be trapped upon. This is due to DMA, which operates on physical addresses.
Unless the VMM would intervene, the guest kernel would configure the DMA
controller with physical addresses and therefore circumvent the MMU. But the
guest physical addresses in almost all cases will not match its real physical
addresses, so that 1. the DMA controller overwrites uninvolved memory regions
and 2. the data never arrives at the guest. The VMM overcomes this by
catching and modifying the DMA controller configuration, and possibly even
emulate DMA as a whole.

3.6 Boundary Cases

Although we can expect that the guest runs most of the time in paged protected
mode, the VMM provides support for real mode and unpaged protected mode as
well. Neither is supported natively by Intel VT-x in VMX non-root mode. VMX
non-root mode can only run in paged protected mode so that real mode and

17

unpaged protected mode are emulated by the monitor and/or kernel. Virtual-
8086 mode is similar enough to real mode for using it to execute real mode
code. The vTLB emulates unpaged protected mode by identity-mapping guest
physical memory to guest virtual memory. The guest’s shadow CR0 register
reflects the current execution mode, even if the guest is really running in paged
protected mode.

During the execution of real mode code the monitor catches BIOS interrupts
from the guest and emulates them properly.

18

Chapter 4

Implementation

In this chapter I will present some details about the implementation of the user
level VMM and its integration into the Afterburner framework.

4.1 Integration into Afterburner Framework

The VMM was implemented as part of the Afterburner framework. The Af-
terburner framework already comes with a large code base from which some
components could be reused for our implementation. Especially the resource
monitor and some device models could be integrated with only small changes.

4.1.1 Resource Monitor

The resource monitor is an L4 root task. It manages all system resources and
makes them available to virtual machines on request. It is designed to load an
in-place VMM (the wedge) into the same address space as the guest binary. The
configuration of the virtual machine environment can be done with command
line arguments via the GRUB bootloader. By choosing these arguments care-
fully, we can make the resource monitor load our VMM correctly. We want to
achieve:

• ELF-load the VMM (see 4.2) to a new address space.

• Make the guest binary accessible within that address space.

• Allocate a continuous chunk of memory (the amount is configurable) for
the guest physical address space.

• Access additional supporting binaries such as ramdisk or a floppy/harddisk
image.

The resource monitor loads multiple modules (including ramdisk and disk im-
ages) into one address space, if the first module’s command line contains the
paramenter vmstart. All modules until the next vmstart are placed into one
address space, and the first one (which should be our VMM) is correctly ELF-
loaded if it is an ELF file. The amount of available memory can be configured
with vmsize=. This memory will be available starting at address 0x0. We want

19

to make sure, that the guest cannot access the VMM code later. Therefore, we
make the resource monitor load it with an offset (wedgeinstall=) beyond the
maximum guest physical address. A sample GRUB entry would therefore look
like:

title=pistachio-vt afterburner-vt bootfloppy
kernel (nd)/tftpboot/baeuml/vt/kickstart
module (nd)/tftpboot/baeuml/vt/pistachio
module (nd)/tftpboot/baeuml/vt/sigma0
module (nd)/tftpboot/baeuml/vt/l4ka-resourcemon
module (nd)/tftpboot/baeuml/vt/afterburn-wedge-l4ka-passthru \

vmstart vmsize=540M wedgeinstall=512M
module (nd)/tftpboot/baeuml/floppy.img

4.1.2 Device Models

I reused the device models of a i8259a programmable interrupt controller, a
i8253 serial port, a mc146818 real time clock and a i8253 programmable interval
timer. The device models have a simple interface: they accept read and write
access to their specific IO port ranges. Thus their integration consists merely of
instantiating each device model and forwarding access to these IO ports to the
corresponding model.

4.2 The Monitor Server

The monitor server is the VMM module that is loaded into a new address
space by the resource monitor. After it is started as a new thread, it parses
module information which the resource monitor relays to the monitor via a
shared page. Then the monitor creates a new hardware virtualized address
space and one thread as virtual CPU inside it. A multi-processor virtual machine
environment is not supported so far. If the first module is a Linux kernel, it
is loaded correctly as a Linux kernel: The monitor fills the kernel boot header
according to the Linux x86 boot protocol, copies command line options and sets
up a ramdisk (if present and loaded as another module by the resource monitor),
before the thread is started at Linux’s entry address. If the first module is a disk
image, only its boot sector is loaded to memory and the VCPU is started in real
mode. Finally, the monitor thread starts the interrupt server, which handles all
incoming real and virtual interrupts. After all initalization is done, the monitor
sends the startup virtualization message to the VCPU and enters a server loop,
where all incoming virtualization fault messages are processed.

