
Universität Karlsruhe (TH)
Forschungsuniversität gegründet 1825.

Improving Virtualization on L4

The System Architecture Group
Prof. Dr. Frank Bellosa

Faculty of Computer Science
University of Karlsruhe

by

Thomas Blattmann

Advisor:
Prof. Dr. Frank Bellosa

Joshua LeVasseur

Thesis start: August, 15th 2006
Thesis end: February, 14th 2007

II

III

Hiermit erkläre ich, die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Literaturhilfsmittel verwendet zu haben.

I hereby declare that this thesis is a work of my own, and that only cited
sources have been used.

Karlsruhe, February 14, 2007

IV

Contents

1 Introduction 1
1.1 L4’s Problem for Virtualization: Missing Transparency 2
1.2 Approach . 3
1.3 Structure of this Thesis . 3

2 Background And Related Work 5
2.1 Current Virtualization Techniques 5

2.1.1 Full Virtualization . 6
2.1.2 Para-Virtualization . 7
2.1.3 Pre-Virtualization . 8
2.1.4 Hosted vs. Hypervisor Approach 8

2.2 Abstractions and The Concept of Transparency 9
2.2.1 The Usage of Abstraction Layers 9
2.2.2 The Impact of Abstractions on Virtual Machines 11

2.3 Virtualization on L4 . 11
2.3.1 The L4 µ-kernel . 12
2.3.2 L4Linux and the L4Ka Virtual Machine Environment . 15

2.4 Missing Transparency in the L4 API 19
2.4.1 Missing Privilege Modes 19
2.4.2 Expensive Access Bits Virtualization 21
2.4.3 Imprecise Scheduling . 21
2.4.4 Inaccessible Processor State 22
2.4.5 Inadequate Control Transfer Support 22
2.4.6 Inefficient Address Space Construction 23
2.4.7 Indistinguishable Execution Modes 23

2.5 Related Work . 24

3 Proposed Solution 27
3.1 Thread Limits . 27
3.2 Control Transfer Messages . 29
3.3 Preemption Messages . 29
3.4 Zero Time Slices . 31
3.5 An Extended Page Fault Protocol 31
3.6 A new Wedge Design . 32

V

VI CONTENTS

4 Implementation 37
4.1 Control Transfer Messages . 37
4.2 Preemption Messages . 38
4.3 Page Fault Extension . 40
4.4 Thread Limits . 41

4.4.1 IA-32 Protected Mode Memory Management 41
4.4.2 Thread Limit Implementation 43
4.4.3 Implementation Alternatives 44

4.5 Wedge Design . 45
4.5.1 Address Space Construction 45
4.5.2 Address Space Switch 47
4.5.3 Exception, Signal and Interrupt Handling 48

5 Evaluation 51
5.1 Measurement Methodology . 51
5.2 µ-kernel benchmarks . 51
5.3 Virtual Machine Benchmarks 54

5.3.1 Microbenchmarks . 55
5.3.2 Macrobenchmarks . 56

6 Conclusion 61
6.1 Summary . 61
6.2 Future Work . 62

A API Version X.2 Extensions 63
A.1 Control Transfer Items . 63
A.2 Preemption Messages . 64
A.3 ThreadContol . 65
A.4 Page Fault Protocol . 66
A.5 Schedule . 66

Abstract

A variety of classes of hypervisors run virtual machines. One approach is to use
specialized, thin kernels as a base for virtual machine construction. A second
approach is to build virtual machines on the higher-level abstractions offered
by platform-independent operating system APIs. Virtual machines have also
been successfully set up on top of µ-kernels. A µ-kernel is a thin hypervisor
with a minimally trusted computing base. Unlike pure hypervisors, however,
it is not specialized to one specific purpose. Instead, common µ-kernels are
designed to perform well as generic platforms upon which many and various
systems can be built. This generality, on the downside, allows pure hypervisors
to outperform µ-kernels in their virtualization specific application area.

This work investigates L4, a second generation µ-kernel, with respect to virtual
machine construction. It identifies several L4 characteristics that complicate
virtual machine construction and cause a performance overhead, respectively.
Also, it proposes µ-kernel extensions that are well suited to the usage patterns
of a virtual machine but still conform to L4’s design philosophy. Finally,
the thesis provides a reference implementation that demonstrates the new L4
interface extensions. It reveals that many challenges can be overcome.

VIII CONTENTS

Chapter 1

Introduction

Virtualization describes a software abstraction layer that multiplexes a single
physical machine interface to create the illusion of many virtual computers,
also known as virtual machines. Each one appears to have its own set of
hardware, including a processor, memory, and devices. In fact, these items can
be real (e.g., if a real network interface is dedicated to a virtual machine for its
exclusive use) but they can also be shared among several virtual machines or
completely simulated by software. Virtual machines allow you to run several
operating systems in isolation on the same physical machine as if they were
executing on real hardware.

Hardware

Hypervisor

Virtual Machine Monitor Virtual Machine Monitor

Guest OS Guest OS

Appl ApplAppl Appl ApplAppl

Figure 1.1: Virtual environment abstraction layers

In Figure 1.1 virtualization is shown as a stack of hardware and software layers.
The privileged software layer with immediate access to and complete control
of the physical hardware is called the hypervisor. It multiplexes physical
resources and exports an interface that allows the creation of virtual machines
on top of it. Some virtualization projects use specialized thin kernels, which
are optimized to execute hypervisor specific tasks. Others construct virtual
machines on top of µ-kernels or standard operating systems such as Linux or
Microsoft Windows. The latter is commonly referred to as hosted approach.

1

2 CHAPTER 1. INTRODUCTION

Another frequently used term related to virtualization is that of a virtual
machine monitor, in short VMM. It embraces the entirety of non-privileged
software that builds on top of the hypervisor to create virtual machines.

There are several approaches to virtualization based on how complete the
hardware platform is implemented. Full virtualization describes a technique
that provides a complete simulation of the underlying hardware and allows un-
modified operating systems to be run. With Para-Virtualization, the virtual
machine’s interface is similar but not identical to that of the underlying ar-
chitecture. It requires operating systems to be ported to comply with that in-
terface. Pre-Virtualization is a novel approach similar to Para-Virtualization.
Unlike traditional Para-Virtualization, it highly automates the porting process
and avoids dependencies between the guest operating system and a specific hy-
pervisor.

1.1 L4’s Problem for Virtualization: Missing Trans-
parency

This work deals with different kinds of challenges the L4 µ-kernel poses to
virtual machine construction when using Para- and Pre-Virtualization tech-
niques. It particularly focuses on the transparency of the hypervisor’s high-
level abstractions on which a VMMs sets up.

Virtualization specific hypervisors and µ-kernels share a great deal of archi-
tectural similarities, including reliability, security and isolation. However, L4
was designed to be used as a generic platform upon which many different
systems can be built. Its API is architecture neutral and, relating to plat-
form independence, rather comparable to those APIs offered by monolithic
multi-programming operating systems. Their abstractions are usually not very
transparent, meaning that lots of capabilities that are provided by the under-
lying hardware are not exported to be usable by software layers that build on
top. Other features can only be accessed via indirections.

Platform independent high-level operating system abstractions are simple to
use, not very prone to making errors, and are well suited to the common
user application usage patterns. Virtual machine monitors, however, export
interfaces that either match, or resemble that of the underlying hardware.
Obviously, they are particularly sensitive to transparency issues. A highly
transparent hypervisor interface matches well to a VMM’s usage pattern and
allows for efficient virtual machine construction. The more hardware features
a VMM can directly access, the less indirection and emulation it requires.

As of yet, there are two projects on virtualization on top of L4, L4Linux [16]
and Joshua LeVasseur’s L4Ka Virtual Machine Environment [19]. They share

1.2. APPROACH 3

similar problems with all other hosted virtual machines: Their hypervisor’s
interface does not efficiently support virtual machine construction as well as
a highly transparent, specialized hypervisor does.

1.2 Approach

Peter M. Chen, Samuel T. King and George W. Dunlap [17] managed to
remarkably improve the performance of a Linux based virtual machine. Among
other things, they introduced new system calls and increased transparency of
the Linux API by providing VMMs a way to make use of IA-32 segmentation.
This allowed them to safely co-locate operating systems and their applications
in the same address space. Motivated by their success, this work identifies and
analyzes the weak points of the L4 API with respect to virtualization. Based
on the results, it makes proposals on how to make the API more transparent
(and thus more suited to virtual machine construction) without interfering
with existing µ-kernel concepts.

1.3 Structure of this Thesis

The remainder of this thesis is organized as follows: Chapter 2 covers differ-
ent virtualization techniques and the concept of abstraction layers. It intro-
duces L4 and points out the challenges that L4’s API poses to virtual machine
construction based on two related projects. Chapter 3 proposes several API
extensions to simplify virtualization on L4 and a new virtual machine design.
Chapter 4 describes a reference implementation for both, the extended µ-
kernel, and the redesigned virtual machine. Finally, Chapter 6 and 7 compare
and analyze the performance results of the different virtual machines as well
as the extended µ-kernel.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background And Related
Work

2.1 Current Virtualization Techniques

The idea of virtual machines is not new but goes back into the mainframe era
in the mid 1960s with IBM’s VM/370 [13, 8] being the best known example.
At that time VMMs provided a compelling way to multiplex the expensive and
scarce resources among multiple applications. With the emergence of modern
multitasking operating systems in the 1980s and 1990s and the simultaneous
drop in hardware costs, however, the value of VMMs eroded somewhat. This
development caused hardware designers to draw their attention away from
virtualization to support the upcoming developments of the time.

The recent revival of virtual machines unveiled that certain modern archi-
tectures have made virtualization complex or even impossible. As popular
ones as Intel’s IA-32, also called the x86-architecture, make it difficult, inef-
ficient or even impossible for a VMM to export an interface that is identical
to real hardware (cp. [27]). In ref. [23], Popek and Goldberg derived a set
of sufficient conditions for a computer architecture to efficiently support vir-
tualization. Even though their work goes back to 1974, it is general enough
to remain valid on today’s architectures and provides standards for the design
of virtual machines. In their terminology, a virtual machine must have three
essential characteristics. First, any program (which includes of course operat-
ing systems) should exhibit a behavior identical with that experienced when
running on a real machine directly (equivalence). Second, the VMM must be
in complete control of all hardware resources (resource control). Finally, a
statistically dominant subset of the virtual processor’s instructions must be
executed directly by the real processor without VMM intervention (efficiency).

5

6 CHAPTER 2. BACKGROUND AND RELATED WORK

The problem Popek and Goldberg then deal with is to deduce characteristics
that an architecture must have in order to create VMMs with the above men-
tioned traits. They derive requirements for a model of what they call “third
generation architectures” (e.g., DEC PDP-10, IBM 360, or Honeywell 6000),
which can, however, be easily adapted to modern machines. Their prototype
has a processor that can operate in two different privilege modes (user mode
and system mode) and requires that a subset of operations is only available in
system mode. The processor’s instruction set is classified into three different
groups:

1. Privileged instructions can only be executed in system mode and cause
the processor to trap if executed in user mode.

2. Control sensitive instructions affect, or potentially affect, the configura-
tion of resources in the system.

3. Behavior sensitive instructions are instructions whose result depends on
the configuration of system resources.

Popek and Goldberg’s analysis finally results in one basic theorem:

For any conventional third generation computer, a virtual machine
monitor may be constructed if the set of sensitive instructions for
that computer is a subset of the set of privileged instructions.

In simple terms, a virtual machine can be constructed if all instructions that
could affect the correct functionality of a VMM (i.e., the virtualization sensi-
tive ones) always trap when executed in less privileged mode. Trapping here
means that hardware detects a protection violation and passes control to the
hypervisor. It thereby allows to enforce the resource control property. Non-
privileged instructions are executed natively (efficiency) and the holding of the
equivalence property also follows.

The conditions stated by the theorem are sufficient but not necessarily re-
quired. Virtual machines have been constructed on non-virtualizable architec-
tures (in the Popek and Goldberg’s sense) at the expense of efficiency, increased
complexity or architectural equivalence. The following now introduces three
modern approaches to virtualization.

2.1.1 Full Virtualization

Full Virtualization makes use of the architectural separation between privi-
leged operating systems and less privileged applications. Provided that all sen-
sitive instructions are privileged, the VMM can easily catch the traps caused

2.1. CURRENT VIRTUALIZATION TECHNIQUES 7

by guest operating systems, simulate those instructions in software and pass
control back. This requires no modifications to guest operating system bi-
naries. The guest is totally unaware of the fact that it executes in a virtual
machine. However, trapping into the hypervisor on each sensitive instruc-
tion is expensive. Further, not all of today’s processors are fully virtualizable
since certain sensitive instructions do not trap when executed in restricted
mode (cp. [27]). Rather they complete or fail silently. Therefore, sophisti-
cated techniques to catch and emulate the execution of virtualization sensitive
instructions had to be developed.

VMware’s Workstation [25], Microsoft’s Virtual Server [5], IBM’s virtualiza-
tion technology [7, 6], and the latest versions of Xen [12] support full virtualiza-
tion. Xen uses virtualization hardware support that has recently emerged for
Intel compatible CPUs [9, 27]. IBM has co-designed cooperating mainframe
architecture and system software, which allows hundreds of guests to coex-
ist and to even setup virtual machines recursively without much performance
penalty. VMware takes a different approach that does not rely on hardware
extensions. Their solution is called binary translation: Where direct execution
is not possible, critical parts of the guest operating system are dynamically
rewritten for emulation code [1] . It is further required to install several drivers
in the host OS. Other virtual machines that use similar translation techniques
include Microsoft’s Virtual Server and Virtual PC [4].

2.1.2 Para-Virtualization

A different approach is to port the guest operating system to a virtual machine
whose interface is similar but not identical to the underlying physical machine.
The modified guest then calls the virtual machine’s emulation functions to
perform low-level operating system tasks, including the execution of virtual
sensitive instructions.

With Para-Virtualization, the virtual machine does not need to provide the
complexity of entirely simulating a computer architecture and can thus be
simplified to be more efficient. Some of the virtualization logic is moved into
the modified operating system. Performance is another good reason for this
approach. Many expensive context switches between a hypervisor and the
guest OS in user mode can be avoided by having parts of the emulation code
mapped into the guest’s address space. Certain requests can then be processed
solely in user mode. Others can be batched for later processing while the
hypervisor gets only involved where it is unavoidable.

On the downside, Para-Virtualization requires source code access as well as
thorough knowledge of the operating system to be ported and causes high
engineering efforts. The guest operating system gets bound to a particular

8 CHAPTER 2. BACKGROUND AND RELATED WORK

hypervisor’s interface and will no longer execute on bare hardware.