4.2.1 Virtualization Fault Processing

Each incoming virtualization fault message contains a basic exit reason. Based
on its value, the nature of the fault can be determined and the proper fault
handler can be called. For example:

HLT The basic exit reason indicates that the guest tried to execute the HLT
instruction. The Linux kernel does this normally in the idle loop to shut
down the processor until the next interrupt event. Therefore, the monitor

20

can safely deschedule the guest (by just not replying the virtualization
fault) until the interrupt thread receives the next interrupt. On reception
of the next interrupt the monitor sends a virtualization reply to the guest
to make it runnable again. This reply also contains an element to trigger
immediate interrupt delivery.

The implementation also deals with a small but subtle issue: Linux reen-
ables interrupts by executing STI just before executing HLT in its idle
loop. Therefore, interrupts are blocked by the STI instruction1 until after
executing the HLT instruction2. Since the guest traps on the privileged
instruction HLT before executing it, the monitor has to disable this block-
ing by STI explicitly to make interrupt injection possible in this case ([2,
Section 22.3.1.5])

IO access Virtualization of IO instructions has to be implemented carefully,
because IO instructions can involve device access (real or virtual), guest
virtual memory access, and can even trigger multiple port accesses until
an exit condition is met. A single INB into a general purpose register is
implemented quite straight forward (see section 3.3 for an overview over
the implementation models). More care has to be taken on a (repeated)
string IO instruction (e.g. INS) which implicitly operates on guest vir-
tual memory3. The destination operand is a memory location defined by
ES:EDI. A REP prefix can precede the string IO instruction to repeat it
until ECX reaches 0 (ECX is decremented implicitly each iteration). In case
of a conditional prefix (e.g. REPNZ: repeat while not zero) the instruction
breaks out of the loop when the ZF flag meets a condition or ECX reaches 0,
whichever comes first. On each repetition, EDI is implicitly incremented
or decremented, depending on the DF flag. Now the VMM has to check
on such an instruction if

• the exit condition is met

• ES contains a valid segment descriptor at all

• ES:EDI is a valid guest address.

The segment check can be done once in the beginning, while the current
guest page table has to be checked more often since EDI changes implicitly.
To avoid unneccessary effort it suffices to parse the guest page table on the
first access and each time a page boundary is crossed. If the VMM discov-
ers an invalid mapping in the guest page table, it injects a pagefault into
the guest. Although not implemented in the VMM, the IA-32 architecture
would allow delivery of interrupts during execution of such an instruction.
See [1] for details on the behaviour of IA-32 string instructions.

1The STI instruction delays recognition of interrupts until the next instruction is exe-
cuted [1, Section STI].

2Afterburner’s pre-virtualization step removes this subtle semantic by replacing a STI by
STI NOP NOP..., rather than ...NOP NOP STI. I stumbled upon this when I found that a
pre-virtualized kernel behaved differently than a non-modified kernel.

3I found that Afterburner’s pre-virtualization step does not replace INS at all. Must have
been overseen.

21

4.3 Interrupts

The interrupt server is the endpoint for interrupt messages by virtual and real
devices. It keeps track of pending interrupts in device models of two nested
i8259a programmable interrupt controllers. Timer interrupts are generated by
using L4’s timeout mechanism for the IPC system call. Each time the IPC system
call times out, a timer event is raised. Under heavy load the interrupt server
IPC call might never time out, because before each timeout another IPC is
received by the server. Therefore, the interrupt server also raises a timer event
if the last timer event happend a certain amount of time ago.

When the interrupt thread is notified of an event, it triggers the injection
into the guest. If the guest is currently in a running state, the interrupt thread
uses ExchangeRegisters to request an Interrupt Windows Exit the next time
the guest is able to receive interrupts. If the guest is currently halted and
descheduled (after executing HLT), it sends a notification message to the monitor
thread. The monitor thread then resumes the guest by injecting the interrupt
properly (see also section 4.2.1).

4.4 Guest Binary Modifications

Although the design and the technology provide grounds for virtualization of
unmodified guests, I took a shortcut for the network card’s DMA controller.
Instead of filtering IO access to the network card to configure the DMA con-
troller with correct physical addresses, I modified Linux’s virt to phys() and
phys to virt(). Those functions are responsible for translating a virtual ad-
dress to the corresponding physical address and are mostly used in DMA related
operations. My modifications add a static offset to physical memory addresses
so that Linux itself already programmed the DMA controller correctly. When
guest DMA access is fully managed by the VMM this shortcut can safely be
removed from the guest.