Xen is likely to be the most popular virtualization project to support this
technique. Others include virtualization on L4 [19, 16], User Mode Linux [11]
or UMLinux [3].

2.1.3 Pre-Virtualization

Pre-Virtualization is an enhancement to Para-Virtualization proposed by Joshua
LeVasseur in ref. [19]. It aims to overcome Para-Virtualization’s drawbacks
without sacrificing the performance advantages it has over Full-Virtualization.

With Pre-Virtualization, modifications made to the guest kernel do not cre-
ate any strong dependencies between the operating system and a particular
hypervisor. The virtualization-aware OS binary is capable of running in any
Pre-Virtualization supporting environment. Other than that it can still exe-
cute on bare hardware. When the prepared binary is loaded to run in a virtual
machine, its neutral interface is automatically adapted to the algorithms of-
fered by the virtual machine monitor.

J. LeVasseur designed and implemented a reference Pre-Virtualization environ-
ment. One solution, that is referred to as Compiler Afterburning, is introduced
in detail in Section 2.3.2.

2.1.4 Hosted vs. Hypervisor Approach

The previous sections classified virtualization approaches according to how
closely the VMM’s interface resembles that of the underlying physical ma-
chine. Another categorization is based on the platform upon which the vir-
tual machine is constructed. This can be either on physical hardware or on
top of the abstractions provided by a host operating system. There are good
arguments for either version but there are disadvantages, too.

As operating systems are designed and optimized to execute on bare hardware,
the interface a VMM exports should be as close to the hardware as possible.
The more it differs or abstracts, the more changes are required to the guest
operating system (Para-Virtualization or Pre-Virtualization). A virtual ma-
chine that is built right on top of physical hardware can take full advantage
of all architectural capabilities. It can pass them up to higher software layers
and can provide an interface to guest operating systems whose abstractions
not only closely resemble the underlying architecture but also map directly to
hardware components. Such a transparent VMM interface allows operating
systems with little or no modifications to efficiently use the hardware they are

2.2. ABSTRACTIONS AND THE CONCEPT OF TRANSPARENCY 9

designed for. The resulting performance is practically equivalent to that of a
native system (cp. [12]). On the downside, such kinds of interfaces are highly
specialized to virtualization purposes and mostly inappropriate for other ap-
plications. If they also export hardware specific features, several ports for the
various platforms need to be provided.

Other virtualization projects including User Mode Linux [11] and UMLinux [3]
set up on Linux, a general purpose operating system. Just like other operating
systems, Linux was not intended to be used as hypervisor in the first place.
Its abstractions are platform neutral, hardly transparent, and differ from the
hardware on which they build. Guests running on top of a host operating
system cannot directly use the underlying hardware mechanisms. Rather, the
VMM has to map low-level guest operations to high-level host abstractions in
oder to achieve the required functionality.

The main benefit of the hosted approach is due to the simple set of abstractions
an operating system offers. As described in [17], such abstractions map well to
all parts of the virtual machine: A host process provides a stream of execution
comparable to a processor, guest interrupts can be mapped to host signals,
virtual devices to host devices and the host’s memory mapping and protection
provides functionality similar to that of a virtual MMU. All this allows one to
implement a VMM as a common user process with little effort. On the other
hand, the hosted approach does not achieve the performance results of VMMs
that set up on specialized hypervisors. Its high-level host API commonly
requires it to modify the guest OS. It further entails additional computing
steps and hides certain architecture specific details, which could otherwise be
efficiently used by the guest.

2.2 Abstractions and The Concept of Transparency

This section discusses abstraction layers in the design of hierarchically struc-
tured systems. It focuses on operating system abstractions, the transparency
of abstractions, and the impact of abstraction layers on virtual machine con-
struction.

2.2.1 The Usage of Abstraction Layers

Software abstraction layers, as introduced in Djikstra’s THE [10], serve various
purposes and can be found in different areas in software engineering. They
are commonly set up on low-level, complex, or heterogeneous software and
hardware interfaces to export a consistent, easily usable interface. They may
also be interposed to hide low-level features from being accessed by higher-level

10 CHAPTER 2. BACKGROUND AND RELATED WORK

layers for reasons of security, integrity, and stability.

An operating system API serves all these goals. It exports platform indepen-
dent, consistent abstractions, which allow the same software to be executed
on different architectures. Its abstractions are simple to use and understand.
They decrease user level software complexity and help to avoid errors. Further,
the API hides many hardware features that must not be accessible to user ap-
plications. If they were, user applications could break out of their protection
domains or maliciously harm the overall system.

This matter can be explored in more detail by examining Linux’s file system
related system calls. Linux has an in-kernel software abstraction layer com-
monly referred to as Virtual Filesystem Switch [2]. It deals with all system
calls related to a standard Unix file system and provides a generic high-level
interface to several kinds of file systems (such as Linux’s Ext3, and ReiserFS,
Microsoft’s VFAT, and NTFS, or network file systems like NFS). It thereby
hides specifics such as how the file system is organized on the storage medium,
and whether it is located on a local or remote device. The uniform interface
provides a common, simple file abstraction, which makes working with files
convenient and consistent to user applications.

The VFS also hides hardware functionality: Its user interface provides no
means that would allow applications to directly send commands to the disk,
while the kernel is permitted to do so. The kernel can order a disk controller
to move the read/write head to a certain position, or to write data to arbitrary
disk sectors etc.; user applications cannot. Rather, if a user wants to access
a certain file, he must use the corresponding system calls. The kernel then
looks up the position of that file on the hard disk and asks the controller
to move the disk head, and to return the required data. The main point to
highlight here is that functionality, which is offered by lower hardware and
software layers, has become inaccessible in higher abstraction layers. Parnas
[22] refers to this as a loss of transparency. However, as he describes, such
a loss of transparency between different interfaces is mostly to be considered
a desirable feature of the abstractions. One of the goals of introducing file
related system calls was to prevent undesirable states. If a user application
had control of the disk drives it could easily destroy the whole file system. On
the other hand, as Parnas further explains, abstractions can also introduce all
sorts of inefficiencies when the interface is improperly designed, i.e., if lower
layer functionality that could be efficiently and safely used by higher layers is
hidden behind abstractions.

Platform independent operating system interfaces such as POSIX [15] or the
L4 API [26] are certainly high-level when compared to the low-level hardware
interface they build on. They not only provide common, simple to use abstrac-
tions but also hide platform specifics that could be safely used by user-level
software. Nevertheless, such APIs have proven to be a convenient platform

2.3. VIRTUALIZATION ON L4 11

upon which user applications can be efficiently set up. A redundant increase
of transparency would not only complicate their usage but can also downgrade
the performance of other workloads that cannot efficiently use the provided
extras. A less transparent interface does not imply improper design. One
rather has to compare the goals of its designers to how it is eventually used.

2.2.2 The Impact of Abstractions on Virtual Machines

Virtual machines are particularly sensitive to transparency. Highly transpar-
ent hypervisor interfaces match well to a VMM’s usage patterns, for they allow
to take full advantage of the hardware’s abilities. The small number of soft-
ware layers incurs minimal overhead and makes virtualization very efficient.
However, pure hypervisors and µ-kernels have been designed with different
objectives and motivations in mind and their interfaces differ with respect
to transparency. In ref. [21], Liedtke characterizes a µ-kernel as an attempt
to “minimize the kernel and to implement whatever possible outside of the
kernel” in response to large monolithic kernels. The L4 µ-kernel hides the
peculiarities of different platforms behind a simple, common, and hardware
independent set of little transparent abstractions. It thereby allows the reuse
of software components across a wide variety of architectures. In contrast,
work on virtual machines resulted from the need to improve hardware utiliza-
tion by securely multiplexing the underlying hardware across several operating
system instances that execute on a single physical machine. Unlike µ-kernel
interfaces, the one a VMM exports per definition closely resembles processor
hardware to allow guests with little or no modifications to be run. Pure hy-
pervisor interfaces are thus designed to be highly transparent in order to suit
well to the needs of a VMM.

The resulting problem of µ-kernels and other hosted approaches to virtual ma-
chine construction are interfaces that are not specifically geared to the needs of
VMMs. Instead, they are reduced to the common denominator of features that
are offered by all architectures and thus do not reach the same virtualization
performance. Regarding the API design, it boils down to a trade-off between
simple, hardware independent abstractions that are designed to be used for
a wide range of applications, and specialized, transparent interfaces that are
well suited to specific applications. Due to the architectural differences, there
cannot be a perfect API that combines the best of both worlds.

2.3 Virtualization on L4

This section introduces the L4 µ-kernel, its user interface as well as two virtu-
alization environments that are built on top of L4. The following section then

12 CHAPTER 2. BACKGROUND AND RELATED WORK

analyzes L4’s problems with virtualization.

2.3.1 The L4 µ-kernel

The concept of µ-kernels

Currently, two different models exist in operating system design. The most
widely used is the monolithic kernel approach where most operating system
services such as virtual memory management, device drivers and the file sys-
tem execute in the processor’s privileged mode within the same protection
domain as the kernel (see Figure 2.1(c)). A µ-kernel based system, in con-
trast, only keeps whatever is necessary to build a secure system on top in its
privileged part. Such services commonly comprise thread and address space
management, physical memory management, and interrupt handling. Every-
thing else is implemented as user programs (called servers), which execute as
separate tasks at the same privilege level as other user applications. Figure
2.1(a) shows how a µ-kernel based multi-server operating system may look
like.

Hardware

L4

Appl ApplAppl Appl ApplAppl

File System Memory Manager

Name Server Device Driver

(a) µ-kernel based Multi-Server System

Hardware

L4

Appl ApplAppl Appl ApplAppl

Guest KernelDevice Driver
File System Memory Manager

Exception Handling

(b) µ-kernel based Monolithic System

Hardware

Appl ApplAppl Appl ApplAppl

KernelDevice Driver
File System Memory Manager

Exception Handling

(c) Monolithic System

Figure 2.1: Different operating system architectures. Blue layers are privileged
while user applications (green) as well as certain OS services in µ-kernel based
systems (red) execute in user mode. Services in the same box execute within
the same protection domain.

First generation µ-kernels such as the Mach [14] project, or Chorus [24] turned
out to be insufficiently flexible and were often criticized for a complex IPC
system with too much overhead. L4 [20, 21] is a second generation µ-kernel
and results from a re-examination of the entire µ-kernel concept with careful
attention to performance and architecture-specific design. The initial Intel
i386 kernel was originally designed and implemented by J. Liedtke and has

2.3. VIRTUALIZATION ON L4 13

since then been further optimized and ported to many of today’s widely used
architectures. The kernel offers only the very basic hardware abstractions
threads, address spaces and IPC. Most policy making operating system ser-
vices including a pager, device drivers and networking are to be implemented
as user-level services in order to get the functionality of a complete operating
system. Inter-process communication (IPC) is a key characteristic of L4 and
has been simplified and highly optimized to match and even outperform the
IPC efficiency of monolithic systems.

µ-kernels have several advantages over monolithic kernels. First, they have a
fairly small code base. L4/IA-32 has around 17K lines of code while Linux or
Microsoft’s Windows XP both have several millions. This makes them easy
to maintain, verify, and port to new architectures, as well as less likely to
contain errors. Second, as most operating system services execute outside the
kernel, crashes of single services will not affect the whole system. Also, working
on clearly separated system components is considerably easier as code is not
entangled with other kernel sources but concentrated in a dedicated server.
Finally, microkernels are highly flexible and not restricted to be used as base
of a standard operating system. They have been successfully deployed in
various application areas besides virtualization, including real time systems
and embedded environments.

The major handicap of a µ-kernel based system is its performance. The various
servers that implement operating system functionality at user level need to
frequently communicate. The kernel has to transfer those messages between
different address spaces, which is slower than communication within a single
protection domain. The design further entails a good deal more application
switches, which can be very expensive on certain architectures.

L4’s API in a Nutshell

The following gives a short introduction to the L4 API. It particularly deals
with L4 specifics that impact virtual machine construction. For the complete
specification refer to the official L4 API reference manual [26].

L4 offers two basic abstractions to user applications, threads and address
spaces. Threads are defined as independent flow of execution inside an ad-
dress space. An address space can be regarded as a protection domain. L4
guarantees that threads running in a certain address space cannot have ma-
licious effects on threads running in others. A single address space can hold
one or several concurrently executing threads.

Inter-process communication (IPC) is the key to efficient communication be-
tween threads. L4 offers synchronous, message based IPC via its system call
IPC and LIPC. Per-thread message registers describe the message to be sent.

14 CHAPTER 2. BACKGROUND AND RELATED WORK

This can either be a limited number of untyped words, a contiguous or noncon-
tiguous sequence of bytes (string item) or a flex page (map or grant item), i.e.,
a memory page in the sender’s address space to be mapped into the receiver’s
address space.

Per-thread buffer registers are set by the receiving thread to specify what typed
messages it is willing to accept and where the received item should be stored at
(in case of a string item) or mapped to (in case of a map or grant item). Both,
message and buffer registers are virtual registers provided by the kernel. They
can map to real processor registers but can also map to memory locations. For
the latter, the kernel maps a per-thread User Thread Control Block (UTCB)
into each application’s address space. It holds the virtual register set as well
as thread specific information, including the thread’s exception handler, IPC
error codes, and the thread’s global identifier.

Besides the per-thread UTCB mapping, each application address space con-
tains a kernel mapping called the Kernel Interface Page, or in short the KIP.
The KIP contains API and kernel version information, system descriptors (in-
cluding memory descriptors) and system-call links. The location of both kernel
mappings, UTCB and KIP, can be specified upon creation of the thread and
address space, respectively.

When L4 starts up it initializes up to three user level address space servers,
σ0, σ1 and the root server. The latter is the first real user application and is
intended to boot the higher-level system. σ0 initially owns all available physi-
cal memory. It contains the first user level pager thread to handle page faults
that are caused by the root task. Threads in one of the three initial spaces
are special as only they can execute L4’s privileged system calls ThreadCon-
trol, SpaceControl, ProcessorControl and MemoryControl. ThreadControl and
SpaceControl allow to create, modify, or delete other L4 threads and address
spaces, respectively.

Other than σ0, newly created address spaces are empty, meaning that their
virtual addresses are not yet assigned to any real physical memory. Any read
or write operation that involves memory will result in a page fault. However,
the kernel itself does not handle page faults. Rather, each L4 user thread
other than σ0 has a pager thread assigned. On page faults, L4 halts the
offending thread and sends a page fault IPC (consisting of the faulting address
and the faulting instruction pointer) to the attendant pager thread. It is
then up to this thread to select one of its memory mappings and to either
map or grant it to the faulting thread in response. The kernel intercepts the
response, updates the faulting thread’s address mappings and finally resumes
its execution. Memory management is thus solely controlled by user-level
pagers. They by degrees recursively back virtual address spaces with memory
mappings.

2.3. VIRTUALIZATION ON L4 15

The page fault protocol maps page faults to common L4 IPC. The same ap-
proach is taken with the interrupt and exception protocol. Other than a few
special cases, which are handled by L4 internally, user exceptions cause L4
to synthesize an exception message and to send it to the offending thread’s
exception handler. The received message contains the originator’s instruc-
tion pointer (IP) and a couple of architecture dependent registers. Exception
handlers can modify these registers in reply to exception messages. L4 then
resumes the originator with the new register state. The same mechanism is
used for hardware interrupt handling. A single L4 thread can register with L4
to receive an Interrupt IPC on hardware interrupts.

The last thing to discuss here is L4’s scheduling policy. Unlike paging, ex-
ception, or interrupt handling (which is mostly controlled by dedicated user
threads) scheduling is done by an L4 kernel-level scheduler. It, however, can be
influenced by user level schedulers via the Schedule system call. L4 implements
a priority-based round robin scheduling with a total of 255 different priority
levels. Each thread has an associated scheduler thread, which is capable of
adjusting the thread’s time slice and priority.

2.3.2 L4Linux and the L4Ka Virtual Machine Environment

L4Linux

L4Linux [16] is a µ-kernel based, monolithic Linux operating system. Linux
was adapted to run on top of L4. However, its API is fully binary com-
pliant with Linux/x86. The initial version was implemented to show that
µ-kernel based systems can reach a performance comparable to native sys-
tems. Though it was tried to keep the porting effort as low as possible. Only
architecture-specific parts of the kernel were modified while structural changes
were avoided. In total, the porting required to add and modify around 6500
lines of source to the guest. L4 was used without modification to see whether
its interface was flexible and general enough to implement a high-performance,
conventional operating system on top.

Hardware

L4

Linux Server
Linux Task Linux Task Linux Task

Linux Task Linux Task Linux Task

Figure 2.2: L4Linux with a single Linux server and a bunch of user tasks

16 CHAPTER 2. BACKGROUND AND RELATED WORK

The single-server approach as shown in Figure 2.2 executes Linux as L4 server
in a separate L4 address space. The server task uses several threads to execute
the actual Linux code, to handle interrupts and to handle page faults. Each
Linux task runs in its own L4 address space and consists of two L4 threads,
one to execute the user binary and a second one to forward signals. The Linux
server acts as pager for the user processes it creates.

The authors of [16] report a performance overhead of about 7% compared to a
native system when compiling a Linux kernel in L4Linux. Microbenchmarks,
including Linux’s getpid system call overhead and the lmbench suite, revealed
different results, ranging from almost no performance penalty to an overhead
of more than 100%.

That original version ran Linux server threads in a small L4 space (using
L4’s IA-32 small space optimization) and is thus not directly comparable to a
virtualization environment that supports the concurrent execution of several
virtual machines. For the latter, the 512 MB small space area is clearly too
small. Ref. [19] compares the performance of a more recent version of L4Linux
without small space optimization to that of the L4Ka Virtual Machine Envi-
ronment. The former approach performs only slightly better, but this can be
traced back to the fewer guest operating system modifications when compared
to L4Linux.

The L4Ka Virtual Machine Environment

Joshua LeVasseur designed and implemented a reference Pre-Virtualization
environment [19] for IA-32 with Xen and L4 as hypervisor to demonstrate
the versatility of his virtualization techniques. He adapted several Linux ver-
sions by means of the automated compiler afterburning process to be used as
guests. The compiler afterburner locates virtualization-sensitive instructions
in the operating system binary. It automatically pads them with scratch space
for runtime instruction rewriting, and annotates their location. However, cer-
tain structural changes are still being researched and to date have had to be
done manually. J. LeVasseur also wrote emulation code (called the in-place
VMM, IPVMM or wedge), which is mapped into each guest operating sys-
tem’s address space. At load time, the in-place VMM and the guest Linux
kernel are linked together, i.e., the guest’s virtual sensitive operations are re-
placed by calls to the wedge’s emulation functions as is shown in Figure 2.3.
The wedge maps sensitive instructions into abstractions that are provided by
the underlying hypervisor. It further intercepts upcalls from the hypervisor
such as interrupts, page faults, as well as exceptions and redirects the guest’s
control flow as appropriate.

Using L4 as hypervisor, guest user applications and the guest operating system

2.3. VIRTUALIZATION ON L4 17

mov eax, cr3

sti cli popf

hlt

Hypervisor

page faults, traps,
system calls, interrupts

IRQ
thread

OS
thread

frontend

backend

thread/space creation and
deletion, map, unmap

Figure 2.3: In-place virtual machine monitor

execute in separate L4 address spaces as shown in Figure 2.4. This is different
from a non-virtualized IA-32 Linux running directly on real hardware, where
the kernel maps itself into a reserved area in the top area of each of its user
address spaces. Such a mapping, however, is not possible when using L4
abstractions as there are no means that would protect the guest kernel from
its user applications.

L4 µ-kernel

Guest
Application A

Guest Kernel

4GB

0GB

L4 µ-kernel

IPVMM KIP
UTCB

Guest
Application B

L4 µ-kernel

KIP
UTCB

Figure 2.4: Virtual machine with separate guest OS space and two applications

Linux was re-linked to execute at a lower address for the fourth gigabyte is
reserved by L4. It now occupies the third gigabyte in its own L4 address
space. Other than on a native system where the application is mapped below
the operating system area, the lower two gigabyte remain mostly unused.
Sometimes, Linux touches memory in that area where it assumes the current
application’s code and data. The required application mappings are then
mapped on-demand in and flushed to the next address space switch. Linux
was further configured to provide applications a two gigabyte virtual address

18 CHAPTER 2. BACKGROUND AND RELATED WORK

space. The third gigabyte in each application space remains unused, too. This
area would normally hold the operating system mappings but is now used for
the KIP and UTCB mappings.

Common L4 user threads execute the guest operating system and its applica-
tions. Hence, each application space contains at least one L4 thread, which
can cause page faults, exceptions, or invoke Linux system calls just as com-
mon Linux application threads on a native system. All these events result in
an L4 page fault or exception IPC, which is forwarded to the guest operating
system. Upon arrival of such messages, the VMM synthesizes an exception
in the guest operating system and redirects the thread to execute the corre-
sponding exception handler. Once handled, the guest OS reactivates its user
application.

A second thread in the guest kernel’s address space is a local pager. It handles
page faults that are caused by the operating system thread. If the operating
system requires physical memory mappings or causes page faults in the wedge,
the request is forwarded to the resource monitor. The resource monitor is a
separate L4 task. Initially it grabs all available memory from σ0 and reserves a
user defined amount of memory to each virtual machine. This memory reser-
vation constitutes a VM’s physical memory pool and is mapped on demand
into the virtual machines. This all happens transparently to the guest kernel.

L4 µ-kernel L4 µ-kernel

Resource Monitor Operating System Space

VM's Physical
Memory

Idempotent Mappings

L4 µ-kernel

Application A

Guest OS

L4 µ-kernel

Application B

Figure 2.5: Physical Memory Management

While a guest kernel space thus receives its mappings directly from the resource

2.4. MISSING TRANSPARENCY IN THE L4 API 19

monitor, user application spaces do not. Rather, they receive their mappings
from within the guest kernel’s address space, more precisely, from the idem-
potent physical memory mapping in the one gigabyte guest kernel area. This
mechanism is shown in Figure 2.5 and becomes possible since Linux has the
first up to 896MB of physical memory contiguously mapped there. Given a
physical address less than 896MB, the corresponding mapping in the guest
operating system space can thus be calculated by simply adding a fixed offset
(2 gigabyte here). To illustrate this, the following describes how application
page faults are handled: First, a page fault IPC, which contains the faulting
virtual address, is sent to the operating system. Subsequently, the page table
is consulted. If Linux has set up a mapping at the faulting address, the page
tables contain the assigned VM physical address. The L4 page mapped in re-
ply to the page fault is the one in the guest kernel’s address space at 2GB plus
the physical address as per the page table, i.e., the one that corresponds to the
physical page. This is a fairly limited approach, as it does not work with vir-
tual machines that have more than 896MB RAM configured. The alternative
would be to have all applications receive their mapping directly from the re-
source monitor, too. This, however, requires additional collaboration between
the resource monitor and the wedge and would decrease performance.

Finally, the last thread in the guest OS’s address space handles interrupts.
It registers with L4 to receive interrupt IPCs on hardware interrupts and
forwards them to the guest kernel. The wedge therefore provides logic to
emulate an interrupt control unit.

2.4 Missing Transparency in the L4 API

This section identifies several L4 characteristics that interfere with the con-
struction of a virtual machine on top of the µ-kernel. Most of them can be
traced back to missing transparency (cp. Section 2.2), i.e., the desired features
are provided by the underlying hardware but not exported via L4’s API to be
usable by applications .

2.4.1 Missing Privilege Modes

As described in Section 2.3.1, address spaces are a core L4 abstraction. Threads
sharing the same address space can maliciously affect each other, e.g., one can
smash another’s stack, data, or write into its UTCB. On the other hand,
threads running in different L4 address spaces are mutually protected from
each other. Most contemporary architectures have support, which allows op-
erating systems to efficiently provide the address space abstraction. In addi-
tion, they combine another concept with address spaces, one that is commonly

20 CHAPTER 2. BACKGROUND AND RELATED WORK

referred to as privilege modes. Privilege modes allow you to shield parts of
an address space from access by its less-privileged threads. They allow you
to safely co-locate privileged and less privileged execution entities in the same
address space.

The safe co-location is a strong feature that is efficiently made use of by most
modern operating system kernels, including Linux or L4. Both kernels map
themselves into a privileged region of each user application space. On 32-bit
systems, this is commonly the highest gigabyte in the four gigabyte address
space. The remaining three gigabytes constitute the application’s address
space. The two major advantages of co-location are fast transitions between
application and kernel as well as easily accessible user memory. Privilege
modes make sure that less privileged user threads cannot access or even modify
the kernel area.

The guest operating system obviously needs to protect itself from user access.
Another simple, working approach to assure this, is to have the operating
system run in its own address space, such as done by L4Linux. However,
switches between kernel and application execution then result in continuous
address space switches and incur a large overhead. Other than that, only
co-location gives operating systems access to application memory by using
the application’s virtual addresses. Therefore, almost all processors offer at
least two privilege modes, one to be used by the operating system and one
for its unprivileged applications. Certain architectures, such as IA-32, have
additional privilege levels. Since operating systems commonly only use two of
them, additional ones are normally not required. When constructing a virtual
machine, though, it can be very useful to have them. Xen, for example, makes
use of an additional IA-32 privilege level and uses segmentation to safely co-
locate all three instances, the hypervisor, the guest operating system, and its
applications, in a single virtual address space. This way the guest kernel has
access to its application’s memory and the hypervisor has full access to the
guest operating system and applications. Transitions between them do no
require a full hardware address space switch and cause little overhead.

The L4 API supports neither privilege levels nor segmentation in user mode,
even if both features are provided by the underlying hardware. The single user
privilege mode needs to be multiplexed between the guest operating system
and its applications. Consequently both projects, L4Linux, and the L4Ka Vir-
tual Machine Environment had to put the guest kernel into its own, separate
L4 address space. Besides a more expensive transitioning and user memory
accessing, the design requires you to pay special attention to non-global map-
pings (from the guest’s point of view) in the operating system space. On guest
application switches, those mappings need to be flushed, which results in page
faults in the kernel space the next time the application is scheduled.

2.4. MISSING TRANSPARENCY IN THE L4 API 21

2.4.2 Expensive Access Bits Virtualization

Unlike other hypervisors, L4 does not allow the guest kernel to directly ac-
cess hardware page tables. It therefore requires you to virtualize them by
introducing shadow page tables. The difficulty is to provide correct seman-
tics of accessed and dirty bits since the processor automatically updates these
bits only in the hardware page tables. With the current L4 API and Para-
Virtualization techniques, there are two different approaches, which are both
rather expensive. Via its Unmap system call, L4 allows you to retrieve access
bits of up to 64 pages. The guest operating system can thus be modified to
directly call the hypervisor to ask for the required access bits. An alternative
would be to set permission rights in the hardware page tables so that every
memory access causes a page fault in the virtual machine. Status bits can
then be emulated at page fault time, i.e., the VMM marks the corresponding
shadow page table entry as referenced.

2.4.3 Imprecise Scheduling

Unlike other operating system services, including pagers and exception han-
dlers, the scheduler is still part of the L4 µ-kernel. It uses static priorities and
schedules threads at the same priority in a round-robin fashion. A thread’s
time slice and priority can be controlled by its scheduler, i.e., by another L4
thread that was specified as scheduler via L4’s ThreadControl.

Other operating systems use different scheduling techniques. Linux, for exam-
ple, uses a heuristic algorithm based on the past behavior of its user processes
and dynamically changes their priorities. They try to give interactive tasks
a higher priority than highly CPU bound ones. The L4Ka Virtual Machine
Environment and L4Linux, however, assign the same static priority to all
application threads. Also, they allow multiple user tasks to be running simul-
taneously beyond the guest’s scheduler, i.e., while Linux expects one thread
to run at a time, L4 executes whatever thread is runnable. To avoid this,
L4 priorities of application threads would have to be continuously adjusted or
threads would have to be continuously stopped and resumed. Both approaches,
however, were regarded as too expensive and were therefore discarded. The
current method, besides the fact that the guest scheduler almost completely
loses control, also requires synchronization logic inside the VMM to hide the
disordered execution (from Linux’s point of view) from the guest. Further,
the guest operating system is not notified when L4 schedules or preempts
one of its user threads. The point of preemption and rescheduling is simply
hidden behind L4’s abstractions. Neither the VMM nor the guest operating
system can therefore account for the processor time their operating system
and application threads actually had.

22 CHAPTER 2. BACKGROUND AND RELATED WORK

Another shortcoming of the L4 scheduler is that scheduling domains for dif-
ferent VMs are hard to emulate. In an ideal system, L4 would allocate a
fixed time slice to each virtual machine, the VM would then pass it around
its processes (hierarchical scheduling). Each VM would be given a time slice
according to the policy of the virtual machine. However, such a scheduling
policy is not supported by the L4 scheduler, which makes inter-VM scheduling
imprecise and complex to emulate.

2.4.4 Inaccessible Processor State

An operating system that executes on real hardware has complete access to
the hardware’s state, including the processors register set. When a user thread
enters the kernel (on interrupts, system calls, exceptions, etc.) the operating
system stores the user’s state, for it needs to be restored after exception han-
dling. This state as well as other processor registers may also be required
by the kernel internally, e.g., to pass along signals. The VMM must thus be
capable of passing all desired registers to the guest kernel.