22

Chapter 5

Evaluation

In this chapter I will first give an overview over how far the Linux bootup process
is supported by the VMM. In the second half of this chapter, I will evaluate a
Linux instance running on the VMM against a Linux instance running on bare
hardware. Both have a comparable setup: The evaluation was performed on
the same machine, with a VT-enabled Intel CPU with 3.6 GHz, 2MB Cache,
2GB RAM and a Gigabit network card. The VMM runs a single instance of the
guest, and the guest has direct device access to the network card. Both guest
and bare Linux run from a ramdisk. The Linux kernel version used is 2.6.9.

5.1 Booting

The VMM successfully boots a Linux 2.6.9 kernel and runs a small Debian
installation from a ramdisk. The kernel completes all necessary boot steps be-
ginning from CPU detection and virtual memory activation over device probing
to the login prompt. Although serial input is not implemented, the user can
login over the network if the ramdisk contains a SSH server. Once logged in,
the user can start arbitrary applications, e.g. a webserver.

I made the subjective observation that the bootup procedure is slower on
the VMM than on bare hardware. I suspect the main reasons for this to be
first the inefficient vTLB implementation in the kernel and second slow device
probing of passthrough devices. For the second case I was not able to find the
source: Probing devices is taking at least a factor of 100 longer than on bare
hardware1.

See table 5.1 for an overview over Linux’s boot steps and whether they can
be completed successfully, if booted on the VMM.

1The strange thing is that this problem does not occur when using an afterburnt (but
unpatched) Linux kernel (i.e., with some NOPs after each privileged instruction) instead of
an unmodified Linux kernel. I suspect that these delays come from kernel-internal busy wait
loops, during which the kernel switches to the idle thread several times. The main difference
here between the unmodified and the afterburnt kernel is that the HLT instruction is not
covered by a blocking STI, due to a bug in the afterburning procedure (see footnote 2 on
page 21). Unfortunately this is not the source for the problem, which I tested by patching the
afterburnt binary.

23

Boot step State
BIOS RAM map Y
Virtual memory Y
vCPU detection Y
Console output Y
HLT check Y
WP bit check Y
MWAIT for idle F
Fast system calls F
PCI passthrough access Y
Serial port Y
IO APIC Y
Timer calibration Y
Real time clock Y
Mouse input N
Parallel port N
Floppy disk N
Network card passthrough Y
(using Intel e1000 driver)
Harddisk passthrough access F
USB support N
Static NIC configuration Y
Ramdisk support Y
INIT fork Y
Swap disk activation S
Login prompt Y
Console input N
Ping Y
SSH access Y
Apache server Y
Reboot N

Table 5.1: Overview over Linux 2.6.9 boot steps and state in the implemen-
tation. Abbreviations are: (Y) implemented, step completes successfully; (N)
not implemented; (F) bootup fails if not deactivated in the VMM or via Linux
kernel options; (S) skipped by Linux.

24

5.2 Network Performance

I used the netperf benchmark to evaluate I/O and network performance. The
evaluation machine acted as netperf server. The client was a Dual Opteron with
3.2GHz and a Gigabit network card. I calculated CPU utilization as quotient
of unhalted clock cycles and total clock cycles which I measured using hardware
performance counters. Table 5.2 show the result of the benchmark run. We can
see that the virtualized guest achieves almost the same throughput as the Linux
on bare hardware, but pays with a higher CPU utilization. This is the expected
result: Because the guest has direct access to the network card and uses DMA
to copy data, there is almost no CPU overhead for the data transfer. The higher
CPU utilization is mostly a result from additional code in the VMM, which is
executed for example whenever the guest accesses IO ports (e.g. the PIC) or on
vTLB updates on guest pagefaults. Because the CPU overhead is small enough,
the throughput is not significantly affected.

Bare Hardware Afterburner/VT
Throughput [MBit/s] 854.36 852.62
CPU Utilization [%] 20.4 55.5

Table 5.2: Network throughput achieved by the netperf benchmark.

5.3 Webserver Performance

The performance of a webserver in a virtual machine is of twofold interest. First,
a webserver is a common used application to be consolidated into a virtual
machine. And second, a webserver depends heavily on the kernel for file access,
sockets/network and multithreading/-tasking. We can therefore expect that if a
webserver performs acceptable, any other common application should perform
acceptable as well.

For measuring webserver performance I used the program ab [3], a bench-
marking tool for the apache webserver. ab performs a given number of requests
on a URL, a display a report about timings in the end.