L4 implements the concept of exception IPCs: A thread that causes an ex-
ception sends a message to its exception handler. This message contains the
thread’s instruction pointer and an architecture dependent number of proces-
sor state registers. However, in general, this only comprises a selection of
registers required to change the control flow of a thread. Other than that no
registers are sent along page fault exceptions at all. Rather, they are almost
completely hidden behind L4’s abstractions.

It is possible for a VMM to partly retrieve the missing registers. One way is
to force the target thread to execute stub code, which stores all user accessible
registers in memory and passes it over to the VMM. However, this indirection
is quite inefficient and still does not allow it to get the information from
processor registers that are inaccessible in user mode.

2.4.5 Inadequate Control Transfer Support

The VMM needs to change the guest operating system’s execution flow on
asynchronous events including all kinds of exceptions. In turn, the guest
operating system sometimes needs to redirect its application’s control flow,
e.g., to deliver signals. The current API allows it to easily do this in reply to an
Exception IPC. In cases where no Exception IPC is sent, however, control flow
redirection becomes intricate, in particular if it takes place across L4 address
spaces. But even within the same address space, control transfer must be
synthesized by means of stub code, a temporary stack that contains the target
thread’s new register state, and a redirection via L4’s ExchangeRegisters.

2.4. MISSING TRANSPARENCY IN THE L4 API 23

2.4.6 Inefficient Address Space Construction

The L4 API is inefficient for address space construction that is based on shadow
page tables. To create new mappings and to unmap pages via L4’s API re-
quires virtual addresses. This is a problem as the guest’s page tables have
VM physical addresses. For proper handling, page faults have to be resolved
by a separate L4 task that represents a virtual machine’s physical memory.
Following, the guest operating systems and their physical memory tasks must
collaborate, which adversely affects performance.

2.4.7 Indistinguishable Execution Modes

L4 classifies user threads into privileged and unprivileged ones. The only
difference between them is that privileged threads are allowed to execute priv-
ileged L4 system calls while non-privileged ones are not. The latter, however,
can still make use of all non-privileged system calls.

This L4 characteristic raises a problem in virtual machine construction. Being
able to use L4 system calls, both, guest applications and the operating system
do not exhibit a behavior identical with that experienced when running on
a non-virtualized system. Another issue is the kernel mappings (KIP and
UTCB) in each L4 address space, which cannot be hidden. All this is a minor
problem with respect to the guest kernel, as one can use Para-Virtualization
techniques to make the guest kernel aware of this fact. For its unmodified user
applications, though, this remains an issue. Up to now it has relied on the fact
that Linux user applications simply do not use L4 system calls and the kernel
mappings are put into an otherwise unoccupied memory region (cp. Figure
2.4).

On the other hand, it can sometimes be quite beneficial to allow guest applica-
tion to interact with L4, too. As of yet, application system calls are initiated
by common software interrupts, which result in an expensive L4 exception. It
would be more efficient if the user applications used conventional IPC instead.
Provided that this is possible without modifications to the application bina-
ries. Linux, for example, allows you to do so. It maps a page similar to L4’s
KIP into each application address space. The mapping is commonly referred
to as vsyscall page and contains functions that which user applications call
to perform a system call. With Para-Virtualization, these functions can be
modified to send an L4 IPC to the operating system thread.

24 CHAPTER 2. BACKGROUND AND RELATED WORK

2.5 Related Work

Peter M. Chen, George W. Dunlap and Samuel T. King [17] examined the
reasons for the large overhead in the hosted approach. They focused their
research on UMLinux [3], a VMM developed by researchers at the University
of Erlangen-Nuernberg for use in fault-injection experiments. It builds on
Linux as a host operating system and has to modify the machine-dependent
parts of the guest to comply with the VMM (Para-Virtualization). UMLinux
uses only two host processes. The first executes the guest operating system
and all guest applications. They both share the same 4GB address space.
To protect the guest operating system from its applications, the guest kernel
area is only mapped into the address space in kernel mode. It is continuously
mapped in and out on kernel entries and exits via the host’s map, unmap,
and mprotect system call. The same mechanism is used to switch between
guest applications, i.e., the mappings in the application area that belong to
the outgoing process are revoked and the incoming application is mapped in.

Compared to a standalone system, the original UMLinux was hundreds of
times slower for null system calls and context switches. It was 18 times slower
in compiling the host kernel, 8 times slower on the SPECweb99 benchmark
and incurred an overhead of about 10% on POV-Ray. Three reasons were
identified to cause the large overhead. All of them could be eliminated by
simple modifications to the host system. First, the design with two separate
host processes caused an excessive number of context switches. Moving the
VMM process’s functionality into the host kernel improved performance by a
factor of around 3. A second modification was to use IA-32 segmentation to
protect the guest kernel area without the expensive memory mappings when
switching between guest user and kernel mode. This optimization gained a
performance boost by a factor of 3 to 5 depending on the benchmark con-
ducted. Finally, the host operating system API was augmented to allow single
processes to support various address space mappings. A new system call was
introduced to switch between the different mappings, thereby reducing context
switch overhead by a factor of 13. All three host OS optimizations together
yielded a VMM that runs all macrobenchmarks with a performance overhead
of no more than 14% to 35% relative to running outside a virtual machine.

User Mode Linux [11] is similar to UMLinux. The main difference between
both approaches is that the original version of User Mode Linux has separate
host processes for each guest application. The guest kernel is always present
in each address space, and, by default not protected from its application. To
fix this obvious security problem and to get rid of an inefficient signal delivery
mechanism on guest application system calls and interrupts, its designers de-
cided to add support in the host Linux kernel. A new execution mode called
skas (Separate Kernel Address Space) was introduced. It allows you to effi-
ciently run the UML guest kernel in an entirely different host address space

2.5. RELATED WORK 25

and to improve signal delivery. In skas mode, only one host thread executes all
UML application code. It does so by switching between host address spaces
on UML context switches.

In [18], Lackorzynski proposes changes to L4 to simplify L4Linux. He pro-
poses to extend L4’s ExchangeRegisters to get rid of the cumbersome L4Linux
signal delivery. L4’s API restricts this system call to be executable only by
threads in the same address space as the target thread. It is proposed to ad-
ditionally allow a thread’s pager (in case of L4Linux, the Linux server) to use
ExchangeRegisters. He thereby enables the Linux server to force its applica-
tion threads to enter the kernel and thereby greatly simplified signal handling.
Another proposal he make is to have a user thread’s state visible in the excep-
tion handler’s and pager’s UTCB on exceptions and page faults, respectively.
The register state can thus be efficiently passed to the server.

26 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

Proposed Solution

The previous chapter identified several L4 characteristics that complicate vir-
tual machine construction on top of L4. Most of them are caused by a lack of
transparency in L4’s API, which hides the desired features behind high-level,
operating-system-like abstractions. This section addresses several of these is-
sues and proposes API extensions to improve virtualization on L4. The guid-
ing principle behind all modifications is to conform to L4’s philosophy and to
minimize impact where something is architecture specific.

3.1 Thread Limits

As explained in Section 2.4.1, user applications on native systems commonly
share their virtual address space with the operating system. The operating
system reserves itself parts of each address space that is made unaccessible to
user applications.

This co-location is hardware supported by means of privilege levels, with most
modern computer architectures offering at least two of them. The operating
system commonly reserves the most privileged level for itself, which leaves a
less privileged one for user applications. If more than two privilege levels are
available, the additional ones often remain unused. They are not exported
via the API to be usable by applications. For virtual machine construction,
however, that might be very beneficial as it would allow the co-location of the
guest operating system and its applications in the same user address space.

Rather than extending the L4 API to export privileges, the extension proposed
here achieves nearly the same result by offering per-thread address space limits.
It allows one to restrict a thread’s accessible area in its L4 address space to a
contiguous, variable sized memory region starting at address zero. The limit

27

28 CHAPTER 3. PROPOSED SOLUTION

L4 µ-kernel

Guest
application

Guest kernel

gu
es

t a
pp

lic
at

io
n'

s
lim

it

gu
es

t o
pe

ra
tin

g
sy

st
em

's
lim

it

low

high

Figure 3.1: L4 address space with co-located guest application and operating
system

can be defined at thread creation via an parameter added to L4’s system call
ThreadControl (cp. Appendix A.3) and can also be changed later on.

As shown in Figure 3.1, per-thread limits allow to safely co-locate guest oper-
ating systems and user applications in the same L4 address space. The guest
operating system thread can access the full 3GB area. A guest application’s
address space, however, is restricted from the kernel area; applications can
thus not interfere with the operating system.

There are, however, a couple of limitations to this approach. One is that the
guest operating system is assumed to reside at a higher address than its ap-
plications. Secondly, operating systems sometimes make certain pages in the
kernel area user accessible, such as Linux’s vsyscall page (cp. Section 2.4.7).
With a fixed limit set, it is not possible for user applications to access that
memory. However, Para- and Pre-Virtualization allows the solution of this
problem by relinking user accessible pages to the beginning of the guest kernel
area and extending the application thread’s limits accordingly. Another down-
side is that an application’s virtual address space shrinks down. Further, as
will be explained later in Section 4.4, the extension can only be efficiently im-
plemented if the CPU offers support. Finally, the protection is incomplete as
even restricted user application threads can execute L4 system calls, includ-
ing ExchangeRegisters, and thereby compromise the guest kernel. Yet even
without co-location this might pose major problems.

3.2. CONTROL TRANSFER MESSAGES 29

3.2 Control Transfer Messages

Control transfer messages address the problem of intricate control flow redi-
rection as described in Section 2.4.5. They allow VMs to efficiently handle
asynchronous events that entail a redirection of a thread’s control flow. Other
than that control transfer items were integrated into further extensions as will
be described below.

A control transfer item is a new IPC message type, which specifies a part of
a thread’s register state. Typically it contains the register state required to
change the control flow of a thread, e.g., instruction pointer, stack pointer
etc. Its length is architecture specific. The item serves two different purposes.
First, it enables threads to change the register set of other threads, similar
to L4’s ExchangeRegister system call, but is not restricted to be used among
threads in the same address space. For a transfer to succeed, the receiving
thread must set a bit in its acceptor to indicate the willingness to accept a
new state. Secondly, it offers an elegant way of allowing threads to pass a
register state to other threads. If a control transfer item is sent to a thread
whose acceptor bit is cleared, the item is copied into the receiver’s message
registers, however, the receiving thread’s state remains unchanged.

1100n0 (5)

reg

reg (32/64)

(32/64)

vmask
0

n

(n+1)(22-n/54-n)

Figure 3.2: Control transfer item layout

The general layout of a control transfer item is shown in Figure 3.2. The value
n is an architecture dependent number of register values sent minus one, and
vmask is a bitmask to indicate which registers of the accepting thread should
be set to the values in the message. Only if bit k is set, the value regk is
written into the corresponding register. Otherwise the value is ignored.

3.3 Preemption Messages

Preemption messages increase transparency of the kernel’s internal scheduling
and address the problems described in Section 2.4.3. They offer user-level
threads a way to trace which L4 thread was actually assigned CPU time and
provide information about the time of preemption. The extension allows a

30 CHAPTER 3. PROPOSED SOLUTION

virtual machine to avoid the influence of the L4 scheduler and enables the
guest OS to fully control the scheduling of its applications.

A preemption message is a reliable IPC call from a just-preempted thread to
its scheduler. It can be activated and deactivated on a per-thread basis using
L4’s Schedule system call. If activated for a thread, L4 synthesizes a message
and sends it to the thread’s scheduler in one of the following cases:

1. The thread’s time slice has expired and L4 chooses to schedule another
thread.

2. A higher priority thread woke up (to which L4 instantly switches).

3. A hardware interrupt was triggered and L4 decides to continue with
another thread.

Subsequently the preempted thread waits for the receiver’s response, i.e., L4
will not reschedule the thread unless it receives the schedulers reply message.

Preemption messages include the time of preemption. The kernel can further
be configured to support control transfer and to attach the suspended thread’s
execution state in terms of a control transfer item as shown in Figure 3.3. In
this case, L4 sets the preempted thread’s control transfer acceptor bit and
thereby allows the scheduler to set a new state in reply.

0 u=2t=n+2-17 0rwx

1100n(5)

reg

reg

(12/44)

(32/64)

(32/64)

(4) (6) (6)

0

n

 (time stamp) mod 2

 (time stamp) / 2

0(23/55)

(32/64)
(32/64)

(32/64)
(32/64)

MRo

MR1

MR2

MR3

MR4

MRn+4

Figure 3.3: Preemption message synthesized by L4

On the downside, a problem with the extension might become the extra over-
head that is caused by frequent preemption messages, in particular if L4 is
configured to pass the user register state along.

3.4. ZERO TIME SLICES 31

3.4 Zero Time Slices

This simple extension allows the configuration of threads with a time slice of
zero. Because of this, the L4 scheduler will not schedule them unless they
execute on donated time slices. This can be used to more accurately emulate
scheduling domains by setting guest operating system and application thread’s
time slices to zero. Thus external, inter-VM scheduling can be controlled by
a global authority via time slice donation.

3.5 An Extended Page Fault Protocol

The problem addressed here is that an application’s register state is unacces-
sible in user mode, or inefficient to retrieve. As by the original L4 API, a
page fault message consists of two untyped words, the faulting address and
instruction pointer. Although other exception messages contain additional
thread state information such as the thread’s general-purpose register set. An
immediate access to that information on page faults would simplify virtual
machine construction on L4 (cp. Section 2.4.4).

The µ-kernel was therefore extended to send the additional information along
with page fault messages as well. If both, this extension and control transfer
messages are enabled, the state is passed by means of a control transfer item
as shown in Figure 3.4(a). The item contains the faulting thread’s state at the
point where the exception occurred. The kernel also sets the faulting thread’s
control transfer item acceptor bit, thereby allowing its pager to modify the
thread’s execution state in reply.

0 u=2t=n+2-2 0rwx

1100n(5)

reg

reg

(12/44)

(32/64)

(32/64)

(4) (6) (6)

0

n

faulting address

faulting IP

0(23/55)

MRo

MR1

MR2

MR3

MR4

MRn+4

(a) Page fault message synthesized by L4

0 u=0t=n+4

map/grant item

1100n0 (5)

reg

reg (32/64)

(32/64)

(20/52) (6) (6)

vmask
0

n

(n+1)(22-n/54-n)

MRo

MR1

MR2

MR3

MR4

MRn+4

(b) Page fault message reply

Figure 3.4: Page fault message layout

Control transfer items increase transparency between L4’s API and the phys-
ical hardware. The register set of a user thread at the time when a page fault
was generated is made accessible to other user threads. With respect to vir-
tualization, a guest operating system can now easily be passed the required

32 CHAPTER 3. PROPOSED SOLUTION

exception context. Further, the guest operating system is offered a nice and
efficient way to change the applications control flow, e.g., Linux could run a
signal handler if the page faults could not be handled properly.