The benchmarked webserver was an apache2 webserver. It ran locally from
a ramdisk and provided three files of sizes 3MB, 16KB and 1MB. ab loaded
the three files 1000 times each. To eliminate major errors in measurements,
each experiment was reiterated three times. Table 5.3 shows ab’s execution
times for Linux running on bare hardware and Linux running on Pistachio-
VT/Afterburner, and the overhead introduced by virtualization over bare hard-
ware.

While the overhead for File 1 and File 3 seem acceptable, File 2 breaks rank.
I suspect that the reason for this is the small size of File 2. This might result
in a context switch without fully filling the transfer buffers. Therefore more
context switches in relation to transferred file size are necessary. Because of the
brute force vTLB implementation in the kernel (the vTLB is flushed completely
on guest context switches) this results in worse overall performance. Still, even
a performance penalty of around 50% for unoptimized, non-production-level
kernel and user level prototypes is acceptable, considering that the vTLB as

25

a major performance bottle neck can very likely be replaced by a hardware
solution in the near future.

Bare Hardware [s] Afterburner/VT [s] Overhead[%]
File 1 2.938316 3.425481 0.165797

(3MB) 2.937339 3.400574 0.157706
2.938438 3.405301 0.158881

File 2 0.154082 0.242747 0.575440
(16KB) 0.154372 0.236964 0.535019

0.154089 0.234748 0.523457
File 3 1.133297 1.313877 0.159340

(1MB) 1.125355 1.314016 0.167646
1.136073 1.458734 0.284014

Table 5.3: Execution times of the apache benchmark tool ab. The column
Overhead specifies the performance penalty of the virtualized version against
bare hardware.

26

Bibliography

[1] Intel architecture software developer’s manual: Volume 2: Instruction set
reference, March 2006.

[2] Intel architecture software developer’s manual: Volume 3: System pro-
gramming guide, March 2006.

[3] ab Apache HTTP server benchmarking tool. http://httpd.apache.org/
docs/2.0/programs/ab.html.

[4] Sebastian Biemüller. Hardware-supported virtualization for the l4 micro-
kernel, September 2006.

[5] Afterburner framework. http://l4ka.org/projects/virtualization/
afterburn/.

[6] Joshua LeVasseur, Volkmar Uhlig, Matthew Chapman, Peter Chubb, Ben
Leslie, and Gernot Heiser. Pre-virtualization: Slashing the cost of virtu-
alization. Technical Report 2005-30, Fakultät für Informatik, Universität
Karlsruhe (TH), November 2005.

[7] Jochen Liedtke, Uwe Dannowski, Kevin Elphinstone, Gerd Liefländer, Es-
pen Skoglund, Volkmar Uhlig, Christian Ceelen, Andreas Haeberlen, and
Marcus Völp. The l4ka vision, April 2001.

[8] Gerald J. Popek and Robert P. Goldberg. Formal requirements for vir-
tualizable third generation architectures. Commun. ACM, 17(7):412–421,
1974.

[9] I. Pratt, K. Fraser, S. Hand, C. Limpach, A. Warfield, D. Magenheimer,
J. Nakajima, and A. Malick. Xen 3.0 and the Art of Virtualization. Proc.
of the 2005 Ottawa Linux Symposium.

[10] Jan Stöß. I/o-flexpages on the x86-architecture, May 31 2002.

[11] Rich Uhlig, Gil Neiger, and Dion Rodgers. Intel virtualization technology.
2005.

[12] C.A. Waldspurger. Memory resource management in VMware ESX server.
ACM SIGOPS Operating Systems Review, 36(si):181, 2002.

[13] VMWare Workstation. http://www.vmware.com.

27

http://httpd.apache.org/docs/2.0/programs/ab.html
http://httpd.apache.org/docs/2.0/programs/ab.html
http://l4ka.org/projects/virtualization/afterburn/
http://l4ka.org/projects/virtualization/afterburn/
http://www.vmware.com

	Introduction
	Background and Related Work
	Intel VT-x
	Virtualization Hardware Support for L4
	Afterburner Framework
	Xen

	Design
	Virtualization environment
	Nested Memory Translation
	Privileged Instructions
	Interrupts and Exceptions
	Event Source and Injection

	Devices
	Boundary Cases

	Implementation
	Integration into Afterburner Framework
	Resource Monitor
	Device Models

	The Monitor Server
	Virtualization Fault Processing

	Interrupts
	Guest Binary Modifications

	Evaluation
	Booting
	Network Performance
	Webserver Performance