The proposed extension is well suited to the demands of the IA-32 L4Ka Vir-
tual Machine Environment, in particular as IA-32 has a small general purpose
register set. However, on the downside it is not generally applicable to all
architectures. Especially on those with a large register set (such as IA-64),
passing the whole state in 64 message registers is infeasible and would incur
a large page fault penalty. Further, it does not provide an efficient way to
retrieve other non-general-purpose registers, including floating point registers.
A more general approach could be a new system call, which allows you to
demand a selected register set of a specific thread. This, however, requires the
complete register set to be stored in the kernel for all threads, even though
that might not even be required by L4 otherwise. Another problem is the
additional time needed for kernel entries and exits on the different platforms.
On IA-32, with very expensive kernel entries and exits and a small register
set that frequently needs to be passed to the guest kernel, sending the state
along messages is likely to be the most efficient way. On other architectures
it is a tradeoff between the register set commonly required and the overhead
such system calls entail.

3.6 A new Wedge Design

To see whether the proposed L4 extensions pay off, J. LeVasseur’s in-place
VMM and parts of the resource monitor (both described in Section 2.3.2)
were redesigned. Major changes include the co-location of guest applications
and the guest operating system in the same L4 address space, a more accurate
scheduling policy and signal handling as well as the elimination of several in-
efficiencies inside the wedge. The redesign also required further modifications
to the guest operating system.

Co-Located Guest Application and Operating System

Figure 3.5 shows the general layout of the redesigned virtual machine, which
makes a separate guest operating system address space redundant. The guest
kernel is mapped into each user application’s address space. The KIP and
UTCB mappings are put into the first megabyte of the guest kernel area that
Linux doesn’t use. Application threads have their limit set to cover the 2GB
application space. Optionally it can be extended to further include the KIP
and parts of the UTCB area.

3.6. A NEW WEDGE DESIGN 33

Guest
Application A

4GB

0GB

L4 µ-kernel

KIP & UTCB

IPVMM

Guest Kernel
guest user lim

it

L4 µ-kernel

KIP & UTCB

IPVMM

Guest Kernel

Guest
Application B

L4 µ-kernel

KIP & UTCB

IPVMM

Guest Kernel

Figure 3.5: The Linux kernel resides in a logical space that spans all three
hardware address spaces

Each application address space holds at least three L4 threads. The two
privileged ones are the guest operating system and its pager thread. One or
several non-privileged ones execute the application. Other than application
spaces, there is a single master address space. It is the first address space
created in each VM and executes the IRQ thread.

Guest
Application A

L4 µ-kernel

KIP & UTCB

IPVMM

Guest Kernel

Guest
Application B

L4 µ-kernel

KIP & UTCB

IPVMM

Guest Kernel

IPC

Figure 3.6: A guest address space switch causes the VMM to switch execution
to another L4 space

Even though there may be hundreds of application spaces in a virtual ma-
chine, only one guest operating system thread is runnable at any point in
time. The “active” space corresponds to the guest operating system’s cur-
rent task. On each guest kernel task switch, the VMM stops execution in the
outgoing address space and resumes the guest operating system thread of the
incoming one. This is done by means of an L4 IPC as shown in Figure 3.6.

34 CHAPTER 3. PROPOSED SOLUTION

All threads in a non-active space are waiting for an IPC. In particular oper-
ating system threads are waiting to be activated by operating system threads
in other application spaces. On each guest address space switch, the guest
operating system thread executes emulation code. It sends an IPC to activate
the target space and subsequently waits to get activated again. The VMM
preserves the continuity across such switches, i.e., it makes sure that the new
guest operating system thread resumes execution with the same register set
and the same kernel stack.

Improved Scheduling

In an “active” space, either the guest kernel or a guest application thread
is runnable, but never both. With the introduction of preemption messages,
there is no concurrent execution of L4 threads beyond the guest’s control any
more.

Preemption messages are enabled for all application threads. Consequently
they are not executed by L4 unless their scheduler, the guest operating sys-
tem thread, activates them by sending a preemption message reply. Linux is
thus enabled to fully control scheduling of its user applications, as opposed to
the old wedge design. Further, several guest application threads in the same
address space can be executed by a single L4 thread and lots of synchronizing
logic that was required to hide the concurrent execution of L4 threads could
be removed.

Preemption messages are as well enabled on all guest operating system threads
with the IRQ thread as their scheduler. This not only allows the support of
a new interrupt handling (which is explained further below) but can also be
used to implement a virtual clock. Such a virtual clock becomes useful when
several virtual machines execute simultaneously on the same system and thus
preempt each other. As each virtual machine is notified on preemption, it can
easily account for the lost time.

Improved Page Fault Handling

With the original L4 API, it was too expensive to retrieve an application’s
register state on page faults. Linux’s page fault handler was therefore passed
an invalid register set. The new wedge makes use of the user state, which is
sent along L4 page fault messages and allows to virtualize page faults properly.

3.6. A NEW WEDGE DESIGN 35

Improved Exception, Signal and Interrupt Handling

Control transfer messages allow for the efficient change of a thread’s control
flow. They are used to redirect control flow on asynchronous events while the
guest operating system thread executes. Further, they are used to redirect the
application’s control flow to deliver Linux signals.

The original L4 kernel required the VMM to cumbersomely redirect control
flow on asynchronous events by means of stub code, a temporary stack and
L4’s ExchangeRegisters. Signals to user applications could only be delivered in
reply to a user exception since only exception messages allowed a new thread
state to be set in reply. Unless the application caused such an exception, Linux
signal handling failed.

The new VMM makes use of control transfer in combination with preemption
messages to allow for an improved handling of these events. With preemption
messages enabled on all application threads, signals can now be delivered at
any point in time when the operating system thread executes. A control trans-
fer can be sent to the application in reply to the formerly received preemption,
exception, or page fault message. The VMM can further easily redirect the
operating system thread’s control flow.

36 CHAPTER 3. PROPOSED SOLUTION

Chapter 4

Implementation

This chapter describes a reference implementation for all L4 extensions and the
redesigned VMM as proposed by this thesis. The extended µ-kernel is based
on L4’s IA-32 port while the redesigned VMM emanates from J. LeVasseur
Pre-Virtualization reference implementation.

4.1 Control Transfer Messages

Control transfer messages allow you to change the control flow of threads by
means of a common IPC (cp. Section 3.2). It is a simple L4 extension and
did not require any substantial modifications to the kernel’s internals. Control
transfer items on IA-32 as shown in Figure 4.1 are treated as typed message
elements just as strings, flexpage-map, or grant items. Adjustments to L4’s
IPC mechanism could thus be restricted to a single function that gets only
invoked by the IPC logic when typed message items are involved. A typed
item is identified via its tag, i.e., the lowermost four bits of its first word. For
control transfer items the bit sequence 1100b was chosen. Other than that,
the highly optimized IPC logic remained untouched.

As explained in Section 2.3.1, acceptors specify what kind of typed items a
thread is willing to accept when receiving a message. One of the reserved
bits in the acceptor was thus used for control transfer items. Apart from this,
acceptors remain unchanged. The new acceptor is shown in Appendix A.1.

To allow for a control transfer, the receiver must set the corresponding bit in its
acceptor and perform a receiving IPC system call. When entering the kernel
as a result of the system call, L4 stores the thread’s context on its kernel stack
to be restored when it is rescheduled. The current implementation therefore
simply overwrites the thread’s context frame according to the received control

37

38 CHAPTER 4. IMPLEMENTATION

110090 (5)

eip

vmask (10)(13)

eflags

edi

esi

ebp

esp

ebx

edx

ecx

eax

(32)

(32)

(32)

(32)

(32)

(32)

(32)

(32)

(32)

(32)

MRn

MRn+1

MRn+2

MRn+3

MRn+4

MRn+5

MRn+6

MRn+7

MRn+8

MRn+9

MRn+10

Figure 4.1: Control transfer item on IA-32

transfer item, provided the receiver accepts. If the receiver’s acceptor bit is
cleared, though, no control transfer takes place. However, the item is copied
into the receiver’s message registers.

4.2 Preemption Messages

Preemption messages required more modification of the kernel, including a
new internal thread state, a different startup protocol as well as changes to
the kernel’s internal control flow. The extension can be enabled on individual
threads via L4’s Schedule system call. Detailed information on how to turn it
on and off can be found in Appendix A.5.

For threads with preemption messages enabled, a message containing the time
stamp and, if L4 is appropriately configured, the execution context at the point
of preemption is sent to the thread’s associated scheduler on asynchronous pre-
emption other than page faults (cp. Section 3.3). The current implementation
therefore uses L4’s IPC mechanism without modification. First, L4 composes
the message in the preempted thread’s message registers to send it to the
scheduler. Subsequently, L4 completes the IPC operation provided that the
receiver was ready to receive a message or if not, temporarily halts the send-
ing thread and reschedule. The latter case results in L4’s original scheduling
behavior and does not require any further changes. However, if the scheduler
is ready to receive when a preemption message is sent, L4’s IPC logic will
unconditionally grant the sender’s remaining time slice to the receiver, i.e.,
the scheduler, to which it instantly switches. This is the appropriate behavior

4.2. PREEMPTION MESSAGES 39

in case the receiver’s priority is the highest amongst all currently runnable
threads. However, if the thread that caused the sender’s preemption has a
higher priority, the proper behavior would be to schedule it rather than the
receiver.

A way around this priority inversion is to have L4 reschedule after each IPC
operation. This, however, requires changes to the optimized IPC process as
well as additional scheduling decisions that would incur unacceptable IPC
overhead in the general case. Therefore, a hook was implemented to redirect
the receiver’s control flow in this special case.

syscall_ipc_entry:
[...]

call sys_ipc

sys_ipc:
[...]
return

ipc_hook:

switch_to(next);
next = scheduler();

ipc_hook_return:
[return to user]

redirectionnormal control flow

point where receiver
was halted

Figure 4.2: Receiver thread control flow redirection on preemption messages

To illustrate how the hook works, Figure 4.2 shows a thread’s control flow
during an IPC. Label syscall ipc entry marks the IPC entry point. A call to
the architecture independent IPC main method sys ipc follows and causes the
caller’s return address to be pushed on the stack. This return address is at a
fixed offset from the receiver’s stack bottom and can thus be located. Before it
starts the IPC operation to send a preemption message, L4 checks whether the
destination thread is waiting. If so, the receiver must have performed an IPC
call at some earlier point. It was then interrupted somewhere within the IPC
process, more precisely in sys ipc. The current implementation overwrites the
stored return address. It thereby redirects the receiver when it continues on
the donated time slice to execute a function that instantly reschedules. The
reschedule function never returns to its caller but jumps to the instruction
at the replaced address and thus returns to normal control flow. This hook
allows the proper implementation of preemption messages without changing a
single line of code in the IPC logic.

40 CHAPTER 4. IMPLEMENTATION

Another situation that required special attention is when preemption messages
are enabled on threads that have not yet received a startup message. As by
the L4 API this special message must be sent by the thread’s pager and has
to contain the initial stack and instruction pointer. L4 subsequently sets the
thread’s registers according to the values passed in and starts executing it.

A new thread state (a thread waiting for a startup message) was introduced
to catch this case. The startup protocol then changes. Rather than having
the thread waiting for a startup message from its pager, it then waits for
a startup message from its scheduler. The thread further accepts a control
transfer if L4 is configured to support control transfer messages. This way it
is put into a state equivalent to as if it was preempted earlier, waiting to be
re-activated by its scheduler. The startup message to be sent by the scheduler
has to contain an instruction and stack pointer (in form of two untyped words)
or may consist of a complete control transfer item with instruction and stack
pointer set accordingly.

4.3 Page Fault Extension

Page fault messages are synthesized by L4 on behalf of the faulting thread
and sent to the faulting thread’s pager. This is done transparently to the
originator. Since the kernel uses the faulting thread’s message registers to
compose and send the message, it needs to restore them after the page fault
handling has completed.

The extended page fault protocol passes additional user state information
along with page fault messages. Its implementation required simple adjust-
ments to existing kernel methods that synthesize and send page fault messages.
On page faults, L4 stores the desired user state on the faulting thread’s kernel
stack. The stored user state can thus be accessed and simply appended to the
original page fault message, either in terms of untyped words, or (if the kernel
is configured to support control transfer) in form of a control transfer item.
Figure 3.4(a) depicts how the sender’s message register set finally looks like.
It is then copied into the receiver’s message registers during the IPC process.
The kernel has to be able to finally restore the original message register con-
tent. The required number of modified registers is thus saved in the sender’s
thread control block (TCB), which was accordingly extended.

There is an as yet unimplemented optimization to avoid saving, restoring and
copying those message registers that are used to pass a thread’s execution con-
text. One could have the IPC logic read the sender’s processor registers from
the kernel stack and directly write them into the receiver’s message registers.
With this optimization the sender would only send minimal information (e.g.,
a bit set in the message tag) to indicate that the user context still needs to

4.4. THREAD LIMITS 41

be attached. When the actual message register copying takes place, the ker-
nel can access the sender’s context and append it to the receiver’s message.
Compared to the current implementation, this saves three memory copies of
the size of an control transfer item. However, it requires additional logic for
the case that some other thread modifies the faulting thread’s state via L4’s
ExchangeRegisters before the IPC operation has completed. Otherwise the
receiver will get the execution context not at the point of the exception but
at the modified one.

4.4 Thread Limits

Thread limits are implemented by means of IA-32 segmentation. Segmentation
is an IA-32 specific feature that is well suited to the desired functionality.
However, this feature is not provided by all computer architectures.

The following gives a brief overview of those parts of IA-32’s memory man-
agement that are used by the implementation. Subsequently, implementation
details on per-thread limits are provided and alternatives are proposed on how
to achieve the same functionality on other architectures.

4.4.1 IA-32 Protected Mode Memory Management

Starting with the 80286, x86-compatible CPUs offer a two-level logical to phys-
ical address translation. The processor’s memory management unit transforms
a user’s virtual address (commonly referred to as logical address in conjunc-
tion with IA-32) consisting of a 16-bit segment selector and a 32-bit offset
into a 32-bit linear address. Subsequently a paging unit transforms the linear
address into the 32-bit physical address. Figure 4.3 shows the first step taken
by the segmentation unit to translate a logical address.

IA-32 has six segment registers (called selectors) to be used as an index into a
kernel protected, memory resident table of segment descriptors. Each segment
descriptor is 8 bytes long and specifies a segment (a region of memory) within
the 4GB linear address space by its base address, its limit, and a required
privilege level to access memory in that area. At system startup, the operating
system sets up the table with descriptors for kernel and user segments. Only
processes running at privilege levels higher or equal to the descriptor’s privilege
are allowed to reference the covered memory. There are global as well as
per process (local) descriptor tables. The entirety of segments that can be
referenced by an application in either the global or its local descriptor table
constitute its part of the linear address space. Any attempt by non-privileged
threads to access linear addresses outside their dedicated memory segments

42 CHAPTER 4. IMPLEMENTATION

0x2

Selector

Logical Address

0x00004400

32-bit Offset

Linear address space

Descriptor 0
Descriptor 1

...
Descriptor 2

Descriptor n-1

Memory Segment

select descriptor in table

0

4GB

specifies base
address

specifies segment
size

selected linear
address

offset from base
address

Figure 4.3: Translating a logical address

causes the processor to raise an exception (segmentation fault, or a general
protection fault if a segment register is loaded with illegal indices) and to pass
control back to the privileged kernel.

A programmer does not necessarily have to explicitly state the full logical
address (consisting of a segment selector and an offset) when reading from or
writing to memory. Instructions have implicit segments they refer to when
being executed. For example a move instruction used to read or write from
or to memory implicitly uses the data segment (DS) selector. Operations
involving the stack such as push or pop refer to the stack in the segment
pointed to by the stack segment (SS) selector and take the stack pointer (SP)
as offset. The CS (code segment selector) register points to the segment that
holds the processes’ executable code and is implicitly used by instructions such
as procedure calls or jumps. ES is commonly used by string copy operations
while FS and GS are free to point to further data segment descriptors.

Segmentation can be used to assign each process a different part of the 4GB
linear address space. Linear addresses, however, are not directly mapped
one to one to physical addresses. Rather, a second memory management
component maps memory blocks in the linear address space to blocks of real
physical memory. The mappings are controlled by the operating system by
means of so called page tables. It is common for the operating system to have
one page table for each user address space. Mappings for different address
spaces can thus be established by changing the page table on context switches.
This mechanism is commonly referred to as paging.

4.4. THREAD LIMITS 43

Unlike segmentation, paging is available on all modern computer architectures.
Paging can map the same linear address to different physical ones. It is more
flexible than segmentation and allows you to multiplex the linear address space
among all user applications. Therefore, Linux, L4, and most other contempo-
rary operating systems use a memory model called flat segmentation. With
flat segmentation, segment descriptors are set to cover 4GB segments starting
at address zero, thus allowing each process to access the whole linear address
space. Code data and stack segments overlap. Paging is used to multiplex the
linear address space and to prevent user threads from accessing those virtual
memory regions that are reserved by the operating system.

4.4.2 Thread Limit Implementation

IA-32 supports 4GB virtual address spaces starting at address zero. The L4
kernel reserves the 4th gigabyte in each address space, which leaves a 3GB
user area to its user threads. Per-thread limits aim at further restricting the
user accessible part for certain threads. This can be achieved by adapting the
segment limits of all user accessible segments on thread switches.

reserved

Kernel Code

Kernel Data

User Code

User Data

UTCB

TSS

Figure 4.4: L4’s Global Descriptor Table

Figure 4.4 shows L4’s global descriptor table with three segment descriptors
for user threads and the kernel each. The first entry is reserved and must not
be used by the operating system. The following two descriptors constitute
flat, privileged 4GB memory segments. They can only be referenced in kernel
mode and allow you to access the whole 4GB of linear memory. Two non-
privileged segments, User Code and User Data are thought to be used by
application threads to access their program code and data. Their limits depend
on how the kernel is configured. Without IA-32’s small space optimization,
both segments are flat as well. L4 protects the 4th GB by means of paging.
With small address space support enabled, the user segment descriptor limits
range between a minimum of 4MB up to 3GB. The reason for this is that L4
then puts several user address spaces inside the same hardware address space.

44 CHAPTER 4. IMPLEMENTATION

A single large 3GB user space starts at logical address zero and several small
user spaces share (but do not overlap) the following area covering 512MB.
When L4 executes threads in a large space, it sets the user segment limits to
3GB (with the base at address zero) to protect the small space area. When
it switches to a thread in a small address space, the segment limits are set
according to the space’s size. The segment bases point to the range inside the
512MB small space area that is reserved for the respective space.

The third user accessible descriptor, denoted as UTCB, covers a tiny user
accessible part in the linear address space above 3GB, which provides the cur-
rent thread’s UTCB address at offset zero. Finally, TSS is a kernel protected
segment to hold a special x86 structure with information about the current
task.

To allow for per-thread limits, the extension adjusts the user’s code and data
segment limits on thread switches. Non-restricted threads experience the same
virtual address space as before. But when L4 switches to a restricted thread
both segment limits are reduced accordingly. To avoid needless, expensive
GDT updates, the kernel first compares the new limit to a per-CPU global
variable with the ceiling currently set.

Limits are supported in steps of 4KB and stored in each thread’s TCB. A
thread’s limit must be at least 4KB and may expand up to 3GB. For threads
running in small spaces, the actual limit written into the GDT is the minimum
of the small space’s limit and the thread’s limit. Even though it would be more
efficient to have the minimum value calculated once and stored in each thread’s
TCB for fast access on thread switches, the limit needs to be re-determined
on each thread switch. The reason for that is that L4 provides no mapping
from address spaces to threads running inside them. Thus, if the small space
limit is reduced, it is not possible to update the stored limits in the affected
thread’s TCBs.

4.4.3 Implementation Alternatives

Segmentation is quite IA-32 specific and does not allow arbitrary virtual mem-
ory regions to be protected. An alternative implementation, which is sup-
ported by other architectures as well, is to use paging, i.e., to make certain
pages in an address space inaccessible to restricted threads. However, the costs
highly differ from architecture to architecture. On IA-32 with hierarchical page
tables that are directly accessed by the processor, they are unacceptably high.
The kernel would have to walk through the page tables and mark selected
pages inaccessible on each thread switch from or to a restricted thread. That
would significantly increase the thread switch overhead. Other architectures,
including Mips, have a software-loaded TLB, i.e., the processor raises a page

4.5. WEDGE DESIGN 45

fault exception if no valid mapping can be found in the TLB. System soft-
ware then looks up the translation in its own mapping structures and updates
the TLB accordingly. In such a scheme it is way simpler and more efficient
to make regions in an address space inaccessible. All the page fault handler
needs to do, is to check whether the faulting thread is allowed to access the
faulting page or whether it is part of a protected area. If it is allowed to do
so, the mapping is written into the TLB, otherwise an exception is triggered.

4.5 Wedge Design

The redesigned VMM is based on J. LeVasseur’s design, which was augmented
to use the additional features provided by the extended L4 µ-kernel. The
following sections describe how the major modifications were implemented.

4.5.1 Address Space Construction

As opposed to the original VMM where the guest operating system ran in
a separate L4 address space, the redesigned VMM maps the guest operating
system into each application’s address space (cp. Section 3.6). The VMM
thereby needs to make sure the different guest kernel areas, even though they
are distributed across several L4 address spaces, constitute an identical logical
address space. Changes in one kernel area must become immediately effective
in all other kernel areas. Consequently, page faults in the same VM and at
the identical VM physical address must result in the same memory page to be
mapped in, independent of the specific L4 address space. This was achieved by
having physical page requests from all guest operating system threads resolved
by the identical process, the resource monitor. The resource monitor doesn’t
care about which guest operating system thread originated the request. All
it factors in is the virtual machine the requester belongs to and the physical
page called for.

Similar to the old VMM, the contiguous physical memory mappings in the
kernel areas are used to back application memory mappings. However, since
application page faults are now handled by the local operating system thread,
each application’s mappings also originate in the local address space as shown
in Figure 4.5.

To allow for the original VMM’s address space construction via shadow page
tables, Linux was modified to execute emulation code in the wedge whenever it
establishes or deletes memory mappings (i.e., whenever is modifies a page ta-
ble or directory entry) in either an application or the kernel space. A pointer
to the modified page table entry is passed along these functions. It allows

46 CHAPTER 4. IMPLEMENTATION

L4 µ-kernel L4 µ-kernel L4 µ-kernel

Resource MonitorApplication Space Application Space

VM's Physical
Memory

Idempotent Mappings Idempotent Mappings

Application A Application B

Guest OS Guest OS

Figure 4.5: Distributed Physical Memory Mapping

you to retrieve the affected VM physical memory page. The original VMM
could then easily flush invalidated physical page mappings from all application
spaces. It simply performed an unmap operation on the page in the idempo-
tent mapping area corresponding to the physical one. As a result L4 unmaped
the affected VM physical page from all application spaces, no matter what
address space the page table entry actually referred to. However, these page
table hooks turned out to be insufficient for the redesigned VMM’s distributed
mapping scenario. Doing the same unmap operation would result in the cor-
responding physical page being unmapped only from the current application’s
address space, but not from others. The problem encountered here is that the
emulation functions do not provide information about which address space
the page table entries actually belong to. If they did, it would be easy as you
could switch to the target address space to revoke the desired mapping in the
same way as the original VMM did. As it turns out though, Linux does not
provide the needed context information when it calls the hooks.

That problem finally required additional modification to the guest kernel to
intercept Linux’s TLB flush events. The idea was that L4 mappings have
TLB semantics, meaning that whenever Linux deletes or overwrites a map-
ping entry in the page table, the respective entry could still be cached in the
TLB. So there is no need to instantly flush the corresponding L4 mappings.
Rather, this can be delayed until Linux removes that entry from the TLB. The
newly introduced TLB flush hooks provide the desired address space identifier.
Unlike the original VMM, flushing is now deferred and done in a lazy manner.

Another challenge was to avoid a burst of page faults in the guest kernel
areas. With the new design, each application has its own L4 address space
with a user and a guest operating system area. Page faults in the user area
are unavoidable and occur in both VMM designs at the same frequency. The
number of page faults in the guest kernel area, however, differs significantly.
Most mappings in there are global and constant. The original VMM caused

4.5. WEDGE DESIGN 47

initial page faults, but eventually the kernel area in the separate operating
system space was backed with memory mappings and the number of page faults
in that area dropped down markedly. The new VMM can have hundreds of
application spaces, each one with its own kernel area. Such application spaces
are frequently created and deleted and along with them the mappings in the
kernel area. The continuous page faults by the operating system would cause
a huge performance penalty.

The introduction of an address space recycling mechanism helped to alleviate
the problem. When Linux deletes an application, the corresponding L4 address
space is put into a pool of free address spaces. Only the user area mappings
and local memory mappings in the guest kernel area are deleted. When Linux
creates a new application, a recycled address space out of the pool can be
reused. Most kernel mappings and the in-place VMM are still there and way
less page faults are triggered.

The handling of local memory mappings in the Linux kernel area was simplified
by the distributed scenario. As opposed to global mappings, such local map-
pings differ from application to application. The old VMM with a dedicated
operating system task required to keep track of them and to flush them on
each address space switch. Following, when switching to the next application,
the flushed local kernel mappings cause inevitable page faults in the operating
system address space. The new design allows to preserve such mappings across
address space switches.

4.5.2 Address Space Switch

With the original wedge design, the guest Linux operating system ran in its
own L4 address space. One single thread executed the guest operating system
as well as those VMM emulation functions the modified kernel called. The new
design maps the identical guest operating system binary and in-place VMM
into each guest application space. It thus requires one operating system thread
per guest application space. However, at any point in time only one of them
can be active. All other threads are waiting for an IPC.

When the guest kernel switches execution to another application, the guest
operating system thread in the outgoing space needs to be halted and the
incoming one must resume execution. The VMM has to preserve control flow
across such a switch, which needs to be done transparently to the guest ker-
nel. Consequently, the activated guest operating system thread must continue
executing at the instruction following the IPC system call. Further, it has to
adopt its predecessor’s register state.

This high-level thread switch was implemented by means of an additional
switch stack and L4 IPC. An address space switch causes the guest operating

48 CHAPTER 4. IMPLEMENTATION

system thread to execute an emulation function in the wedge. The thread
then stores its register set (including the current stack pointer) on a separate
switch stack that is used during the thread switch. Subsequently, it sends
an empty message to the operating system thread in the address space to be
activated and waits for an IPC. The now activated thread restores its state
with the one from the switch stack and continues execution normally.

Operating system threads in newly created address spaces must be set up to
wait for an activation IPC just as operating system threads in other inactive
address spaces do. This is done in collaboration with their local pager thread
and requires several privileged and non-privileged L4 system calls. In par-
ticular the privileged ones are expensive, for they can only be performed in
collaboration with the privileged root task, i.e., the resource monitor. Thus,
when recycling application spaces, the guest operating system thread, its pager
thread, and one application thread are recycled as well. They are all properly
set up to be easily reusable without further configuration.

4.5.3 Exception, Signal and Interrupt Handling

In combination, preemption messages, and control transfer allowed for an im-
proved interrupt, signal, and exception handling in the virtual machine (cp.
Section 3.6). Each Linux application thread has preemption messages enabled
and has the local guest operating system thread for its scheduler. Signals can
now be delivered at any point in time when the operating system thread ex-
ecutes. The required control transfer can easily be sent to the application in
reply to the formerly received preemption, exception or page fault message.

Guest operating system threads, have the IRQ thread for their scheduler,
with preemption messages enabled. Upon interrupts, while the guest kernel
is active, L4 synthesizes an interrupt message and a preemption message to
the IRQ thread. It thereby guarantees that interrupt messages arrive prior to
preemption messages.

When receiving an interrupt message, the IRQ thread has two cases. If the
guest kernel is idle (i.e., waiting for an IPC), no preemption message will
follow. In this case, IRQ sends an IPC to the operating system, informing the
thread to activate the guest kernel’s interrupt handler. Otherwise, it marks
the interrupt pending but waits to see the subsequent preemption message.
Once the preemption message arrives, the IRQ thread replies with a new state
in terms of a control transfer item and thereby forces the operating system
to branch to its interrupt handler. Finally, in case of an interrupt while a
Linux application is active, L4 sends an interrupt IPC to the IRQ thread and
a preemption message to the local guest operating system thread. Following
both, the IRQ and the operating system thread wake up. Since IRQ runs at

4.5. WEDGE DESIGN 49

a higher priority and interrupt messages are guaranteed to arrive first, the
IRQ thread executes first but only marks the interrupt pending. When the
operating system thread continues, the interrupt is already marked pending
and can easily be synthesized in the guest kernel.

50 CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

5.1 Measurement Methodology

All benchmarking was done on the same x86 test machine to get comparable
and reproducible results. The computer was equipped with a 1.5 GHz Pentium
4, with 1 GB RAM and a 3Com 3c905C-TX Tornado 100 Mbit network inter-
face card. An afterburned Linux 2.6.9, compiled with GCC version 3.3.5, was
used as a guest operating system. It ran Debian 3.1 from a local ExcelStore
J340 ATA disk. The extended L4Ka::Pistachio kernel is based on the CVS
version from September 2006. Pistachio was configured to use the new map-
ping database while the fast IPC was turned off. The µ-kernel benchmarks
in Section 5.2 are the median of five trials. The virtual machine benchmarks
in Section 5.3 are reported with a 95% confidence interval (five independent
benchmarks run) with no more than +/- 1% error.

5.2 µ-kernel benchmarks

To see how the virtualization extensions described in Chapter 3 affect the
µ-kernel’s IPC performance, both versions were compared by a standard L4
IPC benchmark called pingpong. Pingong sends short messages between two
threads and measures the number of processor cycles and time as µ-seconds
elapsed. The two communicating threads can execute in different L4 address
spaces (Inter-AS) or share a common space (Intra-AS). The small space opti-
mization on IA-32 allows them to execute in different virtual address spaces
but within the same hardware address space (Small-AS).

Figure 5.1 compares L4, with small space optimization disabled, to the mod-
ified L4 kernel with all virtualization extensions enabled and small spaces

51

52 CHAPTER 5. EVALUATION

Figure 5.1: L4 µ-kernel with small spaces disabled (Inter-AS IPC)

turned off. All user threads in the system were set up to have the same 4GB
address space limit. The graph shows the result of an inter-address space IPC.
As the benchmark reveals, all extensions together add an average overhead of
between 37% and 42%.

The reasons for this overhead could be easily identified by another test run,
which compared L4 with an extended API and small spaces enabled to the
unmodified Pistachio kernel, this time with small space optimization.

Figure 5.2: L4 µ-kernel with small spaces enabled (Inter-AS IPC)

As shown in Figure 5.2, the performance gap for inter-address space IPC
then shrinks down to an overhead of between 6% and 8%. The overhead for
intra-address space IPC is no more than 17% (Figure 5.3) while inter-address
space IPC between threads in different small spaces reaches about the same
performance as the original kernel (Figure 5.4). This is not surprising as the
per-thread limit extension required similar kernel modifications to those used
for L4’s small space optimization. Even for the unmodified kernel, turning on
this IA-32 specific feature causes an overhead of 32% to 37% for inter space

5.2. µ-KERNEL BENCHMARKS 53

Figure 5.3: L4 µ-kernel with small spaces enabled (Intra-AS IPC)

Figure 5.4: L4 µ-kernel with small spaces enabled (Small-AS IPC)

IPC. There are several reasons to be identified for this performance decrease:

1. L4 uses a GDT with privileged and user-accessible entries as is shown in
Figure 4.4. User-accessible segments comprise a code, a data as well as a
UTCB segment. Without the small spaces optimization, both user code
and data segment are flat and cover the whole logical address space.
Consequently, user code and data descriptors differ only with respect
to their privilege levels from the kernel’s. L4 uses paging to protect
its 1GB kernel area in the upper virtual memory. The current IA-32
implementation thus avoids reloading data segment registers on kernel
entries and exits. It simply stays with the user’s and thereby decreases
the overhead of kernel entries and exits that would be caused by the
processor’s expensive segment register privilege checks.

This optimization cannot be used with the small space feature enabled.
In that case the user’s segment descriptors are no longer flat but are
restricted to not exceeding the 3GB limit. L4, however, expects access

54 CHAPTER 5. EVALUATION

to the complete logical address spaces in kernel mode. It thus requires
reloading the data segment registers on kernel entries/exits to point to
the kernel’s flat data segment. Indeed, it would be better to do so
without small spaces enabled, too. With the current implementation, a
malicious user could set DS to reference the UTCB segment descriptor
before entering the kernel. In that case L4, as currently implemented,
crashes.

2. With the small space optimization, L4 is forced to use a special ker-
nel exit trampoline when using fast kernel entries and exits via sysen-
ter/sysexit.

3. Small spaces further require additional thread switch logic as the kernel
needs to update segment descriptor limits in the GDT on each switch to
or from a thread in a small space.

All three points apply to the per-thread limit extensions as well and thus
explain the major performance degradation. The remaining overhead is due to
additional logic required inside the thread switch code. Further benchmarking
revealed that a negligibly small IPC overhead is caused by all other extensions,
including control transfer and preemption messages or the additional user state
passed on each page fault.

5.3 Virtual Machine Benchmarks

This section compares the results achieved by the different virtual machine
designs from the perspective of pure Linux applications. The interesting ques-
tion to answer here is how L4’s extensions affect the performance, and in
particular whether co-location pays off. To answer it, the redesigned virtual
machine was benchmarked in two different development stages. In the first
stage, the original virtual machine was redesigned to make use of all extensions
other than per-thread limits. Without co-location, the VM’s general layout
remained unchanged, i.e., there is one dedicated guest operating system space
and several application spaces as shown in Figure 2.4. In the second stage,
per-thread limits are enabled and the guest operating system is mapped into
each application’s address space (see Figure 3.5).

The virtual machine’s performance results are compared to the guest oper-
ating system running natively on raw hardware. As the starting point ran a
single operating system on hardware with direct device access. In order to
obtain comparable results, the same configuration was used in the virtual ma-
chine environment. A single VM entity ran afterburned Linux as guest with
direct device access. All benchmarks used the slow legacy int 80 system call
invocation.

5.3. VIRTUAL MACHINE BENCHMARKS 55

The resulting runtimes were derived from the processor’s time-stamp counters.
The number of system calls invoked was traced by strace, which was configured
to include child processes as they are created.

5.3.1 Microbenchmarks

To measure the system call overhead, getpid was repeatedly called in a loop.
Table 5.1 shows the consumed time and the number of cycles per invocation.
The overhead relative to the native system is shown in the last column.

System Time Cycles Overhead
Native Linux 1.022 µsec 1530 -
Original VMM 4.102 µsec 6155 4.01x
Redesigned VMM Stage 1 4.422 µsec 6637 4.33x
Redesigned VMM Stage 2 3.250 µsec 4875 3.18x

Table 5.1: getpid system call costs on the different implementations

The second microbenchmark allows to estimate the time required for an ad-
dress space creation and its deletion. It is a small program that continually
creates and deletes child processes using Linux’s fork system call. The child
processes, when started, call exit right away. Table 5.2 shows the results of
this benchmark.

System Time Overhead
Native Linux 0.128 msec -
Original VMM 1.225 msec 9.59x
Redesigned VMM Stage 1 1.296 msec 10.15x
Redesigned VMM Stage 2 0.720 msec 5.64x

Table 5.2: Costs for the creation and deletion of a single process

The two benchmark results reveal what could be expected for the different
VMM stages. The original design entails a large system call overhead. System
calls via int 0x80 cause L4 to synthesize an exception IPC to send it to the
guest operating system in its separate address space. Subsequently, the VMM
synthesizes a software interrupt in Linux before the guest operating system
thread can execute the associated exception handler. After the interrupt is
handled, the guest kernel returns to the application. In total, each system call
requires at least two L4 address space switches.

The first stage of the redesigned VMM is about 5.8% slower than the origi-
nal VMM. The reasons for this overhead are easy to identify. First, L4 has
preemption messages enabled and the wedge activates them on all application
and guest operating system threads. It takes time to compose and send the

56 CHAPTER 5. EVALUATION

additional messages. Second, page faults as well as preemption messages now
contain the complete IA-32 general-purpose register set. Thus, the time L4 re-
quires to compose and transfer the larger messages increases. The additional
overhead is acceptable, as one has to keep in mind that the original wedge
didn’t handle page faults or signals properly. Trying to do so without ker-
nel support would have a greater adverse effect on performance (cp. Section
2.4.4).

The second redesigned VMM reduces system call overhead for getpid by about
21%. Since there is only a single application space, address space recycling
cannot affect the result. The performance boost is an immediate consequence
of co-location, i.e., of the reduced kernel entry and exit overhead. The second
benchmark performs 1.7 times faster than the original VMM. The improve-
ment results from the combination of fast kernel entries/exits and address
space recycling. The latter one plays the major role. With address space
recycling turned off, the benchmark performs several times slower.

5.3.2 Macrobenchmarks

Three complex application benchmarks, which exercise the whole system, have
been employed to investigate the performance under different workloads. The
first one, Povray, is a raytracing program. It calculates the results of light rays
that bounce around in a virtual world. It comes with various example scenes.
In this benchmark, Povray Version 3.6 rendered an advanced scene called
“chess2” with standard configuration. It is a highly CPU-bound benchmark
that generated only one single process and no more than about 3.5K system
calls.

System Time Overhead
Native Linux 89,05 sec -
Original VMM 89,66 sec 1.01x
Redesigned VMM Stage 1 90,04 sec 1.01x
Redesigned VMM Stage 2 89,50 sec 1.01x

Table 5.3: Povray results

Table 5.3 shows that the results are almost identical and yield no information
about how the µ-kernel extensions and the redesigned VMM affect perfor-
mance.

The second benchmark, Netperf, is an I/O-intensive benchmark. It was con-
figured to transfer 1GB of data at standard Ethernet packet size to a second
host in the local network. The remote host was a multi-processor workstation,
configured with two 2GHz AMD Opteron processors, 2GB of RAM, a gigabit
ethernet controller and ran native Linux 2.6.18. During the send phase about

5.3. VIRTUAL MACHINE BENCHMARKS 57

64K system calls were invoked.

The third benchmark compiles the Linux kernel Version 2.6.9 with minimal
configuration using GCC Version 3.3.5. It creates around 3.5K processes,
exercising fork and exec and thereby strains the memory subsystem. Further
it generates about 847K system calls. The respective results are shown in
Table 5.5 and Table 5.4.

System Time Overhead
Native Linux 88,09 Mb/sec -
Original VMM 86,44 Mb/sec 1.02x
Redesigned VMM Stage 1 85,77 Mb/sec 1.03x
Redesigned VMM Stage 2 78,85 Mb/sec 1.12x

Table 5.4: Netperf results

System Time Overhead
Native Linux 243,35 sec -
Original VMM 295,96 sec 1.22x
Redesigned VMM Stage 1 305,84 sec 1.26x
Redesigned VMM Stage 2 324,73 sec 1.33x

Table 5.5: Linux kernel build results

The performance hit by the first redesigned VMM is for the same reasons as
those stated above. The results achieved by the second stage are particularly
surprising as it performs worse than all others. Since the first stage completes
remarkably better, the deterioration must have been caused by one of the
following modifications that were additionally made to the second stage:

1. The guest operating system is mapped into each application’s address
space. Each address space holds an additional operating system and
a pager thread. The number of L4 threads in the system thus greatly
increases.

2. The application switch is more complicated compared to the original
VMM design. Each one results in an IPC and requires the VMM to
preserve continuity across the address space switch.

3. Per-thread limits are activated in L4.

4. The distributed physical memory management is more complex. Unlike
with the old wedge, memory mappings in a specific application’s space
can only be unmapped from within that space. Further, TLB flush hooks
had to be introduced. They were required to inform the VMM what
address space a page needing to be unmapped belongs to (cp. Section
4.5.1).

58 CHAPTER 5. EVALUATION

To start with the first one, the number of L4 threads in the system was traced
during a Linux kernel build. The maximum number of simultaneously existing
L4 thread’s during the benchmark was less than one hundred. The same holds
for Netperf. L4, however, was designed to support up to 217 user threads on
IA-32. It can thus be ruled out that a possibly huge number of user threads
decreased the µ-kernel’s overall performance. The second difference, which
calls for closer investigation, is the application switch. However, measuring the
time spent in the switch routines (using the Pentium performance counters)
revealed that this cannot be the reason for the large overhead. During the
Linux kernel build (which lasts between 4 and 5.5 minutes depending on the
VMM), the time spent there was less than a second.

The overhead is thus likely to be caused by the per-thread limit extension
as well as the required modifications to the memory management. In fact,
turning off the per-thread limit extension (while the guest operating system
remains unprotectedly mapped into application spaces) perceivably improved
the Netperf benchmark result. Additionally, earlier µ-kernel benchmarks sup-
port the thesis that L4’s performance, and thus the VMM, suffers from that
extension (cp. Section 5.2). In particular it has negative effects to IPC-bound
workload. The more interesting finding, however, is related to the VMM’s
distributed memory management. Table 5.6 prints the number of three dif-
ferent kinds of page faults counted during a Linux kernel build. Application
page faults are those caused by all application threads in their respective 2GB
space. Kernel-space page faults include all page faults caused by operating
system threads. The last column summarizes the number of physical memory
requests that were sent to the resource monitor.

System Application Kernel ResMonitor
Original VMM 2,782,000 858,000 214,000
Redesigned VMM Stage 2 7,600,000 853,000 140,000

Table 5.6: Page fault statistics

The interesting point here is the conspicuously high number of application
page faults created by the second stage VMM. Compared to the original VMM,
there are almost three times as many. The only conceivable explanation is that
L4 mappings in application spaces are much more frequently revoked. In fact,
the unmap mechanism has changed. While the old wedge pro-actively removes
L4 mappings as soon as Linux changes the corresponding page table entries,
the redesigned VMM is forced to use the TLB hooks for the reasons described
in Section 4.5.1.

Consequently, the next step of investigation was to determine how frequently
each of the different TLB hooks is called. Ideally, Linux would invoke TLB
hooks to selectively remove translation entries that correspond to those pre-
viously invalidated in the page tables. It would also batch adjacent page

5.3. VIRTUAL MACHINE BENCHMARKS 59

invalidations and eventually call a hook to flush the affected area. However,
it doesn’t. Rather, it frequently flushes the whole TLB even though only few
page table entries have changed. It thereby forces the VMM to revoke all
mappings in a particular application space. This naturally results in a huge
number of subsequent page faults. As it turned out, Linux for IA-32 is not
optimized to support selective TLB flushes, as opposed to other ports for archi-
tectures whose TLB entries are tagged by additional address space identifiers.
Reducing the number of expensive page faults to a reasonable value would
require additional modifications to Linux/IA-32. The TLB flushing needs to
be done in a more fine-grained manner.

In summary, it is the adverse effect of per-thread limits and Linux/IA-32’s
TLB policy that is likely to cause the overhead. A final proof of this assump-
tion requires additional Linux adaptation. An earlier optimization, however,
illustrates how adversely such an extraordinary number of page faults can af-
fect the virtual machine’s performance. Without the address space recycling
optimization, as introduced in Section 4.5.1, every new application startup
will be delayed by frequent page faults for the guest kernel area. A contin-
uous creation and deletion of applications thus causes an inordinate number
of page faults by guest operating system threads in the virtual machine. In
fact, the Linux kernel build finished in no less than 380 seconds without the
optimization compared to 324 seconds otherwise.

60 CHAPTER 5. EVALUATION

Chapter 6

Conclusion

The following sections briefly summarize this thesis and point out its open
questions. They also give ideas for future work that is based on the results.

6.1 Summary

This thesis was motivated by comparable work on how to alleviate the over-
head of host-based virtual machines. It claims that L4’s interface lacks trans-
parency and thus does not allow to construct virtual machines with the same
efficiency as specialized hypervisors.

The thesis proposed transparency-increasing extensions to improve virtualiza-
tion on L4. Thread limits offer mechanisms that are similar to a processor’s
privilege modes and allow for natural co-location of the guest operating system
and its applications. Preemption messages and zero time slices allow virtual
machine monitors to avoid the influence of the L4 scheduler and enable the
guest OS to fully control scheduling its applications. The additional user state
passed along page fault and preemption messages can be efficiently passed to
the guest operating system. Finally, control transfer messages provide a novel
way to redirect control flow in reply to synchronous and asynchronous events.

The L4Ka Virtual Machine Environment was redesigned to make use of L4’s
extended API. A reference implementation for IA-32 was also provided. Its
evaluation and the µ-kernel’s performance was two-sided. On one hand, the
extensions allow for a more complete and correct virtual machine construction.
Additionally, the redesigned virtual machine can reduce the kernel entry/exit
overhead. On the other hand, L4 forfeits IPC performance in consequence of
how thread limits are implemented. Consequently, the more transparent API
is well suited to a VMM’s usage patterns but adversely affects other systems

61

62 CHAPTER 6. CONCLUSION

that build on top of L4. However, it also became apparent that L4’s IA-32 port
is currently faster than it should be. With respect to the virtual machine’s
performance, macrobenchmarks revealed that complex user applications with
a high memory consumption suffer significantly from the distributed memory
scenario in conjunction with Linux’s TLB flush policy.

6.2 Future Work

This work proposed extensions to solve or alleviate most, but not all difficulties
L4 poses to virtual machine construction. In particular, access bit virtualiza-
tion and address space construction that rely on shadow page tables remain
an open issue. Some of the proposed extensions turned out to have adverse
effects on the µ-kernel’s overall performance. Other extensions worked out for
specific architectures but are generally insufficient. Based on the results of
this thesis, future work is required to improve the value of these extensions
and to reduce their overhead. In particular IPC, as the key L4 mechanism,
must not significantly suffer from any virtualization supporting modification.

Some µ-kernel enhancements, as implemented, lack support for fast IPC. How-
ever, it should not be difficult to add the required logic. The scheduler of
the baseline L4/IA-32 turned out to not properly handle delayed preemption.
L4 threads with delayed preemption that execute on donated time slices are
spuriously preempted. Additionally, the preemption flags are not always set
correctly. For the evaluation of this work, some of the errors were tentatively
fixed, but the scheduler needs further revision to make sure it does handle all
cases as expected.

Future work is required to modify the guest operating system. The TLB
flushes are too coarse-grained and cause an extraordinarily high number of
application page faults in the virtual machines. Unless the number of page
faults in the virtual machines are not roughly equal, it is impossible to conclude
whether or not co-location pays off for a wide range of applications. Another
optimization, which would likely improve performance, is to outsource the
interrupt thread into its own task and to concurrently use L4’s small space
optimization when available. On IA-32, the additional overhead caused by the
small space logic should be negligible as it can piggyback on the costs of the
thread limit extension. Hardware interrupts then would not imply hardware
address space switches, further accelerating the virtual machine.

Appendix A

API Version X.2 Extensions

A.1 Control Transfer Items

A control transfer item is a typed message item that specifies parts of the
register state of a thread. Typically it contains registers required to change
the control flow of a program (e.g., instruction pointer and stack pointer).

1100n0 (5)

reg

reg (32/64)

(32/64)

vmask
0

n

(n+1)(22-n/54-n)

n The number of register values in the control transfer item - 1.

r0..rn The register values to overwrite the register state with. The register
corresponding to a specific register value rk is architecture dependent.
A register value rk is ignored if bit k in vmask is cleared.

vmask Bitmask indicating which register contents to modify. If bit k is set the
register value rk is written into the corresponding register. if bit k is
cleared the register value rk is ignored.

Control transfer messages allow to reset a thread’s registers by means of com-
mon IPC. To allow for a control transfer, the receiver must set a corresponding

63

64 APPENDIX A. API VERSION X.2 EXTENSIONS

bit in its acceptor and perform a receiving IPC system call. The new acceptor
was accordingly complemented.

RcvWindow 00cs (28/60)

c Control transfer is accepted iff c = 1.

If the kernel is configured to support control transfer, L4 automatically ac-
cepts control transfer items in reply to page fault, exception, and preemption
messages.

A.2 Preemption Messages

A preemption message is a reliable IPC call from a just-preempted thread to its
scheduler. Threads with preemption messages activated case L4 to synthesize
a message and to send it to the thread’s scheduler in all of the following events:

1. The thread’s time slice has expired and L4 chooses to schedule another
thread.

2. A higher priority thread woke up (to which L4 instantly switches).

3. A hardware interrupt was triggered and L4 decides to schedule another
thread.

Subsequently the preempted thread waits for the receiver’s response, i.e., L4
will not reschedule the thread unless the scheduler replies with an empty mes-
sage.

Preemption messages include the time of preemption. The kernel can also be
configured to attach the suspended thread’s execution state, either in terms
of untyped words or as a control transfer item.

A.3. THREADCONTOL 65

0 u=2t=n+2-17 0rwx

1100n(5)

reg

reg

(12/44)

(32/64)

(32/64)

(4) (6) (6)

0

n

 (time stamp) mod 2

 (time stamp) / 2

0(23/55)

(32/64)
(32/64)

(32/64)
(32/64)

MRo

MR1

MR2

MR3

MR4

MRn+4

Figure A.1: Preemption message layout

A.3 ThreadContol

ThreadId dest −→ Word result
ThreadId SpaceSpecifier
ThreadId scheduler
ThreadId pager
void* UtcbLocation
Word limit

The system call has an additional parameter limit. It allows to restrict the
destination thread’s accessible memory region within its virtual address space.
All other input parameters and the result are not affected.

Input Parameter limit

limit -(20) (12)

limit specifies the upper limit of the thread’s accessible memory region, which
starts at address zero. A value of -1 indicates no restriction. Otherwise, the
limit is a multiple of 4K blocks, i.e., the thread’s highest accessible memory
address is 4K * (limit + 1) - 1. For specific processors, it can be a multiple
of a larger memory unit. A thread trying to access memory above its limit
causes an exception.

66 APPENDIX A. API VERSION X.2 EXTENSIONS

A.4 Page Fault Protocol

The kernel can be configured to support an extended page fault protocol.
Other than the faulting address and the instruction pointer, the extended
page fault message additionally contains an architecture dependent set of the
faulting thread’s register state.

0 u=2t=n+2-2 0rwx

1100n(5)

reg

reg

(12/44)

(32/64)

(32/64)

(4) (6) (6)

0

n

faulting address

faulting IP

0(23/55)

MRo

MR1

MR2

MR3

MR4

MRn+4

If the kernel is configured to support control transfer, the format of the addi-
tional state passed in message registers matches a control transfer item. The
kernel guarantees that no real control transfer will take place, even if the pager
has its acceptor set appropriately.

A.5 Schedule

ThreadId dest −→ Word result
Word time control Word time control
Word processor control
Word prio
Word preemption control

The system call allows to activate preemption messages on a per-thread basis.

Input Parameter preemption control

max delaysens prio0 (7/39) (16)(8)p

A.5. SCHEDULE 67

If p is set, preemption messages are enabled on the target thread. Otherwise
they are disabled.

Preemption messages can be enabled or disabled at any point in time. Mod-
ifications become immediately effective. If preemption messages are enabled
on threads that have not yet received their startup message the thread start
protocol (cp. [26]) changes. A newly created thread with preemption mes-
sages enabled starts by receiving a message from its scheduler, as opposed to
its pager. The startup message format remains unchanged, i.e., it contains
an initial instruction and stack pointer. If the kernel is configured to support
control transfer, the message can alternatively be a control transfer item to
specify the thread’s startup state.

68 APPENDIX A. API VERSION X.2 EXTENSIONS

Bibliography

[1] Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. In ASPLOS-XII: Proceedings of the
12th international conference on Architectural support for programming
languages and operating systems, pages 2–13, New York, NY, USA, 2006.
ACM Press.

[2] Neil Brown et al. The Linux Virtual File-system Layer, 1999.

[3] K. Buchacker and V. Sieh. Framework for Testing the Fault-Tolerance
of Systems Including OS and Network Aspects, 2001.

[4] Microsoft Corp. Microsoft Virtual PC 2004 technical overview,
2005. http://www.microsoft.com/windows/virtualpc/evaluation/
techoverview.mspx.

[5] Microsoft Corp. Microsoft Virtual Server 2005 Technical Resource
Overview. http://www.microsoft.com/windowsserversystem/virtualserver/
techinfo/default.mspx.

[6] IBM Corporation. Dynamic Logical Partitioning. http://www-
03.ibm.com/servers/eserver/iseries/lpar/.

[7] IBM Corporation. z/VM built on ibm virtualization technology.
http://www.vm.ibm.com/techinfo/.

[8] R. J. Creasy. The origin of the VM/370 time-sharing system. IBM Journal
of Research and Development, 25(5):483–490, September 1981.

[9] Advanced Micro Devices. AMD64 Virtualization Codenamed ”Pacifica”
Technology. Secure Virtual Machine Architecture Reference Manual,
2005.

[10] Edsger W. Dijkstra. The structure of the the multiprogramming system.
Commun. ACM, 11(5):341–346, 1968.

[11] Jeff Dike. A user-mode port of the Linux kernel. In Proceedings of the
4th Annual Linux Showcase and Conference, Atlanta, GA, October 2000.

69

70 BIBLIOGRAPHY

[12] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer. Xen and the Art of Virtualization. In
Proceedings of the ACM Symposium on Operating Systems Principles,
October 2003.

[13] R. P. Goldberg. Survey of Virtual Machine Research. IEEE Computer
Magazine, 7(6):34–45, 1974.

[14] David B. Golub, Randall W. Dean, Alessandro Forin, and Richard F.
Rashid. UNIX as an application program. In USENIX Summer, pages
87–95, 1990.

[15] The Open Group. IEEE Std 1003.1,2004 Edition.
http://www.unix.org/version3/ieee std.html.

[16] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian
Schönberg, and Jean Wolter. The performance of microkernel-based sys-
tems. In Proceedings of the 16th ACM Symposium on Operating System
Principles (SOSP), St. Malo, France, October 5–8 1997.

[17] Samuel T. King, George W. Dunlap, and Peter M. Chen. Operating
System Support for Virtual Machines. In USENIX Annual Technical
Conference, General Track, pages 71–84, 2003.

[18] Adam Lackorzynski. L4Linux Porting Optimizations, Diploma Thesis,
Faculty of Computer Science, Technische Universität Dresden. 2004.

[19] Joshua LeVasseur, Volkmar Uhlig, Matthew Chapman, Peter Chubb, Ben
Leslie, and Gernot Heiser. Pre-Virtualization: soft layering for virtual
machines. Technical Report 2006-15, Fakultät für Informatik, Universität
Karlsruhe (TH), July 2006.

[20] Jochen Liedtke. On microkernel construction. In Proceedings of the 15th
ACM Symposium on Operating System Principles (SOSP-15), Copper
Mountain Resort, CO, December 1995.

[21] Jochen Liedtke. Towards real microkernels. Communications of the ACM,
39(9):70–77, September 1996.

[22] D. L. Parnas and D. P. Siewiorek. Use of the concept of transparency
in the design of hierarchically structured systems. Commun. ACM,
18(7):401–408, 1975.

[23] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtu-
alizable third generation architectures. Commun. ACM, 17(7):412–421,
1974.

[24] Marc Rozier, Vadim Abrossimov, François Armand, I. Boule, Michel
Gien, Marc Guillemont, F. Herrmann, Claude Kaiser, S. Langlois,
P. Leonard, and W. Neuhauser. Chorus distributed operating system.
Computing Systems, 1(4):305–370, 1988.

BIBLIOGRAPHY 71

[25] J. Sugerman, G. Venkitachalam, and B. Lim. Virtualizing I/O Devices
on VMware Workstation’s Hosted Virtual Machine monitor.

[26] The L4Ka Team. L4 eXperimental Kernel Reference Manual. Version
X.2, August 2006.

[27] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M.
Martins, Andrew V. Anderson, Steven M. Bennett, Alain Kagi, Felix H.
Leung, and Larry Smith. Intel Virtualization Technology. Computer,
38(5):48–56, 2005.

	Introduction
	L4's Problem for Virtualization: Missing Transparency
	Approach
	Structure of this Thesis

	Background And Related Work
	Current Virtualization Techniques
	Full Virtualization
	Para-Virtualization
	Pre-Virtualization
	Hosted vs. Hypervisor Approach

	Abstractions and The Concept of Transparency
	The Usage of Abstraction Layers
	The Impact of Abstractions on Virtual Machines

	Virtualization on L4
	The L4 -kernel
	L4Linux and the L4Ka Virtual Machine Environment

	Missing Transparency in the L4 API
	Missing Privilege Modes
	Expensive Access Bits Virtualization
	Imprecise Scheduling
	Inaccessible Processor State
	Inadequate Control Transfer Support
	Inefficient Address Space Construction
	Indistinguishable Execution Modes

	Related Work

	Proposed Solution
	Thread Limits
	Control Transfer Messages
	Preemption Messages
	Zero Time Slices
	An Extended Page Fault Protocol
	A new Wedge Design

	Implementation
	Control Transfer Messages
	Preemption Messages
	Page Fault Extension
	Thread Limits
	IA-32 Protected Mode Memory Management
	Thread Limit Implementation
	Implementation Alternatives

	Wedge Design
	Address Space Construction
	Address Space Switch
	Exception, Signal and Interrupt Handling

	Evaluation
	Measurement Methodology
	-kernel benchmarks
	Virtual Machine Benchmarks
	Microbenchmarks
	Macrobenchmarks

	Conclusion
	Summary
	Future Work

	API Version X.2 Extensions
	Control Transfer Items
	Preemption Messages
	ThreadContol
	Page Fault Protocol
	Schedule

